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Classification of solitary waves

Bright soliton t(t, x) = e'fsech(x)  Dark soliton 9(t,x) = e~ 2" tanh(x)
of the focusing NLS equation of the defocusing NLS equation

i0p) + %Y + 2[Y[*p =0 i0p) + %Y — 2[Y[Pp =0

satisfying |i(t,x)| — 0 as |x| — oo satisfying |¢(t, x)| — 1 as |x| = oo
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Classification of solitary waves

Bright soliton t(t, x) = e'fsech(x)  Dark soliton 9(t,x) = e~ 2" tanh(x)

of the focusing NLS equation of the defocusing NLS equation
i) + 031 + 2[¢*p = 0 i) + 031 — 2/y*p =0

satisfying |i(t,x)| — 0 as |x| — oo satisfying |¢(t, x)| — 1 as |x| = oo

Situation can be more interesting for the coupled NLS models

i0pp1 + 0201 + ([Y1]? + [¢2]?)y1 = 0,
i0¢2 + 02tp2 + (1] + [12]?)h2 = 0,

with the bright-bright, bright-dark, and dark-dark solitons.
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Classification of solitary waves

Bright soliton t(t, x) = e'fsech(x)  Dark soliton 9(t,x) = e~ 2" tanh(x)

of the focusing NLS equation of the defocusing NLS equation
i + 0% + 20 [Py = 0 i + 0% — 20 [*yp = 0

satisfying |i(t,x)| — 0 as |x| — oo satisfying |¢(t, x)| — 1 as |x| = oo
Situation can be more interesting for the coupled NLS models
ider + 21 + (JP1* + 92?1 = 0,
idepa + 32 + (JP1]* + [¢2]?)32 = 0,
with the bright-bright, bright-dark, and dark-dark solitons.
Domain walls satisfy
|1(t, x)| — 0, |¢o(t,x)| = 1, as x — Foo
|1(t, x)| — 1, |2(t,x)| = 0, as x — oo

B. Malomed, “Past and present trends in the development of the
pattern-formation theory”, arXiv:2110.14935 (2021)
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Domain walls from the energetic point of view
@ Bulk energy with stable states

W:R—-R, Ww>0 W(p)=W(p)=0
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Domain walls from the energetic point of view
@ Bulk energy with stable states

W:R—-R, Ww>0 W(p)=W(p)=0

@ The total energy

E(u):/RBWuFJrW(u)] d
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Domain walls from the energetic point of view
@ Bulk energy with stable states

W: R SR, W()>0, Wps)=W(p)=0
@ The total energy
1
E(u) = / [—|Vu|2 + W(u)] dx
R 2
@ Domain walls are stationary layers with profile U connecting p:

~U" +DW(U) =0, U— pr as x — +00
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Example: Gross-Pitaevskii System
Motivated by two-component (repulsive) Bose-Einstein condensates,

i0pb1 = —021 + (gu1|vn]? + gra|va?)n,
i0pby = —0%bn + (gr2lt1|? + g2o|to2|?) 2,

with g11 >0, g0 >0, and 812 > /811822
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Example: Gross-Pitaevskii System
Motivated by two-component (repulsive) Bose-Einstein condensates,

i0pb1 = —021 + (gu1|vn]? + gra|va?)n,
i0pby = —0%bn + (gr2lt1|? + g2o|to2|?) 2,

with g11 >0, g0 >0, and 812 > /811822
With normalization g11 = g2 = 1, g12 = v > 1, the standing waves
¥j(t, x) = e~ "uj(x) satisfy

—uf + (1] + 705 — Dy =0,

—uy + (yud + 13 — 1)up = 0,

with the bulk energy

1 2
W(u, o) =3 (lur? + w2 = 1) + (v = Dur .

Barankov (2002), Dror-Malomed-Zeng (2011), Filatrella-Malomed, (2014)
January 2022 4/30



Domain wall solutions
Domain walls satisfy the boundary-value problem:

—uf + (uf + 7u§ — 1w =0,
4 (R4 B D =,
with (u1, u2) — (0,1) as x — Foo, and (u1, u) — (1,0) as x — +oc.

Example: exact solution for v = 3:

i (x) = % [1 + tanh <%)]  w(x) = % [1 _ tanh (\%)] .
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Existence Theorem
Recall the energy E(U) = [p[3|U'|> + W(U)]dx with U = (u1, u2) and

2
W(U) = 5 (Juf + w2l = 1)" + (v = D] [

N

Theorem (Alama—Bronsard—Contreras—P., 2015)
Forv > 1,

@ The infimum of E(U) is attained among the solutions with
U(x) — ex as x — £o0, where ey = (1,0) and e_ = (0,1).

e Every minimizer U = (u1, up) satisfies
(a) ul(x) = up(—x) for all x € R.
(b) v3(x)+ u3(x) <1 for all x € R.
(c) ul(x) > 0 and ub(x) < 0 for all x € R.
(d) 0 < w1 2(x) < 1 with exponential convergence to constant states.

Uniqueness in Aftalion-Sourdis (2016); Farina-Sciunzi-Soave (2017).

D. Pelinovsky Domain walls in harmonic potentials January 2022 6/30



Domain walls among other stationary states
Other positive solutions exist in the coupled system:

—u] + (U3 +yu3 —D)uy =0,
—uy + (yud + 13 — 1)up = 0,

such as the uncoupled states (u1, u2) = (1,0) and (u1, up) = (0, 1) or the
symmetric state (ug, u2) = (1 +~)"/2(1,1).
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Domain walls among other stationary states
Other positive solutions exist in the coupled system:

—u} 4+ (v +yu3 —1)uy =0,
—uy + (yud + 13 — 1)up = 0,

such as the uncoupled states (u1, u2) = (1,0) and (u1, up) = (0, 1) or the
symmetric state (u1, un) = (1 +~)~Y2(1,1).

Recall
1

2
W (uy, un) = 5 (uf +u3 — 1)+ (v — L)uiuj.

For v € (0,1),

Wi, ue) = ~ 28— W@+ )2 140) )

hence the symmetric state is the minimizer of W(u1, up) for v € (0,1).
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Domain walls among other stationary states
Other positive solutions exist in the coupled system:

—u} 4+ (v +yu3 —1)uy =0,
—uy + (yud + 13 — 1)up = 0,

such as the uncoupled states (u1, u2) = (1,0) and (u1, up) = (0, 1) or the
symmetric state (u1, un) = (1 +~)~Y2(1,1).

Recall
1

2
W (uy, un) = 5 (uf +u3 — 1)+ (v — L)uiuj.

For v > 1,
W(uy, u2) > 0= W(1,0) = W(0,1)

hence the uncoupled states are the minimizers of W (uy, up) for v > 1.
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Spaces for Minimization

Recall the energy E(U) = [5[3|U'|? + W(U)]dx with U = (uy, uz) and

2
W(U) = = (Jur]? + [12]* = 1) + (v = D)]ur[?|wa*.

N

A minimizing sequence belongs to the energy space

D={U€H,(R): |U(x)—er as x— Foo}.
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Decomposition of energy for stability argument
Let us equip the energy space with the family of distances for A > 0:

pa(V, @) = Z [ij - SD}HB(R) + |11 - |901'|HL2(R) + ey = SOJ'HLOO(—A,A)}
j=12

F. Bethuel, P. Gravejat, J.C. Saut, D. Smets (2008)
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Decomposition of energy for stability argument
Let us equip the energy space with the family of distances for A > 0:

pa(v,®):= ) [W ~ @jll 2y + 11931 = 103l]] 2y + (1907 = SOJ'HLOO(—A,A)}
j=12

F. Bethuel, P. Gravejat, J.C. Saut, D. Smets (2008)
Energy can be decomposed in the form:
E(U+V+iW)—E(U) = (Lt V, V) 2+ (L-W, W) 2+ O(|V +iW |3 gy).

Cubic terms cannot be controlled in pa because of phase modulations.
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Decomposition of energy for stability argument
Let us equip the energy space with the family of distances for A > 0:

pa(V, ®) =) [H%/ = il 2y T N1l = 10l 2y + M1 — SOJ'HLOO(—A,A)}
=12

F. Bethuel, P. Gravejat, J.C. Saut, D. Smets (2008)

The second variation satisfies the following properties:
e Self-adjoint operator L, and L_ are positive semi-definite in H!(R).
@ 3%0>0: 0ess(Ly) = [X0,00). Tess(L—) = [0, 00)
@ Zero is a simple eigenvalue of L, with eigenfunction 0, U > 0.
o L U =L_U, =0 with U = (u1,0) and U = (0, up).
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Decomposition of energy for stability argument
Let us equip the energy space with the family of distances for A > 0:

pa(v,®):= ) [W ~ @jll 2y + 11931 = 103l]] 2y + (1907 = SOJ'HLOO(—A,A)}
j=12

F. Bethuel, P. Gravejat, J.C. Saut, D. Smets (2008)
As a result, we have
(L V, V)2 > G| V|3, forevery V€ HY(R): (V,0:U)p2=0

but
(LW, W), >0, with LU =L_U=0.

Complex phases can not be controlled far away from the domain walls.
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Alternative decomposition of energy
Energy can be decomposed in the equivalent way:

1
E(U+V+iW)—EWU)=(L_V,V)+ (L-W, W)L2+§(MT,T)L2,
where T = (n1,1m2) with 1 := |uj + v; + iwj|* — uj2 =2ujvj + Vj2 + sz and
mM=11 7 demy=1-+2 <o
v o1

Gravejat-Smets (2015)
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Alternative decomposition of energy
Energy can be decomposed in the equivalent way:

1
E(U+V+ W) — E(U) = (LV, V) + (LW, W) + 5 (MY, )z

One can introduce weighted H' space:
di; dgo _
(W, D)gy 1= E Skl — 1)1 — P3| d
VH / { o (v —1)( us)ipj| dx

and write
(LW, W) = W3 — v (TW, W),

where T : H — H is the compact positive operator defined by

(T, )y = / (1— &2 — &) (151 + 1haP2) dx

R
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Alternative decomposition of energy
Energy can be decomposed in the equivalent way:

. 1
E(U+V+ W) — E(U) = (LV, V) + (LW, W) + 5 (MY, )z

Then,

@ The spectrum of L_ in H consists of isolated eigenvalues
accumulating to 1.

@ The smallest eigenvalue of L_ is a double zero
with Uy = (U1,0) € H and Uy = (0, U2) eH.

As a result, the quadratic form is coercive under the two constraints

(LLW, W), > CI|W|3, YWeH: (W, U)y= (W,U)y =0.
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Alternative decomposition of energy
Energy can be decomposed in the equivalent way:

. 1
E(U+V +iW) = E(U) = LV, V) + (LW, W) + 5 (MT,T) 2,
However,

@ Only one constraint can be set on V in (L_V, V),>.

@ The nonlinear part (MT,T),, is sign-indefinite.

In order to control these two terms, we introduce the family of distances
parameterized by R > 0:

ROV, ®) = [V — o], + > [[ly] - \‘PJ|HL2(|X|2R)'
j=12
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Alternative decomposition of energy (revised)

The revised alternative decomposition can be controlled in pg:

E(U+V+iW)—-EWU)=(LrV, V) + (LW, W),>

_R 00
—}-fy/ n2(2urvy + v12 + W12)dX + ’y/ m(2uavo + v22 + W22)dX,
e R
where
le = L 42 U2 yuw
R = L- YUt u% X[-R,R]
2
o Ul yuiup
= L -2 [7“1“2 i ] X(—00,—R)U(R,0)"

As R — oo, Lg — Ly and L 0,U = 0 with 0,U € H.
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Alternative decomposition of energy (revised)

@ The spectrum of Lg in H consists of isolated eigenvalues
accumulating to 1.

@ The zero eigenvalue is shifted for R < oo but is near 0 if R is large.

As a result, the quadratic form is coercive under one constraint

(LRV, V)2 > C||V|I3, YW eH: (V,0U)y=0.

The nonlinear terms can be controlled inside and outside of [-R, R], e.g.
IV + W rry < Ce™FIIV +iW/|y

and

o0
‘/ m(2uavo + V22 + W22)dX < Ce_HRH V+ iWHHHanL2(|x|2R)'
R
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Orbital Stability

Theorem (Contreras—P—Plum, 2018)

Let Wo € DN L®(R). There exists Ry > 0 such that for any R > Ry and
for every ¢ > 0, there is § > 0 and real functions «(t), 01(t), 02(t) such

that if pr(Wo, U) < 6, then sup,cr pr(V(t), Un(t).01(1),02(t)) < €, where

Un(t)or(6).65(0) = (€7 Our (- — a(t)), e 2D (- — a(1))).

Here
r(V, @) = H\U o q’”% + Z ”Wﬂ - “PJ|HL2(|X|2R)
j=1,2
and
di; dp _
(W, d)gy = Z/ [dxfdxf + (v = 1)(1 = v} )@ | dx

January 2022 13 /30




Remarks

@ Modulation parameters «, 61, and 65 in the orbit of domain walls

Un(e)01(6).02(e) = (&7 Oy (- — a(t)), e (- — (1))

are uniquely determined by the projection algorithm.
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Remarks

@ Modulation parameters «, 61, and 65 in the orbit of domain walls

Un(e)01(6).02(e) = (&7 Oy (- — a(t)), e (- — (1))

are uniquely determined by the projection algorithm.

@ The time evolution of the modulation parameters is controlled:
a(t)] +[01(t) + |02(t)] < Ce(1+[t]), teR

for some C > 0.
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Domain walls in external potentials

Consider the domain walls in external potentials:

i0ppy = —02b1 + V()1 + (|¥1]? + |2 ),
iOpby = =022 + V(x)h2 + (Y1 + [¥2]*)¢2,

where V € C2(R) N LY(R) is small in some sense.
Domain walls (u1, u2) are pinned to the extremal points of the potential V
and the pinning is stable at the maximum of the potential.

(Dror-Malomed-Zeng 2011, Alama—Bronsard—Contreras—P 2015).

For applications to Bose—Einstein condensates in magnetic traps, we need
to consider V/(x) = x? which violates assumptions on V/(x).
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Numerical results (motivations)

Consider the domain walls in the e-perturbed system:

i0epy = =021 + x*1 + (|1 + Y[va*)y,
Do = —021hy + x%ho + (V|11 + [t2]?)a.

Navarro—Carretero-Gonzdle—Kevrekidis 2008
o & - = DA




Thomas—Fermi limit for BECs in harmonic potentials

Stationary system of Gross—Pitaevskii equations is

—e2021 + X1 + (Y3 + 3 — 1)1 = 0,
20243 + x*thy + (V3 + 3 — 1)iha = 0,

where the limit € — 0 is referred to as the Thomas—Fermi limit.

The energy is defined in H1(R) N L>1(R):
1
G.(¥) = 5 [ [042 + (s + (€ = 1(wF +03)
1
+ 51+ ) + (v = Dyiv3] o
All solutions decay like Hermite—Gauss functions at infinity.
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Ground state of the scalar Gross—Pitaevskii theory

The scalar stationary Gross—Pitaevskii equation

—en! (x) + (x* +12(x) = L)n=(x) = 0,

and the solution with 7-(x) > 0 is referred to as the ground state.

The limiting TF cloud is
||m Ne X) vV 1-— X 1{|x|<1}

with the convergence: 04
e — ol < CeY/3,
L]l eee < Ce™1/3.

0.8

7]F

0.2

Ignat-Millot (2006); Gallo—P (2011) 0
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Domain walls in harmonic potentials

By using the transformation 11 2(x) = 1:(x)$1,2(x/€) and changing the
variables x — z := x /e, we obtain G.(V) = F.(n:) + eJ=(P), where

5(®) =5 [ ez [0 + (6] e

+3 [neea)t |50+ 03—+ (- 06hef] o

¥ € H' N %! is a minimizer of G, if and only if ® is a minimizer of J..
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Domain walls in harmonic potentials
By using the transformation 11 2(x) = 1:(x)$1,2(x/€) and changing the
variables x — z := x /e, we obtain G.(V) = F.(n:) + eJ=(P), where

MMZ;AmwﬁK%ﬂH%ﬂw

2

V€ H' N [%1 is a minimizer of G. if and only if ® is a minimizer of J..

+3 [neea)t |50+ 03—+ (- 06hef] o
R

1

The limit € — 0 with 70(0) =1
recovers domain walls without
harmonic potentials for v > 1. 06

0.8

By the ' convergence theorem, j;
04
J:—> Jo ase —> 0 o2
Contreras—P—Slastikov (2022) 0

-3 -2 -1 0 1 2 3
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Domain walls among other stationary states
Other positive solutions exist in the coupled system:

20241 + X%y + (V3 + 43 — 1)1 = 0,
—£20%p + X%y + (Y + 43 — 1) = 0,

such as the uncoupled states (1, 12) = (1,0) and (¢1,12) = (0,7.) or
the symmetric state (¢1,v2) = (1 + 7)_1/2(7757775)-
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Domain walls among other stationary states
Other positive solutions exist in the coupled system:

—£202¢1 + X1 + (Y3 + 73 — 1) = 0,
—£20%p + X%y + (Y + 43 — 1) = 0,

such as the uncoupled states (11, %2) = (n-,0) and (¢1,12) = (0,7:) or
the symmetric state (¢1,12) = (1 + )" 2(1:, 7).

By the same reason for v € (0, 1),

1
W(u, up) = 5 (u% + u% — 1)2 + (y— 1)u%u§
(1 —7) ~1/2 ~1/2
> w1+ (14
> =2 W) )

hence the symmetric state is the minimizer of G, for v € (0, 1).
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Domain walls among other stationary states
Other positive solutions exist in the coupled system:

—£202¢1 + X1 + (Y3 + 73 — 1) = 0,
—£20%p + X%y + (Y + 43 — 1) = 0,

such as the uncoupled states (11, %2) = (n-,0) and (¢1,12) = (0,7:) or
the symmetric state (¢1,12) = (1 + )" 2(1:, 7).

By the same reason for v > 1,

2
W(u1, up) = (uf + u% — 1) + (v - l)ufug

> 0= W(1,0) = W(0,1)

N

hence the uncoupled states are the minimizers of G. for v > 1.
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Spaces for Minimization

Domain walls arise as minimizers in the energy space with the symmetry:

Es = {V e H}R)NLP(R) :  91(x) = ¥n(—x), x € R}.

Theorem (Contreras—P-Slastikov, 2022)

There exists g > 0 such that for every € € (0,eq) there is yo(¢) € (1, 0)
such that the symmetric state is a global minimizer of the energy G in Es
if v € (0,70(¢)] and a saddle point if v € (yo(€), ).

Domain wall states are global minimizers of the energy G; in &s if

v € (y0(€), 00): one satisfies 11(x) > 1p2(x) > 0 for x > 0 and the other
one obtained by the transformation 11 < 5.
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Bifurcation diagram

2
y
1.5} domain walls
11. -----------------------------------------------
051
0 i i i i
0 0.05 0.1 0.15 0.2 €

It is obvious that 7o(¢) — 1 as ¢ — 0.
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Second variation
Variational analysis is complemented by the study of the second variation:

G (v = <—s28§ + 5+ 39F + 995 — 1 271192 )
c 212 —e20%7 + X% + 3 4+ 3¢5 — 1
(PR 21 SRl
- 2 3
1—_;%775 —e202 + x2 + 1—1'71773 -
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Second variation
After rotation, it becomes

L, 0 Ly :=—e202+x*— 1432,
0 L_ +21+~ﬂs L =202 +x%> — 1472,

where Ly >0 and L_ > 0 because L_n. = 0 Gallo-P, 2011
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Second variation
After rotation, it becomes

L, 0 Ly :=—e202+x*— 1432,
0 L_ +21+v7]€ L =202 +x%> — 1472,

where Ly >0 and L_ > 0 because L_n. = 0 Gallo-P, 2011
Under the symmetry constraint in
E={Ve H'R)NLZYR) :  1(x) = a(—x), x € R}.

and the rotation, the operator

Lyo=L_ P Sl

1+7%

is considered in H2(0,00) with Dirichlet condition at x = 0.
Bifurcation corresponds to the lowest eigenvalue of L, crossing 0.
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More about bifurcation diagram

2
Y
1.5 domain walls
1 =
05+
[0]
0 0.05 0.1 0.15 0.2

o = = £ DA
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More about bifurcation diagram

1.5 domain walls

"
______
______

0.5

0 0.05 0.1 0.15 0.2 €

For v =1, there is rotational symmetry with 1-parameter family

P1(x) = cos O n(x), a(x) = sin O n(x).

If v # 1, however, only solutions with 6 = {0, 7, 7} bifurcate from the
family and they correspond to the uncoupled and symmetric states.
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Proper analysis of bifurcation at yy(¢) as ¢ — 0
Let us rescale near (g,v) = (0, 1):

zy=z\/y—-1, ®(z)=0(y), e=p/y-1,

so that J.(®) = /v — 11,,(©) is given by

ol = 5 [ neluy)? (05 + (03)7] o

1 4002 | 02 1)2 l/ 4,22
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Proper analysis of bifurcation at yy(¢) as ¢ — 0
Let us rescale near (g,v) = (0, 1):

zy=z\/y—-1, ®(z)=0(y), e=p/y-1,

so that J.(®) = /v — 11,,(©) is given by

ol = 5 [ neluy)? (05 + (03)7] o

1 4002 | 02 _ 1y2 1/ 4022
— 071 + 05 — 1)°dy + = 6765dy.
+4(7_1)AU6(NY)(1+ 5—1) Y+ 3 Rm(ﬂ)’) it2ay
The I' convergence as v — 1 gives (61, 62) = (sin(u), cos(u)) with
-1

1io(©) > (@) =5 [ |l + mnln)*sin?(20) | o
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Comparison between numerical and asymptotic
approximations for ¢ = 0.1 and v = 1.2

w'l sz
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Second variation again

Theorem (Contreras—P—Slastikov, 2022)

There exists g € (0,00) such that the symmetric state is a global

minimizer of the energy I,,1 in Es if 1 € [po, 00) and a saddle point of the
energy in & if pu € (0, o). The domain wall states exist only if u € (0, o)
and are global minimizers of the energy 1,1 in ;.

D. Pelinovsky Domain walls in harmonic potentials
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Second variation again

Theorem (Contreras—P—Slastikov, 2022)

There exists g € (0,00) such that the symmetric state is a global
minimizer of the energy I,,1 in Es if 1 € [po, 00) and a saddle point of the

energy in & if pu € (0, o). The domain wall states exist only if u € (0, o)
and are global minimizers of the energy 1,1 in ;.

The symmetric state corresponds to the solution u =

% for
(61,62) = (sin(u),cos(u)) = (\%, %) in
1 e 20 n2 , L 4_. 2
l1(9) = 5 [0y ) () + no(uy)” sin®(2u) | dy-
-
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Second variation again

Theorem (Contreras—P—Slastikov, 2022)

There exists g € (0,00) such that the symmetric state is a global

minimizer of the energy I,,1 in Es if 1 € [po, 00) and a saddle point of the
energy in & if pu € (0, o). The domain wall states exist only if u € (0, o)
and are global minimizers of the energy 1,1 in ;.

The second variation of /1 in & at u = 7 gives

-1

52,1 = /0 " no(uy (@Y — moluy)* ) dy.

where the perturbation i satisfies &(0) = 0.
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Second variation again

Theorem (Contreras—P—Slastikov, 2022)

There exists g € (0,00) such that the symmetric state is a global
minimizer of the energy I,,1 in Es if 1 € [po, 00) and a saddle point of the

energy in & if pu € (0, o). The domain wall states exist only if u € (0, o)
and are global minimizers of the energy 1,1 in ;.

Bifurcation corresponds to the lowest eigenvalue v = 2

_% [(1 — Xz)%] =v(1-x*)%v(x), 0<x<1

It is found at v ~ 7.29 which determines yo(g) = 1 + voe? + O(g*).

D. Pelinovsky Domain walls in harmonic potentials January 2022 27 /30



Bifurcation diagram

2
y
1.5} domain walls
11. -----------------------------------------------
051
0 i i i i
0 0.05 0.1 0.15 0.2 €

The magenta line corresponds to yo(g) = 1 + vpe2.
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Numerical approximations of domain walls
In the energy space with the symmetry,

E ={Ve H'R)NL2Y(R) :  1(x) = ¢ha(—x), x € R},

we can introduce the parameter « := 11(0) = ¢»(0) and consider
minimizers of energy G. in & («) for fixed o > 0.
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Numerical approximations of domain walls
In the energy space with the symmetry,

E={Ve HR)NLZY(R) : 91(x) = 9a(—x), x € R},

we can introduce the parameter « := 11(0) = ¢»(0) and consider
minimizers of energy G. in & («) for fixed o > 0.

Theorem (Contreras—P—Slastikov, 2022)

Fixe >0, >0, and a > 0. Let W € E(a) be a critical point of the
energy G satisfying 11(x) > 12(x) > 0 for all x € (0,00). Then

W = (¢1,12) and W' = (1o, 11) are the only global minimizers of the
energy G, in E(w).
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Numerical approximations of domain walls
In the energy space with the symmetry,

E={Ve HR)NLZY(R) : 91(x) = 9a(—x), x € R},

we can introduce the parameter « := 11(0) = ¢»(0) and consider
minimizers of energy G. in & («) for fixed o > 0.

Two equivalent criteria for the minimizers W, = (1, 12) of G. in () to
become the domain wall solutions:

e Split function S.(«) := v1(0) + 15(0) vanishes
e Energy G.(V,) is minimal.
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Numerical approximations of domain walls
In the energy space with the symmetry,

E ={Ve H'R)NL2Y(R) :  1(x) = ¢ha(—x), x € R},

we can introduce the parameter « := 11(0) = ¢»(0) and consider
minimizers of energy G. in & («) for fixed o > 0.

For fixed e = 0.1 and v = 3:

10 -0.07
5
-0.08
5
e 5
2 2 -0.09
35 .
2]
-0.1
10
15 ' : ' ' -0.11 ' ' '
0.2 04 0.6 0.8 0 0.2 0.4 0.6 0.8 1
o o

D. Pelinovsky Domain walls in harmonic potentials January 2022

29/30



Summary

Domain walls W = (1)1, v») of the coupled Gross—Pitaevskii equations:

—e2021 + 21 + (Y3 + 3 — 1)y = 0,
20243 + x*thy + (V3 + 3 — 1)ha = 0,

@ minimizers of energy G. in the energy space with symmetry

orbitally stable in a weighted H'(RR) space

persist under harmonic potentials
@ asymptotically stable (conjecture)

@ do not travel in space (conjecture)

D. Pelinovsky Domain walls in harmonic potentials January 2022 30/30



	Existence of domain walls
	Stability of domain walls
	Domain walls in harmonic potentials
	Numerical approximations
	Summary

