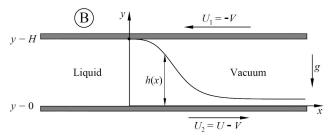
Numerical Modelling of the Dynamical Evolution of Contact Lines in Fluid Flows

Chengzhu Xu Supervisor: Dmitry Pelinovsky

April 19, 2013

Introduction

 E.S. Benilov and M. Vynnycky, Contact lines with a 180° contact angle, J. Fluid Mech. (2013), vol. 718, pp. 481-506.



► Two-dimensional Couette flows with a free boundary, in the reference frame co-moving with the contact line.

The Reduced Model

The shape of the liquid-vacuum interface h(x, t) is given by the solution of the linear advection-diffusion equation

$$\frac{\partial h}{\partial t} + \frac{\partial^4 h}{\partial x^4} = V(t) \frac{\partial h}{\partial x}, \quad x > 0, \quad t > 0,$$
 (1)

subject to some suitable initial condition $h|_{x=0} = h_0(x)$ for $x \ge 0$, and the boundary conditions at x = 0:

$$h|_{x=0} = 1$$
, $\frac{\partial h}{\partial x}\Big|_{x=0} = 0$, $\frac{\partial^3 h}{\partial x^3}\Big|_{x=0} = -\frac{1}{2}$, $t \ge 0$. (2)

The unknown velocity of the contact line V(t) is to be determined dynamically from the system of overdetermined boundary conditions (2).

Properties of the Solution

▶ If the solution h(x, t) is smooth at the boundary x = 0, then we have

$$\left. \frac{\partial^4 h}{\partial x^4} \right|_{x=0} = 0. \tag{3}$$

- ▶ h decays monotonically to some non-negative constant as $x \to \infty$, while all higher derivatives of h converge to zero;
- ▶ x = 0 is a non-degenerate maximum of h, that is, $h_{xx}|_{x=0} < 0$ for all $t \ge 0$.

Definition: If the solution h(x, t) losses monotonicity during the dynamical evolution, then we say the reduced model *blows up*.

Claims

Claims by Benilov:

- ▶ for any suitable initial condition, there always exists a finite positive time t_0 such that $V(t) \to -\infty$ as $t \to t_0$;
- **b** behavior of V(t) near the blow-up time:

$$V(t) \sim C_1 \log(t_0 - t) + C_2$$
, as $t \to t_0$, (4)

where C_1 , C_2 are positive constants.

The first claim is confirmed by our numerical results, however, the power function

$$|V(t)| \sim \frac{c}{(t_0 - t)^p}, \quad \text{as} \quad t \to t_0,$$
 (5)

with c > 0 and $p \approx 0.4$ is found to fit our numerical data better.

Reformulation of the Model

Let $u := \partial h/\partial x$, and differentiate (1) with respect to x:

$$\frac{\partial u}{\partial t} + \frac{\partial^4 u}{\partial x^4} = V(t) \frac{\partial u}{\partial x}, \quad x > 0, \quad t > 0.$$
 (6)

Rewrite boundary conditions in (2) and (3):

$$u|_{x=0}=0, \quad u_{xx}|_{x=0}=-\frac{1}{2}, \quad u_{xxx}|_{x=0}=0, \quad t\geq 0.$$
 (7)

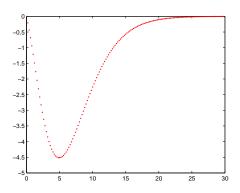
Then V(t) can be determined by the pointwise equation

$$u_{xxx}(0,t) = V(t)u_x(0,t), \quad t \ge 0,$$
 (8)

provided that the solution is smooth at the boundary x = 0.

Initial Condition

The initial condition can be any function that satisfies all the boundary and decay conditions. All initial functions $u|_{t=0}(x)$ looks similar:



Numerical Solution: Finite Difference Method

The solution over x-axis will be approximated by the second order central difference method: at each $x = x_n$, we have

$$\frac{du_n}{dt} := V(t) \frac{u_{n+1} - u_{n-1}}{2(\Delta x)} - \frac{u_{n+2} - 4u_{n+1} + 6u_n - 4u_{n-1} + u_{n-2}}{(\Delta x)^4} + O(\Delta x^2). \quad (9)$$

In matrix form, the above system of linear ODEs

$$\frac{d\mathbf{u}}{dt} = \mathbf{A}\mathbf{u}(t) + \mathbf{b} \tag{10}$$

can be evaluated by implicit Heun's method at $t = t_k$:

$$\mathbf{u}_{k+1} = \mathbf{u}_k + \frac{\Delta t}{2} [(\mathbf{A}_k \mathbf{u}_k + \mathbf{b}) + (\mathbf{A}_{k+1} \mathbf{u}_{k+1} + \mathbf{b})].$$
 (11)

Example: Negative Initial Velocity

Initial condition: $u_0(x) = -e^{-x/2}x(1 + \frac{3}{4}x + \frac{1}{4}x^2).$

Initial velocity: V(0) = -1.25.

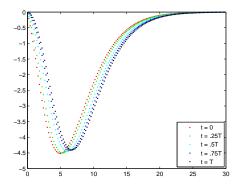


Figure: The dynamical evolution of u verses x at different time t.

Example: Negative Initial Velocity

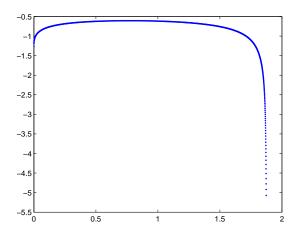


Figure: Change of velocity of the contact line V with respect to time t.

Example: Negative Initial Velocity

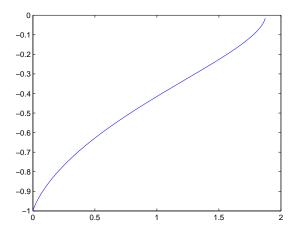


Figure: Change of $u_x|_{x=0}$ with respect to time t.

Example: Positive Initial Velocity

Initial condition: $u_0(x) = -\frac{1}{4}e^{-x/2}x(4+3x+x^2+0.6x^3)$. Initial velocity: V(0) = 2.35.

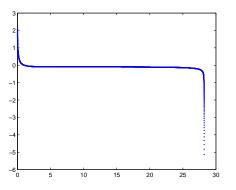


Figure: Change of velocity of the contact line V with respect to time t.

Example: Positive Initial Velocity

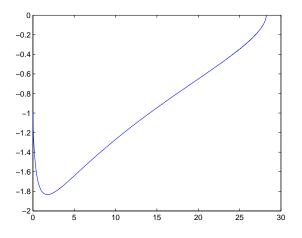
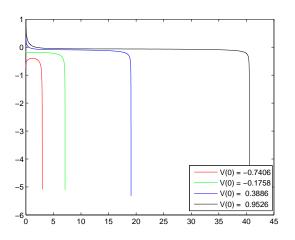


Figure: $u_x(0, t)$.

More Initial Velocities

Comparison of velocities V(t) between different initial conditions:



Blow-up Rate

In order to analyse the behavior of V near the blow-up time t_0 , we shall fit the numerical data with the logarithmic function claimed by Benilov:

$$V(t) \sim C_1 \log(t_0 - t) + C_2$$
, as $t \to t_0$,

and compare the results with the power function:

$$V(t)\sim rac{c}{(t_0-t)^p}, \quad ext{as} \quad t o t_0,$$

where p is the blow-up rate.

Data Fitting

Consider the initial condition:

$$u_0(x) = -e^{-x/2}x(1 + \frac{3}{4}x + \frac{1}{4}x^2), \quad V(0) = -1.25.$$

Tolerance level:	1e-006, number of	iterations: 1448, ter	rminal time = 1.8732
Starting time	Blowup time t0	Blowup rate p or C	1 Error
powerlaw:			
1.8172	1.8753	0.3927	0.000033
1.8360	1.8757	0.4009	0.000006
1.8547	1.8760	0.4118	0.000000
loglaw:			
1.8172	1.8688	0.5500	25.226547
1.8360	1.8705	0.6343	33.937325
1.8547	1.8724	0.7854	58.894321

Data Fitting

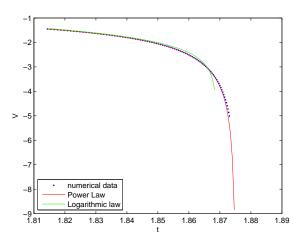


Figure: Comparison between data fitting with the logarithmic law and the power law.

More Examples

Initial condition:

$$u_0(x) = -\frac{1}{4}e^{-0.4x}x(4+2.6x+0.72x^2), \quad V(0) = -0.736.$$

Tolerance level:	1e-006, number of	iterations: 1364, to	erminal time = 2.9654
Starting time	Blowup time t0	Blowup rate p or (C1 Error
powerlaw:			
2.8765	2.9662	0.4001	0.000164
2.9063	2.9666	0.4085	0.000030
2.9358	2.9671	0.4201	0.000002
loglaw:			
2.8765	2.9574	0.3959	12.052519
2.9063	2.9599	0.4640	18.350765
2.9358	2.9626	0.5945	32.196180

More Examples

Initial condition:

$$u_0(x) = -\frac{1}{4}e^{-0.4x}x(4+2.6x+0.72x^2+0.2x^3), \quad V(0) = 0.464.$$

Tolerance level:	1e-006, number of	iterations: 4233, term	minal time = 19.0885
Starting time	Blowup time t0	Blowup rate p or C1	Error
powerlaw:			
18.5172	19.0815	0.3982	0.000715
18.7069	19.0842	0.4073	0.000142
18.8986	19.0867	0.4208	0.000009
loglaw:			
18.5172	19.0382	0.1044	0.412399
18.7069	19.0521	0.1241	0.660228
18.8986	19.0670	0.1659	1.472944

Summary of Results

- ▶ For any suitable initial condition, there always exists a finite positive time t_0 such that $V(t) \to -\infty$ as $t \to t_0$.
- With a large positive initial velocity, the solution tends to have a longer equilibrium state before it eventually blows up, whereas a negative initial velocity yields a much faster blow-up.
- ▶ The behavior of V(t) near the blow-up time satisfies the power law (5), with a blow-up rate $p \approx 0.4$.
- ▶ Because of the limited accuracy of finite difference method, the true value of *p* remains unknown at this time. More precise and computationally efficient numerical method, for instance, the collocation method involving discrete Fourier transform, is needed in further studies of this problem.