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PROPAGATION FAILURE

IN THE DISCRETE NAGUMO EQUATION

H. J. HUPKES, D. PELINOVSKY, AND B. SANDSTEDE

(Communicated by Yingfei Yi)

Abstract. We address the classical problem of propagation failure for mono-
tonic fronts of the discrete Nagumo equation. For a special class of nonlinear-
ities that support unpinned “translationally invariant” stationary monotonic
fronts, we prove that propagation failure cannot occur. Properties of travelling
fronts in the discrete Nagumo equation with such special nonlinear functions

appear to be similar to those in the continuous Nagumo equation.

1. Introduction

To illustrate the central topic of this paper, let us consider the discrete Nagumo
equation

(1.1) u̇j =
1

h2

(
uj+1 + uj−1 − 2uj

)
+ f(uj ; a), j ∈ Z,

with the cubic nonlinearity

(1.2) f(u ; a) = 2(1 − u2)(u− a), −1 < a < 1.

This lattice differential equation (LDE) plays an important role when studying
signal propagation through nerve fibres [23, 8] and has inspired a large volume of
work on spatially discrete models in many different scientific areas [15, 26, 4, 6, 10].
One may arrive at (1.1) by discretizing the Nagumo PDE

(1.3) ut = uxx + f(u ; a), x ∈ R,

on a lattice with node distance h. It is well-known that for any a ∈ (−1, 1), the
PDE (1.3) admits travelling front solutions u(x, t) = ū(x− ct) with

(1.4) lim
ξ→±∞

ū(ξ) = ±1.

The unique wave speed c = c(a) satisfies c(0) = 0 and ∂ac(0) > 0, and the wave
profile has ū′(ξ) > 0 for all ξ ∈ R.

Similarly, there exists a unique wave speed c = c(a) for which the LDE (1.1)
admits a travelling front uj(t) = ū(j + ct) that satisfies (1.4) and is nondecreasing
with respect to j [28]. As above, the wave speed is nondecreasing with respect to
a, but it no longer needs to be strictly increasing. In fact, writing [a−, a+] for the
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(i) (iii)(ii)

Figure 1. Panel (i) depicts the McKean caricature f(u ; a) =
sign(u− a)− u, while the piecewise linear zigzag nonlinearity con-
sidered in [12] is shown in panel (ii). Panel (iii) illustrates the
assumption (Hg2) on ḡ. In the context of (1.1), we have ḡ = f .

maximal interval on which c(a) = 0, it may happen that a− < a+, in which case
we say that (1.1) admits propagation failure.

Keener established that the Nagumo LDE (1.1) with the cubic nonlinearity (1.2)
admits propagation failure for all sufficiently large h [24], but at present it is still
unknown whether this holds for all h > 0. A significant step towards confirming
this was made by Hoffman and Mallet-Paret [19]. These authors provided a generic
condition on the nonlinearity f in (1.1) that guarantees propagation failure, but
unfortunately this condition is hard to verify in practice. We discuss this further
at the end of §1.

Let us emphasize that these issues may depend subtly on the nonlinearity. For
example, the explicit calculations in [7] show that (1.1) with the McKean carica-
ture depicted in Figure 1(i) admits propagation failure for all h > 0. The theory
developed in [29] shows that this also holds for smooth nonlinearities that are suffi-
ciently close to this sawtooth. On the other hand, if f is given by a piecewise linear
zigzag nonlinearity as in Figure 1(ii), one can exclude this phenomenon for all h in
a countably infinite set [12]. Additional results and numerical studies can be found
in [1, 15, 16, 14].

Propagation failure and its consequences. Determining whether waves can propa-
gate through media with a discrete spatial structure is a fundamental question that
has many practical ramifications. For example, during the past decade many re-
searchers have contributed to the development of techniques that allow light waves
to be trapped in optical lattices [33]. Fully developed, such technology would allow
for the development of optronic processors that are orders of magnitude faster than
their electronic counterparts. On the other hand, returning to the signal propa-
gation model encoded in (1.1), we remark that diseases such as multiple sclerosis
can affect the underlying electrochemical properties of the nerve fibres [27]. This
may consequently increase the interval of propagation failure discussed above, with
detrimental physiological consequences.

Lattice differential equations also arise naturally when studying discretization
schemes to numerically solve PDEs, serving as an intermediate step between a PDE
and its full spatial-temporal discretization. In this context, one naturally hopes that
the behaviour of the approximating LDE closely resembles that of the original PDE.
In particular, if the latter does not admit propagation failure, one would wish to
suppress this feature in the LDE. One might argue that this propagation failure is
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not very relevant, as the length of the interval [a−, a+] is typically expected to be
exponentially small with respect to the grid size h > 0 [17, 5]. In practice, however,
especially when dealing with higher dimensional problems, it can be prohibitively
expensive from a computational point of view to use values of h > 0 that are
sufficiently small to suppress this effect [17, 5].

In this paper we restrict ourselves to discrete systems that admit stationary
fronts that are not pinned to a specific lattice site. Our aim is to develop an explicit
criterion that can determine whether propagation failure occurs or not. While we
believe our results to be of general interest, our primary motivation comes from the
discretization problem discussed above.

Stationary solutions: discrete families. In order to understand the mechanism that
causes propagation failure, it is important to study the stationary solutions. To this
end, let us look for stationary solutions u(t) = p to (1.1)-(1.2) by writing rj = pj+1

and solving the discrete planar system

(1.5)
pj+1 = rj ,
rj+1 = −pj + 2rj − h2f(rj ; a).

One may easily verify that the two equilibria (±1,±1) are both saddles at a = 0.
Following Qin and Xiao [30], dynamical system methods can now be used to show
that (1.5) admits solutions p(s) and p(b) that satisfy

(1.6) lim
j→±∞

p
(s)
j = lim

j→±∞
p
(b)
j = ±1, p

(s)
−j = −p

(s)
j , p

(b)
−j+1 = −p

(b)
j .

These solutions are hence referred to as site-centered and bond-centered solutions.
For each j ∈ Z, the pairs

(
p
(s)
j , p

(s)
j+1

)
and

(
p
(b)
j , p

(b)
j+1

)
lie in the intersection of the

unstable manifold Wu(−1,−1) and the stable manifold W s(1, 1). If these intersec-
tions are transverse, both solutions p(s) and p(b) will persist for a ≈ 0. One expects
these branches to coalesce and terminate in a saddle–node bifurcation at a = a±;
see panels (i) and (ii) in Figure 2. The first nonrigorous analysis of this bifurcation
was performed by Erneux and Nicolis [15].

Stationary solutions: continuous families. In this paper, we are interested in the
degenerate situation that p(s) and p(b) are part of a smooth family of stationary
solutions. As illustrated in Figure 2(iii), this means that Ws(1, 1) and Wu(−1,−1)
coincide at a = 0. In this case, it is not immediately clear if any intersections of
these two manifolds survive for a �= 0.

We do not expect this type of degeneracy to occur for (1.1) with the cubic
nonlinearity (1.2), but there certainly are more general discretizations of the PDE
(1.3) with (1.2) that do have this property. Consider for example the LDE

(1.7) u̇j =
1

h2

(
uj−1 + uj+1 − 2uj

)
+ (1 − u2

j)(uj+1 + uj−1 − 2a), j ∈ Z.

One may directly verify that for any a, ϑ ∈ R, this equation is satisfied by

(1.8) uj(t) = tanh
(
arcsinh(h)(j − ct + ϑ)

)
, c =

2a

arcsinh(h)
.

We thus have a branch of stationary solutions at a = 0 that is parametrized by
ϑ ∈ R. In particular, we are in the situation depicted in Figure 2(iii). Several
additional discretizations of (1.3) that also have this degeneracy were constructed
earlier in [3, 31, 32, 18, 25, 11].
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(1, 1) (1, 1) (1, 1)

Figure 2. The stable and unstable manifolds Ws(1, 1) and
Wu(−1,−1) associated to the discrete system (1.5) can intersect in
several ways. Black circles are used to represent the site-centered
solutions p(s) and orange squares (online version only) are used for
the bond-centered solutions p(b). In panel (i) the aforementioned
manifolds intersect transversely, which means p(s) and p(b) will per-
sist for a ≈ 0. Panel (ii) illustrates the saddle-node bifurcation at
a = a± that destroys these two branches of stationary solutions.
Panel (iii) depicts the case covered by assumption (Hp). One can
interpolate freely between p(s) and p(b) to find a one-parameter
family of stationary solutions p(ϑ) to (1.10) at a = 0.

In view of the explicit solutions (1.8), it follows from [28, Thm. 2.1] that
a− = a+ = 0 holds for (1.7). In particular, this equation does not suffer from prop-
agation failure. In terms of Figure 2(iii), the manifolds Wu(−1, 1) and Ws(1, 1)
separate completely as a moves away from zero, and therefore none of the station-
ary solutions mentioned above survive this transition. In addition, let us remark
that the truncation error that arises by replacing 2uj with uj−1 + uj+1 is of order
O(h2), as is the error caused by the replacement

(1.9) uxx → h−2(uj−1 + uj+1 − 2uj).

These reasons certainly suggest that it could be advantageous to use (1.7) rather
than (1.1)-(1.2) as a spatial discretization of (1.3).

Main Results. The main goal of this paper is to show that the situation described
above for (1.7) extends to the broad class of bistable parameter-dependent LDEs
that are commonly referred to as normal families [28]. In particular, we consider
the LDE

(1.10) u̇j = g
(
uj−1, uj , uj+1 ; a

)
, j ∈ Z, uj ∈ R,

and assume that g is monotonically increasing with respect to uj−1 and uj+1, while
ḡ(u ; a) := g(u, u, u ; a) behaves much like the cubic (u−a)(1−u2); see Figure 1(iii).
Furthermore, we assume that at some a = a∗, the system (1.10) admits a smooth
one-parameter branch of stationary solutions that is ‘translationally invariant’ in
the sense of Figure 2(iii). Our main results state that these conditions are sufficient
to prevent (1.10) with a �= a∗ from having any stationary solutions that increase
monotonically with respect to j ∈ Z. Instead, this equation admits monotonic
travelling fronts for all a �= a∗.
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The conditions (Hg1)-(Hg2) below give a more precise definition of the con-
cept of a normal family. We remark that these assumptions are slightly stronger
than their counterparts in [28], where less smoothness was imposed on the non-
linearity g.

(Hg1) The nonlinearity g is C3-smooth, with ∂u1
g(u1, u2, u3; a) > 0 and

∂u3
g(u1, u2, u3; a) > 0 for all (u1, u2, u3) ∈ R3 and a ∈ (−1, 1). In ad-

dition, we have

(1.11) ∂ag
(
u1, u2, u3; a) < 0

for all a ∈ (−1, 1) and all (u1, u2, u3) ∈ R3 that have −1 < u1 < u2 < u3 <
1.

(Hg2) Setting ḡ(u; a) := g(u, u, u; a), we have
(1.12)

ḡ(±1; a) = 0, ḡ(a; a) = 0,
ḡ(u; a) < 0 for u ∈ (−1, a) ∪ (1,∞), ḡ(u; a) > 0 for u ∈ (−∞,−1) ∪ (a, 1)

for every −1 < a < 1, together with

(1.13)
∂uḡ(±1; a) < 0, ∂uḡ(a; a) > 0,
∂uaḡ(−1; a) < 0, ∂uaḡ(1; a) > 0.

The degeneracy requirement that we need to impose on the stationary solutions to
(1.10) at a = a∗ is given by the following.

(Hp) There exists1 a p̄ ∈ BC3(R,R) such that for any ϑ ∈ R, the constant
function u(t) = p(ϑ) given by

(1.14) p
(ϑ)
j = p̄(j + ϑ)

satisfies (1.10) with a = a∗ for some a∗ ∈ (−1, 1). In addition, this function
p̄ has p̄′(ξ) > 0 for all ξ ∈ R and satisfies the limits

(1.15) lim
ξ→±∞

p̄(ξ) = ±1.

Theorem 1.1. Consider the system (1.10) and suppose that (Hg1), (Hg2) and
(Hp) are satisfied. Then for every a ∈ (−1, 1), the system (1.10) admits a solution
of the form

(1.16) uj(t) = ū(j − ct)

for some wave speed c ∈ R and wave profile ū ∈ C1(R,R) that has ū′(ξ) > 0 for all
ξ ∈ R and

(1.17) lim
ξ→±∞

ū(ξ) = ±1.

The wave speed c = c(a) depends C1-smoothly on a, with c(a∗) = 0 and ∂ac(a) > 0
for all a ∈ (−1, 1).

The next two results address the uniqueness of the travelling waves described
above. The first one excludes two classes of stationary solutions for a �= a∗, namely
j-monotonic solutions and solutions that are close to pϑ for some ϑ ∈ R but not
necessarily j-monotonic. The second result states that the waves appearing in
Theorem 1.1 are unique among all waves that connect ±1 and travel with nonzero

1The notation BC3 means that p̄ and its first three derivatives are uniformly bounded on R.
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speed.2 This actually follows directly from [28, Thm. 2.1], but we include it here
for completeness.

Corollary 1.2. Consider the system (1.10) and suppose that (Hg1), (Hg2) and
(Hp) are satisfied. There exists a constant δ > 0 such that the following holds true.
Suppose that (1.10) admits a stationary solution

(1.18) uj(t) = uj

for some a ∈ (−1, 1). Suppose that uj1 ≤ uj2 holds for all j1 ≤ j2 together with

limj→±∞ uj = ±1, or alternatively that |a− a∗| < δ and
∣∣u− p(ϑ)

∣∣ < δ for some
ϑ ∈ R. Then we must have a = a∗.

Corollary 1.3 ([28, Thm. 2.1]). Consider the system (1.10) and suppose that
(Hg1), (Hg2) and (Hp) are satisfied. Pick any a ∈ (−1, 1) and suppose that (1.10)
admits a solution of the form

(1.19) uj(t) = ū(j − ct)

for some c �= 0 and ū ∈ C1(R,R) that satisfies the limits

(1.20) lim
ξ→±∞

ū(ξ) = ±1.

Then u must be a temporal translate of the solution described in Theorem 1.1.

Let us repeat here that we do not expect our results to be applicable to the
system (1.1) with the standard cubic nonlinearity (1.2). No explicit solutions are
available in this context, and we do not know how to determine whether panel (i)
or (iii) in Figure 2 is applicable. In any case, combining our results with those of
Keener [24] shows that (Hp) cannot hold if h > 0 is chosen to be sufficiently large.

In [19], Hoffman and Mallet-Paret study (1.1) with a general class of bistable
nonlinearities f . Their results roughly state that the nondegenerate saddle-node
bifurcation depicted in Figure 2(ii) occurs for almost every choice of f and always
implies a− < a+. Our results show that in the degenerate situation depicted in
Figure 2(iii), the presence of propagation failure depends subtly on the behaviour
of a family of Melnikov integrals. The resulting criterion can be explicitly verified
when dealing with normal families, which leads to Theorem 1.1. However, we also
give an example of a nonnormal family (1.10) that admits the degeneracy illustrated
in Figure 2(iii) but still suffers from propagation failure.

The proof of Theorem 1.1 and Corollary 1.2 can be found in §2. We conclude
the paper in §3 with some numerical examples and a brief discussion.

2. Proof of the main results

In this section we prove Theorem 1.1 and Corollary 1.2. We focus on the dy-
namics of the lattice system (1.10) for a near a∗. In particular, we show that the
manifold of equilibria M(a∗) = {p(ϑ)}ϑ∈R at a = a∗ persists as an invariant man-
ifold M(a) for (1.10) with a near a∗. To aid us, we write T for the right-shift
operator that acts as (T u)j = uj−1 and note that

(2.1) p(ϑ) = T p(ϑ+1)

holds for all ϑ ∈ R. After factoring out the symmetry T , the manifold M(a∗) can
hence be seen as a circle of equilibria; see Figure 3(i). In principle, some of these

2Notice that this excludes the possibility of nonmonotonic travelling waves that connect ±1.
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Figure 3. Panel (i) depicts the manifold M(a∗) after factoring
out the symmetry T . Each point on the circle represents an equiv-
alence class p(ϑ) with ϑ ∈ S1. We show that M(a∗) is normally
hyperbolic and that it persists as M(a) for a near a∗. As illus-
trated in panel (ii), one or more of the equilibria can survive for
a �= a∗, in which case (1.10) suffers from propagation failure. How-
ever, if (1.10) is a normal family, the flow on M(a) must behave as
shown in panel (iii), inducing travelling wave solutions to (1.10).

equilibria can survive for a �= a∗, as illustrated in Figure 3(ii) and discussed in the
third example of §3. However, by computing the flow on M(a) to leading order, we
show that the situation described in Figure 3(iii) arises whenever the system (1.10)
is a normal family. The travelling waves described in Theorem 1.1 can subsequently
be read off from the shift-periodic solution to (1.10) that is induced by the flow on
M(a).

For convenience, we rewrite the lattice system (1.10) as

(2.2) u̇ = F(u, a)

and look for solutions u that take values in the sequence space

(2.3) �∞ = {u ∈ R
Z : |u|�∞ := supj∈Z

|uj | < ∞}.

The nonlinearity F : �∞× (−1, 1) → �∞ inherits the C3-smoothness of the function
g in (1.10). For v, w ∈ �∞, we introduce the pairing

(2.4) 〈v, w〉 =
∑
j∈Z

vjwj ,

with the warning that additional constraints on v or w are needed to ensure that
this sum is well-defined.

In order to show that M(a∗) persists as an invariant manifold, we need to show
that it is normally hyperbolic. To this end, let us introduce the operator L(ϑ) ∈
L(�∞) that3 is given by

(2.5) L(ϑ) = ∂uF
(
p(ϑ), a∗

)
.

Componentwise, we have

(2.6)

(L(ϑ)v)j = ∂u1
g
(
p̄(j + ϑ− 1), p̄(j + ϑ), p̄(j + ϑ + 1) ; a∗

)
vj−1

+∂u2
g
(
p̄(j + ϑ− 1), p̄(j + ϑ), p̄(j + ϑ + 1) ; a∗

)
vj

+∂u3
g
(
p̄(j + ϑ− 1), p̄(j + ϑ), p̄(j + ϑ + 1) ; a∗

)
vj+1,

3The notation L(�∞) refers to the space of bounded linear operators from �∞ to �∞.
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and it is easily verified that L(ϑ)p̄′(ϑ + ·) = 0. The formal adjoint of L(ϑ) is given
by

(2.7)

(L(ϑ)∗w)j = ∂u1
g
(
p̄(j + ϑ), p̄(j + ϑ + 1), p̄(j + ϑ + 2) ; a∗

)
wj+1

+∂u2
g
(
p̄(j + ϑ− 1), p̄(j + ϑ), p̄(j + ϑ + 1) ; a∗

)
wj

+∂u3
g
(
p̄(j + ϑ− 2), p̄(j + ϑ− 1), p̄(j + ϑ) ; a∗

)
wj−1.

Our first result states that L(ϑ) is a Fredholm operator.

Lemma 2.1. For each ϑ ∈ R, L(ϑ) : �∞ → �∞ is a Fredholm operator with index
zero. In addition, solutions v = {vj} ∈ �∞ of L(ϑ)v = 0 or L(ϑ)∗v = 0 decay
exponentially as j → ±∞. Finally, we have the characterization

(2.8) RangeL(ϑ) = {x ∈ �∞ | 〈w, x〉 = 0 for all w ∈ KerL(ϑ)∗}.

Proof. We consider the characteristic functions associated to the operator L(ϑ) in
the limits j → ±∞, which are given by
(2.9)
Δ±(z) = ∂u1

g(±1,±1,±1; a∗)e
−z + ∂u2

g(±1,±1,±1; a∗) + ∂u3
g(±1,±1,±1; a∗)e

z.

Our assumption ∂uḡ(±1, a∗) < 0 implies that the equations sΔ−(z)+(1−s)Δ+(z) =
0 do not admit roots with Re z = 0 for any 0 ≤ s ≤ 1. The statement now follows
directly from Corollary 2.6 and Theorems 3.2 and 4.3 in [2]. �

We now proceed to show that M is normally hyperbolic. For any operator
L ∈ L(�∞), we introduce the spectral sets4

(2.10)
σess(L) = {ζ ∈ C : λI − L is not a Fredholm operator with index zero},
σp(L) = {λ ∈ C \ σess(L) : Lv = λv for some nonzero v ∈ �∞}.

Instead of studying the eigenvalue equation L(ϑ)v = λv directly, we adapt the
comparison principle technique developed in [9, §8] to analyze the ODE

(2.11) v̇ = L(ϑ)v

and determine the growth rate of solutions.

Lemma 2.2. There exists δ > 0 such that λI − L(ϑ) is invertible for each ϑ ∈ R

and each λ ∈ C \ {0} with Reλ ≥ −δ. In addition, we have

(2.12) KerL(ϑ) = span {p̄′(ϑ + ·)}, KerL(ϑ)∗ = span {q̄(ϑ + ·)},
in which q̄ ∈ BC2(R,R) has q̄(ξ) > 0 for all ξ ∈ R. Finally, there is no v ∈ �∞

that satisfies L(ϑ)v = p̄′(ϑ + ·).

Proof. Using the assumption ∂uḡ(±1, a∗) < 0, we may argue as in the proof of
Lemma 2.1 to find a small δ > 0 such that Reλ < −δ holds for any λ ∈ σess(L

(ϑ)).
We study the point spectrum in an indirect fashion by looking at the ODE (2.11)

posed on �∞, which admits the stationary solution vj(t) = p̄′(ϑ + j). Let us now
pick β > 0 in such a way that ∂uḡ(±1; a∗) < −β. Since p̄′ > 0, there exists K > 0
such that

(2.13) βKp̄′(ϑ + j) − β − (L(ϑ)1)j ≥ 0

4Where appropriate, �∞ should be interpreted as a subset of CZ instead of RZ.
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holds for all j ∈ Z, where 1 ∈ �∞ is defined by 1j = 1 for all j ∈ Z. This can be
verified using the limits

(2.14) lim
j→±∞

(L(ϑ)1)j = ∂uḡ(±1; a∗) < −β.

The assumptions ∂u1
g > 0 and ∂u3

g > 0 imply that (2.11) admits a comparison
principle. More precisely, any solution v to (2.11) satisfies

(2.15) |vj(t)| ≤
(
e−βt + K(1 − e−βt)p̄′(ϑ + j)

)
|v(0)|�∞

for all t ≥ 0, which can be established as in [9, §8]. For any T > 0, we write ΦT for
the bounded linear map that sends v(0) to v(T ) for solutions to (2.11). Following
the construction in [9, §8], we conclude that

(2.16)
∣∣σess

(
ΦT

)∣∣ < 1, σp

(
ΦT

)
\ {1} ⊂ {ζ ∈ C : |ζ| < 1},

while 1 ∈ σp(ΦT ) is a simple eigenvalue. Recall that eigenvalues outside the essential

spectrum are isolated and σp

(
L(ϑ+1)

)
= σp

(
L(ϑ)

)
. All statements concerning L(ϑ)

now follow from these observations, exploiting the fact that T > 0 can be chosen
arbitrarily.

For every ϑ ∈ R, Lemma 2.1 implies that there exists a nontrivial q(ϑ) ∈
Ker(L(ϑ)∗). Since p̄′(ϑ + ·) depends C2-smoothly on ϑ, one can ensure that the

same holds for q(ϑ), with q
(ϑ+1)
j = q

(ϑ)
j+1. One can now take q̄(ξ) = q

(ξ)
0 . Finally, one

may imitate the proof of [28, Thm 4.1] to show that q̄(ξ) �= 0 for all ξ ∈ R. �

We remark that [28, Thm. 2.2] implies that p̄ approaches its limiting values at
an exponential rate. In addition, since F is C3-smooth, Lemma 2.1 implies that p̄′,
p̄′′, p̄′′′, q̄, q̄′ and q̄′′ all decay exponentially at ±∞. In particular, we may define a
C2-smooth family of projections P (ϑ) ∈ L(�∞) by

(2.17) P (ϑ) = p̄′(ϑ + ·)Q(ϑ), Q(ϑ)v = 〈q(ϑ), v〉
after normalizing q(ϑ) to ensure that Q(ϑ)p̄′(ϑ + ·) = 1.

Since we are interested in the dynamics of (2.2) near the manifold M = {p(ϑ)}ϑ∈R,
we look for solutions that can be written as

(2.18) u(t) = p(θ(t)) + v(t)

for some functions θ ∈ C1(R,R) and v ∈ C1(R, �∞) that satisfy the normalization
condition

(2.19) Q
(
θ(t)

)
v(t) = 0, t ∈ R.

In terms of these new coordinates, we have M(a∗) = {(ϑ, 0)}ϑ∈R. For a near a∗,
this invariant manifold persists as M(a) = {ϑ, v∗(ϑ, a)}, in which the function v∗
is described by the following result.

Lemma 2.3. Consider the LDE (2.2) and suppose that (Hg1), (Hg2) and (Hp)
are all satisfied. Then there exists a constant δa > 0 together with a C1-smooth
function v∗ : R× [a∗ − δa, a∗ + δa] → �∞ such that the following hold true:

(i) For some constant C > 0 we have |v∗(ϑ, a)|�∞ ≤ C |a− a∗| for all ϑ ∈ R.
In addition, v∗(ϑ, a) = T v∗(ϑ + 1, a).

(ii) There exists a constant δ > 0 such that any solution to (2.2) with |a− a∗| <
δa of the form (2.18)-(2.19) that has |v(t)|�∞ < δ for all t ∈ R must have
v(t) = v∗

(
θ(t), a

)
for all t ∈ R.



3546 H. J. HUPKES, D. PELINOVSKY, AND B. SANDSTEDE

(iii) Consider the C2-smooth function Ψ : R → R given by

(2.20) Ψ(ϑ) = Q(ϑ)∂aF(p(ϑ), a∗).

There exists a C1-smooth function h∗ : R × [a∗ − δa, a∗ + δa] → R with

h∗(ϑ + 1, a) = h∗(ϑ, a) and h∗(ϑ, a) = O(|a− a∗|2) such that any solution
to the ODE,

(2.21) θ̇ = (a− a∗)Ψ(θ) + h∗(θ, a),

with |a− a∗| < δa yields a solution u(t) = p(θ(t)) + v∗(θ(t), a) to (2.2).

Proof. Without loss of generality, we assume that a∗ = 0. Choose a C∞-smooth
function χ : R → R such that χ(v) = v when |v| < 1 and χ(v) = 0 when |v| > 2.
For δ > 0, write χδ : �∞ → �∞ for the C∞-smooth function

(2.22) χδ(v)j = χ(vj/δ).

Plugging (2.18) into (2.2), we find that any solution that has |v(t)|�∞ < δ for all
t ∈ R will satisfy

(2.23)
v̇ = L(θ)v + a

(
I − P (θ)

)
∂aF(p(θ), 0) + N1(θ, v, a),

θ̇ = aQ(θ)∂aF(p(θ), 0) + N2(θ, v, a),

in which

(2.24)
N1(ϑ, v, a) =

(
I − P (ϑ)

)
N (ϑ, χδ(v), a) + P (ϑ)S(ϑ, χδ(v), a),

N2(ϑ, v, a) = Q(ϑ)N (ϑ, χδ(v), a) −Q(ϑ)S(ϑ, χδ(v), a)

with

(2.25)
N (ϑ, v, a) = F(p(ϑ) + v, a) − L(ϑ)v − a∂aF(p(ϑ), 0),

S(ϑ, v, a) =
[
1 − (1 −Q′(ϑ)v)−1

][
a∂aF(p(ϑ), 0) + N (ϑ, v, a)

]
.

By construction, there exists C > 0 such that

(2.26)
|Ni(ϑ, v, a)| ≤ C(δ + δa)

2,
|Ni(ϑ1, v1, a) −Ni(ϑ2, v2, a)| ≤ C(δ + δa)(|ϑ1 − ϑ2| + |v1 − v2|�∞)

hold for i = 1, 2 and |a| < δa. One may now proceed as in [20, §§6-7] to show
that (2.23) admits a unique solution (v(t), θ(t)) for any |a| < δa and any initial
condition θ(0) = ϑ0 with Q(ϑ0)v(0) = 0. The desired function v∗ is now given by
v∗(ϑ0, a) = v(0). �

With Lemma 2.3 in hand, our main result can easily be established by analyzing
the scalar ODE (2.21) that describes the flow on M(a).

Proof of Theorem 1.1. Without loss of generality, assume again that a∗ = 0. The
results in [28, §2] imply that c(a) is C1-smooth with ∂ac(a) > 0 whenever c �= 0.5

Hence we need to consider only a near zero. The inequality (1.11) implies that

(2.27) Ψ(ϑ) = Q(ϑ)∂aF(p(ϑ), 0) < 0

for all ϑ ∈ R. Introducing the rescaled time τ = at, (2.21) becomes

(2.28) ∂τθ(τ ) = Ψ
(
θ(τ )

)
+ a−1h∗(θ(τ ), a).

In particular, there exists T∗ > 0 and a C1-smooth function T (a) = O(a), defined
for a near zero, such that any solution to (2.28) will have

(2.29) θ(τ + T∗ + T (a)) = θ(τ ) − 1

5This is the only place where the condition ±∂uaḡ(±1, a) > 0 in (Hg2) is needed.
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for all τ ∈ R. Picking a �= 0 and writing u(t) for the associated solution to (2.2),
we see that

(2.30) u
(
t + a−1(T∗ + T (a)

)
= T u(t).

Choosing ū(ξ) = u0

(
− ξa−1(T∗ + T (a))

)
, one easily verifies that

(2.31) uj(t) = ū
(
j − at/

(
T∗ + T (a)

))
,

which means that u is a travelling wave that moves to the right with speed c(a) =
a/(T∗ + T (a)). This formula remains valid for a = 0, which establishes the C1-
smoothness of c(a). It remains to show that ū satisfies the limits (1.17), but this
follows directly from [28, Lemma 6.1]. �

Proof of Corollary 1.2. If the stationary solution has uj1 ≤ uj2 whenever j1 ≤ j2,
the conclusion follows directly from [28, Thm. 2.1]. In the other case, the result
follows directly from item (ii) in Lemma 2.3. �

3. Examples

In this section we illustrate the application range of our results using the numer-
ical method developed in [22]. In particular, we consider the lattice system

(3.1) u̇j = g
(
uj−1, uj , uj+1 ; a

)
, j ∈ Z,

for three different families g. We search for wave solutions of the form

(3.2) uj(t) = ū(j − ct), lim
ξ→±∞

ū(ξ) = ±1

by numerically solving the functional differential equation6

(3.3) −cū′(ξ) = g
(
ū(ξ − 1), ū(ξ), ū(ξ + 1) ; a

)
.

All our examples admit a branch of stationary solutions u(t) = p(ϑ) = p̄(ϑ + ·) at
a = 0 that satisfy the condition (Hp). However, in our last two examples we consider
two families g that violate the inequality (1.11) in the definition of a normal family.
The presence of propagation failure now depends on whether or not the ODE

(3.4) θ̇ = (a− a∗)Ψ(θ) + O(|a− a∗|2)
with

(3.5) Ψ(ϑ) =
∑
j∈Z

q̄(ϑ + j)∂ag
(
p̄(j + ϑ− 1), p̄(j + ϑ), p̄(j + ϑ + 1) ; a∗

)

admits equilibria for a �= a∗. To determine this, one needs to have detailed infor-
mation on the adjoint eigenfunction q̄, which we also computed7 numerically.

6To avoid numerical issues that arise in the singular limit c → 0, we follow the approach used
in [1, 13, 22] and add an extra term −γū′′(ξ) to the left hand side of (3.3), with γ = 10−5. We
refer the reader to [22, 21] for numerical and theoretical results concerning the limit γ → 0. These
results strongly suggest that the region of propagation failure can be accurately determined by
using small but practical values of γ > 0. In particular, the numerical results presented in this
section were verified by repeating a subset of the calculations with γ = 10−6 and γ = 10−7.

7The actual equation used to determine q̄ is given by

−γq̄′′(ξ) = (L(0)∗q̄)ξ + λ(ξ)q̄(ξ),
λ′(ξ) = 0,

with boundary conditions q(−L) = 0, q(L) = 0 and q(0) = 1 for some large L > 0.
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Figure 4. Selected wave profiles and wave speed plot for (3.1)
with the nonlinearity g = g1 defined in (3.6). No propagation
failure occurs, and the wave profiles ū remain smooth as a → 0.

Figure 5. Selected wave profiles and wave speed plot for (3.1)
with the nonlinearity g = g2 defined in (3.8). As in Example 1, no
propagation failure occurs and the wave profiles ū remain smooth
as a → 0.

Example 1: A normal family. Inspired by [3], we consider the lattice system
(3.1) with the nonlinearity g = g1 that is given by

(3.6) g1
(
uj−1, uj , uj+1 ; a

)
= 4(uj−1 + uj+1 − 2uj) + 2(uj − a)(1 − uj−1uj+1).

This family satisfies the conditions (Hg1)-(Hg2) and hence is a normal family. When
a = 0, one may easily verify that the branch8

(3.7) uj(t) = tanh
(
arcsinh(1/

√
2)(j + ϑ)

)
, j ∈ Z, ϑ ∈ R,

consists of stationary solutions to (3.1). In particular, (Hp) is also satisfied. The-
orem 1.1 hence implies that (3.1) does not admit propagation failure, which is
confirmed by the wave profiles and speeds depicted in Figure 4.

Example 2: A nonnormal family without propagation failure. Our second
example focusses on (3.1) with the nonlinearity g = g2 that is given by

g2
(
uj−1, uj , uj+1 ; a

)
= 4(uj−1 + uj+1 − 2uj) + 2(uj − a)(1 − uj−1uj+1)

+ 5a sin(πuj).
(3.8)

8Replacing the factor 4 in (3.6) by h−2, the function ξ �→ tanh(arcsinh(h/
√
1− 2h2)ξ) gener-

ates stationary solutions to (3.1).
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Since g1(· ; 0) = g2(· ; 0), condition (Hp) is also satisfied for this equation. How-
ever, the inequality (1.11) in the definition of a normal family is now violated.
Nevertheless, the numerical results in Figure 5 indicate that (3.1) does not admit
propagation failure. Indeed, one may verify numerically that Ψ(ϑ) < 0 for all ϑ ∈ R,
which shows that the ODE (3.4) admits no equilibria for sufficiently small |a| > 0.

Example 3: A nonnormal family with propagation failure. In our final
example, we study (3.1) with the nonlinearity g = g3 that is given by
(3.9)

g3
(
uj−1, uj , uj+1 ; a

)
= uj−1 + uj+1 − 2uj + (1 − u2

j )(uj−1 + uj+1 − 2a)
+5a sin(πuj)(2 + 4

5uj).

Recalling (1.8), we see that (3.1) with a = 0 has a branch of stationary solutions
given by

(3.10) uj(t) = p
(ϑ)
j = p̄(j + ϑ) = tanh

(
arcsinh(1)(j + ϑ)

)
,

which shows that (Hp) is satisfied. However, as in Example 2, the inequality (1.11)
is violated.

We remark that the coefficients in g3 were chosen in such a way that

(3.11) Ψ(0) < 0 < Ψ(1/2).

The ODE (3.4) hence has at least two equilibria per unit interval whenever |a| is
sufficiently small. As a result, (3.1) admits propagation failure, and this is confirmed
in Figure 6.

Figure 6. Selected wave profiles and wave speed plot for (3.1)
with the nonlinearity g = g3 defined in (3.9). Despite the smooth
profile of the wave at a = 0, propagation failure occurs and the
wave profiles are step functions for 0 < a < a+ ≈ 0.36025.
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