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Drift of Spectrally Stable Shifted States on Star Graphs\ast 
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Abstract. When the coefficients of the cubic terms match the coefficients in the boundary conditions at a
vertex of a star graph and satisfy a certain constraint, the nonlinear Schr\"odinger (NLS) equation on
the star graph can be transformed to the NLS equation on a real line. Such balanced star graphs
have appeared in the context of reflectionless transmission of solitary waves. Steady states on such
balanced star graphs can be translated by an arbitrary distance along the edges and are referred
to as the shifted states. When the star graph has exactly one incoming edge and several outgoing
edges, the steady states are spectrally stable if their monotonic tails are located on the outgoing
edges. These spectrally stable states are degenerate minimizers of the action functional with the
degeneracy due to the translational symmetry. Nonlinear stability of these spectrally stable states
has been an open problem up to now. In this paper, we prove that these spectrally stable states are
nonlinearly unstable due to an irreversible drift along the incoming edge toward the vertex of the star
graph. When the shifted states reach the vertex as a result of the drift, they become saddle points of
the action functional, in which case the nonlinear instability leads to their destruction. In addition
to rigorous mathematical results, we use numerical simulations to illustrate the drift instability and
destruction of the shifted states on the balanced star graph.

Key words. nonlinear Schr\"odinger equation, orbital stability of nonlinear waves, reflectionless transmission,
modulation equations, conserved quantities and symmetries
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1. Introduction. The classical Lyapunov method establishes stability of minimizers of
energy in the time flow of a dynamical system under the condition that the second variation
of energy is strictly positive definite. In the context of Hamiltonian PDEs such as the nonlinear
Schr\"odinger (NLS) equation, standing waves are often saddle points of energy but additional
conserved quantities such as mass and momentum exist due to symmetries such as phase
rotation and space translation. It is now a classical result [17, 37] that the standing waves
are stable if they are constrained minimizers of energy when other conserved quantities are
fixed and if the second variation of energy is strictly positive definite under the constraints
eliminating symmetries.

Stability of standing waves in the presence of symmetries is understood in the sense of
orbital stability, where the orbit is defined by a set of parameters along the symmetry group.
Fixed values of other conserved quantities are realized by Lagrange multipliers which define
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another set of parameters. Both sets of parameters (along the symmetry group and Lagrange
multipliers) satisfy the modulation equations in the time flow of the Hamiltonian PDE [36].
The actual values of parameters along the symmetry group are irrelevant in the definition of
an orbit for the standing waves, whereas Lagrange multipliers and the remainder terms are
controlled if the second variation of energy is strictly positive under the symmetry constraints.

The present work is devoted to stability of standing waves in the NLS equation defined
on a metric graph, a subject that has seen many recent developments [23]. Existence and
variational characterization of standing waves was developed for star graphs [1, 2, 3, 4, 8, 9, 18]
and for general metric graphs [5, 6, 7, 10, 14]. Bifurcations and stability of standing waves
were further explored for tadpole graphs [24], dumbbell graphs [16, 21], double-bridge graphs
[25], and periodic ring graphs [15, 26, 27]. A variational characterization of standing waves
was developed for graphs with compact nonlinear core [29, 30, 34].

In the context of star graphs, it was realized in [5] that the infimum of energy under
the fixed mass is approached by a sequence of solitary waves escaping to infinity along one
edge of the star graph. Consequently, standing waves cannot be energy minimizers, as they
represent saddle points of energy under the fixed mass [1]. It was shown in [19] that the
second variation of energy at these standing waves is nevertheless positive but degenerates
with a zero eigenvalue, hence the standing waves are saddle points beyond the second variation
of energy. Orbital instability of these standing waves under the time flow of the NLS equation
is developed as a result of the saddle point geometry [19].

Balanced star graphs were introduced in [33] from the condition that the NLS equation
on the metric graph reduces to the NLS equation on a real line if the initial conditions satisfy
certain symmetry (see also [28, 32, 38] for generalizations). Consequently, solitary waves may
propagate across the vertex without any reflection. Standing waves of the NLS equation can
be translated along edges of the balanced star graph with a translational parameter and are
referred to as the shifted states. When the balanced star graph has exactly one incoming edge
and several outgoing edges, according to Definition 2.1, the shifted states were proven in [20]
to be spectrally stable if their monotonic tails are located on the outgoing edges (an example
of such a shifted state on the balanced star graph with one incoming and three outgoing edges
is shown in Figure 1). Moreover, these shifted states are constrained minimizers of the energy
under fixed mass and the only degeneracies of the second variation of energy are due to phase
rotation and the spatial translation of the shifted state along the balanced star graph.

Standing waves are orbitally stable in the NLS equation on a real line since the two
degeneracies are related to the two symmetries of the NLS equation that correspond, via
Noether's theorem, to the conservation of mass and of momentum. In contrast to this well-
known result, we show in this paper that the shifted states are orbitally unstable in the NLS
equation on the balanced star graph.

The instability is related to the following observation. The shifted state is symmetric
with respect to the exchange of components on the outgoing edges. If the initial perturbation
to the shifted state preserves this symmetry, then the NLS on the balanced star graph can
be reduced to the NLS equation on a line, and the solution of the time evolution problem
has translational symmetry. Perturbations that lack this exchange symmetry also break the
translational symmetry and the solution fails to conserve momentum. Moreover, the value of
the momentum functional increases monotonically in the time flow of the NLS equation and
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Figure 1. A shifted state on a balanced star graph with one incoming and three outgoing edges. The shifted
state has symmetric monotonic tails on the outgoing edges and a nonmonotonic tail on the incoming edge.

this monotone increase results in the irreversible drift of the shifted state along the incoming
edge toward the outgoing edges of the balanced star graph. When the center of mass of the
shifted state reaches the vertex, the shifted state becomes a saddle point of energy under the
fixed mass. At this point in time, orbital instability of the shifted state develops as a result
of the saddle point geometry similar to the instability studied in [19].

The main novelty of this paper is to show that degeneracy of the positive second variation of
energy may lead to orbital instability of constrained minimizers if this degeneracy is not related
to the symmetry of the Hamiltonian PDE. The orbital instability appears due to irreversible
drift of shifted states from a spectrally stable state toward the spectrally unstable states. We
prove rigorously the conjecture posed in the previous work [20] and confirm numerically the
instability of the shifted states on the balanced star graphs.

Note that the drift instability of shifted states on balanced star graphs is different from
nonlinear instability of spectrally stable excited states, which are saddle points of energy
subject to fixed mass [12, 13]. We emphasize again that the shifted states are degenerate
minimizers of energy subject to fixed mass.

The NLS equation on a star graph is very similar to the NLS equation with a point
potential supported at the vertex. This point potential repels the pinned standing wave
leading to its nonlinear instability [1, 19]. Since the NLS equation on a balanced star graph
can be reduced to the NLS equation on the line, one might intuitively expect stability of
the standing waves as in the classical setup of [17, 37]. However, the main outcome of this
work shows that topology of the balanced star graph plays the role in the time evolution
of the shifted states and leads to their nonlinear instability under the symmetry-breaking
perturbations.

The paper is structured as follows. Section 2 presents the background material and the
main results of this work. Section 3 collects together the linear estimates. Section 4 gives the
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proof of the irreversible drift along the spectrally stable shifted states. Section 5 gives the
proof of nonlinear instability of the limiting point in the family of the spectrally stable shifted
states (called the half-soliton state) due to the saddle point geometry. Section 6 illustrates the
analytical results with numerical simulations. Section 7 concludes the paper with a summary.

2. Main results. We consider a star graph \Gamma constructed by attaching N half-lines at a
common vertex. In the construction of the graph \Gamma , one edge represents an incoming bond
and the remaining N  - 1 edges represent outgoing bonds. We place the vertex at the origin
and parameterize the incoming edge by \BbbR  - and the N  - 1 outgoing edges by \BbbR +. The star
graph \Gamma with one incoming and three outgoing edges is illustrated in Figure 1.

The Hilbert space

L2(\Gamma ) = L2(\BbbR  - )\oplus L2(\BbbR +)\oplus \cdot \cdot \cdot \oplus L2(\BbbR +)\underbrace{}  \underbrace{}  
(\mathrm{N}-1) \mathrm{e}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}

is defined componentwise on edges of the star graph \Gamma and so are Sobolev spaces

Hk(\Gamma ) = Hk(\BbbR  - )\oplus Hk(\BbbR +)\oplus \cdot \cdot \cdot \oplus Hk(\BbbR +)\underbrace{}  \underbrace{}  
(\mathrm{N}-1) \mathrm{e}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}

for k = 1, 2. We define function spacesH1
\Gamma andH2

\Gamma by using the generalized Kirchhoff boundary
conditions:

H1
\Gamma := \{ \Psi \in H1(\Gamma ) : \alpha 1\psi 1(0) = \alpha 2\psi 2(0) = \cdot \cdot \cdot = \alpha N\psi N (0)\} (2.1)

and

H2
\Gamma :=

\left\{   \Psi \in H2(\Gamma ) \cap H1
\Gamma : \alpha  - 1

1 \psi \prime 
1(0) =

N\sum 
j=2

\alpha  - 1
j \psi \prime 

j(0)

\right\}   ,(2.2)

where (\alpha 1, \alpha 2, . . . , \alpha N ) are positive coefficients and derivatives are defined as limx\rightarrow 0 - for the
incoming edge and limx\rightarrow 0+ for the (N  - 1) outgoing edges. The dual space to H1

\Gamma is denoted
as H - 1

\Gamma .

Definition 2.1. We say that the star graph \Gamma is a balanced star graph with one incoming and
N  - 1 outgoing edges if the positive coefficients (\alpha 1, \alpha 2, . . . , \alpha N ) in the boundary conditions
(2.1) and (2.2) satisfy the following constraint:

1

\alpha 2
1

=
N\sum 
j=2

1

\alpha 2
j

.(2.3)

The time evolution is given by the following NLS equation:

i
\partial \Psi 

\partial t
=  - \Delta \Psi  - 2\alpha 2| \Psi | 2\Psi ,(2.4)

where \Psi = \Psi (t, x), \Delta \Psi = (\psi \prime \prime 
1 , \psi 

\prime \prime 
2 , . . . , \psi 

\prime \prime 
N ) is the Laplacian operator defined componentwise

with primes denoting derivatives in x, \alpha = (\alpha 1, \alpha 2, . . . , \alpha N ) \in \BbbR N represents the same coef-
ficients as in (2.1) and (2.2), and the nonlinear term \alpha 2| \Psi | 2\Psi is interpreted as a symbol for
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(\alpha 2
1| \psi 1| 2\psi 1, \alpha 

2
2| \psi 2| 2\psi 2, . . . , \alpha 

2
N | \psi N | 2\psi N ). The Laplacian \Delta : H2

\Gamma \subset L2(\Gamma ) \rightarrow L2(\Gamma ) is extended
as a self-adjoint operator in the Hilbert space L2(\Gamma ) (see Lemma 2.1 in [20]).

Local and global well-posedness of the Cauchy problem for the NLS equation (2.4) is well-
known for weak solutions in H1

\Gamma (see Propositions 2.1 and 2.2 in [3] or Lemmas 2.2 and 2.3
in [20]). For the global weak solutions \Psi \in C(\BbbR , H1

\Gamma ) \cap C1(\BbbR , H - 1
\Gamma ), we can define the energy

and mass functionals as

E(\Psi ) := \| \Psi \prime \| 2L2(\Gamma )  - 
\bigm\| \bigm\| \bigm\| \alpha 1

2\Psi 
\bigm\| \bigm\| \bigm\| 4
L4(\Gamma )

, Q(\Psi ) := \| \Psi \| 2L2(\Gamma ),(2.5)

respectively. These functionals are constants under the time flow of the NLS equation (2.4).
Similarly, one can introduce global strong solutions \Psi \in C(\BbbR , H2

\Gamma ) \cap C1(\BbbR , L2(\Gamma )) with con-
served energy and mass functionals in (2.5).

The NLS equation (2.4) admits standing wave solutions of the form

\Psi (t, x) = ei\omega t\Phi \omega (x),

where the real-valued pair (\omega ,\Phi \omega ) satisfies the stationary NLS equation,

 - \Delta \Phi \omega  - 2\alpha 2| \Phi \omega | 2\Phi \omega =  - \omega \Phi \omega , \Phi \omega \in H2
\Gamma .(2.6)

The stationary NLS equation is the Euler--Lagrange equation for the action functional

\Lambda \omega (\Psi ) := E(\Psi ) + \omega Q(\Psi ).(2.7)

It is also well-known [3] that the set of critical points of \Lambda \omega in H1
\Gamma is equivalent to the set of

solutions of the stationary NLS equation in H2
\Gamma .

For \omega > 0, we can set \omega = 1 by employing the following scaling transformation:

\Phi \omega (x) = \omega 
1
2\Phi (z), z = \omega 

1
2x.(2.8)

The following lemma states the existence of a family of shifted states in the stationary
NLS equation (2.6) with the boundary conditions in (2.1) and (2.2), where the coefficients
(\alpha 1, \alpha 2, . . . , \alpha N ) satisfy the constraint (2.3). One such shifted state with monotonic tails on
the outgoing edges of the star graph \Gamma is illustrated in Figure 1.

Lemma 2.2. For every (\alpha 1, \alpha 2, . . . , \alpha N ) satisfying the constraint (2.3), there exists a unique
one-parameter family of solutions \{ \Phi (x; a)\} a\in \BbbR to the stationary NLS equation (2.6) with
\omega = 1, where each component of \Phi (x; a) is given by

\phi j(x; a) = \alpha  - 1
j \phi (x+ a), 1 \leq j \leq n,(2.9)

with \phi (x) = sech(x).

Proof. The stationary NLS equation (2.6) with \omega = 1 admits a general solution \Phi =
(\phi 1, . . . , \phi N ) \in H2(\Gamma ) of the form

\phi j(x) = \alpha  - 1
j \phi (x+ aj), j = 1, . . . , N,
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with \phi (x) = sech(x). The parameters (a1, . . . , aN ) \in \BbbR N are to be defined by the boundary
conditions in (2.1) and (2.2). The continuity condition in (2.1) implies that | a1| = \cdot \cdot \cdot = | aN | ,
and so, for every j = 1, . . . , N , there exists \sigma j \in \{  - 1, 1\} such that aj = \sigma ja1. Without loss
of generality, we choose \sigma 1 = 1. The Kirchhoff condition in (2.2) implies that, under the
constraint (2.3),

\phi \prime (a1)

N\sum 
j=2

\sigma j  - 1

\alpha 2
j

= 0.(2.10)

Equation (2.10) holds if either \phi \prime (a1) = 0 or
\sum N

j=2
\sigma j - 1

\alpha 2
j

= 0. The first case has a unique

solution a1 = 0. The second case holds for every a1 \in \BbbR \setminus \{ 0\} if and only if for every j =

2, . . . , N we get \sigma j = 1, since
\sigma j - 1

\alpha 2
j

is either negative or zero. Combining both cases, we have

a1 = a2 = \cdot \cdot \cdot = aN = a, where a \in \BbbR is arbitrary. Hence, \Phi = (\phi 1, \phi 2, . . . , \phi N ) \in H2
\Gamma is given

by (2.9).

Remark 2.3. Compared to the parametrization of edges in \Gamma used in our previous work
[20], \phi 1(x) is defined here for x \in \BbbR  - while all other \phi j(x) are defined for x \in \BbbR +. We also
replace parameter a \in \BbbR in [20] by  - a \in \BbbR for convenience.

The shifted state (2.9) in Lemma 2.2 satisfies the following symmetry.

Definition 2.4. For every fixed \alpha = (\alpha 1, \alpha 2, . . . , \alpha N ) we say that the function \Psi = (\psi 1,
\psi 2, . . . , \psi N ) \in H1

\Gamma is \alpha -symmetric if it satisfies for all x \in \BbbR +

\alpha 2\psi 2(x) = \cdot \cdot \cdot = \alpha N\psi N (x).(2.11)

The symmetry (2.11) in Definition 2.4 provides the following reduction of the NLS equation
(2.4) on the balanced star graph \Gamma under the constraint (2.3).

Lemma 2.5. Assume that \Psi \in C(\BbbR , H2
\Gamma ) \cap C1(\BbbR , L2(\Gamma )) is a strong solution to the NLS

equation (2.4) under the constraint (2.3) satisfying the symmetry reduction (2.11) for every
t \in \BbbR . The wave function

\varphi (t, x) =

\biggl\{ 
\alpha 1\psi 1(t, x), x \leq 0,
\alpha 2\psi 2(t, x), x \geq 0,

(2.12)

is a strong solution \varphi \in C(\BbbR , H2(\BbbR )) \cap C1(\BbbR , L2(\BbbR )) to the following NLS equation on the
real line \BbbR :

i
\partial \varphi 

\partial t
=  - \partial 

2\varphi 

\partial x2
 - 2| \varphi | 2\varphi .(2.13)

Proof. The NLS equation (2.13) is defined piecewise for x < 0 and x > 0 from the NLS
equation (2.4), the symmetry (2.11), and the representation (2.12). Thanks to the boundary
conditions in (2.1) and (2.2), the function \varphi (t, x) is continuously differentiable across the
vertex point x = 0. Hence if \Psi \in C(\BbbR , H2

\Gamma ) \cap C1(\BbbR , L2(\Gamma )) is a strong solution to (2.4), then
\varphi \in C(\BbbR , H2(\BbbR )) \cap C1(\BbbR , L2(\BbbR )) is a strong solution to (2.13).
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Remark 2.6. The NLS equation on the line (2.13) is integrable with a Lax pair. However,
the NLS equation on the star graph (2.4) is integrable only under special boundary conditions
at the vertex [11] and is not integrable under the boundary conditions in (2.2) under the
constraint (2.3).

The free parameter a in the family of shifted states (2.9) in Lemma 2.2 is related to the
translational symmetry of the NLS equation (2.13) in x. However, the translational symmetry
is broken for the NLS equation (2.4) on the star graph \Gamma due to the vertex at x = 0. As a
result, the momentum functional given by

P (\Psi ) := Im\langle \Psi \prime ,\Psi \rangle L2(\Gamma ) =

\int 
\BbbR  - 

Im
\bigl( 
\psi \prime 
1\psi 1

\bigr) 
dx+

N\sum 
j=2

\int 
\BbbR +

Im
\bigl( 
\psi \prime 
j\psi j

\bigr) 
dx(2.14)

is no longer constant under the time flow of (2.4). It was shown in [20, Lemma 6.1] that
for every strong solution \Psi \in C(\BbbR , H2

\Gamma ) \cap C1(\BbbR , L2(\Gamma )) to the NLS equation (2.4) the map
t \mapsto \rightarrow P (\Psi ) is monotonically increasing, thanks to the following inequality:

d

dt
P (\Psi ) =

1

2

N\sum 
j=2

N\sum 
i=2
i \not =j

\alpha 2
1

\alpha 2
j\alpha 

2
i

\bigm| \bigm| \alpha j\psi 
\prime 
j(0) - \alpha i\psi 

\prime 
i(0)

\bigm| \bigm| 2 \geq 0.(2.15)

If the strong solution \Psi satisfies the symmetry (2.11) in Definition 2.4, then P (\Psi ) is conserved
in t.

It was proven in [20, Theorem 4.1 and Corollary 4.3], that the one-parameter family of
shifted states in Lemma 2.2 is spectrally unstable for a < 0 and spectrally stable for a > 0.
The degenerate state at a = 0 is called the half-soliton state. For star graphs with \alpha = 1, the
half-soliton state was proven to be nonlinearly unstable [19]. In regard to the shifted states
with a > 0, it was conjectured in [20, Conjectures 7.1 and 7.2], that the shifted state in Lemma
2.2 with a > 0 is nonlinearly unstable under the time flow because the shifted states drifts
along the only incoming edge toward the half-soliton state with a = 0, where it is affected by
spectral instability of the shifted states with a < 0.

The present work is devoted to the proof of Conjectures 7.1 and 7.2 in [20]. We given the
following definition of nonlinear instability of a shifted state \Phi (\cdot ; a).

Definition 2.7. Fix a \in \BbbR . The shifted state \Phi (\cdot ; a) is said to be nonlinearly unstable in H1
\Gamma 

if there exists \epsilon > 0 such that for every \delta > 0 there exists an initial datum \Psi 0 \in H1
\Gamma satisfying

\| \Psi 0  - \Phi (\cdot ; a)\| H1(\Gamma ) \leq \delta 

and T > 0 such that the unique global solution \Psi \in C(\BbbR , H1
\Gamma ) \cap C1(\BbbR , H - 1

\Gamma ) to the NLS
equation (2.4) with \Psi (0, \cdot ) = \Psi 0 satisfies

inf
\theta \in \BbbR 

\bigm\| \bigm\| \bigm\| \Psi (T, \cdot ) - ei\theta \Phi (\cdot ; a)
\bigm\| \bigm\| \bigm\| 
H1(\Gamma )

> \epsilon .

Our first main result shows that the monotone increase of the map t \mapsto \rightarrow P (\Psi ) as in (2.15)
leads to a drift along the family of shifted states (2.9) in which the parameter a decreases
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monotonically in t toward a = 0. This drift induces nonlinear instability of the spectrally
stable shifted states in Lemma 2.2 with a > 0 according to Definition 2.7. The following
theorem formulates the result.

Theorem 2.8. Fix a0 > 0. For every a \in (0, a0) there exists \epsilon 0 > 0 (sufficiently small)
such that for every \epsilon \in (0, \epsilon 0), there exists \delta > 0 and T > 0 such that for every initial datum
\Psi 0 \in H1

\Gamma satisfying

\| \Psi 0  - \Phi (\cdot ; a0)\| H1(\Gamma ) \leq \delta (2.16)

and P (\Psi 0) \geq C0\delta for some C0 > 0, the unique global solution \Psi \in C(\BbbR , H1
\Gamma )\cap C1(\BbbR , H - 1

\Gamma ) to
the NLS equation (2.4) with \Psi (0, \cdot ) = \Psi 0 satisfies

inf
\theta \in \BbbR 

\| \Psi (t, \cdot ) - ei\theta \Phi (\cdot ; a(t))\| H1(\Gamma ) \leq \epsilon , t \in [0, T ],(2.17)

where a \in C1([0, T ]) is a strictly decreasing function such that limt\rightarrow T a(t) = a.

By Theorem 2.8, the shifted state (2.9) with a > 0 drifts toward the half-soliton state with
a = 0. The half-soliton state is more degenerate than the shifted state with a > 0 because
the zero eigenvalue of the linearized operator to the stationary NLS equation (2.6) is simple
for a > 0 and has multiplicity N  - 1 for a = 0. Moreover, while the shifted state \Phi (\cdot ; a)
with a > 0 is a degenerate minimizer of the action functional \Lambda \omega =1(\Psi ) = E(\Psi ) + Q(\Psi ), the
half-soliton state \Phi 0 := \Phi (\cdot ; a = 0) is a degenerate saddle point of the same action functional
[19]. The following theorem shows the nonlinear instability of the half-soliton state according
to Definition 2.7. This nonlinear instability is related to the saddle point geometry of the
critical point \Phi 0.

Theorem 2.9. Denote \Phi 0 := \Phi (\cdot ; a = 0). There exists \epsilon > 0 such that for every small \delta > 0
there exists V \in H1

\Gamma with \| V \| H1
\Gamma 
\leq \delta such that the unique global solution \Psi \in C(\BbbR , H1

\Gamma ) \cap 
C1(\BbbR , H - 1

\Gamma ) to the NLS equation (2.4) with the initial datum \Psi (0, \cdot ) = \Phi + V satisfies

inf
\theta \in \BbbR 

\| e - i\theta \Psi (T, \cdot ) - \Phi \| H1(\Gamma ) > \epsilon for some T > 0.(2.18)

Remark 2.10. The result of Theorem 2.9 is very similar to the instability result in Theorem
2.7 in [19] which was proven for the star graph \Gamma with \alpha = 1.

Finally, the shifted state \Phi (\cdot ; a) with a < 0 is a saddle point of the action functional
\Lambda \omega =1(\Psi ) = E(\Psi ) + Q(\Psi ). The saddle point is known to be spectrally unstable [20]. Conse-
quently, it is also nonlinearly unstable under the time flow of the NLS equation (2.4) according
to the general theory in [31].

Our numerical results collected together in section 6 illustrate all three stages of the
nonlinear instability of the shifted state with a > 0 on the balanced star graph \Gamma with N = 3.
We show the drift instability for the shifted states with a > 0, the weak instability of the
half-soliton state with a = 0, and the fast exponential instability of the shifted states with
a < 0. We also illustrate numerically that the monotonic increase of the momentum functional
in (2.15) can lead to the drift instability even if the assumption P (\Psi 0) \geq C0\delta > 0 of Theorem
2.8 on the initial datum \Psi 0 is not satisfied.
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3. Linear estimates. Recall that the scaling transformation (2.8) transforms the normal-
ized shifted states \Phi of Lemma 2.2 to the \omega -dependent family \Phi \omega of the shifted states. We
note the following elementary computations:

D1(\omega ) =  - \langle \Phi \omega (\cdot ; a), \partial \omega \Phi \omega (\cdot ; a)\rangle L2(\Gamma ) =  - 1

2

d

d\omega 
\| \Phi \omega \| 2L2(\Gamma ) =  - 1

2\alpha 2
1\omega 

1
2

(3.1)

and

D2(\omega ) =  - \langle \Phi \prime 
\omega (\cdot ; a), (\cdot + a)\Phi \omega (\cdot ; a)\rangle L2(\Gamma ) =

1

2
\| \Phi \omega \| 2L2(\Gamma ) =

\omega 
1
2

\alpha 2
1

.(3.2)

We discuss separately the linearization of the shifted state with a \not = 0 and the half-soliton
state with a = 0.

3.1. Linearization at the shifted state with \bfita \not = 0. For every standing wave solution
\Phi \omega (\cdot ; a) we define two self-adjoint linear operators L\pm (\omega , a) : H2

\Gamma \subset L2(\Gamma ) \rightarrow L2(\Gamma ) by the
differential expressions: \biggl\{ 

L - (\omega , a) =  - \Delta + \omega  - 2\alpha 2\Phi \omega (\cdot ; a)2,
L+(\omega , a) =  - \Delta + \omega  - 6\alpha 2\Phi \omega (\cdot ; a)2.

(3.3)

The operator L - (\omega , a) acts on the imaginary part of the perturbation to \Phi \omega (\cdot ; a) and the
operator L+(\omega , a) acts on the real part of the perturbation; the latter operator is also the
linearization operator to the stationary NLS equation (2.6). The spectrum of the self-adjoint
operators L\pm (\omega , a) was studied in [20], from which we recall some basic facts.

The continuous spectrum is strictly positive thanks to the fast exponential decay of
\Phi \omega (x; a) to zero as | x| \rightarrow \infty and Weyl's theorem:

\sigma c(L\pm (\omega , a)) = [\omega ,\infty ),(3.4)

where \omega > 0. The discrete spectrum \sigma p(L\pm (\omega , a)) \subset ( - \infty , \omega ) includes finitely many negative,
zero, and positive eigenvalues of finite multiplicities.

Eigenvalues of \sigma p(L+(\omega , a)) \subset ( - \infty , \omega ) are known in the explicit form [20]. For \omega = 1,
these eigenvalues are given by

\bullet a simple negative eigenvalue \lambda 0 =  - 3;
\bullet a zero eigenvalue \lambda = 0 which is simple when a \not = 0;
\bullet the additional eigenvalue \lambda = \lambda 1(a) of multiplicity N  - 2 given by

\lambda 1(a) =  - 3

2
tanh(a)

\Bigl[ 
tanh(a) - 

\sqrt{} 
1 + 3 sech(a)

\Bigr] 
.(3.5)

It is negative for a < 0, zero for a = 0 and positive for a \in (0, a\ast ), where a\ast =
tanh - 1( 1\surd 

3
) \approx 0.66. The eigenvalue merges into the continuous spectrum as a\nearrow a\ast .

The spectrum of L+(\omega , a) for \omega = 1 is illustrated in Figure 2.
Eigenvalues of \sigma p(L - (\omega , a)) \subset ( - \infty , \omega ) are nonnegative and the zero eigenvalue is simple.

If a \not = 0, the zero eigenvalues of L+(\omega , a) and L - (\omega , a) are each simple with the eigenvectors
given by
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Figure 2. The spectrum of L+(\omega , a) for \omega = 1. The continuous spectrum is [1,\infty ), while the discrete

spectrum is given by the eigenvalues \lambda = 0, \lambda =  - 3, and \lambda = \lambda 1(a) in (3.5).

L+(\omega , a)\Phi 
\prime 
\omega (\cdot ; a) = 0, L - (\omega , a)\Phi \omega (\cdot ; a) = 0.(3.6)

The eigenvectors in (3.6) induce the generalized eigenvectors in

L+(\omega , a)\partial \omega \Phi \omega (\cdot ; a) =  - \Phi \omega (\cdot ; a), L - (\omega , a)(\cdot + a)\Phi \omega (\cdot ; a) =  - 2\Phi \prime 
\omega (\cdot ; a).(3.7)

The following lemma establishes the coercivity of the quadratic forms associated with the
operators L+(\omega , a) and L - (\omega , a) for a > 0.

Lemma 3.1. For every \omega > 0 and a > 0, there exists a positive constant C(\omega , a) such that

\langle L+(\omega , a)U,U\rangle L2(\Gamma ) + \langle L - (\omega , a)W,W \rangle L2(\Gamma ) \geq C(\omega , a)\| U + iW\| 2H1(\Gamma )(3.8)

if U and W satisfy the orthogonality conditions\left\{   
\langle W,\partial \omega \Phi \omega (\cdot ; a)\rangle L2(\Gamma ) = 0,

\langle U,\Phi \omega (\cdot ; a)\rangle L2(\Gamma ) = 0,

\langle U, (\cdot + a)\Phi \omega (\cdot ; a)\rangle L2(\Gamma ) = 0,

(3.9)

Proof. The first orthogonality condition in (3.9) shifts the lowest (zero) eigenvalue of
L - (\omega , a) to a positive eigenvalue thanks to the condition (3.1) (see Lemma 5.6 in [19]) and
yields by G\r arding's inequality the coercivity bound

\langle L - (\omega , a)W,W \rangle L2(\Gamma ) \geq C(\omega )\| W\| 2H1(\Gamma )
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independently of a. The second orthogonality condition in (3.9) shifts the lowest (negative)
eigenvalue of L+(\omega , a) to a positive eigenvalue thanks to the same condition (3.1) (see Lemma
3.8 in [19]) and yields

\langle L+(\omega , a)U,U\rangle L2(\Gamma ) \geq 0

with \langle L+(\omega , a)U,U\rangle L2(\Gamma ) = 0 if and only if U is proportional to \Phi \prime 
\omega (\cdot ; a). The zero eigenvalue

of L+(\omega , a) is preserved by the constraint since

\langle \Phi \omega (\cdot ; a),\Phi \prime 
\omega (\cdot ; a)\rangle L2(\Gamma ) = 0.

Finally, the third orthogonality condition in (3.9) shifts the zero eigenvalue of L+(\omega , a) to
a positive eigenvalue thanks to the condition (3.2). By G\r arding's inequality, this yields the
coercivity bound

\langle L+(\omega , a)U,U\rangle L2(\Gamma ) \geq C(\omega , a)\| U\| 2H1(\Gamma ),

where C(\omega , a) depends on a because the gap between the zero eigenvalue and the rest of the
positive spectrum in \sigma p(L+(\omega , a)) exists for a > 0 but vanishes as a\rightarrow 0.

Remark 3.2. For every \omega > 0, the positive constant C(\omega , a) in (3.8) satisfies

C(\omega , a) \rightarrow 0 as a\searrow 0.

This is because the zero eigenvalue in \sigma p(L+(\omega , a = 0)) has multiplicity (N  - 1) and the
(N  - 2) eigenvectors of L+(\omega , a = 0) satisfy the last two orthogonality conditions (3.9), as is
seen from the explicit expressions (3.12) for eigenvectors.

Remark 3.3. For a < 0, the result of Lemma 3.1 is false because \sigma p(L+(\omega , a)) includes
another negative eigenvalue, as is seen in Figure 2.

Remark 3.4. The orthogonality conditions in (3.9) are typically referred to as the symplec-
tic orthogonality conditions, because they express the orthogonality of the residual terms U
andW for the real and imaginary parts of the perturbation to \Phi \omega (\cdot ; a) to the eigenvectors and
generalized eigenvectors of the spectral stability problem expressed by L+(\omega , a) and L - (\omega , a)
and the symplectic structure of the NLS equation. Compared to the classical approach of
[36] that uses four orthogonality conditions and four parameters of modulated states, we do
not use the orthogonality condition \langle W,\Phi \prime 

\omega (\cdot ; a)\rangle L2(\Gamma ) = 0 and work with three parameters

for modulations of the stationary state orbit \{ ei\theta \Phi \omega (\cdot ; a)\} \theta \in \BbbR ,\omega \in \BbbR +,a\in \BbbR + . The reason for this
is that the coercivity (3.8) is already obtained under the three orthogonality conditions (3.9)
and that it is difficult to control the fourth parameter, corresponding to the velocity of the
shifted state, with the energy method.

3.2. Linearization at the half-soliton state. For a = 0, we denote operators L\pm (\omega ) \equiv 
L\pm (\omega , a = 0). The kernel of the operator L+(\omega ) is spanned by an orthogonal basis consisting

of N  - 1 eigenvectors, which we denote by \{ U (1)
\omega , U

(2)
\omega , . . . , U

(N - 1)
\omega \} . The following lemma

specifies an explicit construction of these basis eigenvectors.

Lemma 3.5. There exists an orthogonal basis \{ U (1)
\omega , U

(2)
\omega , . . . , U

(N - 1)
\omega \} of the kernel of

L+(\omega ) such that each eigenvector U
(j)
\omega satisfies the orthogonality condition
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\langle U,\Phi \omega \rangle L2(\Gamma ) = 0.(3.10)

The eigenvectors can be represented as follows. For j = 1,

U (1)
\omega :=

\bigl( 
\alpha  - 1
1 \phi \prime \omega , \alpha 

 - 1
2 \phi \prime \omega , . . . , \alpha 

 - 1
N \phi \prime \omega 

\bigr) 
,(3.11)

and for j = 2, . . . , N  - 1,

U (j)
\omega :=

\left(   0, . . . , 0\underbrace{}  \underbrace{}  
(\mathrm{j}-1) \mathrm{e}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}

, rj\phi 
\prime 
\omega , \alpha 

 - 1
j+1\phi 

\prime 
\omega , . . . , \alpha 

 - 1
N \phi \prime \omega 

\right)   , rj =  - 

\left(  N\sum 
i=j+1

1

\alpha 2
i

\right)  \alpha j ,(3.12)

where \phi \omega (x) = \omega 
1
2 sech(\omega 

1
2x), x \in \BbbR .

Proof. Let U = (u1, u2, . . . , uN ) \in H2
\Gamma be an eigenvector for the zero eigenvalue of the

operator L+(\omega ). Each component of the eigenvalue problem L+(\omega )U = 0 satisfies

 - u\prime \prime j (x) + \omega uj(x) - 6\omega sech2
\bigl( \surd 
\omega x
\bigr) 
uj(x) = 0,(3.13)

where x \in \BbbR  - on the first edge and x \in \BbbR + on the remaining edges. Since H2(\BbbR \pm ) are
continuously embedded into C1(\BbbR \pm ), if U \in H2(\Gamma ), then both uj(x) and u\prime j(x) decay to
zero as | x| \rightarrow \infty . Such solutions to the differential equations (3.13) are given uniquely by
uj(x) = aj\phi 

\prime 
\omega (x) up to multiplication by a constant aj . Therefore, the eigenvector U is given

by

U = (a1\phi 
\prime 
\omega , a2\phi 

\prime 
\omega , . . . , aN\phi 

\prime 
\omega ).(3.14)

The eigenvector U \in H2
\Gamma must satisfy the boundary conditions in (2.2). The continuity

conditions hold since \phi \prime \omega (0) = 0, whereas the Kirchhoff condition implies

a1
\alpha 1

=

N\sum 
j=2

aj
\alpha j
.(3.15)

Since the scalar equation (3.15) relates N unknowns, the space of solutions for (a1, a2, . . . , aN )
is (N  - 1)-dimensional and the kernel of the operator L+(\omega ) is (N  - 1)-dimensional. Let

\{ U (1)
\omega , U

(2)
\omega , . . . , U

(N - 1)
\omega \} be an orthogonal basis of the kernel, which can be constructed from

any set of basis vectors by applying the Gram--Schmidt orthogonalization process.
Direct computations show that if U is given by (3.14), then

\langle U,\Phi \omega \rangle L2(\Gamma ) =

\left(  N\sum 
j=2

aj
\alpha j

 - a1
\alpha 1

\right)  \langle \phi \prime \omega , \phi \omega \rangle L2(\BbbR +),

which means that the condition (3.15) is equivalent to \langle U,\Phi \omega \rangle L2(\Gamma ) = 0. Therefore, all elements
in the orthogonal basis satisfy the orthogonality condition (3.10).

It remains to prove that the orthogonal basis can be characterized in the form given in
(3.11)--(3.12). From the constraint (2.3), we can take aj = \alpha  - 1

j for all j in (3.15) to set the

first eigenvector U
(1)
\omega to be defined by (3.11). The last eigenvector U

(N - 1)
\omega can be defined by
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U (N - 1)
\omega :=

\bigl( 
0, . . . , 0, rN - 1\phi 

\prime 
\omega , \alpha 

 - 1
N \phi \prime \omega 

\bigr) 
,(3.16)

where rN - 1 is chosen to satisfy the orthogonality condition \langle U (1)
\omega , U

(N - 1)
\omega \rangle L2(\Gamma ) = 0 and the

condition (3.15). In fact, both conditions are equivalent since the first (N  - 2) entries of

U
(N - 1)
\omega are zero and \Bigl\langle 

U (1)
\omega , U (N - 1)

\omega 

\Bigr\rangle 
L2(\Gamma )

= \| \phi \prime \omega \| 2L2(\BbbR +)

\biggl( 
rN - 1

\alpha N - 1
+

1

\alpha 2
N

\biggr) 
with \| \phi \prime \omega \| 2L2(\BbbR +) \not = 0. Hence rN - 1 is defined by

rN - 1 =  - \alpha N - 1

\alpha 2
N

.

The remaining eigenvectors U
(j)
\omega in (3.12) are constructed recursively from j = N - 2 to j = 2.

By direct computations we obtain that the orthogonality condition \langle U (1)
\omega , U

(j)
\omega \rangle L2(\Gamma ) = 0 is

equivalent to the constraint (3.15). Moreover, all the eigenvectors are mutually orthogonal

thanks to the recursive construction of U
(j)
\omega ,

We denote the kernel of L+(\omega ) by

X\omega := span
\Bigl\{ 
U (1)
\omega , U (2)

\omega , . . . , U (N - 1)
\omega 

\Bigr\} 
.(3.17)

For each j = 1, 2, . . . , N  - 1, we construct the generalized eigenvector W
(j)
\omega \in H2

\Gamma by solving

L - (\omega )W
(j)
\omega = U (j)

\omega ,

which exists thanks to the orthogonality condition (3.10) since \Phi \omega spans the kernel of L - (\omega ).

Explicitly, representing U
(j)
\omega from (3.11)--(3.12) by

U (j)
\omega = \phi \prime \omega ej(3.18)

with some x-independent vectors ej \in \BbbR N , we get for the same vectors ej

W (j)
\omega = \chi \omega ej ,(3.19)

where \chi \omega (x) =  - 1
2x\phi \omega (x), x \in \BbbR . We denote the generalized kernel of L - (\omega ) by

X\ast 
\omega := span

\Bigl\{ 
W (1)

\omega ,W (2)
\omega , . . . ,W (N - 1)

\omega 

\Bigr\} 
.(3.20)

Similarly to Lemma 5.4 in [19], the following lemma establishes the coercivity of the quadratic
forms associated with the operators L+(\omega ) and L - (\omega ).

Lemma 3.6. For every \omega > 0, there exists a positive constant C(\omega ) such that

\langle L+(\omega )U,U\rangle L2(\Gamma ) + \langle L - (\omega )W,W \rangle L2(\Gamma ) \geq C(\omega )\| U + iW\| 2H1(\Gamma )(3.21)

if U \in X\ast 
\omega and W \in X\omega satisfy the additional orthogonality conditions\biggl\{ 

\langle W,\partial \omega \Phi \omega \rangle L2(\Gamma ) = 0,

\langle U,\Phi \omega \rangle L2(\Gamma ) = 0.
(3.22)
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Proof. We claim that basis vectors in X\omega and X\ast 
\omega satisfy the following orthogonality

conditions:
\bullet \{ \langle U (j)

\omega , U
(k)
\omega \rangle L2(\Gamma )\} 1\leq j,k\leq N - 1 is a positive diagonal matrix;

\bullet \{ \langle W (j)
\omega ,W

(k)
\omega \rangle L2(\Gamma )\} 1\leq j,k\leq N - 1 is a positive diagonal matrix;

\bullet \{ \langle U (j)
\omega ,W

(k)
\omega \rangle L2(\Gamma )\} 1\leq j,k\leq N - 1 is a positive diagonal matrix.

Indeed, the orthogonality of \{ U (1)
\omega , . . . , U

(N - 1)
\omega \} is established by Lemma 3.5. Therefore, the

vectors \{ e1, . . . , eN - 1\} in (3.18) are orthogonal in \BbbR N - 1. The orthogonality of \{ W (1)
\omega , . . . ,

W
(N - 1)
\omega \} follows by the explicit representation (3.19) due to the orthogonality of the vectors

\{ e1, . . . , eN - 1\} in \BbbR N - 1. The sets \{ U (1)
\omega , . . . , U

(N - 1)
\omega \} and \{ W (1)

\omega , . . . ,W
(N - 1)
\omega \} are mutually

orthogonal by the same reason. Finally, we have for every j = 1, . . . , N

\Bigl\langle 
U (j)
\omega ,W (j)

\omega 

\Bigr\rangle 
L2(\Gamma )

=
\alpha 2
j

4

\left(  N\sum 
i=j

1

\alpha 2
i

\right)  \left(  N\sum 
i=j+1

1

\alpha 2
i

\right)  \| \phi \omega \| 2L2(\BbbR +) > 0.(3.23)

The rest of the proof is similar to the proof of Lemma 3.1 with the only difference being
that the third orthogonality condition (3.9) is replaced by the (N  - 1) orthogonality con-
ditions in U \in X\ast 

\omega . The constraint U \in X\ast 
\omega provides the shift of the zero eigenvalue of

L+(\omega ) of algebraic multiplicity (N  - 1) to positive eigenvalues thanks to the condition that

\{ \langle U (j)
\omega ,W

(k)
\omega \rangle L2(\Gamma )\} 1\leq j,k\leq N - 1 is a positive diagonal matrix.

4. Drift of the shifted states with \bfita > 0. The proof of Theorem 2.8 is divided into
several steps. First, we decompose the unique global solution \Psi to the NLS equation (2.4) into
the modulated stationary state \{ ei\theta \Phi \omega (\cdot ; a)\} \theta \in \BbbR ,\omega \in \BbbR +,a\in \BbbR and the symplectically orthogonal
remainder terms. Second, we estimate the rate of change of the modulation parameter a(t)
in time t and show that a\prime (t) < 0 for t > 0. Third, we use energy estimates to control the
time evolution of the modulation parameter \omega (t) and the remainder terms. Although the
decomposition works for any a(t), we only consider a(t) > 0 in order to use the coercivity
bound in Lemma 3.1.

4.1. Step 1: Symplectically orthogonal decomposition. Any point in H1
\Gamma close to an

orbit \{ ei\theta \Phi (\cdot ; a0)\} \theta \in \BbbR for some a0 \in \BbbR can be represented by a superposition of a point on
the family \{ ei\theta \Phi \omega (\cdot ; a)\} \theta \in \BbbR ,\omega \in \BbbR +,a\in \BbbR and a symplectically orthogonal remainder term. Here
and in what follows, we denote \Phi \equiv \Phi \omega =1. The following lemma provides details of this
symplectically orthogonal decomposition.

Lemma 4.1. Fix a0 \in \BbbR . There exists some \delta 0 > 0 such that for every \Psi \in H1
\Gamma satisfying

\delta := inf
\theta \in \BbbR 

\| \Psi  - ei\theta \Phi (\cdot ; a0)\| H1(\Gamma ) \leq \delta 0,(4.1)

there exists a unique choice for real-valued (\theta , \omega , a) \in \BbbR \times \BbbR + \times \BbbR and real-valued (U,W ) \in 
H1

\Gamma \times H1
\Gamma in the decomposition

\Psi (x) = ei\theta [\Phi \omega (x; a) + U(x) + iW (x)] ,(4.2)

subject to the orthogonality conditions
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\left\{   
\langle W,\partial \omega \Phi \omega (\cdot ; a)\rangle L2(\Gamma ) = 0,

\langle U,\Phi \omega (\cdot ; a)\rangle L2(\Gamma ) = 0,

\langle U, (\cdot + a)\Phi \omega (\cdot ; a)\rangle L2(\Gamma ) = 0,

(4.3)

where \omega , a, and (U,W ) satisfy the estimate

| \omega  - 1| + | a - a0| + \| U + iW\| H1(\Gamma ) \leq C\delta (4.4)

for some positive constant C > 0. Moreover, the map from \Psi \in H1
\Gamma to (\theta , \omega , a) \in \BbbR \times \BbbR + \times \BbbR 

and (U,W ) \in H1
\Gamma \times H1

\Gamma is C\omega .

Proof. Define the following vector function G(\theta , \omega , a; \Psi ) : \BbbR \times \BbbR + \times \BbbR \times H1
\Gamma \mapsto \rightarrow \BbbR 3 given

by

G(\theta , \omega , a; \Psi ) :=

\left[  \langle Im(\Psi  - ei\theta \Phi \omega (\cdot ; a)), \partial \omega \Phi \omega (\cdot ; a)\rangle L2(\Gamma )

\langle Re(\Psi  - ei\theta \Phi \omega (\cdot ; a)),\Phi \omega (\cdot ; a)\rangle L2(\Gamma )

\langle Re(\Psi  - ei\theta \Phi \omega (\cdot ; a)), (\cdot + a)\Phi \omega (\cdot ; a)\rangle L2(\Gamma )

\right]  ,
the zeros of which represent the orthogonality constraints in (4.3).

Let \theta 0 be the argument of inf\theta \in \BbbR \| \Psi  - ei\theta \Phi (\cdot ; a0)\| H1(\Gamma ) for a given \Psi \in H1
\Gamma . The vector

function G(\theta , \omega , a; \Psi ) is a C\omega map from \BbbR \times \BbbR + \times \BbbR \times H1
\Gamma to \BbbR 3 since the map \BbbR + \times \BbbR \ni 

(\omega , a) \mapsto \rightarrow \Phi \omega (\cdot ; a) \in L2(\Gamma ) is C\omega in both variables. Moreover, if \Psi \in H1
\Gamma satisfies (4.1), then

\| G(\theta 0, 1, a0; \Psi )\| \BbbR 3 \leq C\delta (4.5)

for a \delta -independent constant C > 0. Also we have

D(\theta ,\omega ,a)G(\theta 0, 1, a0; \Psi ) = D +B,

where D = diag(d1, d1, d2) with entries d1 \equiv D1(\omega = 1) and d2 \equiv D2(\omega = 1) given by (3.1)
and (3.2), whereas B is a matrix satisfying the estimate \| B\| \BbbM 3\times 3 \leq C\delta for a \delta -independent
constant C > 0. Since d1, d2 \not = 0, the matrix D is invertible and there exists \delta 0 > 0 such that
the Jacobian D(\theta ,\omega ,a)G(\theta 0, 1, a0; \Psi ) is invertible for every \delta \in (0, \delta 0) with the bound

\| [D(\theta ,\omega ,a)G(\theta 0, 1, a0; \Psi )] - 1\| \BbbM 3\times 3 \leq C(4.6)

for a \delta -independent constant C > 0. By the local inverse mapping theorem, for the given
\Psi \in H1

\Gamma satisfying (4.1), the equation G(\theta , \omega , a; \Psi ) = 0 has a unique solution (\theta , \omega , a) \in \BbbR 3 in
a neighborhood of the point (\theta 0, 1, a0). Since G(\theta , \omega , a; \Psi ) is C\omega with respect to its arguments,
the solution (\theta , \omega , a) \in \BbbR \times \BbbR + \times \BbbR is C\omega with respect to \Psi \in H1

\Gamma . The Taylor expansion of
G(\theta , \omega , a; \Psi ) = 0 around (\theta 0, 1, a0),

G(\theta 0, 1, a0; \Psi )+D(\theta ,\omega ,a)G(\theta 0, 1, a0; \Psi )(\theta  - \theta 0, \omega  - 1, a - a0)T +\scrO (| \theta  - \theta 0| 2+ | \omega  - 1| 2+ | a - a0| 2),

together with the bounds (4.5) and (4.6), implies the bound (4.4) for | \omega  - 1| and | a - a0| . From
the decomposition (4.2), and with use of the triangle inequality for (\theta , \omega , a) near (\theta 0, 1, a0), it
follows that U and W are uniquely defined in H1

\Gamma and satisfy the bound in (4.4). In addition,
(U,W ) \in H1

\Gamma are C\omega with respect to \Psi \in H1
\Gamma .
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Let the initial datum \Psi 0 \in H1
\Gamma to the Cauchy problem associated with the NLS equation

(2.4) be defined in the form

\Psi 0(x) = \Phi (x; a0) + U0(x) + iW0(x), \| U0 + iW0\| H1(\Gamma ) \leq \delta ,(4.7)

subject to the orthogonality conditions\left\{   
\langle W0, \partial \omega \Phi \omega | \omega =1(\cdot ; a0)\rangle L2(\Gamma ) = 0,

\langle U0,\Phi (\cdot ; a0)\rangle L2(\Gamma ) = 0,

\langle U0, (\cdot + a0)\Phi (\cdot ; a0)\rangle L2(\Gamma ) = 0.

(4.8)

Remark 4.2. By Lemma 4.1, the orthogonal decomposition (4.7) with (4.8) implies that
\theta (0) = 0, \omega (0) = 1, and a(0) = a0 initially. Although this is not the most general case for the
initial datum satisfying (2.16), this simplification is used to illustrate the proof of Theorem
2.8. A generalization for initial datum \Psi 0 \in H1

\Gamma with \theta (0) \not = 0, \omega (0) \not = 1, and a(0) \not = a0 is
straightforward.

By the well-posedness theory [3, 20], the NLS equation (2.4) with the initial datum
\Psi 0 \in H1

\Gamma generates the unique global solution \Psi \in C(\BbbR , H1
\Gamma ) \cap C1(\BbbR , H - 1

\Gamma ). By continu-
ous dependence of the solution on the initial datum and by Lemma 4.1, for every \epsilon \in (0, \delta 0)
with \delta 0 given in the bound (4.1) there exists t0 > 0 such that the unique solution \Psi satisfies

inf
\theta \in \BbbR 

\| e - i\theta \Psi (t, \cdot ) - \Phi \| H1(\Gamma ) \leq \epsilon , t \in [0, t0],(4.9)

and can be uniquely decomposed in the form

\Psi (t, x) = ei\theta (t)
\bigl[ 
\Phi \omega (t)(x; a(t)) + U(t, x) + iW (t, x)

\bigr] 
,(4.10)

subject to the orthogonality conditions\left\{   
\langle W (t, \cdot ), \partial \omega \Phi \omega | \omega =\omega (t)(\cdot ; a(t))\rangle L2(\Gamma ) = 0,

\langle U(t, \cdot ),\Phi \omega (t)(\cdot ; a(t))\rangle L2(\Gamma ) = 0,

\langle U(t, \cdot ), (\cdot + a(t))\Phi \omega (\cdot ; a(t))\rangle L2(\Gamma ) = 0.

(4.11)

By the smoothness of the map in Lemma 4.1 and by the well-posedness of the time flow
of the NLS equation (2.4), we have U,W \in C([0, t0], H

1
\Gamma ) \cap C1([0, t0], H

 - 1
\Gamma ) and (\theta , \omega , a) \in 

C1([0, t0],\BbbR \times \BbbR + \times \BbbR ).
In order to prove Theorem 2.8, we control \omega (t), U(t, \cdot ), and W (t, \cdot ) from energy estimates

and a(t) from modulation equations, whereas \theta (t) plays no role in the bound (2.17). Note that
the modulation of a(t) captures the irreversible drift of the shifted states along the incoming
edge toward the vertex of the balanced star graph. We would not see this drift without using
the parameter a(t) and we would not be able to control \omega (t), U(t, \cdot ), and W (t, \cdot ) from energy
estimates without the third constraint in (4.11) because of the zero eigenvalue of L+(\omega , a);
see Lemma 3.1.
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4.2. Step 2: Monotonicity of \bfita (\bfitt ). We use the orthogonal decomposition (4.10) with
(4.11) in order to obtain the evolution system for the remainder terms (U,W ) and for the
modulation parameters (\theta , \omega , a). By analyzing the modulation equation for a(t), we relate the
rate of change of a(t) and the value of the momentum functional P (\Psi ) given by (2.14).

Lemma 4.3. Assume that the unique solution \Psi \in C([0, t0], H
1
\Gamma ) \cap C1([0, t0], H

 - 1
\Gamma ) repre-

sented by (4.10) and (4.11) satisfies

| \omega (t) - 1| + \| U(t, \cdot ) + iW (t, \cdot )\| H1(\Gamma ) \leq \epsilon , t \in [0, t0],(4.12)

with \epsilon \in (0, \delta 0) and \delta 0 defined in (4.1). The time evolution of the translation parameter a(t)
is given by

\.a(t) =  - \alpha 2
1\omega 

 - 1
2P (\Psi )

\bigl[ 
1 +\scrO (\| U + iW\| H1(\Gamma ))

\bigr] 
+\scrO 

\Bigl( 
\| U + iW\| 2H1(\Gamma )

\Bigr) 
,(4.13)

where P (\Psi ) is given by (2.14).

Proof. By substituting (4.10) into the NLS equation (2.4) and by using the rotational and
translation symmetries, we obtain the time evolution system for the remainder terms:

d

dt

\biggl( 
U
W

\biggr) 
=

\biggl( 
0 L - (\omega , a)

 - L+(\omega , a) 0

\biggr) \biggl( 
U
W

\biggr) 
+ ( \.\theta  - \omega )

\biggl( 
W

 - (\Phi \omega + U)

\biggr) 
 - \.\omega 

\biggl( 
\partial \omega \Phi \omega 

0

\biggr) 
 - \.a

\biggl( 
\Phi \prime 
\omega 

0

\biggr) 
+

\biggl( 
 - RU

RW

\biggr) 
,(4.14)

where \Phi \omega \equiv \Phi \omega (x; a), the prime denotes derivative in x, the dot denotes derivative in t, the
linearized operators are given by (3.3), and the residual terms are given by\biggl\{ 

RU = 2\alpha 2
\bigl( 
2\Phi \omega U + U2 +W 2

\bigr) 
W,

RW = 2\alpha 2
\bigl[ 
\Phi \omega (3U

2 +W 2) + (U2 +W 2)U
\bigr] 
.

(4.15)

By using the orthogonality conditions (4.11), we obtain the modulation equations for param-
eters (\theta , \omega , a) from the system (4.14):

A

\left[  \.\theta  - \omega 
\.\omega 
\.a

\right]  =

\left[  0
0

 - 2\langle \Phi \prime 
\omega (\cdot ; a),W \rangle L2(\Gamma )

\right]  +

\left[  \langle \Phi \omega (\cdot ; a), RU \rangle L2(\Gamma )

\langle \partial \omega \Phi \omega , RW \rangle L2(\Gamma )

 - \langle (\cdot + a)\Phi \omega (\cdot ; a), RW \rangle L2(\Gamma )

\right]  ,(4.16)

where the matrix A is given by

A=

\left[  \langle \Phi \omega (\cdot ; a),W \rangle L2(\Gamma )  - \langle \partial \omega \Phi \omega (\cdot ; a),\Phi \omega (\cdot ; a) - U\rangle L2(\Gamma ) \langle \Phi \prime 
\omega (\cdot ; a), U\rangle L2(\Gamma )

\langle \partial \omega \Phi \omega (\cdot ; a),\Phi \omega (\cdot ; a) + U\rangle L2(\Gamma )  - \langle \partial 2\omega \Phi \omega (\cdot ; a),W \rangle L2(\Gamma )  - \langle \partial \omega \Phi \prime 
\omega (\cdot ; a),W \rangle L2(\Gamma )

 - \langle (\cdot + a)\Phi \omega (\cdot ; a),W \rangle L2(\Gamma )  - \langle (\cdot + a)\partial \omega \Phi \omega (\cdot ; a), U\rangle L2(\Gamma ) \langle (\cdot + a)\Phi \omega (\cdot ; a)\prime ,\Phi \omega (\cdot ; a) - U\rangle L2(\Gamma )

\right]  .
If (U,W ) = (0, 0), the matrix A is invertible since

A0 =

\left[  0 D1(\omega ) 0
 - D1(\omega ) 0 0

0 0  - D2(\omega )

\right]  
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has nonzero elements thanks to (3.1) and (3.2). Therefore, under the assumption (4.12) with
small \epsilon > 0, we have

\| A - 1\| \BbbM 3\times 3 \leq C(4.17)

for an \epsilon -independent constant C > 0. This bound implies that the time evolution of the
translation parameter a(t) is given by

\.a =
2\langle \Phi \prime 

\omega (\cdot ; a),W \rangle L2(\Gamma )

D1(\omega )

\bigl[ 
1 +\scrO (\| U + iW\| H1(\Gamma ))

\bigr] 
+\scrO 

\Bigl( 
\| U + iW\| 2H1(\Gamma )

\Bigr) 
.(4.18)

On the other hand, the momentum functional P (\Psi ) in (2.14) can be computed at the solution
\Psi in the orthogonal decomposition (4.10) as follows:

P (\Psi ) = \langle \Phi \omega (\cdot ; a),W \prime \rangle L2(\Gamma )  - \langle \Phi \prime 
\omega (\cdot ; a),W \rangle L2(\Gamma ) +\scrO 

\Bigl( 
\| U + iW\| 2H1(\Gamma )

\Bigr) 
=  - 2\langle \Phi \prime 

\omega (\cdot ; a),W \rangle L2(\Gamma ) +\scrO 
\Bigl( 
\| U + iW\| 2H1(\Gamma )

\Bigr) 
,(4.19)

where the integration by parts does not result in any contribution from the vertex at x = 0
thanks to the boundary conditions in (2.2) and the constraint (2.3). Combining (4.18) and
(4.19) with the exact computation (3.2) yields expansion (4.13).

Corollary 4.4. In addition to (4.12), assume that \Psi 0 in (4.7) is chosen such that P (\Psi 0) \geq 
C0\delta with C0 > 0. There exists \epsilon 0 sufficiently small such that for every \epsilon \in (0, \epsilon 0) there exists
\delta > 0 such that the map t \mapsto \rightarrow a(t) is strictly decreasing for t \in [0, t0].

Proof. The map t \mapsto \rightarrow P (\Psi ) is monotonically increasing, as can be seen from the expression
(2.15). Therefore, if the initial datum \Psi 0 in (4.7) satisfies P (\Psi 0) \geq C0\delta , then

P (\Psi ) \geq P (\Psi 0) \geq C0\delta for all t \in [0, t0].(4.20)

It follows from (4.12), (4.13), and (4.20) that there exist \delta - and \epsilon -independent constants
C1, C2 > 0 such that

 - \.a \geq C1\delta  - C2\epsilon 
2.

If \delta satisfies \delta \geq C\epsilon 2 for a given small \epsilon > 0 with an \epsilon -independent constant C > C - 1
1 C2, then

 - \.a \geq (C1C  - C2)\epsilon 
2 > 0 so that the map t \mapsto \rightarrow a(t) is strictly decreasing for t \in [0, t0].

4.3. Step 3: Energy estimates. The coercivity bound (3.8) in Lemma 3.1 allows us to
control the time evolution of \omega (t), U(t, \cdot ), and W (t, \cdot ), as long as a(t) is bounded away from
zero. The following result provides this control from energy estimates.

Lemma 4.5. Let \Psi be the unique solution to the NLS equation (2.4) given by (4.10)--(4.11)
for t \in [0, t0] with some t0 > 0 such that the initial data \Psi (0, \cdot ) = \Psi 0 satisfies (4.7)--(4.8).
Assume that a(t) \geq \=a for t \in [0, t0]. For every \=a > 0, there exists a \delta -independent positive
constant K(\=a) such that

| \omega (t) - 1| 2 + \| U(t, \cdot ) + iW (t, \cdot )\| 2H1(\Gamma ) \leq K(\=a)\delta 2, t \in [0, t0].(4.21)
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Proof. Recall that the shifted state \Phi \omega (\cdot ; a) is a critical point of the action functional
\Lambda \omega (\Psi ) = E(\Psi ) + \omega Q(\Psi ) in (2.7). By using the decomposition (4.10) and the rotational
invariance of the NLS equation (2.4), we define the following energy function:

\Delta (t) := E(\Phi \omega (t) + U(t, \cdot ) + iW (t, \cdot )) - E(\Phi )

+ \omega (t)
\bigl[ 
Q(\Phi \omega (t) + U(t, \cdot ) + iW (t, \cdot )) - Q(\Phi )

\bigr] 
.(4.22)

Expanding \Delta into Taylor series, we obtain

\Delta = D(\omega ) + \langle L+(\omega , a)U,U\rangle L2(\Gamma ) + \langle L - (\omega , a)W,W \rangle L2(\Gamma ) +N\omega (U,W ),(4.23)

where N\omega (U,W ) = O(\| U + iW\| 3H1(\Gamma )) and D(\omega ) is defined by

D(\omega ) := E(\Phi \omega ) - E(\Phi ) + \omega [Q(\Phi \omega ) - Q(\Phi )] .

Since D\prime (\omega ) = Q(\Phi \omega ) - Q(\Phi ) thanks to the variational problem for the standing wave \Phi \omega , we
have D(1) = D\prime (1) = 0, and

D(\omega ) = (\omega  - 1)2\langle \Phi , \partial \omega \Phi \omega | \omega =1\rangle L2(\Omega ) +\scrO (| \omega  - 1| 3).(4.24)

It follows from the initial decomposition (4.7)--(4.8) that

\Delta (0) = E(\Phi + U0 + iW0) - E(\Phi ) +Q(\Phi + U0 + iW0) - Q(\Phi )(4.25)

satisfies the bound

| \Delta (0)| \leq C0\delta 
2(4.26)

for a \delta -independent constant C0 > 0. On the other hand, the energy and mass conservation
in (2.5) imply that

\Delta (t) = \Delta (0) + (\omega (t) - 1) [Q(\Phi + U0 + iW0) - Q(\Phi )] ,(4.27)

where the remainder term also satisfies

| Q(\Phi + U0 + iW0) - Q(\Phi )| \leq C0\delta 
2(4.28)

for a \delta -independent constant C0 > 0. The representation (4.27) together with the expression
(4.23) allows us to control \omega (t) near \omega (0) = 1 and the remainder terms (U,W ) in H1

\Gamma as
follows:

\Delta (0) = (\omega  - 1)2\langle \Phi , \partial \omega \Phi \omega | \omega =1\rangle L2(\Omega )  - (\omega  - 1) [Q(\Phi + U0 + iW0) - Q(\Phi )]

+ \langle L+(\omega , a)U,U\rangle L2(\Gamma ) + \langle L - (\omega , a)W,W \rangle L2(\Gamma ) +\scrO 
\Bigl( 
| \omega  - 1| 3 + \| U + iW\| 3H1(\Gamma )

\Bigr) 
.(4.29)

By using the expansion (4.29), the coercivity bound (3.8), and the bounds (4.26) and (4.28),
we obtain

C0\delta 
2 \geq \Delta (0) \geq 1

2\alpha 2
1| \omega | 

1
2

(\omega  - 1)2  - C0\delta 
2| \omega  - 1| + C(\omega , a)\| U + iW\| 2H1(\Gamma )

+\scrO 
\Bigl( 
| \omega  - 1| 3 + \| U + iW\| 3H1(\Gamma )

\Bigr) 
,

from which the bound (4.21) follows.

Remark 4.6. By Remark 3.2, for every \omega > 0, we have C(\omega , a) \rightarrow 0 as a \rightarrow 0. Therefore,
we have K(\=a) \rightarrow \infty as \=a\rightarrow 0.
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4.4. Proof of Theorem 2.8. The initial datum satisfies the initial decomposition
(4.7)--(4.8) with small \delta and initial conditions \theta (0) = 0, \omega (0) = 1, and a(0) = a0 with
a0 > 0. Thanks to the continuous dependence of the solution of the NLS equation (2.4) on
the initial datum, the solution is represented by the orthogonal decomposition (4.10)--(4.11)
on a short time interval [0, t0] for some t0 > 0. Hence, it satisfies the a priori bound (4.9).
The modulation parameters \theta (t), \omega (t), and a(t) are defined for t \in [0, t0] and a(t) \geq \=a for
some \=a > 0 for t \in [0, t0]. By the energy estimates in Lemma 4.5, the parameter \omega (t) and the
remainder terms (U,W ) \in H1

\Gamma satisfy the bound (4.21) with a \delta -independent positive constant
K(\=a). For given small \epsilon > 0 and a > 0 in Theorem 2.8, let us define

Ka := max
\=a\in [a,a0]

K(\=a), \delta := K
 - 1

2
a \epsilon .(4.30)

Then, the bound (4.21) implies the bound (4.12) of Lemma 4.3 for all t \in [0, t0]. Assume
that the initial datum also satisfies P (\Psi 0) \geq C0\delta . By Corollary 4.4, the map t \mapsto \rightarrow a is strictly
decreasing for t \in [0, t0] if \delta satisfies \delta \geq C\epsilon 2 for a \delta and \epsilon -independent constant C > 0. The
definition of \delta in (4.30) is compatible with the latter bound if \epsilon \in (0, \epsilon 0) with

\epsilon 0 :=
1

C
\surd 
Ka

.

If in addition \epsilon 0 \leq \delta 0, where \delta 0 is defined in Lemma 4.1, then the solution \Psi (t, \cdot ) \in H1
\Gamma for

t \in [0, t0] satisfies the conditions of Lemma 4.1 so that the orthogonal decomposition (4.10)
with (4.11) is continued beyond the short time interval [0, t0] to the maximal time interval
[0, T ] as long as a(t) \geq a for t \in [0, T ]. Thanks to the monotonicity argument in Lemma 4.3
and Corollary 4.4, for every \epsilon \in (0, \epsilon 0), there exists a finite T > 0 such that limt\rightarrow T a(t) = a.
Note that T = \scrO (\epsilon  - 2) as \epsilon \rightarrow 0. Theorem 2.8 is proved.

Remark 4.7. It follows that Ka \rightarrow \infty as a \rightarrow 0 by Remark 4.6 so that \epsilon 0 \rightarrow 0 as a \rightarrow 0.
As a result, it does not follow from Theorem 2.8 that the half-soliton \Phi (\cdot ; a = 0) is attained
from the drifted shifted state \Phi (\cdot ; a(t)) in a finite time.

Remark 4.8. If the initial datum \Psi 0 \in H1
\Gamma in (4.7) preserves the symmetry constraints

(2.11), then the map t \mapsto \rightarrow P (\Psi ) is constant so that P (\Psi ) = P (\Psi 0). The condition P (\Psi 0) \geq C0\delta 
with C0 > 0 in Theorem 2.8 ensures that the shifted state \Phi (\cdot ; a(t)) drifts toward the vertex
at x = 0 even under the symmetry-preserving perturbations.

5. Instability of the half-soliton state. The proof of Theorem 2.9 is divided into several
steps. First, we decompose the unique global solution \Psi to the NLS equation (2.4) into
the modulated stationary state \{ ei\theta \Phi \omega \} \theta \in \BbbR ,\omega \in \BbbR + and the symplectically orthogonal remainder
terms, where \Phi \omega \equiv \Phi \omega (\cdot ; a = 0). Next, we provide a secondary decomposition of the remainder
terms as a superposition of projections to the bases in X\omega and X\ast 

\omega in (3.17) and (3.20) and
the symplectically orthogonally remainder terms. We use energy estimates to control the time
evolution of \omega (t) and the remainder terms. Finally, we consider the perturbed Hamiltonian
system for projections to the bases in X\omega and X\ast 

\omega and prove that the truncated system
is unstable near the zero equilibrium point. This instability drives the instability of the
solution \Psi under the time flow of the NLS equation (2.4) away from the half-soliton state
\{ ei\theta \Phi \omega \} \theta \in \BbbR ,\omega \in \BbbR + .
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5.1. Step 1: Primary decomposition. For every sufficiently small \delta > 0, we consider the
initial datum \Psi 0 \in H1

\Gamma to the Cauchy problem associated with the NLS equation (2.4) in the
form

\Psi 0 = \Phi + U0 + iW0, \| U0 + iW0\| H1(\Gamma ) \leq \delta ,(5.1)

subject to the orthogonality conditions\biggl\{ 
\langle W0, \partial \omega \Phi \omega | \omega =1\rangle L2(\Gamma ) = 0,

\langle U0,\Phi \rangle L2(\Gamma ) = 0,
(5.2)

where \Phi \equiv \Phi (\cdot ; a = 0). By the global well-posedness theory [3, 20], this initial datum generates
a unique global solution \Psi \in C(\BbbR , H1

\Gamma ) \cap C1(\BbbR , H - 1
\Gamma ) to the NLS equation (2.4).

We use the decomposition of the unique global solution \Psi \in C(\BbbR , H1
\Gamma ) \cap C1(\BbbR , H - 1

\Gamma ) into
the modulated stationary state \{ ei\theta \Phi \omega \} \theta \in \BbbR ,\omega \in \BbbR + with \omega close to \omega 0 = 1 and the symplectically
orthogonal remainder terms. This decomposition is similar to Lemma 4.1 with a0 = 0 with
the only change that a = 0 is set in the decomposition (4.2) and the remainder terms satisfy
the first two of the three orthogonality conditions in (4.3).

By continuity of the global solution and by Lemma 4.1, for every \epsilon \in (0, \delta 0) with \delta 0 defined
in Lemma 4.1 there exists t0 > 0 such that the unique solution \Psi satisfies

inf
\theta \in \BbbR 

\| e - i\theta \Psi (t, \cdot ) - \Phi \| H1(\Gamma ) \leq \epsilon , t \in [0, t0],(5.3)

and can be uniquely represented as

\Psi (t, x) = ei\theta (t)
\bigl[ 
\Phi \omega (t)(x) + U(t, x) + iW (t, x)

\bigr] 
,(5.4)

subject to the orthogonality conditions\biggl\{ 
\langle W (t, \cdot ), \partial \omega \Phi \omega | \omega =\omega (t)\rangle L2(\Gamma ) = 0,

\langle U(t, \cdot ),\Phi \omega (t)\rangle L2(\Gamma ) = 0.
(5.5)

Since \Psi \in C(\BbbR , H1
\Gamma ) \cap C1(\BbbR , H - 1

\Gamma ) and the map \BbbR \ni \omega \mapsto \rightarrow \Phi \omega \in H1
\Gamma is smooth, we obtain

(\theta , \omega ) \in C1([0, t0],\BbbR \times \BbbR +), hence U,W \in C([0, t0], H
1
\Gamma ) \cap C1([0, t0], H

 - 1
\Gamma ).

The choice (5.1) with (5.2) implies that \omega (0) = 1 and \theta (0) = 0. Although this is again
special (see Remark 4.2), it is nevertheless sufficient for the proof of the instability result. In
order to prove Theorem 2.9 we fix \epsilon \in (0, \delta 0) and we intend to show that there exists T > 0
such that the bound (5.3) is satisfied for all t \in [0, T ) but fails for t = T yielding the bound
(2.18).

We substitute the decomposition (5.4) into the NLS equation (2.4) to get the time evolution
system for the remainder terms (U,W ). The following lemma reports the estimates on the
evolution of the modulation parameters \theta (t) and \omega (t).

Lemma 5.1. Assume that the unique solution \Psi \in C([0, t0], H
1
\Gamma ) \cap C1([0, t0], H

 - 1
\Gamma ) repre-

sented by (5.4) and (5.5) satisfies

| \omega (t) - 1| + \| U(t, \cdot ) + iW (t, \cdot )\| H1(\Gamma ) \leq \epsilon , t \in [0, t0],(5.6)
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with \epsilon \in (0, \delta 0) and \delta 0 defined in Lemma 4.1. There exists an \epsilon -independent constant A > 0
such that for every t \in [0, t0],\Biggl\{ 

| \.\theta (t) - \omega (t)| \leq A
\Bigl( 
\| U(t, \cdot )\| 2H1(\Gamma ) + \| W (t, \cdot )\| 2H1(\Gamma )

\Bigr) 
,

| \.\omega (t)| \leq A\| U(t, \cdot )\| H1(\Gamma )\| W (t, \cdot )\| H1(\Gamma ).
(5.7)

Proof. The time evolution system for the remainder terms is the same as the system
(4.14) but with a(t) = 0 and \.a(t) = 0 for t \in [0, t0]. Using the orthogonality conditions (5.5)
yields the same system of modulation equations as in (4.16) but constrained by the first two
equations and a 2\times 2 coefficient matrix denoted by A. The estimates (5.7) are obtained from
invertibility of A satisfying \| A - 1\| \BbbM 2\times 2 \leq C for an \epsilon -independent constant C > 0 and the
explicit form of RU and RW in (4.15).

5.2. Step 2: Secondary decomposition. Recall the eigenspaces X\omega and X\ast 
\omega in (3.17) and

(3.20). We decompose the remainder terms (U,W ) in (5.4) as follows:

U(t, x) =
N - 1\sum 
j=1

cj(t)U
(j)
\omega (t)(x) + U\bot (t, x), W (t, x) =

N - 1\sum 
j=1

bj(t)W
(j)
\omega (t)(x) +W\bot (t, x),(5.8)

subject to the orthogonality conditions for U\bot (t, \cdot ) \in X\ast 
\omega (t) and W\bot (t, \cdot ) \in X\omega (t). The co-

efficients c = (c1, c2, . . . , cN - 1) \in \BbbR N - 1, b = (b1, b2, . . . , bN - 1) \in \BbbR N - 1 and the remainder
terms (U\bot ,W\bot ) in (5.8) are uniquely determined for each (U,W ) due to the mutual orthog-
onality of the basis vectors used in Lemma 3.6. We also have c, b \in C1([0, t0],\BbbR N - 1) and
U\bot ,W\bot \in C([0, t0], H

1
\Gamma ) \cap C1([0, t0], H

 - 1
\Gamma ) since \omega \in C1([0, t0],\BbbR ) and U,W \in C([0, t0], H

1
\Gamma ) \cap 

C1([0, t0], H
 - 1
\Gamma ).

Remark 5.2. Thanks to the explicit form (3.11), the parameter c1(t) in the decomposition
(5.4) and (5.8) plays the same role as the parameter a(t) in the decomposition (4.10), whereas
a(0) = a0 in the initial decomposition (4.7) is set to a0 = 0.

By substituting (5.8) into the evolution equation for the remainder terms and using or-
thogonality conditions for the new remainder terms U\bot (t, \cdot ) \in X\ast 

\omega (t) and W
\bot (t, \cdot ) \in X\omega (t), we

obtain the time evolution system for the coefficients in the form\left\{     
\Bigl\langle 
W

(j)
\omega , U

(j)
\omega 

\Bigr\rangle 
L2(\Gamma )

\Bigl( 
dcj
dt  - bj

\Bigr) 
= R

(j)
c ,\Bigl\langle 

W
(j)
\omega , U

(j)
\omega 

\Bigr\rangle 
L2(\Gamma )

dbj
dt = R

(j)
b ,

(5.9)

with

R(j)
c = \.\omega 

\Biggl[ \Bigl\langle 
\partial \omega W

(j)
\omega , U\bot 

\Bigr\rangle 
L2(\Gamma )

 - 
N - 1\sum 
i=1

ci

\Bigl\langle 
W (j)

\omega , \partial \omega U
(i)
\omega 

\Bigr\rangle 
L2(\Gamma )

\Biggr] 
+( \.\theta  - \omega )

\Bigl\langle 
W (j)

\omega ,W
\Bigr\rangle 
L2(\Gamma )

 - 
\Bigl\langle 
W (j)

\omega , RU

\Bigr\rangle 
L2(\Gamma )

,

R
(j)
b = \.\omega 

\Biggl[ \Bigl\langle 
\partial \omega U

(j)
\omega ,W\bot 

\Bigr\rangle 
L2(\Gamma )

 - 
N - 1\sum 
i=1

bi

\Bigl\langle 
U (j)
\omega , \partial \omega W

(i)
\omega 

\Bigr\rangle 
L2(\Gamma )

\Biggr] 
 - ( \.\theta  - \omega )

\Bigl\langle 
U (j)
\omega , U

\Bigr\rangle 
L2(\Gamma )

+
\Bigl\langle 
U (j)
\omega , RW

\Bigr\rangle 
L2(\Gamma )

,
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where the terms RU and RW are given by (4.15) and the orthogonality conditions\Bigl\langle 
U (j)
\omega ,\Phi \omega 

\Bigr\rangle 
L2(\Gamma )

=
\Bigl\langle 
W (j)

\omega , \partial \omega \Phi \omega 

\Bigr\rangle 
L2(\Gamma )

= 0, 1 \leq j \leq N  - 1,

have been used. The time evolution system (5.9) will be truncated and studied in Step 3,
whereas \omega (t) and the remainder terms (U\bot ,W\bot ) are controlled as small perturbations by
using the energy estimates. The following lemma gives the estimates on these terms.

Lemma 5.3. Assume that there exists a positive constant A such that for every \epsilon > 0 and
some t0 > 0, the remainder terms of the solution \Psi decomposed as (5.4) and (5.8) satisfy

| \omega (t) - 1| + \| c(t)\| + \| b(t)\| + \| U\bot (t, \cdot ) + iW\bot (t, \cdot )\| H1(\Gamma ) \leq A\epsilon , t \in [0, t0].(5.10)

There exist an \epsilon -independent constant C > 0 such that

| \omega (t) - 1| 2 + \| U\bot (t, \cdot ) + iW\bot (t, \cdot )\| 2H1(\Gamma ) \leq C
\bigl( 
\delta 2 + \| b\| 2 + \| c\| 3

\bigr) 
, t \in [0, t0],(5.11)

where \delta is given in (5.1) for the initial datum \Psi 0.

Proof. The expansion of the energy function (4.22) with the help of the explicit expressions
in (2.5) implies that the term N\omega (U,W ) in (4.23) can be written as

N\omega (U,W ) =  - 4\langle \alpha 2\Phi U, (U2 +W 2)\rangle L2(\Gamma ) +\scrO 
\Bigl( 
\| U + iW\| 4H1(\Gamma )

\Bigr) 
.(5.12)

Substituting the secondary decomposition (5.8) into the energy function (4.23) with the use
of (5.12) yields

\Delta = D(\omega ) + \langle L+(\omega )U
\bot , U\bot \rangle L2(\Gamma ) + \langle L - (\omega )W

\bot ,W\bot \rangle L2(\Gamma ) + 2H0(c, b)

+ \widetilde N(\omega , c, b, U\bot ,W\bot ),(5.13)

where H0(c, b) is defined by

H0(c, b) =
1

2

N - 1\sum 
j=1

\Bigl\langle 
W (j), U (j)

\Bigr\rangle 
L2(\Gamma )

b2j  - 2
N - 1\sum 
j=1

N - 1\sum 
k=1

N - 1\sum 
n=1

\Bigl\langle 
\alpha 2\Phi U (j), U (k)U (n)

\Bigr\rangle 
L2(\Gamma )

cjckcn,

(5.14)

and \widetilde N(\omega , c, b, U\bot ,W\bot ) is bounded by

| \widetilde N(\omega , c, b, U\bot ,W\bot )| \leq A1

\Bigl( 
\| c\| 2\| U\bot \| H1(\Gamma ) + \| U\bot \| 3H1(\Gamma ) + \| c\| 4 + \| c\| \| b\| 2 + \| c\| \| W\bot \| 2H1(\Gamma )

+ \| b\| 2\| U\bot \| H1(\Gamma ) + \| U\bot \| H1(\Gamma )\| W\bot \| 2H1(\Gamma ) + | \omega  - 1| \| b\| 2 + | \omega  - 1| \| c\| 3
\Bigr) 

with \epsilon -independent positive constant A1. The expansion (5.13) also holds due to the Banach
algebra property of H1(\Gamma ) and the assumption (5.10). Combining the representations of \Delta 
given by (4.27) and (5.13), we get

\Delta (0) - 2H0(c, b) = D(\omega ) - (\omega  - 1) [Q(\Phi + U0 + iW0) - Q(\Phi )]

+ \langle L+(\omega )U
\bot , U\bot \rangle L2(\Gamma ) + \langle L - (\omega )W

\bot ,W\bot \rangle L2(\Gamma ) + \widetilde N(\omega , c, b, U\bot ,W\bot ).
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Bounds (4.26) and (4.28) imply that there exists a \delta -independent constant A2 such that

| \Delta (0)| + | Q(\Phi + U0 + iW0) - Q(\Phi )| \leq A2\delta 
2.

Moreover, it can be seen directly from (5.14) that | H0(c, b)| \leq A3(\| c\| 3 + \| b\| 2) for some
generic positive constant A3. By using the same estimates as in the proof of Lemma 4.5, a
priori assumption (5.10) together with the coercivity bound (3.21) in Lemma 3.6 implies that
there exists an \epsilon -independent constant C in the bound (5.11).

5.3. Step 3: The reduced Hamiltonian system. Estimates (5.7) in Lemma 5.1 and
(5.11) in Lemma 5.3, as well as the representation of (RU , RW ) in (4.15), imply that the time
evolution system (5.9) is a perturbation of the following Hamiltonian system of degree N  - 1:\Biggl\{ 

\langle W (j), U (j)\rangle L2(\Gamma )
d\gamma j
dt = \partial H0

\partial \beta j
,

\langle W (j), U (j)\rangle L2(\Gamma )
d\beta j

dt =  - \partial H0
\partial \gamma j

,
(5.15)

where H0(\gamma , \beta ) is the Hamiltonian given by (5.14). Direct computation with the help of the
representations (3.11) and (3.12) in Lemma 3.5 implies that if j \geq k > n, then

\Bigl\langle 
\alpha 2\Phi U (j), U (k)U (n)

\Bigr\rangle 
L2(\Gamma )

=

\Biggl( 
rk
\alpha k

+
N\sum 

i=k+1

1

\alpha 2
i

\Biggr) \int \infty 

0
\phi (\phi \prime )3dx = 0

due to the explicit formula for rk in (3.12). Therefore, one can rewrite the representation
(5.14) for H0(\gamma , \beta ) in the explicit form

H0(\gamma , \beta ) =
1

2

N - 1\sum 
j=1

Mjb
2
j  - 2

N - 1\sum 
j=2

Rj\gamma 
3
j  - 6

N - 1\sum 
j=1

N - 1\sum 
k>j

Pk\gamma j\gamma 
2
k ,(5.16)

where

Mj :=
\Bigl\langle 
W (j), U (j)

\Bigr\rangle 
L2(\Gamma )

,

Rj :=
\Bigl\langle 
\alpha 2\Phi U (j), U (j)U (j)

\Bigr\rangle 
L2(\Gamma )

,

Pk :=
\Bigl\langle 
\alpha 2\Phi U (j), U (k)U (k)

\Bigr\rangle 
L2(\Gamma )

.

Note that the coefficient Pk is independent of j if k > j. Thanks to the construction of the
eigenvectors in (3.11) and (3.12), the explicit expressions for coefficients Rj and Pk are given
by

Rj = \alpha 4
j

\left(  N\sum 
i=j

1

\alpha 2
i

\right)  \left(  N\sum 
i=j+1

1

\alpha 2
i

\right)  \left(  1

\alpha 2
j

 - 
N\sum 

i=j+1

1

\alpha 2
i

\right)  \int \infty 

0
\phi (\phi \prime )3dx(5.17)

and
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Pk = \alpha 2
k

\Biggl( 
N\sum 
i=k

1

\alpha 2
i

\Biggr) \Biggl( 
N\sum 

i=k+1

1

\alpha 2
i

\Biggr) \int \infty 

0
\phi (\phi \prime )3dx.(5.18)

It follows from (3.23) and (5.18) that Mj > 0 and Pk < 0 since \phi (\phi \prime )3 < 0 on \BbbR +. Also it
follows from (2.3) and (5.17) that R1 = 0.

The following lemma states that the zero equilibrium point is nonlinearly unstable in the
reduced system (5.15) with the Hamiltonian (5.16).

Lemma 5.4. There exists \epsilon > 0 such that for every sufficiently small \delta > 0, there is an
initial point (\gamma (0), \beta (0)) \in \BbbR N - 1\times \BbbR N - 1 with \| \gamma (0)\| +\| \beta (0)\| \leq \delta such that the unique solution
of the reduced Hamiltonian system (5.15) with (5.16) satisfies for some t0 > 0: \| \gamma (t0)\| = \epsilon 
and \| \gamma (t)\| > \epsilon for t > t0. Moreover, if \epsilon > 0 is small, then t0 = \scrO (\epsilon  - 1/2), \gamma (t) = \scrO (\epsilon ), and
\beta (t) = \scrO (\epsilon 3/2) for all t \in [0, t0].

Proof. First, we claim that there exists an invariant subspace of solutions of the reduced
Hamiltonian system (5.15) with (5.16) given by

S := \{ \gamma 1 = C\gamma 2, \gamma 3 = \gamma 4 = \cdot \cdot \cdot = \gamma N - 1 = 0\} (5.19)

for some constant C \not = 0. Indeed, eliminating \beta j , we close the reduced system (5.15) on \gamma j for
every j = 1, . . . , N  - 1:

Mj
d2\gamma j
dt2

= 6Rj\gamma 
2
j + 12

j - 1\sum 
i=1

Pj\gamma i\gamma j + 6
N - 1\sum 
k=j+1

Pk\gamma 
2
k .(5.20)

It follows directly that \gamma 3 = \gamma 4 = \cdot \cdot \cdot = \gamma N - 1 = 0 is an invariant solution of the last (N  - 3)
equations of system (5.20). Since R1 = 0 from (2.3) and (5.17), the first two (remaining)
equations of system (5.20) are given by\Biggl\{ 

M1
d2\gamma 1
dt2

= 6P2\gamma 
2
2 ,

M2
d2\gamma 2
dt2

= 6R2\gamma 
2
2 + 12P2\gamma 1\gamma 2.

(5.21)

The system is invariant on the subspace S in (5.19) if the constant C is a solution of the
following quadratic equation:

2M1P2C
2 +M1R2C  - M2P2 = 0.

The quadratic equation admits two nonzero real solutions C if the discriminant is positive:

\scrD :=M2
1R

2
2 + 8M1M2P

2
2 > 0,

which is true thanks to the positivity of M1 and M2 in (3.23). The reduced system (5.20) on
the invariant subspace (5.19) yields the following scalar second-order equation:

C2M1
d2\gamma 1
dt2

 - 6P2\gamma 
2
1 = 0,(5.22)
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where C \not = 0, M1 > 0, and P2 < 0. The zero equilibrium (\gamma 1, \.\gamma 1) = (0, 0) is a cusp point so
that it is unstable in the nonlinear equation (5.22).

Next, we prove the assertion of the lemma. For every sufficiently small \delta > 0, we choose
the initial point (\gamma (0), \beta (0)) \in \BbbR N - 1 \times \BbbR N - 1 in the invariant subspace S in (5.19) satisfying
\| \gamma (0)\| + \| \beta (0)\| \leq \delta . Since (0, 0) is a cusp point in the reduced equation (5.22) there exists a
t0 > 0 such that \| \gamma (t0)\| = \epsilon and \| \gamma (t)\| > \epsilon for t > t0 for any fixed \epsilon > 0.

Let us consider a fixed sufficiently small value of \epsilon > 0. We have \gamma (t) = \scrO (\epsilon ) for t \in [0, t0]
by the construction. Setting \.\gamma 1 = \beta 1, the evolution equation (5.22) implies that for every
t \in [0, t0] there is an (\epsilon , \delta )-independent constant A > 0 such that\left\{   | \gamma 1(t)| \leq 

\bigm| \bigm| \bigm| \int t
0 \beta 1(s)ds

\bigm| \bigm| \bigm| + | \gamma 1(0)| \leq A\epsilon 3/2t0 + \delta ,

| \beta 1(t)| \leq A
\bigm| \bigm| \bigm| \int t

0 \gamma 
2
1(s)ds

\bigm| \bigm| \bigm| + | \beta 1(0)| \leq A\epsilon 2t0 + \delta .

If \delta \in (0, A\epsilon 3/2), then \gamma 1(t) = \scrO (\epsilon ) and \beta 1(t) = \scrO (\epsilon 3/2) holds for t \in [0, t0] with t0 = \scrO (\epsilon  - 1/2).
The assertion of the lemma is proven.

By Lemma 5.4, there exists a trajectory of the finite-dimensional system (5.15) near the
zero equilibrium which leaves the \epsilon -neighborhood of the zero equilibrium over the time span
[0, t0] with t0 = \scrO (\epsilon  - 1/2). Moreover, we have \gamma (t) = \scrO (\epsilon ) and \beta (t) = \scrO (\epsilon 3/2) for every t \in 
[0, t0]. This scaling suggests we consider the following region in the phase space \BbbR N - 1\times \BbbR N - 1

of the evolution system (5.9) in variables (c, b):

\| c(t)\| \leq A\epsilon , \| b(t)\| \leq A\epsilon 3/2, t \in [0, t0],(5.23)

where t0 \leq A\epsilon  - 1/2, for an \epsilon -independent constant A > 0. Vectors (c, b) in the region (5.23)
still satisfy the bound (5.10), hence the decompositions (5.4) and (5.8) remain valid due to
the bound (5.11) in Lemma 5.3. The following result proved in [19] shows that a trajectory of
system (5.9) closely follows the trajectory of the finite-dimensional system (5.15) in the region
(5.23).

Lemma 5.5. For \epsilon > 0 sufficiently small, assume that the remainder terms of the solution \Psi 
decomposed as (5.4) and (5.8) satisfy (5.10) and let (\gamma , \beta ) \in C1([0, t0],\BbbR N - 1\times \BbbR N - 1) be a so-
lution to the reduced system (5.15) in the region (5.23). The solution (c, b) \in C1([0, t0],\BbbR N - 1\times 
\BbbR N - 1) to the evolution system (5.9) with initial datum c(0) = \gamma (0) and b(0) = \beta (0) remains
in the region (5.23) and there exists a generic \epsilon -independent constant A > 0 such that

\| c(t) - \gamma (t)\| \leq A\epsilon 3/2, \| b(t) - \beta (t)\| \leq A\epsilon 2, t \in [0, t0].(5.24)

Remark 5.6. By the bound (5.24), c1(t) closely follows \gamma 1(t), whereas by the first equation
of system (5.21) with M1 > 0 and P2 < 0, the map t \mapsto \rightarrow \gamma 1(t) is monotonically decreasing
if \gamma \prime 1(0) \leq 0. Thanks to the correspondence between c1(t) and a(t) in Remark 5.2, this
corresponds to the irreversible drift of the parameter a(t) toward smaller values in Corollary
4.4. Compared to Corollary 4.4, the irreversible drift is observed from the half-soliton state
with a(0) = a0 = 0.
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5.4. Proof of Theorem 2.9. Let us consider the unstable solution of the reduced system
(5.15) according to Lemma 5.4. This solution belongs to the region (5.23) and, by Lemma
5.5, the correction terms satisfy (5.24). Therefore, the solution of system (5.9) still satisfies
the bound (5.23) over the time span [0, t0] with t0 = \scrO (\epsilon  - 1/2).

For every \epsilon > 0, we set \delta \in (0, A\epsilon 3/2) and use Lemma 5.3 to control the terms \omega , U\bot ,
and W\bot by the bound (5.11). Therefore, the solution given by decompositions (5.4) and (5.8)
satisfies the bound (5.3) for t \in [0, t0].

Since the solution \gamma to the reduced system (5.15) grows in time and reaches the boundary
in the region (5.23) by Lemma 5.4, the bound (5.24) implies that the same is true for the
solution c(t) of system (5.9). Hence, for every fixed \epsilon > 0 (sufficiently small), the initial
data \Psi 0 satisfying the bound (5.1) with \delta \in (0, A\epsilon 3/2) generates the unique solution \Psi of the
NLS equation (2.4) which reaches and crosses the boundary in (5.3) for some t0 = \scrO (\epsilon  - 1/2).
Theorem 2.9 is proved.

6. Numerical verification. Here we describe numerical experiments that illustrate the
implications of Theorems 2.8 and 2.9. Note that in all figures, we plot U = (u1, u2, . . . , uN )
with the components

uj(x) = \alpha j\psi j(x).

Under the boundary conditions in (2.1), the solution U is continuous across the vertex. The
shifted state of Lemma 2.2 with parameter a \in \BbbR is given in the variable U by \alpha \Phi (\cdot ; a).

6.1. Numerical method. We briefly describe the numerical method used to simulate time-
dependent solutions of the NLS equation (2.4). Each semi-infinite edge is truncated to a finite
length L, with Dirichlet boundary conditions imposed at the leaf endpoint. The spatial
derivatives are discretized using second-order centered differences. The derivative boundary
conditions in (2.2) are enforced using ghost points. That is, if the spacing between the grid

points on edge j is given by \Delta xj , then the grid points are located at x
(j)
k = (k  - 1

2)\Delta xj .
There is no grid point at the vertex: instead along each edge there is a ghost point located

at x
(1)
0 = \Delta x1/2 and x

(j)
0 =  - \Delta xj/2 for j = 2, . . . , N . The values at the ghost points

are determined by enforcing the discretized boundary condition with the value at the vertex
approximated by linear interpolation.

Time evolution is calculated using a second-order split-step method following Weidemann
and Herbst [35]. The linear and nonlinear parts of the evolution are handled separately, with
an explicit phase rotation with time step \Delta t sandwiched between two steps of the linear part
with time steps of \Delta t/2 using the Crank--Nicolson scheme.

While the simulations are primarily concerned with the behavior of solutions concen-
trated away from the computational boundary, the evolution naturally gives rise to radiation,
which quickly propagates to the boundary. This radiation interacts with the computational
boundaries and leads to numerical instability that effects the computational results. Following
Nissen and Kreiss [22], perfectly matched layers are used at the leaf endpoints to absorb this
radiation. In practice, this leads to a modification of the discretized Laplacian at a finite
number of points near the leaf vertices.

Standard care is taken to ensure the accuracy of the numerical simulations including
quantitative convergence study and the tracking of conserved quantities.
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6.2. Experiments with eigenfunction perturbation. We consider the balanced star graph
with one incoming edge and two outgoing edges. For simplicity, we also assume \alpha 2 = \alpha 3. For
the shifted state of Lemma 2.2, the spectrum of linearized operator L+(\omega , a) is shown in
Figure 2. In particular, for \omega = 1, the operator possesses a negative eigenvalue \lambda 0 =  - 3 for
all a, and a second eigenvalue \lambda 1(a) for a < a\ast , which is positive for 0 < a < a\ast and negative
for a < 0. Thus the Morse index suggests that the shifted state is linearly stable when a > 0
and linearly unstable when a < 0.

Let Ua be the eigenfunction of the operator L+(\omega , a) associated with the eigenvalue \lambda 1,
which exists for every a < a\ast , and let it be normalized by \| Ua\| L2(\Gamma ) = 1. We consider the
initial datum to the NLS equation (2.4) of the form

\Psi 0 = \Phi (\cdot ; a) + \epsilon Ua.(6.1)

We assume here that Ua(x) = 0 on edge one, Ua(x) < 0 on edge two, and Ua(x) > 0 on edge
three. Such an initial datum has the initial momentum P (\Psi 0) = 0 regardless of whether \epsilon is
real or has nonzero imaginary part.

We first present a simulation of the unstable shifted state with a =  - 0.55 and \epsilon = 0.1, in
which the nonmonotonic part lies on the two outgoing edges. The time-dependent solution is
plotted in Figure 3. The solution on edge three is initially slightly larger than on edge two.
This asymmetry grows until the solution has concentrated on edge three, and then propagates
away from the vertex along edge three. A lower-amplitude traveling wave, not visible in this
plot, propagates away from the vertex on edge two.

The behavior is more interesting when we consider the stable shifted state with a = 0.55 >
0 and \epsilon = 0.1, in which the nonmonotonic part lies on the only incoming edge. The shifted
state is linearly stable but Theorem 2.8 predicts drift of this shifted state toward smaller
values of a, where Theorem 2.9 predicts nonlinear instability once the vertex is reached. The
left panels of Figure 4 show that for 0 < t \lesssim 40, the dynamics is very slow. After t \approx 40, the
shifted state quickly propagates away from the vertex along edge two.

Figure 3. A numerical solution with initial datum (6.1) for a =  - 0.55 and \epsilon = 0.1. The colorbar
corresponds to values of | u| 2. The three panels correspond to the solution on edges one, two, and three going
down.
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Figure 4. Left: A numerical solution with initial datum (6.1) for a = 0.55 and \epsilon = 0.1. The colorbar
corresponds to values of | u| 2. Right: Postprocessed quantities form the same simulation. (Top) The position
of the maximum of u. The solid line for t < 33.5 describes the position on the incoming edge one. The
dashed line for t > 33.5 shows the position of the maximum on edge two. (Middle) The asymmetry, defined as
\| u2\| L2(\BbbR +)  - \| u3\| L2(\BbbR +). (Bottom) The momentum P (\Psi ) versus time t.

The right panels of Figure 4 show some quantities postprocessed from the simulation.
The top panel shows the location of the numerical maximum of | u| . At about t = 33.5,
the maximum crosses from edge one to edge two at x = 0. The second panel shows the
\| u2\| L2(\BbbR +) - \| u3\| L2(\BbbR +), the difference between L

2 norms along the two outgoing edges, which
is used as a proxy for the amplitude of the eigenfunction perturbation. This quantity oscillates
between positive and negative values while the shifted state lies along the incoming edge,
corresponding to stable evolution. It enters a period of exponential growth for 38 \lesssim t \lesssim 40,
once the shifted state has moved to the outgoing edges. During this period, a high-amplitude
state forms on edge two and a low-amplitude state on edge three. The bottom panel shows
that the momentum grows slowly until t \approx 33.5, then grows quickly, before saturating at
t \approx 42, and moving with constant momentum thereafter.

This numerical simulation shows that perturbations to a shifted state with a > 0 grow sub-
exponentially, consistent with the drift instability of Theorem 2.8. Similarly, postprocessing
the simulation shown in Figure 3 with a < 0 shows that the perturbation immediately grows
at an exponential rate, consistent with a linear instability proven in [20].

6.3. Experiments with other perturbations. Initial data of type (6.1) exist for a < a\ast \approx 
0.66 only if \omega = 1. However, we found almost identical dynamics as above by perturbing a
shifted state with a > a\ast , by a function similar to Ua which vanishes on the incoming edge,
and takes the form \pm cxe - \lambda x on the two outgoing edges. We will not report further on such
simulations.

All initial data of type (6.1) have zero initial momentum P (\Psi 0) = 0. An interesting
question is what happens when we apply a perturbation such that the initial datum gives
P (\Psi 0) < 0. Equation (2.15) implies that the map t \mapsto \rightarrow P (\Psi ) is increasing. Therefore, the
question is whether the shifted states propagating along the incoming edge away from the
vertex initially can escape the drift instability.
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Figure 5. A numerical solution with initial datum (6.2) for a =  - 1 and \mu = 0.1i. Details as in Figure 4.
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Figure 6. A numerical solution with initial datum (6.2) for a = 0 and \mu =  - 0.02i. (Top) The position of
the maximum of | u| , on edge one for t < 117 and on edge three (dashed) for t > 117. (Middle) Asymmetry of
the solution between the two outgoing edges. (Bottom) The momentum P (\Psi ) versus time t.

We construct perturbed shifted states as follows. Choose \mu \in \BbbC and define \Psi 0 by\left\{   
\psi 1(x) = \alpha  - 1

1 e\mu x\phi (x+ a),

\psi 2(x) = \alpha  - 1
2 e2\mu x\phi (x+ a),

\psi 3(x) = \alpha  - 1
3 \phi (x+ a).

(6.2)

If \mu is small, then \Psi 0 \in H2
\Gamma and \| \Psi 0  - \Phi (\cdot ; a)\| is small. The initial datum has nonzero initial

momentum P (\Psi 0) \not = 0 if Im(\mu ) \not = 0.
We perform such a simulation with a =  - 1 and pure imaginary \mu = 0.1i. This slowly mod-

ulates the phase of the shifted state while keeping the amplitude at each point unchanged. The
solution has its maxima on the outgoing edges and has negative initial momentum P (\Psi 0) < 0,
so initially it propagates toward the vertex. Figure 5 shows that the numerical solution quickly
concentrates on edge three and begins propagating away from the vertex. This is more visible
in the right panel, which shows the location of the maximum value on edge three, which ini-
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tially decreases, before increasing, and the momentum, which is initially negative, but which
rapidly becomes positive.

A final simulation shows a solitary wave that travels away from the vertex along the
incoming edge before reversing direction, crossing the vertex and escaping to infinity along
one of the outgoing edges, shown in Figure 6. The simulation was performed with initial
datum of form (6.2) with a = 0 and \mu =  - 0.02 i. The initial datum differs from the half-
soliton state \Phi by 0.04 in L2-norm, hence it can be considered as a small perturbation of the
half-soliton state. The initial momentum is P (\Psi 0) =  - 0.08. The solution gradually slows
down, with the momentum vanishing at about t = 62. The maximum crosses the vertex at
about t = 117 and at this point the solution concentrates on edge three and the momentum
begins increasing rapidly.

7. Conclusion. This paper concludes the study of the NLS equation on a balanced star
graph originated in [19, 20]. We have proven analytically and illustrated numerically that
symmetry-breaking perturbations induce instability of the shifted state in the time evolution.
When the shifted state has a monotonic tail on the only incoming edge, it is spectrally unstable
and the perturbations grow exponentially fast. When the shifted state has monotonic tails on
the (N - 1) outgoing edges, it is spectrally stable but nonlinearly unstable. The perturbations
do not grow in time but the center of mass of the shifted state drifts slowly along the incoming
edge toward the vertex. This drift is induced by the irreversible growth of momentum in the
time evolution due to the broken translational symmetry at the vertex point. Once the center
of mass for the shifted state reaches the vertex, the perturbations start to grow faster, first
algebraically and then exponentially. The numerical simulations not only verify the outcomes
of the nonlinear dynamics predicted by the main theorems (Theorems 2.8 and 2.9) but also
illustrate how generic this phenomenon is on the balanced star graphs.
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