Nonlinear instability of half-solitons on star graphs

Adilbek Kairzhan and Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

> Workshop "Nonlinear Partial Differential Equations on Graphs" Oberwolfach, Germany, June 18-24, 2017

Outline of the talk

Nonlinear Schrödinger equation on a star graph

Ground state on the unbounded graphs

Half-solitons on the star graph

Half-solitons under reflectionless boundary conditions

Nonlinear Schrödinger equation on metric graphs

Nonlinear Schrödinger equation is considered on a graph Γ :

$$
\begin{equation*}
i \Psi_{t}=-\Delta \Psi-(p+1)|\Psi|^{2 p} \Psi, \quad x \in \Gamma, \tag{1}
\end{equation*}
$$

where Δ is the graph Laplacian and $\Psi(t, x)$ is defined componentwise on edges subject to boundary conditions at vertices.

A metric graph Γ is given by a set of edges and vertices, with a metric structure on each edge. Proper boundary conditions are needed on the vertices to ensure that Δ is selfadjoint in $L^{2}(\Gamma)$.

Graph models are widely used in the modeling of quantum dynamics of thin graph-like structures (quantum wires, nanotechnology, large molecules, periodic arrays in solids, photonic crystals...).

Metric Graphs

Graphs are one-dimensional approximations for constrained dynamics in which transverse dimensions are small with respect to longitudinal ones.

- G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs (AMS, Providence, 2013).
- P. Exner and H. Kovarík, Quantum Waveguides (Springer, 2015).
- P. Joly and A. Semin C.R. Math. Acad. Sci. Paris 349 (2011), 1047-1051
- G. Beck, S. Imperiale, and P. Joly, DCDS S 8 (2015), 521-546.
- Z.A. Sobirov, D. Babajanov, and D. Matrasulov, arXiv:1703.09534.

Example: a star graph

A star graph is the union of N half-lines (edges) connected at a vertex. For $N=2$, the graph is the line \mathbb{R}. For $N=3$, the graph is a Y-junction.

Kirchhoff boundary conditions:

- Components are continuous across the vertex.
- The sum of fluxes (signed derivatives of functions) is zero at the vertex.

Adami-Cacciapuoti-Finco-Noja (2012, 2014, 2016).

Graph Laplacian on the star graph

The Laplacian operator on the star graph Γ is defined by

$$
\Delta \Psi=\left(\psi_{1}^{\prime \prime}, \psi_{2}^{\prime \prime}, \cdots, \psi_{N}^{\prime \prime}\right)
$$

acting on functions in $L^{2}(\Gamma)=\oplus_{j=1}^{N} L^{2}\left(\mathbb{R}^{+}\right)$.
Weak formulation of Δ on Γ is in

$$
H_{\Gamma}^{1}:=\left\{\Psi \in H^{1}(\Gamma): \quad \psi_{1}(0)=\psi_{2}(0)=\cdots=\psi_{N}(0)\right\}
$$

Strong formulation of Δ on Γ is in

$$
H_{\Gamma}^{2}:=\left\{\Psi \in H^{2}(\Gamma): \quad \psi_{1}(0)=\psi_{2}(0)=\cdots=\psi_{N}(0), \quad \sum_{j=1}^{N} \psi_{j}^{\prime}(0)=0\right\} .
$$

Lemma

The graph Laplacian $\Delta: H_{\Gamma}^{2} \rightarrow L^{2}(\Gamma)$ is self-adjoint.

The Kirchhoff boundary conditions are symmetric:

$$
\begin{aligned}
\langle\Phi, \Delta \Psi\rangle-\langle\Delta \Phi, \Psi\rangle & =\sum_{j=1}^{N} \phi_{j}^{\prime}(0) \psi_{j}(0)-\phi_{j}(0) \psi_{j}^{\prime}(0) \\
& =0
\end{aligned}
$$

if Kirchhoff boundary conditions are satisfied by $\Phi, \Psi \in H_{\Gamma}^{2}$.

Lemma

The graph Laplacian $\Delta: H_{\Gamma}^{2} \rightarrow L^{2}(\Gamma)$ is self-adjoint.

The Kirchhoff boundary conditions are symmetric:

$$
\begin{aligned}
\langle\Phi, \Delta \Psi\rangle-\langle\Delta \Phi, \Psi\rangle & =\sum_{j=1}^{N} \phi_{j}^{\prime}(0) \psi_{j}(0)-\phi_{j}(0) \psi_{j}^{\prime}(0) \\
& =0
\end{aligned}
$$

if Kirchhoff boundary conditions are satisfied by $\Phi, \Psi \in H_{\Gamma}^{2}$.
The graph Laplacian $\Delta: \tilde{H}_{\Gamma}^{2} \rightarrow L^{2}(\Gamma)$ is self-adjoint under generalized Kirchhoff boundary conditions in \tilde{H}_{Γ}^{2} :

$$
\left\{\begin{array}{l}
\alpha_{1} \psi_{1}(0)=\alpha_{2} \psi_{2}(0)=\cdots=\alpha_{N} \psi_{N}(0) \\
\alpha_{1}^{-1} \psi_{1}^{\prime}(0)+\alpha_{2}^{-1} \psi_{2}^{\prime}(0)+\cdots+\alpha_{N}^{-1} \psi_{N}^{\prime}(0)=0
\end{array}\right.
$$

where $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right)$ are arbitrary nonzero parameters.

NLS on the Y junction graph

Consider the cubic NLS on the Y junction graph:

$$
\begin{array}{r}
i \partial_{t} \psi_{0}+\partial_{x}^{2} \psi_{0}+2\left|\psi_{0}\right|^{2} \psi_{0}=0, \quad x<0 \\
i \partial_{t} \psi_{ \pm}+\partial_{x}^{2} \psi_{ \pm}+2\left|\psi_{ \pm}\right|^{2} \psi_{ \pm}=0, \quad x>0
\end{array}
$$

subject to the Kirchhoff boundary conditions at $x=0$.
The mass functional

$$
Q=\int_{-\infty}^{0}\left|\psi_{0}\right|^{2} d x+\int_{0}^{+\infty}\left|\psi_{+}\right|^{2} d x+\int_{0}^{+\infty}\left|\psi_{-}\right|^{2} d x
$$

is constant in time t (related to the gauge symmetry).
The energy functional

$$
E=\int_{-\infty}^{0}\left(\left|\partial_{x} \psi_{0}\right|^{2}-\left|\psi_{0}\right|^{4}\right) d x+\text { similar terms for } \psi_{ \pm}
$$

is constant in time t (related to the time translation symmetry).

Momentum conservation

The momentum functional

$$
P=i \int_{-\infty}^{0}\left(\bar{\psi}_{0} \partial_{x} \psi_{0}-\psi_{0} \partial_{x} \bar{\psi}_{0}\right) d x+\text { similar terms for } \psi_{ \pm}
$$

is no longer constant in time t because the spatial translation is broken.

Momentum conservation

The momentum functional

$$
P=i \int_{-\infty}^{0}\left(\bar{\psi}_{0} \partial_{x} \psi_{0}-\psi_{0} \partial_{x} \bar{\psi}_{0}\right) d x+\text { similar terms for } \psi_{ \pm}
$$

is no longer constant in time t because the spatial translation is broken.
Let ($\alpha_{0}, \alpha_{+}, \alpha_{-}$) be defined by the generalized Kirchhoff conditions:

$$
\left\{\begin{array}{l}
\alpha_{0} \psi_{0}(0)=\alpha_{+} \psi_{+}(0)=\alpha_{-} \psi_{-}(0) \\
\alpha_{0}^{-1} \partial_{x} \psi_{0}(0)=\alpha_{+}^{-1} \partial_{x} \psi_{+}(0)+\alpha_{-}^{-1} \partial_{x} \psi_{-}(0)
\end{array}\right.
$$

The NLS equation is now modified with the account of $\left(\alpha_{0}, \alpha_{+}, \alpha_{-}\right)$:

$$
\begin{array}{r}
i \partial_{t} \psi_{0}+\partial_{x}^{2} \psi_{0}+\alpha_{0}^{2}\left|\psi_{0}\right|^{2} \psi_{0}=0, \quad x<0 \\
i \partial_{t} \psi_{ \pm}+\partial_{x}^{2} \psi_{ \pm}+\alpha_{ \pm}^{2}\left|\psi_{ \pm}\right|^{2} \psi_{ \pm}=0, \quad x>0
\end{array}
$$

Q and E are still constants of motion in time t.

Momentum conservation

Lemma

If $\left(\alpha_{0}, \alpha_{+}, \alpha_{-}\right)$satisfy the constraint:

$$
\frac{1}{\alpha_{0}^{2}}=\frac{1}{\alpha_{+}^{2}}+\frac{1}{\alpha_{-}^{2}}
$$

then P is a decreasing function of time t with

$$
\frac{d P}{d t}=-\frac{2 \alpha_{0}^{2}}{\alpha_{+}^{2} \alpha_{-}^{2}}\left|\alpha_{+} \partial_{x} \psi_{+}(t, 0)-\alpha_{-} \partial_{x} \psi_{-}(t, 0)\right|^{2} \leq 0
$$

If in addition,

$$
\alpha_{+} \partial_{x} \psi_{+}(t, 0)=\alpha_{-} \partial_{x} \psi_{-}(t, 0),
$$

is invariant with respect to t, then the momentum P is constant in time.

Reflectionless scattering of solitary waves

In the case of the invariant reduction

$$
\alpha_{+} \psi_{+}(t, x)=\alpha_{-} \psi_{-}(t, x), \quad x \in \mathbb{R}^{+}
$$

we can set the following function on the infinite line:

$$
\Psi(t, x)=\left\{\begin{array}{l}
\alpha_{0} \psi_{0}(t, x), \quad x<0 \\
\alpha_{ \pm} \psi_{ \pm}(t, x), \quad x>0
\end{array}\right.
$$

The function Ψ satisfies the integrable cubic NLS equation

$$
i \partial_{t} \Psi+\partial_{x}^{2} \Psi+|\Psi|^{2} \Psi=0, \quad x \in \mathbb{R}
$$

where the vertex $x=0$ does not appear as an obstacle in the time evolution.
D. Matrasulov-K. Sabirov-Z. Sobirov $(2012,2016)$

Ground state on the unbounded graphs

Ground state is a standing wave of smallest energy E at fixed mass Q,

$$
\mathcal{E}=\inf \left\{E(u): \quad u \in H_{\Gamma}^{1}, \quad Q(u)=\mu\right\}
$$

Euler-Lagrange equation in the cubic case $p=1$ is

$$
-\Delta \Phi-2|\Phi|^{2} \Phi=-\omega \Phi \quad \Phi \in H_{\Gamma}^{2}
$$

where $\omega \in \mathbb{R}(\omega>0$ in the focusing case $)$ defines $\Psi(t, x)=\Phi(x) e^{i \omega t}$.

Ground state on the unbounded graphs

Ground state is a standing wave of smallest energy E at fixed mass Q,

$$
\mathcal{E}=\inf \left\{E(u): \quad u \in H_{\Gamma}^{1}, \quad Q(u)=\mu\right\}
$$

Euler-Lagrange equation in the cubic case $p=1$ is

$$
-\Delta \Phi-2|\Phi|^{2} \Phi=-\omega \Phi \quad \Phi \in H_{\Gamma}^{2}
$$

where $\omega \in \mathbb{R}(\omega>0$ in the focusing case $)$ defines $\Psi(t, x)=\Phi(x) e^{i \omega t}$.
Infimum of $E(u)$ exists due to Gagliardo-Nirenberg inequality in 1D.
If G is unbounded and contains at least one half-line, then

$$
\min _{\phi \in H^{1}\left(\mathbb{R}^{+}\right)} E\left(u ; \mathbb{R}^{+}\right) \leq \mathcal{E} \leq \min _{\phi \in H^{\prime}(\mathbb{R})} E(u ; \mathbb{R})
$$

Infimum may not be achieved by any of the standing waves Φ.
Adami-Serra-Tilli $(2015,2016)$

Ground state on the unbounded graphs

If G consists of either one half-line or two half-lines and a bounded edge, then

$$
\mathcal{E}<\min _{\phi \in H^{1}(\mathbb{R})} E(u ; \mathbb{R})
$$

and the infimum is achieved.

Ground state on the unbounded graphs

If G consists of either one half-line or two half-lines and a bounded edge, then

$$
\mathcal{E}<\min _{\phi \in H^{1}(\mathbb{R})} E(u ; \mathbb{R})
$$

and the infimum is achieved.

If G consists of more than two half-lines and is connective to infinity, then

$$
\mathcal{E}=\min _{\phi \in H^{1}(\mathbb{R})} E(u ; \mathbb{R})
$$

and the infimum is not achieved. The reason is topological. By the symmetry rearrangements,

$$
E(u ; \Gamma)>E(\hat{u} ; \mathbb{R}) \geq \min _{\phi \in H^{1}(\mathbb{R})} E(u ; \mathbb{R})=\mathcal{E}
$$

At the same time, a sequence of solitary waves escaping to infinity along one edge yields a sequence of functions that minimize $E(u ; \Gamma)$ until it reaches \mathcal{E}

Ground state on the Y junction graph: $N=3$

No ground state exists due to the same topological reason.
There exists a half-soliton to the Euler-Lagrange equation:

$$
-\Delta \Phi-2|\Phi|^{2} \Phi=-\omega \Phi \quad \phi \in \mathcal{D}(\Gamma)
$$

in the form

$$
\Phi(x)=\left[\begin{array}{lc}
\phi_{0}(x)=\sqrt{\omega} \operatorname{sech}(\sqrt{\omega} x), & x \in(-\infty, 0) \\
\phi_{ \pm}(x)=\sqrt{\omega} \operatorname{sech}(\sqrt{\omega} x), & x \in(0, \infty)
\end{array}\right] .
$$

Half-soliton is a saddle point of energy E at fixed mass Q.
(Adami et al., 2012)

Half-solitons on the star graph with any $N \geq 3$

By using the scaling transformation

$$
\Phi_{\omega}(x)=\omega^{\frac{1}{2 p}} \Phi(z), \quad z=\omega^{\frac{1}{2}} x,
$$

we can consider the Euler-Largrange equation:

$$
-\Delta \Phi+\Phi-(p+1)|\Phi|^{2 p} \Phi=0, \quad \Phi \in H_{\Gamma}^{2}
$$

The half-soliton state

$$
\Phi(x)=\phi(x)\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right) \quad \text { with } \quad \phi(x)=\operatorname{sech}^{\frac{1}{p}}(p x)
$$

is a critical point of the action functional

$$
\Lambda(\Psi)=E(\Psi)+Q(\Psi)
$$

Second variation

Substituting $\Psi=\Phi+U+i W$ with real-valued $U, W \in H_{\Gamma}^{1}$ into $\Lambda(\Psi)$ yield $\Lambda(\Phi+U+i W)=\Lambda(\Phi)+\left\langle L_{+} U, U\right\rangle_{L^{2}(\Gamma)}+\left\langle L_{-} W, W\right\rangle_{L^{2}(\Gamma)}+\mathbf{o}\left(\|U+i W\|_{H^{1}(\Gamma)}^{2}\right)$, where

$$
\begin{aligned}
\left\langle L_{+} U, U\right\rangle_{L^{2}(\Gamma)} & :=\int_{\Gamma}\left[(\nabla U)^{2}+U^{2}-(2 p+1)(p+1) \Phi^{2 p} U^{2}\right] d x, \\
\left\langle L_{-} W, W\right\rangle_{L^{2}(\Gamma)} & :=\int_{\Gamma}\left[(\nabla W)^{2}+W^{2}-(p+1) \Phi^{2 p} W^{2}\right] d x,
\end{aligned}
$$

Theorem (Kairzhan-P, 2017)
For every $p \in(0,2),\left\langle\Lambda^{\prime \prime}(\Phi) V, V\right\rangle_{L^{2}(\Gamma)} \geq 0$ for every $V \in H_{\Gamma}^{1} \cap L_{c}^{2}$, where

$$
L_{c}^{2}:=\left\{V \in L^{2}(\Gamma): \quad\langle V, \Phi\rangle_{L^{2}(\Gamma)}=0\right\} .
$$

Moreover, $\left\langle\Lambda^{\prime \prime}(\Phi) V, V\right\rangle_{L^{2}(\Gamma)}=0$ if and only if $V \in \operatorname{ker}\left(L_{+}\right)$of dimension ($N-1$). Consequently, $V=0$ is a degenerate minimizer of $\left\langle\Lambda^{\prime \prime}(\Phi) V, V\right\rangle_{L^{2}(\Gamma)}$ in $H_{\Gamma}^{1} \cap L_{c}^{2}$.

Spectral information

The second variation is a sum of two quadratic forms:

$$
\begin{aligned}
\left\langle L_{+} U, U\right\rangle_{L^{2}(\Gamma)} & :=\int_{\Gamma}\left[(\nabla U)^{2}+U^{2}-(2 p+1)(p+1) \Phi^{2 p} U^{2}\right] d x, \\
\left\langle L_{-} W, W\right\rangle_{L^{2}(\Gamma)} & :=\int_{\Gamma}\left[(\nabla W)^{2}+W^{2}-(p+1) \Phi^{2 p} W^{2}\right] d x,
\end{aligned}
$$

where $L_{ \pm}: H_{\Gamma}^{2} \rightarrow L^{2}(\Gamma)$ with $\sigma_{c}\left(L_{ \pm}\right) \in[1, \infty)$.

- $L_{-} \geq 0$ and $\operatorname{ker}\left(L_{+}\right)=\operatorname{span}\{\Phi\}$.
- L_{+}has one simple negative eigenvalue and $\operatorname{ker}\left(L_{+}\right)=\operatorname{span}\left\{U^{(1)}, U^{(2)}, \ldots, U^{(N-1)}\right\}$ with

$$
N=3: \quad U^{(1)}=\phi^{\prime}(x)\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \quad U^{(2)}=\phi^{\prime}(x)\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right) .
$$

- $\left.L_{+}\right|_{L_{c}^{2}} \geq 0$ if $p \in(0,2)$, where

$$
L_{c}^{2}:=\left\{U \in L^{2}(\Gamma): \quad\langle U, \Phi\rangle_{L^{2}(\Gamma)}=0\right\} .
$$

Saddle-point geometry

Theorem (Kairzhan-P, 2017)

Consider the orthogonal decomposition in H_{Γ}^{1},

$$
\Psi=\Phi+c_{1} U^{(1)}+c_{2} U^{(2)}+\cdots+c_{N-1} U^{(N-1)}+U^{\perp}
$$

where $X_{c}=\operatorname{span}\left\{U^{(1)}, U^{(2)}, \ldots, U^{(N-1)}\right\}$ and $U^{\perp} \in H_{\Gamma}^{1} \cap L_{c}^{2} \cap\left[X_{c}\right]^{\perp}$.
For every $p \in\left[\frac{1}{2}, 2\right)$, there exists $\delta>0$ such that for every $c=\left(c_{1}, c_{2}, \ldots, c_{N-1}\right)^{T} \in \mathbb{R}^{N-1}$ satisfying $\|c\| \leq \delta$, there exists a unique minimizer $U^{\perp} \in H_{\Gamma}^{1} \cap L_{c}^{2} \cap\left[X_{c}\right]^{\perp}$ of the variational problem

$$
M(c):=\inf _{U^{\perp} \in H_{\Gamma}^{1} \cap L_{c}^{2} \cap\left[X_{c}\right]^{\perp}}[\Lambda(\Psi)-\Lambda(\Phi)]
$$

such that $\left\|U^{\perp}\right\|_{H^{1}(\Gamma)} \leq A\|c\|^{2}$ for a c-independent constant $A>0$.
Moreover, $M(c)$ is sign-indefinite in c. Consequently, Φ is a nonlinear saddle point of Λ in H_{Γ}^{1} with respect to perturbations in $H_{\Gamma}^{1} \cap L_{c}^{2}$.

Minimization of the remainder term

Expanding for real $U \in H_{\Gamma}^{1}$:
$\Lambda(\Phi+U)=\Lambda(\Phi)+\left\langle L_{+} U, U\right\rangle_{L^{2}(\Gamma)}-\frac{2}{3} p(p+1)(2 p+1)\left\langle\Phi^{2 p-1} U^{2}, U\right\rangle_{L^{2}(\Gamma)}+\mathrm{o}\left(\|U\|_{H^{1}}^{3}\right)$
Looking at $M(c):=\inf _{U^{\perp} \in H_{\Gamma}^{1} \cap L_{c}^{2} \cap\left[X_{c}\right]^{\perp}}[\Lambda(\Phi+U)-\Lambda(\Phi)]$ with

$$
U=c_{1} U^{(1)}+c_{2} U^{(2)}+\cdots+c_{N-1} U^{(N-1)}+U^{\perp}
$$

we obtain $F\left(U^{\perp}, c\right)=0$ with

$$
F\left(U^{\perp}, c\right): X \times \mathbb{R}^{N-1} \mapsto Y, \quad X:=H_{\Gamma}^{1} \cap L_{c}^{2} \cap\left[X_{c}\right]^{\perp}, \quad Y:=H_{\Gamma}^{-1} \cap L_{c}^{2} \cap\left[X_{c}\right]^{\perp},
$$

$$
F\left(U^{\perp}, c\right):=L_{+} U^{\perp}-p(p+1)(2 p+1) \Pi_{c} \Phi^{2 p-1}\left(\sum_{j=1}^{N-1} c_{j} U^{(j)}+U^{\perp}\right)^{2}+\mathrm{o}\left(\|U\|_{H^{1}}^{2}\right)
$$

(i) F is a C^{2} map from $X \times \mathbb{R}^{N-1}$ to Y;
(ii) $F(0,0)=0$;
(iii) $D_{U^{\perp}} F(0,0)=\Pi_{c} L_{+} \Pi_{c}: X \mapsto Y$ is invertible with a bounded inverse from Y to X;
(iv) $\Pi_{c} L_{+} \Pi_{c}$ is strictly positive;
(v) $D_{c} F(0,0)=0$.

Normal form argument

By the minimization problem, we obtain

$$
\begin{aligned}
M(c) & =\inf _{U^{\perp} \in H_{\Gamma}^{1} \cap L_{c}^{2} \cap\left[X_{c}\right]^{\perp}}[\Lambda(\Phi+U)-\Lambda(\Phi)] \\
& =M_{0}(c)+\mathrm{o}\left(\|c\|^{3}\right),
\end{aligned}
$$

where

$$
M_{0}(c):=-\frac{2}{3} p(p+1)(2 p+1) \sum_{i=1}^{N-1} \sum_{j=1}^{N-1} \sum_{k=1}^{N-1} c_{i} c_{j} c_{k}\left\langle\Phi^{2 p-1} U^{(i)} U^{(j)}, U^{(k)}\right\rangle_{L^{2}(\Gamma)} .
$$

$M_{0}(c)$, and hence $M(c)$, is sign-indefinite near $c=0$:

$$
N=3: \quad M_{0}(c)=2 p^{2}\left(c_{1}^{2}-c_{2}^{2}\right) c_{2} .
$$

Nonlinear instability

Theorem (Kairzhan-P, 2017)

For every $p \in\left[\frac{1}{2}, 2\right)$, there exists $\epsilon>0$ such that for every $\delta>0$ (sufficiently small) there exists $V \in H_{\Gamma}^{1}$ with $\|V\|_{H_{\Gamma}^{1}} \leq \delta$ such that the unique global solution $\Psi(t) \in C\left(\mathbb{R}, H_{\Gamma}^{1}\right) \cap C^{1}\left(\mathbb{R}, H_{\Gamma}^{-1}\right)$ to the NLS equation starting with the initial datum $\Psi(0)=\Phi+V$ satisfies

$$
\inf _{\theta \in \mathbb{R}}\left\|e^{-i \theta} \Psi\left(t_{0}\right)-\Phi\right\|_{H^{1}(\Gamma)}>\epsilon \quad \text { for some } t_{0}>0
$$

Consequently, the orbit $\left\{\Phi e^{i \theta}\right\}_{\theta \in \mathbb{R}}$ is unstable in the time evolution of the $N L S$ equation in H_{Γ}^{1}.

Nonlinear instability of saddle points of action functionals does not hold generally for Hamiltonian systems.
Example: negative Krein signature of stable eigenvalues.

Expansion of the action functional

Expanding for real $U, W \in H_{\Gamma}^{1} \cap L_{c}^{2}$:

$$
\begin{aligned}
\Delta(t): & E\left(\Phi_{\omega(t)}+U(t)+i W(t)\right)-E(\Phi) \\
& \quad+\omega(t)\left[Q\left(\Phi_{\omega(t)}+U(t)+i W(t)\right)-Q(\Phi)\right] \\
= & D(\omega)+\left\langle L_{+}(\omega) U, U\right\rangle_{L^{2}(\Gamma)}+\left\langle L_{-}(\omega) W, W\right\rangle_{L^{2}(\Gamma)}+N_{\omega}(U, W),
\end{aligned}
$$

where

$$
\begin{aligned}
D(\omega) & :=E\left(\Phi_{\omega}\right)-E(\Phi)+\omega\left[Q\left(\Phi_{\omega}\right)-Q(\Phi)\right] \\
& =(\omega-1)^{2}\left\langle\Phi,\left.\partial_{\omega} \Phi_{\omega}\right|_{\omega=1}\right\rangle_{L^{2}(\Omega)}+\mathcal{O}\left(|\omega-1|^{3}\right)
\end{aligned}
$$

and

$$
\Delta(t)=\Delta(0)+(\omega(t)-1)[Q(\Phi+U(0)+i W(0))-Q(\Phi)]
$$

If $\|U(0)+i W(0)\|_{H_{\Gamma}^{1}} \leq \delta$, then

$$
|\Delta(0)|+\left|Q\left(\Phi+U_{0}+i W_{0}\right)-Q(\Phi)\right| \leq A \delta^{2}
$$

Secondary decomposition

Expand $U, W \in H_{\Gamma}^{1} \cap L_{c}^{2}$ as

$$
U(t)=\sum_{j=1}^{N-1} c_{j}(t) U_{\omega(t)}^{(j)}+U^{\perp}(t), \quad W(t)=\sum_{j=1}^{N-1} b_{j}(t) W_{\omega(t)}^{(j)}+W^{\perp}(t)
$$

and

$$
\left\langle U^{\perp}(t), W_{\omega(t)}^{(j)}\right\rangle_{L^{2}(\Gamma)}=\left\langle W^{\perp}(t), U_{\omega(t)}^{(j)}\right\rangle_{L^{2}(\Gamma)}=0, \quad 1 \leq j \leq N-1
$$

where $L_{+}(\omega) U_{\omega}^{(j)}=0$ and $L_{-}(\omega) W_{\omega}^{(j)}=U_{\omega}^{(j)}$.

The action functional is further expanded as follows:

$$
\begin{aligned}
\Delta= & D(\omega)+\left\langle L_{+}(\omega) U^{\perp}, U^{\perp}\right\rangle_{L^{2}(\Gamma)}+\left\langle L_{-}(\omega) W^{\perp}, W^{\perp}\right\rangle_{L^{2}(\Gamma)} \\
& +\sum_{j=1}^{N-1}\left\langle W_{\omega}^{(j)}, U_{\omega}^{(j)}\right\rangle_{L^{2}(\Gamma)} b_{j}^{2}+M_{0}(c)+\widetilde{\Delta}\left(c, b, U^{\perp}, W^{\perp}\right)
\end{aligned}
$$

where $\tilde{\Delta}$ is a remainder term (of higher order).

Truncated Hamiltonian system

At the leading order, $\left\{c_{j}, b_{j}\right\}_{j=1}^{N-1}$ satisfy

$$
\left\{\begin{array}{l}
\dot{c}_{j}=b_{j}, \\
\dot{b}_{j}=\sum_{k=1}^{N-1} \sum_{n=1}^{N-1} \frac{\left\langle\Phi^{2 p-1} U^{(k)} U^{(n)}, U^{(j)}\right\rangle_{L^{2}(\Gamma)}}{\left\langle W^{(j)}, U^{(j)}\right\rangle_{L^{2}(\Gamma)}} c_{k} c_{n}
\end{array}\right.
$$

which is Hamiltonian system with the conserved energy

$$
H_{0}(c, b):=\sum_{j=1}^{N-1}\left\langle W^{(j)}, U^{(j)}\right\rangle_{L^{2}(\Gamma)} b_{j}^{2}+M_{0}(c)
$$

For $N=3$,

$$
\left\{\begin{array}{l}
\|\phi\|_{L^{2}\left(\mathbb{R}_{+}\right)}^{2} \ddot{c}_{1}=-4 c_{1} c_{2}, \\
3\|\phi\|_{L^{2}\left(\mathbb{R}_{+}\right)}^{2} \ddot{c}_{2}=-2\left(c_{1}^{2}-3 c_{2}^{2}\right)
\end{array}\right.
$$

$c_{1}=0$ is an invariant reduction. Zero solution is nonlinearly unstable.

Closing the energy estimates

Consider the region where nonlinear instability is developed in the Hamiltonian system:

$$
\|c(t)\| \leq A \epsilon, \quad\|b(t)\| \leq A \epsilon^{3 / 2}, \quad t \in\left[0, t_{0}\right], \quad t_{0} \leq A \epsilon^{-1 / 2}
$$

By energy estimates, we have:

$$
|\omega(t)-1|+\left\|U^{\perp}(t)+i W^{\perp}(t)\right\|_{H^{1}(\Gamma)} \leq A\left(\delta+\epsilon^{3 / 2}\right), \quad t \in\left[0, t_{0}\right] .
$$

which is much smaller than the leading-order term if $\delta=\mathcal{O}\left(\epsilon^{3 / 2}\right)$.
Solutions of the system for $\left\{c_{j}, b_{j}\right\}_{j=1}^{N-1}$ remain close to the (unstable) solutions of the truncated Hamiltonian system. Hence, there exists $t_{0}=\mathcal{O}\left(\epsilon^{-1 / 2}\right)$ such that

$$
\left\|U\left(t_{0}\right)+i W\left(t_{0}\right)\right\|_{H^{1}(\Gamma)}>\epsilon .
$$

NLS under generalized Kirchhoff conditions

Let ($\alpha_{0}, \alpha_{+}, \alpha_{-}$) be defined by the generalized Kirchhoff conditions:

$$
\left\{\begin{array}{l}
\alpha_{0} \psi_{0}(0)=\alpha_{+} \psi_{+}(0)=\alpha_{-} \psi_{-}(0) \\
\alpha_{0}^{-1} \partial_{x} \psi_{0}(0)=\alpha_{+}^{-1} \partial_{x} \psi_{+}(0)+\alpha_{-}^{-1} \partial_{x} \psi_{-}(0)
\end{array}\right.
$$

and the cubic NLS equation

$$
\begin{array}{rr}
i \partial_{t} \psi_{0}+\partial_{x}^{2} \psi_{0}+\alpha_{0}^{2}\left|\psi_{0}\right|^{2} \psi_{0}=0, & x<0 \\
i \partial_{t} \psi_{ \pm}+\partial_{x}^{2} \psi_{ \pm}+\alpha_{ \pm}^{2}\left|\psi_{ \pm}\right|^{2} \psi_{ \pm}=0, & x>0
\end{array}
$$

If $\left(\alpha_{0}, \alpha_{+}, \alpha_{-}\right)$satisfy the constraint:

$$
\frac{1}{\alpha_{0}^{2}}=\frac{1}{\alpha_{+}^{2}}+\frac{1}{\alpha_{-}^{2}},
$$

then there exists an invariant reduction

$$
\alpha_{+} \psi_{+}(t, x)=\alpha_{-} \psi_{-}(t, x), \quad x \in \mathbb{R}^{+}
$$

to the integrable cubic NLS equation

$$
i \partial_{t} \Psi+\partial_{x}^{2} \Psi+|\Psi|^{2} \Psi=0, \quad x \in \mathbb{R}
$$

Translated stationary state

The half-soliton can now be translated along the graph Γ :

$$
\Phi(x)=\left[\begin{array}{lc}
\phi_{0}(x)=\alpha_{0}^{-1} \operatorname{sech}(x-a), & x \in(-\infty, 0) \\
\phi_{+}(x)=\alpha_{+}^{-1} \operatorname{sech}(x-a), & x \in(0, \infty), \\
\phi_{-}(x)=\alpha_{-}^{-1} \operatorname{sech}(x-a), & x \in(0, \infty),
\end{array}\right]
$$

where $a \in \mathbb{R}$ is arbitrary parameter.
When $a=0, L_{+}: H_{\Gamma}^{2} \rightarrow L^{2}(\Gamma)$ has one simple negative eigenvalue and $\operatorname{ker}\left(L_{+}\right)=\operatorname{span}\left\{U^{(1)}, U^{(2)}\right\}$ with

$$
U^{(1)}=\left(\begin{array}{c}
\phi_{0}^{\prime}(x) \\
\phi_{+}^{\prime}(x) \\
\phi_{-}^{\prime}(x)
\end{array}\right), \quad U^{(2)}=\left(\begin{array}{c}
0 \\
\alpha_{+} \phi_{+}^{\prime}(x) \\
-\alpha_{-} \phi_{-}^{\prime}(x)
\end{array}\right) .
$$

The first mode is due to the translational invariance of the invariant reduction. The second mode breaks the invariant reduction.

Translated stationary state

The half-soliton can now be translated along the graph Γ :

$$
\Phi(x)=\left[\begin{array}{lc}
\phi_{0}(x)=\alpha_{0}^{-1} \operatorname{sech}(x-a), & x \in(-\infty, 0) \\
\phi_{+}(x)=\alpha_{+}^{-1} \operatorname{sech}(x-a), & x \in(0, \infty), \\
\phi_{-}(x)=\alpha_{-}^{-1} \operatorname{sech}(x-a), & x \in(0, \infty),
\end{array}\right]
$$

where $a \in \mathbb{R}$ is arbitrary parameter.
When $a=0, L_{+}: H_{\Gamma}^{2} \rightarrow L^{2}(\Gamma)$ has one simple negative eigenvalue and $\operatorname{ker}\left(L_{+}\right)=\operatorname{span}\left\{U^{(1)}, U^{(2)}\right\}$ with

$$
U^{(1)}=\left(\begin{array}{c}
\phi_{0}^{\prime}(x) \\
\phi_{+}^{\prime}(x) \\
\phi_{-}^{\prime}(x)
\end{array}\right), \quad U^{(2)}=\left(\begin{array}{c}
0 \\
\alpha_{+} \phi_{+}^{\prime}(x) \\
-\alpha_{-} \phi_{-}^{\prime}(x)
\end{array}\right) .
$$

The first mode is due to the translational invariance of the invariant reduction. The second mode breaks the invariant reduction.

Half-soliton is still a nonlinear saddle point of the action functional.

Summary

- For the star graphs with Kirchhoff boundary conditions, we proved that the saddle points of action functional are nonlinearly unstable.
- For the star graphs with reflectionless boundary conditions, we proved that the half-solitons are still nonlinearly unstable due to symmetry-breaking perturbations.
- In the latter case, half-solitons are continued as shifted states along the parameter a and the shifted solitons with $a>0$ are orbitally stable because they are local constrained minimizers of the action functional.

