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M otivations

Gap solitonsare localized stationary solutions of nonlinear PDEs
with space-periodic coefficients which reside in the s@ég/aps of
associated linear operators.

Complex-valued Maxwell equation
V?E — Ey+ (V(z) +0|E]?) Ey =0
and the Gross—Pitaevskii equation
iE, = —V*E +V(z)E + ¢|E|°E,

whereE(x,t) : RY x R— C, V(x) = V(z + 27me;) : RY — R,
ando = +1.



EXxistence of stationary solutions

Stationary solution®(x,t) = U(z)e ™" with w € R satisfy a
nonlinear elliptic problem with a periodic potential

V2U 4+ wU = V(2)U + o|U|?U

[Pankov, 2005] Let/(x) be a real-valued bounded
periodic potential. Let be in a finite gap of the spectrum of
L = —V?* + V(x). There exists a non-trivial weak solution
U(x) € H'(RY), which is (i) real-valued, (ii) continuous on
r € RY and (iii) decays exponentially ag| — oo.

Additionally, there exists a localized solution
U(z) € H'(RY) in the semi-infinite gap for = —1 (NLS soliton).



Asymptotic reductionsin 1D

The nonlinear elliptic problem with a periodic potentiahdae
reduced asymptotically fav = 1 to the following problems:

* Coupled-mode (Dirac) equations famall potentials

{ id'(z) + Qa + ab = o(|al® + 2/b?)a

—ib'(z) + Qb + aa = o(2]al* + |b]*)b

* Envelope (NLS) equations fomite potentials near band edges
a"(x) + Qa + olal*a = 0

* Lattice (dNLS) equations fdargepotentials

o (api1 + An_1) + Qa, + olas|®a, = 0.

Localized solutions of reduced equations exist in the ditafigrm.



Bifurcation of gap solitonsin 2D

Let N =2andV(x) =n |[W(x,) + W(x2)] be a separable
potential. The band surface is givenby= p(k;) + p(ks), while
the eigenfunction i) (z1, r2) = u(zq)u(xs), where

{ —u"(x) + nW(x)u(x) = pu(x), 0 <z <2,

Left: spectrum ofL = —9?2 + nWV (x) versusy.
Right: spectrum of. = —07 — 02 + nW (z1) + nW (z2) versusy.



Resonant Bloch modes at the bifurcation

The first band gap opens upriat 1y ~ 0.1747, where three Bloch
modes are In resonance

P1 = ¢1(£L‘1)902($2), o = 902(%)%(562), P3 = 901(1’1)901(%)
for corresponding eigenvalues
W= A1+ o = to + A1 = 2.

Here, (x) is a2mr-periodic function for eigenvalug,, andy,,(z) is
a 2m-antiperiodic function for eigenvalue, .
ko e




Derivation of coupled-mode equations

Lete =71 — ng, w = wo + €2, and
U = e[A1¢1 + Asy + A3z + €P (1, 12)],

whereA, » 5 are functions ofX’ = /ex and¢ » 3 are functions of

x. The projection algorithm leads to three coupled NLS eaqunati
(Q — 61>A1 -+ (041(93(1 —+ 0425)?(2) Al

=0 [nlA1]PAr +72(2| 43" Ar + A3AL) +13(2]As°Ar + A3AY)]

(= 1) As + a5 (0, + 07 As
= 0 |7l As]?As + 295(| 41| + |A2]*) As + 73 (AT + A3) As]
No first-order derivative terms occur in the coupled-mode

system. Similar coupled NLS equations are derived near bdgds
bv Z.Shi and J.Yana. PRE 75. 056602 (2007).



Main theorem |

Let W (z) be a bounded, piecewise -continuous, even anc
2m-periodic function onz € R. Let; < r < 1. The nonlinear

elliptic problem has a continuous and decaylng solutiom) for
sufficiently smallle| < ¢, if there exists a non-trivial solution of

(Q — B1 — arp} — aopd) Bi(p) —oQi(p) = € Ri(p),
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wherer = min(4r — 1,1 — 2r), BLQ,g(p) are compactly supported

onthe diskD. = {p e R2: |p| < €2} C R?, Q1 .235(p) denote the
cubic nonlinear terms of the coupled-mode system, and

Hél,z,SHLl(De) < (1,23 (HélHLl(De) T HézHLl(Da T HESHU(DE)) :



Bloch-Fourier transform in 1D

There exists a unitary transformation
T : ¢ € L2(R) — ¢ € [2(N, L2(T)) given by

Vo LR Gu(h) = [ il R)o()dy
R
with the inverse transformatiohn —:

Vé € (N, L*(T)) : Z/gbn un (z; k)d

neN

If ¢ € I}(N, L(T)) for s > £ with the norm

lPll .z = Spen(l +1)° [ \gbn )|dk < oo, theng(z) is a
continuous and decaying function ore R.



Nonlinear problem in the Bloch space

With the Bloch-Fourier transform in 2D, the elliptic probtas
reduced to the form

[pn1 (kl) T Pny (kQ) — Wo — GQ] ( )
23 / Moy i i(Fy L 15, \) @ (1) ®3(5) (N dldid,

(m,i,7)€ENS
where
Mm,i(k, L Ry A) = (un (5 kw5 K), um (5 D (5 A))re

The nonlinear vector field (in 1D) is closed in space
[}(N, L*(T)) for s < 1, such that

L(N,LY(T 1(N,L1(T 1(N,L(T))

forsome(’ > 0 The same i< trtie itn 2D for senarahle notentials:



Decomposition in the Bloch space

Resonant Bloch modes correspond:tandn in the sets
1 1 11
k ~);(=,0);(=,= T*
SGRCORCHIE

n€{(1,3);(3,1);(2,2)} € N’

and

The decomposition is

A

O (k) = Ur(k)xp, (k)e13+Ua(k)xp, (k)es1+Us (k) xp, (k)e2 2+ (k),

where{e; 3, e31, €22} are unit vectors oiN?, D 5 5 are disks of
radiuse” centered at the pointsof the resonant set;p (k) is a

characteristic function oh € T2, and¥ (k) is zero identically on
k € D, 53 for the corresponding values of



Projection to the coupled-mode system

The diagonal multiplication operator can be inverted since

min . ‘p’nl (kl)‘nzno + an(kQ)‘ﬁ:ﬁo _ wo‘ > C€2r'
kesupp(V)

If 2r < 1, the lower bound is still larger than the perturbation term:
of ordere. By the Implicit Function Theorem in the space

[;(N?, L1(T?)) forany < s < 1, there exists a unique map
U (Uy, Us, Us) : LY(Dy) x LY(Ds) x L*(D3) — [L(N2, L}(T?)) for
sufficiently smalle, such that

I

11(N2,L1(T2)) < e ¢ (\!(71||L1(D1> T ||U2HL1(D2) T \!ﬁs\!Ll(Dg)) ;

for some constant’ > 0 uniformly in |e| < .



Extended coupled-mode system

Using the scaling transformation

. ~ (k—Fk

Bj(p)ZGUj ( 1/2()), \V/kEDjCTQ, j:1,2,3,
€

we map all disksD; , 5 to the diskD, = {p € R2: [p| < ¢z},

which covers the entire planec R* ase — 0 if 2r < 1. Note that

||(7j|]L1(Dj) = |]l§j||L1(D€) foranyj; = 1,2, 3. The remainder terms

are due to three sources:

* The componen¥ = U, (U, Us, Us) is eliminated and it has the
order ofe! =",

* The perturbation terms in powers ©bccur at the order of'.

* The expansion of all coefficients in powerskiof- ky has the
order ofe?" 1.



End of the proof

The last property is due to the bound

N - /D !

B (p)| dp < 1B |11 p,.

The theorem is proved if < r < 1 with 7 = min(4r — 1,1 — 2r).

If r = % thenr = r = % and both remainder terms have

the same order of'/? which gives the smallest convergence rate fol
the approximation error.

The proof does not work if the potential is not separable
(the range; < s < 1 may become empty), if the functidi’ (x) is
not piecewise-continuous (analyticity of expansions iwes ofk
may be lost), or if the new band gap is not smallest (eigemsgbdan
be multiple and analyticity of expansionsdmay be lost).



Rever sible solutions

A solution (A, A,, A3) of the coupled-mode system is
called a reversible solution If it satisfies one of the camats
(=1, 12) { olf
A(y1,y2) = s1A(—y1,¥2) = $2A(Y1, —12), or
{ ) = 2 A(—Yy2, —Y1), or

|
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for each function A, As, As), wheres;, s; = +1.

The reversible constraints are inherited from the nonlinea
elliptic problem with the symmetric potential function
V(zy,22) = V(=z1,29) = V(21, —22) = V(29,71) ONz € R2.



Main Theorem ||

Let (A, Ay, A3) be a reversible solution of the
differential coupled-mode systeR( A ) = 0 such that their Fourier

transforms satisfA € L,(R*,C’) for someg > 0. Let(2 belong to

the interior of the band gap of the coupled-mode syskem ) = 0.
Assume that the Jacobian operatof F(A) has a
three-dimensional kernel with the eigenvectpis, A, 0,, A, 7A }.
Then, there exists a reversible solution of the extended

coupled-mode system such that,, B, B;) € L*(D,,C?) and
Vie| <e: |1Bj — Ajllpipy < Cje”, Vi =1,2,3.
The reversible solutio/ (z) satisfies the bound
\U — €% (A1 — Aspy — Asds) [lcome) < CeH2,

whereg, » 5(x) are resonant Bloch modes.



Proof of Theorem 2

First, consider the extended syst&ifB) = ¢’ R(B) onp € R? and

useB = A + b to represent the system in the forfb = N(b),
where

A

¢ R(A +b)— |F(A+Db)—Jb|.

AN AN AN

J=D,F(A), N(b)

The desired bound follows by the Implicit Function Theorem |

spaceb € L;(R*,C’). Then, estimate the truncated terms on

p € R*\ D.. The largest truncated terms are bounded by
Ibllz:

1L oiey < bz, @ees) < CIND) | py@e sy < CF,

for anyb = J'N(b) € LL(R?, C?). Therefore, the truncated
terms are comparable with the residual terms of the extended
coupled-mode system.



Numerical example 1

One-component gap solitons:
o=1: A1:A2:O, AgZR(T)Gime

with m = 0 (radially symmetric positive soliton):




Numerical example 2

A symmetric coupled two-component gap soliton
oc=—1: Ai(y,52) = TAs(y2,v1) €R, A3 =10

IS shown here:




Numerical example 3

A 7 /2-phase delay coupled two-component gap solitons:
o= —1: Al(yl,yg) = :I:iAQ(yQ,yl) c 1R, As =0

IS shown here:




Numerical example 4

Two-component coupled vortex of charge one
o= —1: Al(yl,yg) = :I:izéig(yz,yl) & C, As =0

IS shown here:




Similar bifurcation problems

Our technique can be extended with some modifications to the
following bifurcation problems:

 Bifurcations from band edges

* Bifurcations in the higher-order band gaps

* Bifurcations in anisotropic separable potentials

* Bifurcations in finite-gap potentials

* Bifurcations in super-lattices withr-periodic perturbations

* Bifurcations in three-dimensional separable potentials.

Additionally, we can apply this technique to prove persiseof
time-dependent solutions on a finite-time interval and tolgt
convergence of the nonlinear elliptic problem wiilhg e potential
functions to the nonlinear lattice equation.
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