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19

Asymptotic Reductions
of the Gross–Pitaevskii Equation

D.E. Pelinovsky

Various analytical techniques are reviewed in the context of asymptotic
reductions of the Gross–Pitaevskii (GP) equation, which is the nonlinear
Schrödinger (NLS) equation with an external potential. When the external
potential is periodic, the GP equation can be reduced to the coupled-mode
(Dirac) system, the continuous NLS equation and the discrete NLS equation
by using formal multi-scale expansion methods and their rigorous mathemat-
ical analogues. When the external potential is decaying at infinity, finite-
dimensional reductions of the GP equation can be derived for modeling of
dynamics of localized modes. When the external potential is confining, the GP
equation can be recovered from the multi-particle linear Schrödinger equation.

19.1 Introduction

The main part of this book is devoted to characterization of various properties
of localized and periodic modes trapped by external potentials in the physics
of Bose–Einstein condensation. Localized and periodic modes are modeled
typically by the dimensionless Gross–Pitaevskii (GP) equation

iut = −∆u+ V (x)u+ σ|u|2u, x ∈ RN , t ≥ 0, u ∈ C, (19.1)

where ∆ = ∂2
x1

+ · · ·+ ∂2
xN

, σ = ±1, and V (x) is an external potential. Many
theoretical results described in other chapters of this book are of numerical
nature. For instance, various software packages are employed to run the time
evolution problem (19.1) or fixed-point iterations of the stationary problem

ωφ = −∆φ+ V (x)φ+ σφ3, x ∈ RN , φ ∈ R, ω ∈ R. (19.2)

Other theoretical results are based on robust computational methods beyond
the numerical simulations such as variational approximations, energy esti-
mations, and asymptotic multi-scale expansions. This chapter is intended to
link some of these methods with modern mathematical analysis of the GP
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378 D.E. Pelinovsky

equation. The presentation will remain on the “physical” level with sparse
technical details, but links to rigorous mathematical techniques with relevant
references, if available, will be made. It should be pointed out that the sys-
tem of amplitude equations derived with few lines of formal computations can
sometimes be proved by careful functional analysis over a hundred of journal
pages.

A natural question that would arise is: Why would we care about asymptotic
reductions of the GP equation (19.1)? The answer follows from understanding
that the GP equation (19.1) is a space-inhomogeneous infinite-dimensional
dynamical system, which is often unsuitable for direct analysis. On the
other hand, some reductions of the GP equation are derived in the form of
space-homogeneous differential or difference equations or in terms of finite-
dimensional dynamical systems, which may possess exact or approximate
solutions. For instance, existence of gap solitons (decaying solutions in peri-
odic potentials) was proved in the stationary problem (19.2) from the elliptic
theory [1], bifurcation methods [2, 3] and the variational theory [4] but the
localized solutions are not available in a closed analytic form. On the other
hand, approximations of the gap solitons in the closed analytic form can be
obtained from the asymptotic reductions of the stationary equation (19.2) to
the coupled-mode system [5] or to the continuous NLS equation [6].

The main part of this chapter consists of three sections; each section is
devoted to a different class of the potential function V (x). I shall start with
a class of periodic potentials and describe simplifications of the GP equation
to one of the three models: the coupled-mode system of Dirac equations, the
continuous nonlinear Schrödinger (NLS) equation and its discrete counterpart,
the discrete NLS equation. I will then consider the class of decaying potentials
and describe the finite-dimensional models for localized modes of the GP
equation. Finally, I will review other results relevant for the class of confining
potentials.

Most results discussed in this chapter are based on consideration of the
one-dimensional problem (N = 1), while open questions are mentioned about
extensions of these results to multi-dimensional problems (N ≥ 2). The main
focus of this chapter is at the approximations of the localized modes of the
stationary equation (19.2), while fewer details will be given on the derivation
of the time-evolution versions of the reduced systems from the time-dependent
GP equation (19.1).

19.2 Class of Periodic Potentials

We shall assume here that V (x + d) = V (x) is a bounded periodic poten-
tial with the smallest irreducible period d. Depending on the strength of the
potential amplitude V∞ = ‖V ‖L∞ , one can develop three different reductions
of the time-dependent GP equation (19.1) and the stationary problem (19.2).
The crucial information for derivation of these reductions comes from the
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19 Asymptotic Reductions of the Gross–Pitaevskii Equation 379

spectrum of the linear operator L = −∆ + V (x) in the space of infinitely
smooth, compactly supported functions. It is well-known that the spectrum
of L denoted by σ(L) is purely continuous, consisting of a sequence of spec-
tral bands located on a subset of the real axis. For one-dimensional potentials
(N = 1), the spectral bands do not overlap and may allow for existence of
non-empty gaps between two adjacent bands. In general, the one-dimensional
Hill’s equation

Lψ(x) = −ψ′′(x) + V (x)ψ(x) = ωψ(x) (19.3)

has bounded solutions ψ(x) called the Bloch functions if and only if ω is in
the union of spectral bands

σ(L) = [ω0, ω1] ∪ [ω2, ω3] ∪ [ω4, ω5] ∪ . . . ,
where ω2m−2 < ω2m−1 ≤ ω2m, m ∈ N and ωm → ∞ as m → ∞. For a fixed
ω in the interior point of the nth spectral band of σ(L), both fundamental
solutions of the Hill’s equation (19.3) are quasi-periodic in x and have the
representation

ψ = u±n,k(x)e±ikx,

where k is the quasi-momentum defined in the fundamental interval k ∈[−π
d ,

π
d

]
, and

u±n,k(x+ d) = u±n,k(x)

are bounded periodic functions satisfying the relations u−n,k(x) = u+
n,k(x). Let

us represent the nth spectral band of σ(L) by the dispersion relation ω = ωn,k.
Then ωn,k can be extended into an even periodic function of k ∈ R with period
2π/d, according to the Fourier series

ωn,k =
∑
l∈Z

ω̂n,leikld,

where the real Fourier coefficients ω̂n,l satisfy the relations ω̂n,l = ω̂n,−l.
For a fixed ω ∈ R \ σ(L), the two fundamental solutions of the Hill’s

equation (19.3) grow exponentially either in x or −x and have the representa-
tion ψ = φ±(x)e±κx, where φ±(x) = φ±(x+d) and κ depends on ω ∈ R\σ(L).
When ω = ω0 represents a particular end-point of a spectral band of σ(L),
one of the solutions ψ = ψ0(x) is either d-periodic (corresponding to k = 0) or
d-antiperiodic (corresponding to k = π/d) and the other fundamental solution
ψ grows linearly in x.

It has been shown numerically in [5,6] that localized solutions of the non-
linear problem (19.2) (so-called gap solitons) exist in any finite gap of the
spectrum σ(L) and in the semi-infinite gap in the focusing case σ = −1. A
rigorous theorem on existence of gap solitons was proved in [4]. Analytical
approximations of the gap solitons with the coupled-mode theory and the dis-
crete NLS equation were considered in [5], while those with the continuous
NLS equation were described in [6]. We shall focus on these three approxima-
tions in the remainder of this section.
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380 D.E. Pelinovsky

19.2.1 Small Strength: Coupled-Mode Equations

Coupled-mode equations have been exploited traditionally in the context of
nonlinear optics [7] and photonic crystals [8]. Extensions of the standard
one-dimensional coupled-mode equations to the higher-dimensional couplings
between advective and dispersive terms were recently modeled in [9]. The role
of the coupled-mode equations is fundamental: they provide normal forms
for Bragg resonances of periodic or anti-periodic Bloch waves in a nonlinear
system with a small periodic potential V (x), when V∞ = ‖V ‖L∞ is a small
parameter. We shall review the derivation of the coupled-mode equations by
working with the Lyapunov–Schmidt reduction technique, similar to the anal-
ysis of [10]. In particular, we shall consider the stationary problem (19.2) in
one dimension N = 1 and apply either periodic or anti-periodic boundary con-
ditions to the solution φ(x). Let V (x) and φ(x) be expanded into the Fourier
series

V (x) =
∑
m∈Z

v2me(2πimx)/d, φ(x) =
∑

m∈Z′
φme(πimx)/d, (19.4)

where Z′ contains all even numbers for periodic φ(x) and all odd numbers for
anti-periodic φ(x) and φ−m = φ̄m for real-valued φ(x). After substitution of
(19.4) into (19.2), the differential equation (19.2) with N = 1 becomes the
lattice problem:(
ω − π2m2

d2

)
φm =

∑
m1∈Z′

vm−m1φm1 + σ
∑

m1∈Z′

∑
m2∈Z′

φm1φm2φm−m1−m2 ,

(19.5)

where m ∈ Z′ and the convolution sums are closed both in periodic and anti-
periodic cases since V (x)φ(x) and φ3(x) are periodic or anti-periodic if φ(x)
is periodic or anti-periodic, respectively. The left-hand-side of the nonlinear
lattice equation (19.5) is represented by an infinite-dimensional matrix oper-
ator which is singular if and only if ω = ωn, where ωn =

(
πn
d

)2 for some
n ∈ N. If ω �= ωn, the matrix operator is invertible and the zero solution
φm = 0, ∀m ∈ Z′ is uniquely continued in the nonlinear lattice equation
(19.5) according to the Implicit Function Theorem. No bifurcations of non-
linear periodic or anti-periodic solutions are possible for ω �= ωn. However, if
ω = ωn, some eigenvectors (one for n = 0 or two for n �= 0) belong to the
kernel of the singular matrix operator, and the non-zero solutions may bifur-
cate due to the presence of the right-hand-side terms of the lattice equation
(19.5). The method of Lyapunov–Schmidt reductions provide the decomposi-
tion of the infinite-dimensional vector φ = (..., φ−2, φ−1, φ0, φ1, φ2, ...)T into
the finite-dimensional and infinite-dimensional parts along the kernel and its
complement, the construction of the mapping of the infinite-dimensional part
in coordinates of the finite-dimensional part by using the Implicit Function
Theorem, and finally the projections of the full system (19.5) to the reduced
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19 Asymptotic Reductions of the Gross–Pitaevskii Equation 381

bifurcation equations [11]. Using this method for n �= 0, we represent the
vector φ and the parameter ω in the form

φ = aen + be−n + ϕ, ω =
(πn
d

)2

+Ω,

where e±n are unit eigenvectors in the space of infinite-dimensional vectors,
(a, b) ∈ C2 are coordinates of the kernel of the matrix operator, ϕ belongs to
the orthogonal complement of the kernel, and Ω is a parameter. Due to the
requirement that φ(x) is real-valued, we note the symmetry constraint b = ā.
By the Implicit Function Theorem in the space l2s(Z) with the norm

‖φ‖2
l2s

=
∑
m∈Z

(1 +m2)s|φm|2 <∞

for s > 1
2 , a smooth mapping ϕ = ϕ(a, b;Ω,v) exists in a local neighborhood

of (a, b) = (0, 0) for small values of Ω and ‖v‖L1 [11]. As a result, the bifur-
cation equations for (a, b) ∈ C2 becomes closed. The truncated equations at
the leading order take the explicit form:

Ωa = v0a+v2nb+σ(|a|2+2|b|2)a, Ωb = v−2na+v0b+σ(2|a|2+|b|2)b, (19.6)

where the truncation error is of the order of O(‖v‖2
L1 , (|a|+|b|)5). Since v−2n =

v̄2n, the symmetry constraint b = ā is satisfied and one equation (19.6) is
redundant.

It is a subject of ongoing studies to derive a full time-dependent version of
the coupled-mode equations (19.6) which would be valid in the energy space
(a, b) ∈ H1(R,C2) on the infinite line x ∈ R. The formal derivation is based
on the asymptotic multi-scale expansions [8], which result in the coupled-mode
system

i (∂t + ∂x) a = v0a+ v2nb+ σ(|a|2 + 2|b|2)a,
i (∂t − ∂x) b = v−2na+ v0b+ σ(2|a|2 + |b|2)b, (19.7)

where (x, t) are rescaled space-time variables. The presence of exact localized
solutions in the coupled-mode equations (19.7) makes this reduced model
particularly useful for analysis of existence, stability and time evolution of
gap solitons [12]. Other rigorous methods for justification of the coupled-mode
equations (19.7) can be found in [13,14], where localized modes are controlled
up to a finite-time interval and up to a small error (which may not be localized
in space).

Coupled-mode equations are formally extended in the space of two and
three dimensions [8], e.g., for four counter-propagating waves in the GP equa-
tion with N = 2. The system of four coupled-mode equations may possess
a gap in the continuous spectrum [8], where stationary two-dimensional gap
solitons may reside. However, since no gaps may exist in a two-dimensional
periodic potential V (x1, x2) in the limit of small strength V∞ = ‖V ‖L∞ [15],
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382 D.E. Pelinovsky

these gap solitons cannot be fully localized in the original GP equation (19.1).
Therefore, the breakup in convergence of iterations is expected when the meth-
ods of Lyapunov–Schmidt reductions are applied to the higher-dimensional
GP equation (19.1) with N ≥ 2.

19.2.2 Moderate Strength: Continuous NLS Equations

The envelope approximation for modulated nonlinear dispersive waves was
used to simplify problems of nonlinear optics, plasma physics, and water-waves
since the works of Leontovich in 1930s and Talanov in 1960s [16]. In the sim-
plest situation, this approximation results in a reduction of the second-order
time-evolution partial differential equations (PDEs), such as the Maxwell
equations, into the first-order time-evolution PDE represented by the non-
linear Schrödinger (NLS) equation. The NLS equation is different from the
GP equation (19.1) in that the potential term V (x) is absent. In the context
of the finite periodic potentials, the NLS equation was derived formally in [6]
near the band edges of the spectral bands but earlier works on the use of
the NLS approximation in the same context have been known for quite some
time, e.g. in [17]. We shall justify the NLS approximation for the stationary
problem (19.2) in one dimension N = 1 by using elements of the Floquet
theory and dynamical systems, similar to [18]. The two Floquet multipliers of
the Hill’s equation (19.3) associated with the periodic potential V (x) belong
to the unit circle when ω is in the interior point of σ(L), collide at +1 or −1
when ω is at the band edge of σ(L) and split along positive or negative real
axis outside and inside the unit circle when ω is in the point of a spectral gap.
We shall consider a transformation of the stationary problem (19.2) when ω
is close to a particular band edge ω0. For instance, let ω = ω0 + ε2Ω, where ε
is a small parameter to measure the deviation |ω − ω0|. Let us introduce two
functions ψ0(x) and ψ1(x) from the solutions of the ODEs:

−ψ′′
0 + V (x)ψ0 = ω0ψ0, −ψ′′

1 + V (x)ψ1 = ω0ψ1 + 2ψ′
0. (19.8)

These functions are either periodic or anti-periodic on x ∈ [0, d], depending
on the band edge ω0. The second eigenfunction ψ1(x) called the generalized
Bloch function solves the inhomogeneous Hill’s equation.

Let us represent the solution φ(x) of the stationary problem (19.2) in
the form

φ(x) = ε [a(x)ψ0(x) + b(x)ψ1(x)]

subject to the constraint a′ψ0 +b′ψ1 = bψ0. Another constraint on the normal
coordinates (a, b) follows from the ODE (19.2):

a′ψ′
0 + b′(ψ′

1 + ψ0) = bψ′
0 − ε2Ω(aψ0 + bψ1) + ε2σ(aψ0 + bψ1)3. (19.9)
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19 Asymptotic Reductions of the Gross–Pitaevskii Equation 383

The determinant of the coefficient matrix in the left-hand-side of the system
(19.9) is

D(x) = ψ0(x)ψ′
1(x) − ψ′

0(x)ψ1(x) + ψ2
0(x).

It is easy to check by direct differentiation that the determinant is x-
independent, such that D(x) = D0. We will assume here that D0 �= 0 and
show later that this condition gives a sufficient condition for existence of the
gap on one side of the point ω = ω0. By diagonalizing the system (19.9) and
rescaling the variables X = εx, a = A(X) and b = εB(X), we rewrite the
system (19.9) in an equivalent form:

Ȧ = B +
ε

D0

[
σψ1(Aψ0 + εBψ1)3 −Ωψ1(Aψ0 + εBψ1)

]
,

Ḃ = − 1
D0

[
σψ0(Aψ0 + εBψ1)3 −Ωψ0(Aψ0 + εBψ1)

]
, (19.10)

where the dots (Ȧ, Ḃ) denote derivatives in X = εx, while the functions ψ0

and ψ1 depend on x = X/ε. Therefore, a regular averaging method is applied
to decompose (A,B) into the mean-field and varying parts, so that the varying
part is defined uniquely in terms of the mean-field part [19]. Furthermore, the
ODE system (19.10) is associated with the Jordan block for a double zero
eigenvalue, which is brought into a normal form by a standard normal form
transformation [18]. By using these two rigorous techniques, the truncated
normal form at the leading order is written as follows:

D0Ä−ΩA(ψ0, ψ0)[0,d] + σA3(ψ2
0 , ψ

2
0)[0,d] = 0, (19.11)

where

(u, v)[0,d] =
1
d

∫ d

0

u(x)v(x)dx

is the averaging operator. Depending on the signs between D0, Ω and σ, the
averaged second-order ODE (19.11) may have a homoclinic orbit expressed
in terms of the hyperbolic sech-function. According to the asymptotic proce-
dure above, the sech-soliton of the reduced problem (19.11) resembles the gap
soliton of the stationary problem (19.2) near the band edge ω = ω0.

In order to relate the quantity D0 to the linear spectrum of L = −∂2
x +

V (x), we shall consider the Bloch function

ψ = u±n,k(x)e±ikx

of the spectral band ω = ωn,k near the band edge ω = ω0. At ω = ω0, the
quasi-momentum is k = 0 if ψ0(x) is a periodic Bloch function and k = π/d if
ψ0(x) is an anti-periodic function. Therefore, by abusing slightly notations we
can represent the solution of the Hill’s equation (19.3) for ω = ωn,k ≡ ωk in
the form ψ ≡ φk(x)eikx, where k is now near zero if ωk is near ω0 and φk(x) is
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384 D.E. Pelinovsky

either periodic or anti-periodic function, which satisfies the generalized Hill’s
equation

−φ′′k + V (x)φk = ωkφk + 2ikφ′k − k2φk. (19.12)

Because of analyticity of φk(x) and ωk with respect to k (see [20]), one can
expand

ωk = ω0 +
1
2
ω′′

kk
2 + O(k3)

and
φk = ψ0(x) + ikψ1(x) + k2ψ2(x) + O(k3)

and derive the inhomogeneous problem for ψ2:

−ψ′′
2 + V (x)ψ2 = ω0ψ2 +

1
2
ω′′

kψ0 − 2ψ′
1 − ψ0. (19.13)

The function ψ2(x) is periodic or anti-periodic if and only if the right-hand-
side of the ODE (19.13) is orthogonal to ψ0(x) on x ∈ [0, d]. This condition
results in the constraint

1
2
ω′′

k (ψ0, ψ0)[0,d] = (ψ0, ψ0)[0,d] + 2(ψ0, ψ
′
1)[0,d] = (1, D)[0,d] = D0.

With this relation, the stationary equation (19.11) can be rewritten in the form

1
2
ω′′

k Ä−ΩA+ σχA3 = 0, χ =
(ψ2

0 , ψ
2
0)[0,d]

(ψ0, ψ0)[0,d]
> 0. (19.14)

If ω′′
k �= 0, the gap exists on the other side of the point ω = ω0 relative to

the band ω = ωk and the gap solitons bifurcate as solutions of the truncated
problem (19.14) under the conditions that ω′′

k , Ω and σ are of the same signs.
Localized modes of the stationary problem (19.2) associated with the

periodic potential V (x) have their linear counterparts, called defect modes,
which are bound states of the linear Schrödinger operator with a sum of peri-
odic and small decaying potentials. For instance, one can look for localized
solutions of the linear problem

−φ′′ + V (x)φ+ εW (x)φ = ωφ, (19.15)

where V (x) is a bounded periodic potential, ω is in the gap of the spectrum
L = −∂2

x + V (x), W (x) is a bounded exponentially decaying potential, and ε
is small parameter. The first rigorous works on analysis of isolated eigenvalues
in the linear Schrödinger problem (19.15) are dated back to 1980s [21], while
recent activities on this subject are motivated by studies of defect modes in
nonlinear photonic lattices [22,23].

The problem of bifurcations of isolated eigenvalues of the spectral problem
(19.15) can be effectively solved with the Evans function method. The Evans
function was successfully used in a similar context of the edge bifurcation from
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19 Asymptotic Reductions of the Gross–Pitaevskii Equation 385

the continuous spectrum [24]. Let L = −∂2
x + V (x), ω /∈ σ(L), and consider

two particular solutions φ1,2(x) of the linear problem (19.15), so that φ1(x)
converges to the Bloch functions φ+(x)eκx as x → −∞ and φ2(x) converges
to the Bloch function φ−(x)e−κx as x→ +∞, respectively. Such solutions are
well-defined for Reκ > 0 by the ODE theory [25]. The parameter Reκ > 0
is called the Lyapunov exponent and it depends on ω, such that Reκ→ 0 as
ω → ω0, where ω0 is a particular band edge of the spectrum of σ(L).

Let the spectral band ω = ωn,k ≡ ωk be represented by

ωk = ω0 +
1
2
ω′′

kk
2 + O(k3)

on one side of the point ω = ω0, where k is near zero and ω′′
k �= 0. By abusing

notations again we can consider κ to be a small real parameter on the other
side of the point ω = ω0. The inverse dependence of κ(ω) for ω /∈ σ(L) is
defined by the expansion

ω = ω0 − 1
2
ω′′

kκ
2 + O(κ3).

The Evans function E(κ, ε) is the 2 × 2 Wronskian determinant of the
2-vector extensions of the two fundamental solutions φ1(x) and φ2(x). When
E(κ∗, ε∗) = 0 for some κ∗ ∈ C with Reκ > 0 and ε∗ ∈ R, the two solutions
become linearly dependent. They span an exponentially decaying solution
φ(x) of the spectral problem (19.15) on x ∈ R for the corresponding value
ω∗ which is found from the dependence ω∗ = ω(κ∗). It is proved in standard
analysis [25] that E(κ, ε) is analytic with respect to κ and ε for Reκ > 0 and
ε ∈ R and it can be analytically extended in κ near κ = 0.

Since φ+(x) and φ−(x) are linearly dependent at κ = 0 and ε = 0, then
E(0, 0) = 0. If ∂κE(0, 0) �= 0, the zero κ = 0 is continued into a simple
zero κ = κ∗ of E(κ, ε) near κ = 0 and ε = 0 by using the Implicit Function
Theorem and the expansion

E(κ, ε) = κ∂κE(0, 0) + ε∂εE(0, 0) + O(κ2, εκ, ε2).

If Reκ∗ > 0, the zero of E(κ, ε) corresponds to the eigenvalue of (19.15) with
an exponentially decaying eigenfunction φ(x). First derivatives of E(κ, ε) are
computed explicitly at (κ, ε) = (0, 0). Since

E(κ, 0) =
∣∣∣∣ φ+(x) φ−(x)
φ′+(x) + κφ+(x) φ′−(x) − κφ−(x)

∣∣∣∣ = φ+φ
′
− − φ−φ′+ − 2κφ+φ−

and φ±(x) = ψ0(x) ± κψ1(x) + O(κ2), then

∂κE(0, 0) = 2ψ1ψ
′
0 − 2ψ0ψ

′
1 − 2ψ2

0 = −2D0 = −ω′′
k (ψ0, ψ0)[0,d].
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On the other hand,

∂εE(κ, 0) = (φ′2∂εφ1 − φ2∂εφ
′
1) − (φ2∂εφ

′
1 − φ1∂εφ

′
2) = −

∫ ∞

−∞
W (x)φ1φ2dx,

where φ1(x) and φ2(x) are the two fundamental solutions of the ODE (19.15)
so that φ1,2 → ψ0(x) as ε→ 0 and κ = 0. Therefore,

∂εE(0, 0) = −(ψ0,W (x)ψ0)R.

The root of E(κ, ε) near (κ, ε) = (0, 0) bifurcates in the domain κ > 0 if
the matrix element (ψ0, εW (x)ψ0)R has the opposite sign to the sign of ω′′

k .
The leading-order approximation for the root follows from the expansions
above:

ω = ω0 − ε2

2ω′′
k

∣∣∣∣ (ψ0,W (x)ψ0)[0,d]

(ψ0, ψ0)[0,d]

∣∣∣∣2 + O(ε3). (19.16)

The same formula was derived in [22] with a decomposition technique when
a localized solution φ(x) is represented in terms of the complete set of Bloch
functions over the spectrum σ(L) and the asymptotic analysis of integrals
with pole singularities is performed in the limit ε → 0 and ω → ω0. The
asymptotic analysis is based on a rigorous technique, when the integral is
decomposed into a rank-one singular and infinite-dimensional non-singular
parts and the non-singular part is estimated in terms of the single component
of the singular part of the integral [26]. This technique is similar to the method
of Lyapunov–Schmidt reductions for integral equations.

The time-dependent version of the stationary equation (19.14) is the NLS
equation

iAt =
1
2
ω′′

kAXX + σχ|A|2A. (19.17)

Rigorous justification of the NLS equation (19.17) was reported in [27] from
the Maxwell equations with nonlocal terms and in [28] from a lattice system
that models the Fermi–Pasta–Ulam problem. These results are valid in the
space of continuous functions on a finite time interval, where the spatial decay
rate of the error terms can not be controlled.

Formal extensions of the NLS equation (19.17) in two and three dimensions
can be developed when the dispersion surface ω = ωk of the multi-dimensional
periodic potential V (x) admits extremal points ω = ω0 where ∇kωk = 0 and
the Hessian matrix of ωk is sign-definite. A spectral gap exists on the other
side of the extremal point ω = ω0 relative to the band ω = ωk. Bifurcations
of the multi-dimensional gap solitons near the band edge ω = ω0 can be
described by the multi-dimensional NLS equation, e.g. for N = 2:

iAt =
1
2
(
ω′′

k1
AX1X1 + ω′′

k2
AX2X2

)
+ σχ|A|2A, (19.18)

where (X1, X2) are appropriate coordinates which diagonalize the Hessian
matrix of ωk. Since ω′′

k1
and ω′′

k2
are of the same sign near the band edge,
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bifurcation of two-dimensional NLS solitons occurs when the NLS equa-
tion (19.18) is of the focusing type. However, such solutions are unstable
and the critical blow-up occurs in the time-evolution of the two-dimensional
NLS equation (19.18) in finite time [16]. On the other hand, no finite-time
blow up occurs in the defocusing GP equation (19.1) with σ = +1, so that
the correspondence between the GP equation and the NLS equation is lost
for N ≥ 2.

19.2.3 Large Strength: Discrete NLS Equations

Discrete NLS equations were used for modeling of various physical problems
involving arrays of coupled oscillators [29]. Similar to this traditional applica-
tion of the lattice equations, periodic continuous problems with large spacing
between wells of the periodic potential V (x) or large strength V∞ = ‖V ‖L∞

can also be reduced to the discrete problems in a so-called tight-binding
approximation [5]. The Wannier function decomposition method was shown
in [30] to be relevant for the derivation of the discrete NLS equation from the
continuous GP equation (19.1).

We shall describe the Wannier function decomposition based on the anal-
ysis of [20]. Let us consider the stationary problem (19.2) in one dimension
N = 1 and recall the construction of the Bloch functions ψ = u±n,k(x)e±ikx

and the spectral band ω = ωn,k of the operator L = −∂2
x+V (x). By definition,

the Wannier function an(x) for the nth spectral band ω = ωn,k is constructed
from the Bloch function

ψn,k ≡ u+
n,k(x)eikx

by

an(x) =
(
d

2π

)1/2 ∫ π/d

−π/d

ψn,k(x)dk. (19.19)

It is proved in [20] for a class of symmetric potentials V (−x) = V (x) that
there exists only one Wannier function an(x) for each n ≥ 0, so that an(x)
is a real function, an(x) is either even or odd about x = 0, and an(x) decays
exponentially as |x| → ∞. Because of the decay, the set of Wannier functions
{an,l(x)}n≥0,l∈Z with an,l(x) ≡ an(x− ld) provide a nice basis for decomposi-
tion of any function in L2(R) provided that the set is complete. Completeness
of the set of Wannier functions follows from the Shannon’s Sampling Theo-
rem which relates the Fourier transform of a discrete unbounded sequence
of functions and the Fourier transform of a continuous, compactly supported
function. Indeed, since∑

l∈Z

eild(k′−k) =
2π
d
δ(k′ − k), ∀k, k′ ∈

[
−π
d
,
π

d

]
,
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where δ(k) is the Dirac delta function, one can find a pair of Fourier transforms
between the Wannier functions an,l(x) and the Bloch functions ψn,k(x):

an,l(x)=
(
d

2π

)1/2 ∫ π/d

−π/d

ψn,k(x)e−iklddk, ψn,k(x)=
(
d

2π

)1/2∑
l∈Z

an,l(x)eilkd.

Let us normalize the Bloch functions by the Dirac’s orthogonality relations

(ψn′,k′ , ψn,k)R =
∫
R

ψn′,k′(x)ψ̄n,k(x)dx = δn′,nδ(k′ − k),

where δn′,n is the Kronecker delta symbol. It follows by direct computation
that the set of Wannier functions

{an,l(x)}n≥0,l∈Z

satisfies the orthogonality relations

(an′,l′ , an,l)R = δn′,nδl′,l.

Any function in L2(R) can be uniquely represented in terms of the set of
Wannier functions

{an,l(x)}n≥0,l∈Z.

For instance, a solution φ(x) of the stationary problem (19.2) can be repre-
sented by

φ(x) =
∑
n≥0

∑
l∈Z

clan,l(x),

where
{cn,l}n≥0,l∈Z

is the set of projection coefficients. Using this representation, we reduce the
stationary problem (19.2) to the nonlinear lattice problem

ωcn,l =
∑
l1∈Z

cn,l1 ω̂n,l−l1 +σ
∑

(n1,n2,n3)≥0

∑
(l1,l2,l3)∈Z3

Wn1,n2,n3,n
l1,l2,l3,l cn1,l1cn2,l2cn3,l3 ,

(19.20)
where

Wn1,n2,n3,n
l1,l2,l3,l = (an1,l1an2,l2 , an3,l3an,l)R

are matrix elements of the projections and ω̂n,l are Fourier coefficients for the
spectral band

ωn,k =
∑
l∈Z

ω̂n,leikld.

In the limit of large V∞ = ‖V ‖L∞ , the coefficients ω̂n,l are large at l = 0
and negligibly small at l �= 0. Similarly, the matrix elements Wn1,n2,n3,n

l1,l2,l3,l are
large at l1 = l2 = l3 = l and n1 = n2 = n3 = n and negligibly small at
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|lj − l| �= 0 and |nj − n| �= 0, ∀j = 1, 2, 3. Using these properties and the
renormalization ω = ω̂n,0 + Ω, the truncated system of ODEs (19.20) at the
leading order can be written as the tridiagonal system

Ωcn,l = ω̂n,1 (cn,l+1 + cn,l−1) + σWn,n,n,n
l,l,l,l |cn,l|2cn,l. (19.21)

By rescaling of Ω and cn,l, the coefficients of the tridiagonal system (19.21)
can be normalized to ±1. The tridiagonal system (19.21) is formally extended
to the time-evolution system called the discrete NLS equation

iψ̇l = ε (ψl+1 + ψl−1) + σ|ψl|2ψl, (19.22)

where
ψl(t) = cn,le−iΩt/

√
Wn,n,n,n

l,l,l,l

and ε = ω̂n,1. No works on rigorous justification of the discrete NLS equation
(19.22) from the time-dependent GP equation (19.1) have been reported so
far. A straightforward formal method was proposed in [31], where the periodic
potential of a large strength V∞ was approximated by a sequence of Dirac delta
functions

V (x) = −V∞
∑
l∈Z

δ(x− ld).

The individual delta-function potential V (x) = −V∞δ(x) admits the ground
state

φ0(x) = e−
1
2 V∞|x|

for the lowest eigenvalue ω0 = − 1
4V

2
∞. The direct decomposition of the solution

of the GP equation (19.1) is based on the representation

ψ(x, t) =
∑
l∈Z

cl(t)φ0(x− ld).

Although the basis functions {φ0(x−ld)}l∈Z are not orthogonal to each other,
the inner product of

(φ0(x− ld), φ0(x− l′d))R

is 2/V∞ for l′ = l and exponentially small in terms of 1/V∞ for l′ �= l, e.g.

(φ0(x− ld), φ0(x− (l ± 1)d))R =
2 + dV∞
V∞

e−
1
2 V∞d.

By substituting the decomposition for ψ(x, t) into the GP equation (19.1) and
by using the projection algorithm, one can find the leading-order amplitude
equations for cl(t):

iċl +
1
4
V 2
∞cl = −1

4
V 2
∞

(
1 +

1
2
dV∞

)
e−

1
2 V∞d(cl+1 + cl−1) +

1
2
σ|cl|2cl. (19.23)
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Under the transformation

cl(t) =
√

2ψl(t)e
i
4 V 2

∞t,

the system (19.23) becomes the discrete NLS equation (19.22) with

ε = −1
4
V 2
∞

(
1 +

1
2
dV∞

)
e−

1
2 V∞d.

The discrete NLS equation (19.21) has an exponentially small coupling term
ε in terms of 1/V∞. The limit of zero coupling term (ε = 0) is referred to
as the anti-continuum limit. It has been used successfully in the proof of
existence [32] and stability [33] of discrete solitons in one spatial dimen-
sion. Extensions of this method have been reported in the context of two-
dimensional [34,35] and three-dimensional [36] vortices. Since localized modes
of the discrete NLS equation and the eigenvalues of the relevant lineariza-
tions are known at ε = 0, the method of Lyapunov–Schmidt reductions can
be used to derive the conditions when these localized modes and their cor-
responding eigenvalues can be continued in ε �= 0. Power series expansions
in ε are constructed and studied in the technical implementation of the algo-
rithm. It is however clear that the second-order terms O(ε2) of the Lyapunov–
Schmidt reductions in [33–36] are comparable with the terms proportional to
ω̂n,2, which are truncated beyond the tridiagonal system (19.21). Therefore,
some discrepancies may occur between the predictions of the continuous GP
equation (19.1) and those of the discrete NLS equation (19.22).

The situation becomes worse in the space of higher dimensions. By using
the same technique, the discrete NLS equation (19.22) with N = 1 is extended
to the two-dimensional lattice with N = 2 in the form

iψ̇l,m = ε (ψl+1,m + ψl−1,m + ψl,m+1 + ψl,m−1) + σ|ψl,m|2ψl,m, (19.24)

where the spectral band ωk is assumed to be isotropic so that the Fourier
coefficients for ωn,k satisfy the conditions ω̂n,1,0 = ω̂n,−1,0 = ω̂n,0,1 = ω̂n,0,−1.
The two-dimensional discrete NLS equation (19.24) takes into account the
horizontal and vertical couplings between adjacent sites. The next-order term
contributing to the discrete NLS equation on a square lattice is the diagonal
coupling term which is proportional to the coefficients

ω̂n,1,1 = ω̂n,1,−1 = ω̂n,−1,1 = ω̂n,−1,−1.

If ω̂n,1,0 ∼ e−V∞d for large V∞, then

ω̂n,1,1 ∼ e−
√

2V∞d,

i.e. ω̂n,1,1 is much larger than

ω̂2
n,1,0, ω̂n,2,0 ∼ e−2V∞d.

If the Lyapunov–Schmidt reductions would depend crucially on the results
of the second-order computations, the predictions without the account of the
diagonal couplings between two-dimensional lattice sites could be incorrect.
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19.3 Class of Decaying Potentials

We shall assume here that V (x) is a decaying potential at infinity, which is
given by a continuously differentiable function on x ∈ RN . If the potential
V (x) is absent, the stationary problem (19.2) admits a solution φ0(x) decaying
to zero as |x| → ∞ in the focusing case with σ = −1 and ω < 0. In the space
of one dimension N = 1, this solution is nothing but the sech-soliton φ0 =√

2|ω|sech(
√|ω|x−s), where s ∈ R is an arbitrary translation parameter. We

shall ask if the solution φ0(x) persists in the full stationary problem (19.2) with
a given potential V (x). To answer this question, let us assume the existence of
the localized solution of the stationary problem (19.2) with ω /∈ σ(L) which is
given by a continuously differentiable function φ(x) on x ∈ RN . We multiply
the stationary problem (19.2) by ∂xj

φ(x), j = 1, ..., N and integrate over
x ∈ RN . Since φ(x) decays to zero at infinity with an exponential rate for
ω /∈ σ(L), contributions from (N − 1)-dimensional integrals vanish at infinity.
As a result, the following integrals must be identically zero∫

RN

φ2(x)∂xj
V (x)dx = 0, j = 1, ..., N. (19.25)

Of course, these conditions give simply constraints on the profile of the clas-
sical solution φ(x) of the stationary problem (19.2), which has been assumed
to exist. However, in two special cases, one can use the leading-order approx-
imation φ(x) = φ0(x− s) with s ∈ RN obtained for V (x) = 0 in the integral
(19.25) and interpret the corresponding conditions as the persistence equa-
tions for continuation of φ0(x − s) into a full solution φ(x) of the stationary
problem (19.2) with V (x) �= 0.

The special cases when the integrals (19.25) are small occur for small or
wide potentials V (x) relative to the amplitude or width of the stationary
solution φ0(x). In the first case, one can use the representation V = εW (x),
such that the conditions (19.25) have the magnitude of O(ε) [37]. In the second
case, one can use the representation V = W (εx), such that the same conditions
occur also at O(ε) [38]. In either case, the rigorous technique for finding of
the necessary condition for persistence of stationary solutions is based on
the method of Lyapunov–Schmidt reductions [37, 38]. Moreover, the same
technique can be extended to derive the sufficient condition for persistence,
to study stability of the persistent configurations and to approximate the
time-evolution dynamics of localized modes in the external potential V (x)
with the Newton’s equation of motion

m0s̈ = −∇U(s), (19.26)

where m0 is an effective mass, s is the position of the localized mode on
x ∈ RN , and U(s) is an effective potential given by

U(s) =

∫
RN V (x)φ2

0(x− s)dx∫
RN φ

2
0(x)dx

. (19.27)
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Due to the Galilean translation of solutions of the GP equation

u(x, t) �→ e
i
2 v·x− i

4 |v|2tu(x− vt, t),

the constant m0 is found to bem0 = 1/2 independently of N [38]. In the space
of one dimension N = 1, it follows from the Newton’s equation of motion
(19.26) that the localized mode φ0(x − s) persists at the particular value
s = s0 with U ′(s0) = 0 if U ′′(s0) �= 0, it is stable if U ′′(s0) > 0 and unstable
if U ′′(s0) < 0 and the long-term dynamics of localized mode is described
by the long-term oscillations in the case U ′′(s0) > 0. If there are several
points s0 with U ′(s0) = 0, the Newton’s equation of motion (19.26) provides
global information on stability of each equilibrium configuration and local
dynamics in a neighborhood of the equilibria. In the space of two and three
dimensions N ≥ 2, the Newton’s equation of motion (19.26) is not applicable
for predictions of dynamics of localized modes due to spectral instabilities
of solitons φ0(x) of the multi-dimensional focusing NLS equation (19.1) with
V (x) = 0 and σ = −1.

The formal derivation of the Newton’s equation of motion (19.26) for
dynamics of a localized mode in an external potential V (x) was developed
first in [39,40] by using asymptotic multi-scale expansions. This formal tech-
nique is recovered from the Ehrenfest’s theorem

d
dt

∫
RN

i
2

(ū∇u− u∇ū) dx =
∫
RN

|u|2∇V (x)dx (19.28)

for any continuously differentiable solution u(x, t) of the GP equation (19.1).
The slow dynamics of a localized mode is supported by the smallness of the
right-hand-side of (19.28), which occurs generally if ∇V (x) is small (either
V = εW (x) or V = W (εx) with a small parameter ε). In this case, the
leading-order solution u(x, t) is an orbit of the moving soliton

u = e
i
2 v·x−iθφ0(x− s)

with ṡ = v and θ̇ = ω + |v|2
4 , where all parameters (s, v, θ, ω) are (slow)

functions of time t. (If V = W (εx), one can shift parameters of φ0(x) to
remove W (0) from the leading-order solution.) The balance equation (19.28)
reduces in this leading-order approximation to the Newton’s equation of
motion (19.26).

Although the decomposition of the asymptotic multi-scale expansion
method may seem rough and inaccurate, it has been rigorously proved in
the case V = W (εx) by two methods. The weak variational formalism was
employed in [41] to prove convergence of the GP equation in the semi-classical
limit to the set of Newton’s equations of motion for a superposition of localized
modes. The skew-orthogonal projection method, Lyapunov–Schmidt decom-
positions, and lower-upper bound estimates on the energy functional were
developed in [38] for dynamics of a single localized mode. The same authors
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also extended their method to the case of confining potentials in [42] and
derived the same Newton’s equation of motion (19.26).

The other case V = εW (x) with decaying W (x) is even easier since the
technique of [38] would work without any modifications. For instance, the
sufficient condition of persistence of localized solutions, i.e. U ′(s0) = 0 and
U ′′(s0) �= 0, follows from a classical application of Lyapunov–Schmidt reduc-
tions to the elliptic problem (19.2) with a perturbation term in H2(R) [37].
This method was recently applied to the case of dark solitons which are local-
ized solutions with non-zero boundary conditions existing in the defocusing
case σ = 1 and ω > 0. Recent work [43] contains a rigorous proof of persistence
and stability of dark solitons in small decaying potentials V = εW (x) and
numerical evidences that the Newton’s law of motion modified by the radia-
tive terms is relevant for slow dynamics of dark solitons. Following discussions
in [44], we mention that the Ehrenfest’s theorem (19.28) is not relevant for
the derivation of the Newton’s equation of motion for dark solitons as it gives
a wrong value of the mass constant m0.

A very similar technique can be developed to deal with localized modes
of the GP equation when the decaying potential V (x) is represented by a
superposition of K identical single-well potentials W (x) located on an equal
large distance s far from each other:

V (x) =
K∑

k=1

W (x− (k − 1)s). (19.29)

The localized modes of the stationary problem (19.2) with the potential V (x)
in the form (19.29) persist and evolve according to an effective interaction
potential. This theory of interaction of localized modes distant from each
other was elaborated long ago by using formal methods in [40] and it was
rigorously verified recently by using geometric constructions in [45].

In order to place this theory on mathematical footing, let us assume that
the operator L = −∂2

x +W (x) associated with each potential well W (x) has a
number of isolated eigenvalues and the corresponding bound states. By using
the classical Lyapunov–Schmidt reductions [11], each bound state for a simple
isolated eigenvalue is uniquely continued into a nonlinear localized mode of the
nonlinear problem (19.2) with V = W (x). The ground state for the smallest
eigenvalue is typically of the highest interest due to its stability with respect
to time evolution in the nonlinear GP equation (19.1).

We now consider the stationary problem (19.2) with the potential V (x)
in the form (19.29) in the limit of large s. First, let us neglect the nonlinear
terms and consider the splitting of eigenvalues of the linear operator L =
−∂2

x + V (x). When s = ∞, the smallest eigenvalue of L has multiplicity
K. However, the multiplicity of the eigenvalue of L is broken when s �= ∞.
Detailed computations for the case K = 3 were performed in [46] where a
general geometric method of [45] for construction of multi-pulse solutions
was employed to the analysis of splitting of eigenvalues of L. As a result of
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the reductive procedure, the bifurcating eigenvalues with the corresponding
eigenfunctions are computed in the form

λ=λ0±2
√

2ψ0

(s
2

)
ψ′

0

(s
2

)
: ψ±=

1
2

(
± ψ0(x) +

√
2ψ0(x− s) ± ψ0(x− 2s)

)
,

while the persistent eigenvalue with the corresponding eigenfunction is

λ = λ0 : ψ̃0 =
1√
2

(ψ0(x) − ψ0(x− 2s)) ,

where λ0 and ψ0(x) are the smallest eigenvalue and the corresponding ground
state of the linear operator L = −∂2

x +W (x). Using projections to the three
eigenstates for sufficiently large s and employing the method of Lyapunov–
Schmidt reductions in the nonlinear stationary problem (19.2), the authors
of [46] found a system of nonlinear equations for projections and classified
all coupled localized modes that exist in the three-well potential, including
their spectral stability and predicted time evolution. A similar method was
employed in [47] to consider continuations of eigenvalues of the linear prob-
lem associated with a confining potential due to the perturbation of a small
periodic potential.

19.4 Class of Confining Potentials

We shall assume here that V (x) is a confining potential in the sense that
inf |x|≥R V (x) → ∞ as R→ ∞. Since most experimental settings are based on
the so-called harmonic traps, a typical approximation of the general confining
potentials is a quadratic function

V (x) =
1
2

N∑
j=1

ω2
jx

2
j

with parameters (ω1, ..., ωN ). The Schrödinger operator L = −∇2+V (x) asso-
ciated with the quadratic function V (x) possesses an exact set of eigenvalues
and bound states written in terms of the Gauss–Hermite polynomials.

Gauss–Hermite polynomials can be used for decomposition of the solution
of the time-dependent GP equation (19.1) with the quadratic potential func-
tion V (x) and reduction of the time-evolution PDE problem to the equivalent
lattice problem. This approach was used in [48], where the lattice problem
was truncated in the Galerkin approximation at the two dominant modes.
The two-mode approximation was shown to represent adequately all main
dynamical phenomena associated with existence, stability and evolution of
localized modes in the confining potentials.

In all asymptotic reductions of this chapter up to this point, we have taken
the GP equation (19.1) and its stationary counterpart (19.2) as starting equa-
tions of analysis and performed some actions to simplify them to other reduced
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equations. On the other hand, the GP equation (19.1) is itself a reduction of
the primary equations of physics, which are based on the multi-particle wave-
function formalism in the system of interacting bosons. One can ask therefore
if the GP equation (19.1) can be derived rigorously from equations of multi-
particle quantum mechanics.

These questions were answered for the stationary problem (19.2) with
N = 3 in [49]. Extensions of this work for N = 1, 2 and for other physical
settings are given in the stream of subsequent publications reviewed in [50].
The authors of [49] considered the Hamiltonian operator of n identical bosons

H =
n∑

j=1

[−∇2
i + V (xi)

]
+
∑
i<j

v(|xi − xj |), (19.30)

where V (x) is the confining potential, v(|x|) is an interaction potential and
xj ∈ R3 for all j = 1, ..., n. The ground state of the Hamiltonian oper-
ator H is a totally symmetric square integrable wavefunction denoted by
Ψ(x1, x2, ..., xn). It exists for the eigenvalue (energy level) EQM(n, a), where
a is the scattering length defined by the formula

a = lim
r→∞ (r − u(r)/u′(r))

from the solution u(r) of the boundary-value problem

−u′′(r) +
1
2
v(r)u(r) = 0

with u(0) = 0.
The main results of [49] (and equivalent theorems in [50]) are proved in

the limit of many particles n → ∞ and zero scattering length a → 0, such
that na is fixed. In particular, it is proved that

∀a1 > 0 : lim
n→∞

1
n
EQM

(
n,
a1

n

)
= EGP(1, a1), (19.31)

where EGP(n, a) is the energy of a solution of the stationary problem (19.2)
defined by

EGP(n, a) =
∫
R3

(|∇φ|2 + V (x)|φ|2 + 4πa|φ|4) dx, (19.32)

subject to the normalization condition∫
RN

|φ|2dx = n.

The ground state solution φ(x) is defined by the minimal value of EGP subject
to the fixed L2-norm. Not only the energy level EQM of the multi-particle
Hamiltonian H in (19.30) converges to the energy level EGP of the ground
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state solution of the stationary problem (19.2) but also the solutions converge
weakly in L2(R3n), i.e.

∀a1 > 0, a =
a1

n
: lim

n→∞

∫
R3n−3

|Ψ(x, x2, ..., xn)|2dx2...dxn = φ2(x),

(19.33)
in the sense that the integral of the difference between the left-hand-side and
right-hand-side terms of the equality (19.33) on x ∈ R3 converges to zero as
n→ ∞.

The results of [49, 50] are only proved for stationary solutions of the GP
equation (and only for the ground state solutions). The time-dependent GP
equation (19.1) was considered recently in [51] within a similar asymptotic
limit n → ∞ under the constraint that nεa is fixed with 0 < ε < 3/5. It is
proved that the limit points of the k-particle density matrices of the multi-
particle wavefunction Ψ(x, x2, ..., xn, t) solve asymptotically the GP equation
and the associated hierarchy of evolution equations. Thus, only proved rig-
orously in 2006, the Gross–Pitaevskii model has been widely used in atomic
physics since the pioneer works of Gross and Pitaevskii in 1960s.

Conclusions

I have described reductions of the stationary and time-dependent GP equa-
tions used for analysis of existence, stability and dynamics of localized modes
in external potentials. Depending on the properties of the potential V (x), the
spatially inhomogeneous GP equation (19.1) reduces either to the homoge-
neous PDEs such as the coupled-mode system or the continuous NLS equa-
tion or to differential-difference equations such as the discrete NLS equation
or to finite-dimensional models such as the Newton’s equations of motion or
the ODE system for truncated Gauss–Hermite polynomials.

The limited space of the chapter does not allow me to consider other
asymptotic reductions relevant for physics of Bose–Einstein condensation,
such as reductions of the time-periodic GP equation relevant for the Feshbach
resonance management of the Bose–Einstein condensates (see, e.g., [52]). I
conclude by saying that ways of rigorous analysis remain opened for further
work in the context of the Gross–Pitaevskii equation. Some of the open prob-
lems have been mentioned explicitly in this chapter. Some other problems will
show up themselves to young researchers who will take the risk to get involved
into challenging topics of the modern mathematical physics.
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