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Classification of solitary waves
Bright soliton ψ(t, x) = e itsech(x)
of the focusing NLS equation

i∂tψ + ∂2xψ + 2|ψ|2ψ = 0

satisfying |ψ(t, x)| → 0 as |x | → ∞

Dark soliton ψ(t, x) = e−2it tanh(x)
of the defocusing NLS equation

i∂tψ + ∂2xψ − 2|ψ|2ψ = 0

satisfying |ψ(t, x)| → 1 as |x | → ∞

Situation can be more interesting for the coupled NLS models

i∂tψ1 + ∂2xψ1 + (|ψ1|2 + |ψ2|2)ψ1 = 0,
i∂tψ2 + ∂2xψ2 + (|ψ1|2 + |ψ2|2)ψ2 = 0,

with the bright-bright, bright-dark, and dark-dark solitons.

Domain walls satisfy

|ψ1(t, x)| → 0, |ψ2(t, x)| → 1, as x → ∓∞
|ψ1(t, x)| → 1, |ψ2(t, x)| → 0, as x → ±∞

B. Malomed, “Past and present trends in the development of the
pattern-formation theory”, arXiv:2110.14935 (2021)
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Domain walls from the energetic point of view
Bulk energy with stable states

W : R2 → R, W (u) ≥ 0, W (p+) = W (p−) = 0

The total energy

E (u) =

∫
R

[
1

2
|∇u|2 + W (u)

]
dx

Domain walls are stationary layers with profile U connecting p±:

−U ′′ + DW (U) = 0, U → p± as x → ±∞

p� p+

�0
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Example: Gross-Pitaevskii System
Motivated by two-component (repulsive) Bose-Einstein condensates,

i∂tψ1 = −∂2xψ1 + (g11|ψ1|2 + g12|ψ2|2)ψ1,

i∂tψ2 = −∂2xψ2 + (g12|ψ1|2 + g22|ψ2|2)ψ2,

with g11 > 0, g22 > 0, and g12 >
√
g11g22.

With normalization g11 = g22 = 1, g12 = γ > 1, the standing waves
ψj(t, x) = e−ituj(x) satisfy

−u′′1 + (u21 + γu22 − 1)u1 = 0,

−u′′2 + (γu21 + u22 − 1)u2 = 0,

with the bulk energy

W (u1, u2) =
1

2

(
|u1|2 + |u2|2 − 1

)2
+ (γ − 1)|u1|2|u2|2.

Barankov (2002), Dror-Malomed-Zeng (2011), Filatrella–Malomed (2014)
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Domain wall solutions
Domain walls satisfy the boundary-value problem:

−u′′1 + (u21 + γu22 − 1)u1 = 0,

−u′′2 + (γu21 + u22 − 1)u2 = 0,

with (u1, u2)→ (0, 1) as x → ∓∞, and (u1, u2)→ (1, 0) as x → ±∞.

Example: exact solution for γ = 3:

u1(x) =
1

2

[
1 + tanh

(
x√
2

)]
, u2(x) =

1

2

[
1− tanh

(
x√
2

)]
.
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Existence Theorem
Recall the energy E (U) =

∫
R[12 |U

′|2 + W (U)]dx with U = (u1, u2) and

W (U) =
1

2

(
|u1|2 + |u2|2 − 1

)2
+ (γ − 1)|u1|2|u2|2.

Theorem (Alama–Bronsard–Contreras–P., 2015)

For γ > 1,

The infimum of E (U) is attained among the solutions with
U(x)→ e± as x → ±∞, where e+ = (1, 0) and e− = (0, 1).

Every minimizer U = (u1, u2) satisfies

(a) u1(x) = u2(−x) for all x ∈ R.
(b) u21(x) + u22(x) ≤ 1 for all x ∈ R.
(c) u′1(x) > 0 and u′2(x) < 0 for all x ∈ R.
(d) 0 < u1,2(x) < 1 with exponential convergence to constant states.

Uniqueness in Aftalion-Sourdis (2016); Farina-Sciunzi-Soave (2017).
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Domain walls among other stationary states
Other positive solutions exist in the coupled system:

−u′′1 + (u21 + γu22 − 1)u1 = 0,

−u′′2 + (γu21 + u22 − 1)u2 = 0,

such as the uncoupled states (u1, u2) = (1, 0) and (u1, u2) = (0, 1) or the
symmetric state (u1, u2) = (1 + γ)−1/2(1, 1).
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(
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+ (γ − 1)u21u

2
2 .

For γ ∈ (0, 1),

W (u1, u2) ≥ − γ(1− γ)

2(1 + γ)2
= W ((1 + γ)−1/2, (1 + γ)−1/2)

hence the symmetric state is the minimizer of W (u1, u2) for γ ∈ (0, 1).
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Spaces for Minimization

Recall the energy E (U) =
∫
R[12 |U

′|2 + W (U)]dx with U = (u1, u2) and

W (U) =
1

2

(
|u1|2 + |u2|2 − 1

)2
+ (γ − 1)|u1|2|u2|2.

A minimizing sequence belongs to the energy space

D =
{
U ∈ H1

loc(R) : |U(x)| → e± as x → ±∞
}
.
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Decomposition of energy for stability argument
Let us equip the energy space with the family of distances for A > 0:

ρA(Ψ,Φ) :=
∑
j=1,2

[∥∥ψ′j − ϕ′j∥∥L2(R) +
∥∥|ψj | − |ϕj |

∥∥
L2(R) +

∥∥ψj − ϕj

∥∥
L∞(−A,A)

]

F. Bethuel, P. Gravejat, J.C. Saut, D. Smets (2008)
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Energy can be decomposed in the form:

E (U+V + iW )−E (U) = (L+V ,V )L2 +(L−W ,W )L2 +O(‖V + iW ‖3H1(R)).

Cubic terms cannot be controlled in ρA because of phase modulations.
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The second variation satisfies the following properties:

Self-adjoint operator L+ and L− are positive semi-definite in H1(R).

∃ Σ0 > 0 : σess(L+) = [Σ0,∞). σess(L−) = [0,∞)

Zero is a simple eigenvalue of L+, with eigenfunction ∂xU > 0.

L−U1 = L−U2 = 0 with U1 = (u1, 0) and U2 = (0, u2).
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]

F. Bethuel, P. Gravejat, J.C. Saut, D. Smets (2008)

As a result, we have

(L+V ,V )L2 ≥ C0‖V ‖2H1 for every V ∈ H1(R) : (V , ∂xU)L2 = 0

but
(L−W ,W )L2 ≥ 0, with L−U1 = L−U2 = 0.

Complex phases can not be controlled far away from the domain walls.
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Alternative decomposition of energy
Energy can be decomposed in the equivalent way:

E (U + V + iW )− E (U) = (L−V ,V )L2 + (L−W ,W )L2 +
1

2
(MΥ,Υ)L2 ,

where Υ = (η1, η2) with ηj := |uj + vj + iwj |2 − u2j = 2ujvj + v2j + w2
j and

M =

[
1 γ
γ 1

]
: det(M) = 1− γ2 < 0.

Gravejat–Smets (2015)
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Alternative decomposition of energy
Energy can be decomposed in the equivalent way:

E (U + V + iW )− E (U) = (L−V ,V )L2 + (L−W ,W )L2 +
1

2
(MΥ,Υ)L2 ,

One can introduce weighted H1 space:

〈Ψ,Φ〉H :=
2∑

j=1

∫
R

[
dψj

dx

dϕ̄j

dx
+ (γ − 1)(1− u2j )ψj ϕ̄j

]
dx

and write
(L−W ,W )L2 = ‖W ‖2H − γ〈TW ,W 〉H,

where T : H → H is the compact positive operator defined by

〈TΨ,Φ〉H :=

∫
R

(
1− u21 − u22

)
(ψ1ϕ̄1 + ψ2ϕ̄2) dx .
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E (U + V + iW )− E (U) = (L−V ,V )L2 + (L−W ,W )L2 +
1

2
(MΥ,Υ)L2 ,

Then,

The spectrum of L− in H consists of isolated eigenvalues
accumulating to 1.

The smallest eigenvalue of L− is a double zero
with U1 = (u1, 0) ∈ H and U2 = (0, u2) ∈ H.

As a result, the quadratic form is coercive under the two constraints

(L−W ,W )L2 ≥ C‖W ‖2H ∀W ∈ H : 〈W ,U1〉H = 〈W ,U2〉H = 0.
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Energy can be decomposed in the equivalent way:

E (U + V + iW )− E (U) = (L−V ,V )L2 + (L−W ,W )L2 +
1

2
(MΥ,Υ)L2 ,

However,

Only one constraint can be set on V in (L−V ,V )L2 .

The nonlinear part (MΥ,Υ)L2 is sign-indefinite.

In order to control these two terms, we introduce the family of distances
parameterized by R > 0:

ρR(Ψ,Φ) :=
∥∥Ψ− Φ

∥∥
H +

∑
j=1,2

∥∥|ψj | − |ϕj |
∥∥
L2(|x |≥R)

.
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Alternative decomposition of energy (revised)

The revised alternative decomposition can be controlled in ρR :

E (U + V + iW )− E (U) = (LRV ,V )L2 + (L−W ,W )L2

+

∫ R

−R
[N3(V ,W ) + N4(V ,W )] dx +

1

2

(∫ −R
−∞

+

∫ ∞
R

)
(η21 + η22)dx

+γ

∫ −R
−∞

η2(2u1v1 + v21 + w2
1 )dx + γ

∫ ∞
R

η1(2u2v2 + v22 + w2
2 )dx ,

where

LR = L− + 2

[
u21 γu1u2

γu1u2 u22

]
χ[−R,R]

= L+ − 2

[
u21 γu1u2

γu1u2 u22

]
χ(−∞,−R)∪(R,∞).

As R →∞, LR → L+ and L+∂xU = 0 with ∂xU ∈ H.
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Alternative decomposition of energy (revised)

The spectrum of LR in H consists of isolated eigenvalues
accumulating to 1.

The zero eigenvalue is shifted for R <∞ but is near 0 if R is large.

As a result, the quadratic form is coercive under one constraint

(LRV ,V )L2 ≥ C‖V ‖2H ∀V ∈ H : 〈V , ∂xU〉H = 0.

The nonlinear terms can be controlled inside and outside of [−R,R], e.g.

‖V + iW ‖H1(−R,R) ≤ CeκR‖V + iW ‖H

and ∣∣∣∣∫ ∞
R

η1(2u2v2 + v22 + w2
2 )dx

∣∣∣∣ ≤ Ce−κR‖V + iW ‖H‖η1‖L2(|x |≥R).

D. Pelinovsky Domain walls in harmonic potentials January 2022 12 / 30



Orbital Stability

Theorem (Contreras–P–Plum, 2018)

Let Ψ0 ∈ D ∩ L∞(R). There exists R0 > 0 such that for any R > R0 and
for every ε > 0, there is δ > 0 and real functions α(t), θ1(t), θ2(t) such
that if ρR(Ψ0,U) ≤ δ, then supt∈R ρR(Ψ(t),Uα(t),θ1(t),θ2(t)) ≤ ε, where

Uα(t),θ1(t),θ2(t) = (e−iθ1(t)u1(· − α(t)), e−iθ2(t)u2(· − α(t))).

Here
ρR(Ψ,Φ) :=

∥∥Ψ− Φ
∥∥
H +

∑
j=1,2

∥∥|ψj | − |ϕj |
∥∥
L2(|x |≥R)

and

〈Ψ,Φ〉H :=
2∑

j=1

∫
R

[
dψj

dx

dϕ̄j

dx
+ (γ − 1)(1− u2j )ψj ϕ̄j

]
dx .

D. Pelinovsky Domain walls in harmonic potentials January 2022 13 / 30



Remarks

Modulation parameters α, θ1, and θ2 in the orbit of domain walls

Uα(t),θ1(t),θ2(t) = (e−iθ1(t)u1(· − α(t)), e−iθ2(t)u2(· − α(t)))

are uniquely determined by the projection algorithm.

The time evolution of the modulation parameters is controlled:

|α(t)|+ |θ1(t)|+ |θ2(t)| ≤ Cε(1 + |t|), t ∈ R

for some C > 0.
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Domain walls in external potentials

Consider the domain walls in external potentials:

i∂tψ1 = −∂2xψ1 + V (x)ψ1 + (|ψ1|2 + γ|ψ2|2)ψ1,

i∂tψ2 = −∂2xψ2 + V (x)ψ2 + (γ|ψ1|2 + |ψ2|2)ψ2,

where V ∈ C 2(R) ∩ L1(R) is small in some sense.

Domain walls (u1, u2) are pinned to the extremal points of the potential V
and the pinning is stable at the maximum of the potential.
(Dror-Malomed-Zeng 2011, Alama–Bronsard–Contreras–P 2015).

For applications to Bose–Einstein condensates in magnetic traps, we need
to consider V (x) = x2 which violates assumptions on V (x).

D. Pelinovsky Domain walls in harmonic potentials January 2022 15 / 30



Numerical results (motivations)
Consider the domain walls in the ε-perturbed system:

i∂tψ1 = −∂2xψ1 + x2ψ1 + (|ψ1|2 + γ|ψ2|2)ψ1,

i∂tψ2 = −∂2xψ2 + x2ψ2 + (γ|ψ1|2 + |ψ2|2)ψ2.

Navarro–Carretero-Gonzále–Kevrekidis 2008
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Thomas–Fermi limit for BECs in harmonic potentials

Stationary system of Gross–Pitaevskii equations is

−ε2∂2xψ1 + x2ψ1 + (ψ2
1 + γψ2

2 − 1)ψ1 = 0,

−ε2∂2xψ2 + x2ψ2 + (γψ2
1 + ψ2

2 − 1)ψ2 = 0,

where the limit ε→ 0 is referred to as the Thomas–Fermi limit.

The energy is defined in H1(R) ∩ L2,1(R):

Gε(Ψ) =
1

2

∫
R

[
ε2(ψ′1)2 + ε2(ψ′2)2 + (x2 − 1)(ψ2

1 + ψ2
2)

+
1

2
(ψ2

1 + ψ2
2)2 + (γ − 1)ψ2

1ψ
2
2

]
dx

All solutions decay like Hermite–Gauss functions at infinity.
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Ground state of the scalar Gross–Pitaevskii theory

The scalar stationary Gross–Pitaevskii equation

−ε2η′′ε (x) + (x2 + η2ε(x)− 1)ηε(x) = 0,

and the solution with ηε(x) > 0 is referred to as the ground state.

The limiting TF cloud is

lim
ε→0

ηε(x) =
√

1− x2 1{|x |<1}

with the convergence:
‖ηε − η0‖L∞ ≤ Cε1/3,
‖η′ε‖L∞ ≤ Cε−1/3.
Ignat–Millot (2006); Gallo–P (2011)
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Domain walls in harmonic potentials
By using the transformation ψ1,2(x) = ηε(x)φ1,2(x/ε) and changing the
variables x → z := x/ε, we obtain Gε(Ψ) = Fε(ηε) + εJε(Φ), where

Jε(Φ) =
1

2

∫
R
ηε(εz)2

[
(φ′1)2 + (φ′2)2

]
dz

+
1

2

∫
R
ηε(εz)4

[
1

2
(φ21 + φ22 − 1)2 + (γ − 1)φ21φ

2
2

]
dz .

Ψ ∈ H1 ∩ L2,1 is a minimizer of Gε if and only if Φ is a minimizer of Jε.

The limit ε→ 0 with η0(0) = 1
recovers domain walls without
harmonic potentials for γ > 1.
By the Γ convergence theorem,

Jε → J0 as ε→ 0

Contreras–P–Slastikov (2022)
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Domain walls in harmonic potentials
By using the transformation ψ1,2(x) = ηε(x)φ1,2(x/ε) and changing the
variables x → z := x/ε, we obtain Gε(Ψ) = Fε(ηε) + εJε(Φ), where

Jε(Φ) =
1

2

∫
R
ηε(εz)2

[
(φ′1)2 + (φ′2)2

]
dz

+
1

2

∫
R
ηε(εz)4

[
1

2
(φ21 + φ22 − 1)2 + (γ − 1)φ21φ

2
2

]
dz .

Ψ ∈ H1 ∩ L2,1 is a minimizer of Gε if and only if Φ is a minimizer of Jε.

The limit ε→ 0 with η0(0) = 1
recovers domain walls without
harmonic potentials for γ > 1.
By the Γ convergence theorem,

Jε → J0 as ε→ 0

Contreras–P–Slastikov (2022)
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Domain walls among other stationary states
Other positive solutions exist in the coupled system:

−ε2∂2xψ1 + x2ψ1 + (ψ2
1 + γψ2

2 − 1)ψ1 = 0,

−ε2∂2xψ2 + x2ψ2 + (γψ2
1 + ψ2

2 − 1)ψ2 = 0,

such as the uncoupled states (ψ1, ψ2) = (ηε, 0) and (ψ1, ψ2) = (0, ηε) or
the symmetric state (ψ1, ψ2) = (1 + γ)−1/2(ηε, ηε).
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Domain walls among other stationary states
Other positive solutions exist in the coupled system:

−ε2∂2xψ1 + x2ψ1 + (ψ2
1 + γψ2

2 − 1)ψ1 = 0,

−ε2∂2xψ2 + x2ψ2 + (γψ2
1 + ψ2

2 − 1)ψ2 = 0,

such as the uncoupled states (ψ1, ψ2) = (ηε, 0) and (ψ1, ψ2) = (0, ηε) or
the symmetric state (ψ1, ψ2) = (1 + γ)−1/2(ηε, ηε).

By the same reason for γ ∈ (0, 1),

W (u1, u2) =
1

2

(
u21 + u22 − 1

)2
+ (γ − 1)u21u

2
2

≥ − γ(1− γ)

2(1 + γ)2
= W ((1 + γ)−1/2, (1 + γ)−1/2)

hence the symmetric state is the minimizer of Gε for γ ∈ (0, 1).
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Domain walls among other stationary states
Other positive solutions exist in the coupled system:

−ε2∂2xψ1 + x2ψ1 + (ψ2
1 + γψ2

2 − 1)ψ1 = 0,

−ε2∂2xψ2 + x2ψ2 + (γψ2
1 + ψ2

2 − 1)ψ2 = 0,

such as the uncoupled states (ψ1, ψ2) = (ηε, 0) and (ψ1, ψ2) = (0, ηε) or
the symmetric state (ψ1, ψ2) = (1 + γ)−1/2(ηε, ηε).

By the same reason for γ > 1,

W (u1, u2) =
1

2

(
u21 + u22 − 1

)2
+ (γ − 1)u21u

2
2

≥ 0 = W (1, 0) = W (0, 1)

hence the uncoupled states are the minimizers of Gε for γ > 1.
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Spaces for Minimization

Domain walls arise as minimizers in the energy space with the symmetry:

Es := {Ψ ∈ H1(R) ∩ L2,1(R) : ψ1(x) = ψ2(−x), x ∈ R}.

Theorem (Contreras–P–Slastikov, 2022)

There exists ε0 > 0 such that for every ε ∈ (0, ε0) there is γ0(ε) ∈ (1,∞)
such that the symmetric state is a global minimizer of the energy Gε in Es
if γ ∈ (0, γ0(ε)] and a saddle point if γ ∈ (γ0(ε),∞).

Domain wall states are global minimizers of the energy Gε in Es if
γ ∈ (γ0(ε),∞): one satisfies ψ1(x) > ψ2(x) > 0 for x > 0 and the other
one obtained by the transformation ψ1 ↔ ψ2.
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Bifurcation diagram

It is obvious that γ0(ε)→ 1 as ε→ 0.
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Second variation
Variational analysis is complemented by the study of the second variation:

G ′′ε (Ψ) =

(
−ε2∂2x + x2 + 3ψ2

1 + γψ2
2 − 1 2γψ1ψ2

2γψ1ψ2 −ε2∂2x + x2 + γψ2
1 + 3ψ2

2 − 1

)
=

(
−ε2∂2x + x2 + 3+γ

1+γ η
2
ε − 1 2γ

1+γ η
2
ε

2γ
1+γ η

2
ε −ε2∂2x + x2 + 3+γ

1+γ η
2
ε − 1

)
.
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Second variation
After rotation, it becomes(

L+ 0

0 L− + 21−γ
1+γ η

2
ε

)
,

L+ := −ε2∂2x + x2 − 1 + 3η2ε ,
L− := −ε2∂2x + x2 − 1 + η2ε ,

where L+ > 0 and L− ≥ 0 because L−ηε = 0 Gallo–P, 2011
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Second variation
After rotation, it becomes(

L+ 0

0 L− + 21−γ
1+γ η

2
ε

)
,

L+ := −ε2∂2x + x2 − 1 + 3η2ε ,
L− := −ε2∂2x + x2 − 1 + η2ε ,

where L+ > 0 and L− ≥ 0 because L−ηε = 0 Gallo–P, 2011

Under the symmetry constraint in

Es := {Ψ ∈ H1(R) ∩ L2,1(R) : ψ1(x) = ψ2(−x), x ∈ R}.

and the rotation, the operator

Lγ := L− + 2
1− γ
1 + γ

η2ε

is considered in H1
0 (0,∞) with Dirichlet condition at x = 0.

Bifurcation corresponds to the lowest eigenvalue of Lγ crossing 0.
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More about bifurcation diagram
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More about bifurcation diagram

For γ = 1, there is rotational symmetry with 1-parameter family

ψ1(x) = cos θ ηε(x), ψ2(x) = sin θ ηε(x).

If γ 6= 1, however, only solutions with θ = {0, π4 ,
π
2 } bifurcate from the

family and they correspond to the uncoupled and symmetric states.
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Proper analysis of bifurcation at γ0(ε) as ε→ 0
Let us rescale near (ε, γ) = (0, 1):

z 7→ y := z
√
γ − 1, Φ(z) = Θ(y), ε = µ

√
γ − 1,

so that Jε(Φ) =
√
γ − 1Iµ,γ(Θ) is given by

Iµ,γ(Θ) =
1

2

∫
R
ηε(µy)2

[
(θ′1)2 + (θ′2)2

]
dy

+
1

4(γ − 1)

∫
R
ηε(µy)4(θ21 + θ22 − 1)2dy +

1

2

∫
R
ηε(µy)4θ21θ

2
2dy .
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Proper analysis of bifurcation at γ0(ε) as ε→ 0
Let us rescale near (ε, γ) = (0, 1):

z 7→ y := z
√
γ − 1, Φ(z) = Θ(y), ε = µ

√
γ − 1,

so that Jε(Φ) =
√
γ − 1Iµ,γ(Θ) is given by

Iµ,γ(Θ) =
1

2

∫
R
ηε(µy)2

[
(θ′1)2 + (θ′2)2

]
dy

+
1

4(γ − 1)

∫
R
ηε(µy)4(θ21 + θ22 − 1)2dy +

1

2

∫
R
ηε(µy)4θ21θ

2
2dy .

The Γ convergence as γ → 1 gives (θ1, θ2) = (sin(u), cos(u)) with

Iµ,γ(Θ)→ Iµ,1(Θ) =
1

2

∫ µ−1

−µ−1

[
η0(µy)2(u′)2 +

1

4
η0(µy)4 sin2(2u)

]
dy .
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Comparison between numerical and asymptotic
approximations for ε = 0.1 and γ = 1.2
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Second variation again

Theorem (Contreras–P–Slastikov, 2022)

There exists µ0 ∈ (0,∞) such that the symmetric state is a global
minimizer of the energy Iµ,1 in Es if µ ∈ [µ0,∞) and a saddle point of the
energy in Es if µ ∈ (0, µ0). The domain wall states exist only if µ ∈ (0, µ0)
and are global minimizers of the energy Iµ,1 in Es .
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Second variation again

Theorem (Contreras–P–Slastikov, 2022)

There exists µ0 ∈ (0,∞) such that the symmetric state is a global
minimizer of the energy Iµ,1 in Es if µ ∈ [µ0,∞) and a saddle point of the
energy in Es if µ ∈ (0, µ0). The domain wall states exist only if µ ∈ (0, µ0)
and are global minimizers of the energy Iµ,1 in Es .

The symmetric state corresponds to the solution u = π
4 for

(θ1, θ2) = (sin(u), cos(u)) = ( 1√
2
, 1√

2
) in

Iµ,1(Θ) =
1

2

∫ µ−1

−µ−1

[
η0(µy)2(u′)2 +

1

4
η0(µy)4 sin2(2u)

]
dy .
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Second variation again

Theorem (Contreras–P–Slastikov, 2022)

There exists µ0 ∈ (0,∞) such that the symmetric state is a global
minimizer of the energy Iµ,1 in Es if µ ∈ [µ0,∞) and a saddle point of the
energy in Es if µ ∈ (0, µ0). The domain wall states exist only if µ ∈ (0, µ0)
and are global minimizers of the energy Iµ,1 in Es .

The second variation of Iµ,1 in Es at u = π
4 gives

δ2Iµ,1 =

∫ µ−1

0

[
η0(µy)2(ũ′)2 − η0(µy)4ũ2

]
dy ,

where the perturbation ũ satisfies ũ(0) = 0.
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Second variation again

Theorem (Contreras–P–Slastikov, 2022)

There exists µ0 ∈ (0,∞) such that the symmetric state is a global
minimizer of the energy Iµ,1 in Es if µ ∈ [µ0,∞) and a saddle point of the
energy in Es if µ ∈ (0, µ0). The domain wall states exist only if µ ∈ (0, µ0)
and are global minimizers of the energy Iµ,1 in Es .

Bifurcation corresponds to the lowest eigenvalue ν = µ−2

− d

dx

[
(1− x2)

dv

dx

]
= ν(1− x2)2v(x), 0 < x < 1.

It is found at ν0 ≈ 7.29 which determines γ0(ε) = 1 + ν0ε
2 +O(ε4).
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Bifurcation diagram

The magenta line corresponds to γ0(ε) = 1 + ν0ε
2.
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Numerical approximations of domain walls
In the energy space with the symmetry,

Es := {Ψ ∈ H1(R) ∩ L2,1(R) : ψ1(x) = ψ2(−x), x ∈ R},

we can introduce the parameter α := ψ1(0) = ψ2(0) and consider
minimizers of energy Gε in Es(α) for fixed α > 0.
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Numerical approximations of domain walls
In the energy space with the symmetry,

Es := {Ψ ∈ H1(R) ∩ L2,1(R) : ψ1(x) = ψ2(−x), x ∈ R},

we can introduce the parameter α := ψ1(0) = ψ2(0) and consider
minimizers of energy Gε in Es(α) for fixed α > 0.

Theorem (Contreras–P–Slastikov, 2022)

Fix ε > 0, γ > 0, and α > 0. Let Ψ ∈ Es(α) be a critical point of the
energy Gε satisfying ψ1(x) > ψ2(x) > 0 for all x ∈ (0,∞). Then

Ψ = (ψ1, ψ2) and Ψ′ = (ψ2, ψ1) are the only global minimizers of the
energy Gε in Es(α).
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Numerical approximations of domain walls
In the energy space with the symmetry,

Es := {Ψ ∈ H1(R) ∩ L2,1(R) : ψ1(x) = ψ2(−x), x ∈ R},

we can introduce the parameter α := ψ1(0) = ψ2(0) and consider
minimizers of energy Gε in Es(α) for fixed α > 0.

Two equivalent criteria for the minimizers Ψα = (ψ1, ψ2) of Gε in Es(α) to
become the domain wall solutions:

Split function Sε(α) := ψ′1(0) + ψ′2(0) vanishes

Energy Gε(Ψα) is minimal.
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Numerical approximations of domain walls
In the energy space with the symmetry,

Es := {Ψ ∈ H1(R) ∩ L2,1(R) : ψ1(x) = ψ2(−x), x ∈ R},

we can introduce the parameter α := ψ1(0) = ψ2(0) and consider
minimizers of energy Gε in Es(α) for fixed α > 0.

For fixed ε = 0.1 and γ = 3:
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Summary

Domain walls Ψ = (ψ1, ψ2) of the coupled Gross–Pitaevskii equations:

−ε2∂2xψ1 + x2ψ1 + (ψ2
1 + γψ2

2 − 1)ψ1 = 0,

−ε2∂2xψ2 + x2ψ2 + (γψ2
1 + ψ2

2 − 1)ψ2 = 0,

minimizers of energy Gε in the energy space with symmetry

orbitally stable in a weighted H1(R) space

persist under harmonic potentials

asymptotically stable (conjecture)

do not travel in space (conjecture)
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