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Abstract

This dissertation is concerned with analysis of orbital stability of solitary waves

and well-posedness of the Cauchy problem in the integrable evolution equations.

The analysis is developed by using tools from integrable systems, such as higher-

order conserved quantities, Bäcklund transformation, and inverse scattering trans-

form. The main results are obtained for the massive Thirring model, which is an

integrable nonlinear Dirac equation, and for the derivative NLS equation. Both

equations are related with the same Kaup-Newell spectral problem. Our studies

rely on the spectral properties of the Kaup-Newell spectral problem, which convey

key information about solution behavior of the nonlinear evolution equations.
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3.1 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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Chapter 1

Introduction

1.1 General Background

The Hamiltonian H with n degrees of freedom is completely integrable in the
Liouville sense if there exist n independent first integrals I1 = H, I2, · · · , In in
involution, i.e., {Ii, Ij} = 0. These integrals are used as new coordinates in which
corresponding dynamics is linear in time. Concept of Liouville integrability can
be extended to an infinite dimensional Hamiltonian with a countable set of first
integrals in involution.

A new theory of completely integrable Hamiltonian systems was stimulated by
Gardner, Kruskal and Miura [40] who found that the eigenvalues of the Schrödinger
operator

L = −∂2
x + u(x, t)

are invariant with respect to t if u(x, t) evolves according to the KdV equation

ut − 6uux + uxxx = 0. (1.1)

Peter Lax [65] formulated a Lax representation of the KdV equation in the form:

Lt = [A,L], (1.2)

where [·, ·] is a Lie bracket and A is a skew symmetric operator which is given by

A = −4
d3

dx3
+ 6u

d

dx
+ 3ux.

The KdV equation (1.1) is associated with the linear equations defined by the
operators L and A,

Lφ = λφ, Aφ = φt.

If a spectral parameter λ is independent of space x and time t, a simple computa-
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tion shows

(Lφ)t = Ltφ+ Lφt = (Lt + LA)φ, (Lφ)t = (λφ)t = λAφ = ALφ

from which the Lax equation (1.2) is derived.

From the spectral problem Lφ = λφ, solution behavior of the KdV equation
can be studied in great detail by the inverse scattering transform [40] where the
Gelfand-Levitan-Marchenko equation

K(x, y, t) + F (x+ y, t) +

∫ ∞
x

K(x, z, t)F (z + y, t)dz = 0 (1.3)

is crucial to express the KdV solution u(x, t) as

u(x, t) = −2
d

dx
K(x, x, t).

The inhomogeneous part F (x) distinguishes two important parts of the KdV so-
lution,

F (x) =
N∑
n=1

cne
−κnx+8κ3

nt +
1

2π

∫
R
r(k)e8ik3t+ikxdk, (1.4)

where the first term is related to N solitons and the second term is related to
dispersive wave packets. The explicit pure N -solitons are derived by setting r(k) =
0 in (1.4).

The study of linear differential equations dates back to the nineteenth century
when Sturm and Louville studied spectral property for the second-order ordinary
differential equations. At the same time, transformation methods, related to lin-
ear and nonlinear equations, were investigated by Darboux and Backlund. For
example, Darboux [25] showed that the linear equation

y′′ = my + f(x)y, m = constant (1.5)

is related to another linear equation

w′′ = mw + θ
d2

dx2

(
1

θ

)
w (1.6)

through w = y′ − θ′

θ
y, where θ′′ = f(x)θ. The potentials in (1.5) and (1.6) are

related by

f(x) 7→ θ
d2

dx2

(
1

θ

)
,

whereas the structure of the linear equations (1.5) and (1.6) are invariant.

The same idea was applied to the linear spectral problems whose potentials
correspond to solutions of nonlinear PDEs. Thanks to Zakharov and Shabat [118],
the cubic NLS equation

iut + uxx + 2|u|2u = 0 (1.7)

2
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can be associated with the linear systems

∂xφ =

[
λ u
−u −λ

]
φ, ∂tφ = i

[
2λ2 + |u|2 ∂xu+ 2λu
∂xu− 2λu −2λ2 − |u|2

]
φ.

If λ is independent of x and t, u(x, t) must be the solution of the cubic NLS equation
(1.7) that can be represented as ∂x∂tφ = ∂t∂xφ. There exists a transformation [79]
for the above linear systems whose structure remains invariant and the potential
u is transformed as

u 7→ −u− 4Re(λ0)φ1φ2

|φ1|2 + |φ2|2
, (1.8)

where φ = (φ1, φ2)t is a solution of the same linear systems for a particular value
λ0. If one starts with the zero solution u = 0 with k = 2λ0 ∈ R, one obtains a
pure one soliton u = k sech(kx)eik

2t. i.e.,

0 7→ k sech(kx)eik
2t.

The transformation (1.8) can be iterated to generate, for example, N solitons:

0 7→ 1 soliton 7→ 2 solitons 7→ 3 solitons 7→ · · · 7→ N solitons.

The procedure can be made more efficient by transforming zero solution to N
soliton at once [96], called the n-fold Bäcklund/Darboux transformation, due to
the fact that permuting the order of inserting solitons does not affect the final N
soliton state. This is called Bianchi’s permutability.

In the construction of the inverse scattering transform, the solution to a com-
pletely integrable system is expressed in terms of the one to the Riemann-Hilbert
problem. In its simplest case, the Riemann-Hilbert problem is set to find section-
ally analytic function g(λ) in C \ Γ satisfying the jump condition

g+(λ) + α(λ)g−(λ) = β(λ), λ ∈ Γ

for a given contour Γ in C, and given functions α, β on Γ. The functions g+ and
g− are the non-tangential limits of g from the two sides of the contour Γ. The
contour Γ can be closed or open, bounded or unbounded, as in the figure below:

Γ

g(λ)

g+

g−

A function g(λ) is closely related to fundamental solutions of the Lax system with
a spectral parameter λ. This beautiful aspect of complex analysis, seen in the
inverse scattering transform, implicates connection to other branches of science
that can be formulated through the Riemann-Hilbert problem. Random matrix

3



Ph.D. Thesis -Yusuke Shimabukuro Mathematics - McMaster University

theory, for example, has been known for its connection to the Riemann-Hilbert
problem and the integrable systems [28]. A hermitian N × N random matrix, as
an example, gives a probability distribution ρ of eigenvalues λ in the form of a
Vandermonde determinant with a Gaussian weight and the normalized constant
cn

ρ = cne
−

Pn
j=1 λ

2
j

∏
1≤i<j≤n

(λi − λj)2

which can be re-expressed as orthogonal polynomials, such as the Hermite poly-
nomials. The orthogonal polynomials can be formulated in the Riemann-Hilbert
problem [39]. An eigenvalue behavior as limit n→∞ exhibits mysterious connec-
tion to the integrable systems, for example, to the fifth Painlevé equation [51].

Deift and Zhou discovered an advantage of the Riemann-Hilbert formulation for
analytical treatment of integrable PDEs. For example, they developed the steepest
decent method to study decay estimate of an oscillatory solution [30]. This led
to a number of applications, in particular, to decay estimates in integrable PDEs
as well as to orthogonal polynomials. More recently, this type of technique was
extended to studying stability problem. Pelinovsky and Cuccagna have studied
an asymptotic stability of the NLS soliton using the steepest decent method [24].
Along the same line, the Miura transformation [72], the dressing method [22], and
the Bäcklund transformation [46, 79], just to list a few, have been used to treat
the stability of solitons in the integrable systems.

This dissertation intertwines analysis of PDEs and beautiful methods from
integrable systems. The main goal is to construct a mathematical proof for orbital
stability of solitary waves and well-posedness of the Cauchy problem associated to
integrable PDEs. It presents novel ways to treat solution of completely integrable
systems in a defined function space. The corresponding results are formed in
Chapters 2, 3, and 4.

Chapter 5 is concerned with line soliton in the 2D Dirac system. Chapter 5
shows that line soliton of the 2D Dirac system which corresponds to exactly one
soliton of the 1D Dirac system is not spectrally stable with respect to transverse
perturbations. This adds the first instability result of the Dirac line soliton with
respect to transverse perturbations. Instability of line soliton is common in many
equations reported in literature, since instability behavior is geometrically richer
in 2D than in 1D.

The following sections overview results and techniques obtained in this disser-
tation and explained in details in the subsequent chapters.

1.2 Orbital stability of Dirac soliton by energy

method (Chapter 2)

Chapter 2 is based on our published paper:
D. E. Pelinovsky and Y. Shimabukuro, Orbital stability of Dirac solitons, Lett.
Math. Phys. 104 (2014), 21-41.
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Here, the massive Thirring model (MTM) is an integrable version of the nonlinear
Dirac equations written in the form,{

i(ut + ux) + v = 2|v|2u,
i(vt − vx) + u = 2|u|2v. (1.9)

Solution of the MTM is denoted as s(t) = (u, v)t with an initial data s0 := s(0).
The explicit Schwartz function

sω(x) :=

√
1− ω2

√
1 + ω cosh(

√
1− ω2x) + i

√
1− ω sinh(

√
1− ω2x)

for ω ∈ (−1, 1) gives the stationary one soliton sωe
iωt which solves (1.9), where

sω = (sω, sω)t. The orbit of Dirac solitons is defined as, for a fixed ω ∈ (−1, 1),

Σω(t) := {sω(·+ x0)eiωt+iα|(x0, α) ∈ R2},

for every t ∈ R.

Definition 1. Fix some ω ∈ (−1, 1). We say that the orbit Σω is stable in a Hilbert
space X if, for every ε > 0, there exists a δ > 0 such that, if distX(s0,Σω(0)) < δ,
then distX(s(t),Σω(t)) < ε for every t ∈ R.

The distance metric distX is defined as dist
X

(f,Σω(t)) := infg∈Σω(t) ‖f−g‖X for
some Hilbert space X equipped with the norm ‖ · ‖X . We essentially use Grillakis-
Shatah-Strauss orbital stability theory [41], which says that the orbital stability of
Σω holds if sω is a local minimizer of the energy functional that is constant with
respect to the time evolution of the MTM, under some constraint. However, the
Dirac Hamiltonian H

H =
i

2

∫
R

(uūx − uxū− vv̄x + vxv̄) dx+

∫
R

(
−vū− uv̄ + 2|u|2|v|2

)
dx.

is sign-indefinite, i.e., there exist infinite-dimensional subspaces Y± ⊂ H1/2(R)
such that

H(s + sω)−H(sω) ≷ 0

for every s ∈ Y±. Therefore, the Dirac Hamiltonian H is not suitable for every
s ∈ Y± to prove orbital stability of sω. Nevertheless, the MTM is an integrable
nonlinear PDE, which possesses arbitrarily many conserved quantities. The main
idea is to find a higher conserved quantity on H1(R) that has a coercive structure.
Section 2.5 gives derivation of the conserved quantity R given as

R(s) =
∫

R

[
|ux|2 + |vx|2 − i

2
(uxū− ūxu)(|u|2 + 2|v|2) + i

2
(vxv̄ − v̄xv)(2|u|2 + |v|2)

−(uv̄ + ūv)(|u|2 + |v|2) + 2|u|2|v|2(|u|2 + |v|2)] dx

defined on H1(R). This energy functional exhibits much nicer structure due to
|ux|2 + |vx|2 which gives an elliptic operator. This term is not present in the Dirac
Hamiltonian H. The key ingredients of orbital stability of one soliton in the MTM

5
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is that one soliton sωe
iωt is a critical point and a local minimizer of the functional

Λ(s) := R(s) + (1− ω2)‖s‖L2

under some constraint. The coercivity of R is given in Lemmas 3, 4, 5, depend-
ing on different values of ω. Coercivity is used to provide a global bound on
distH1(s(t),Σ(t)) in the time evolution of the MTM under constraint of either
fixed mass or momentum, given in Lemma 7. This leads to proving orbital stabil-
ity (Theorem 1) by a contradiction argument, given in the end of Section 2.4.

1.3 Orbital stability of Dirac soliton by Bäcklund

transform (Chapter 3)

Chapter 3 is based on our published paper:
A. Contreras, D. E. Pelinovsky, and Y. Shimabukuro, L2 orbital stability of Dirac
solitons in the massive Thirring model, Comm. PDEs 41 (2016), 227-255

Here, orbital stability of one soliton in the MTM is considered by using the
Bäcklund transformation. The transformation can be used to relate N soliton
solution and (N − 1) soliton solution of the same equation.

The underlying idea of this Chapter is to relate stability of solution around
one soliton to stability of solution around zero. Solutions to MTM are stable in
L2 norm, thanks to the mass conservation and L2 global well-posedness [15].

Let the Bäcklund transformation be denoted as B. If s := (u, v) is a MTM
solution, then q = B[s] is again a solution of the MTM. It is schematically clear
that if distL2(s0,Σ(0)) is sufficiently small and s = (u, v) is a solution to (1.9) with
initial data s0 = (u0, v0), then there is a constant C > 0 such that

s0 s(t)

q0 q(t)

B‖q0‖L2(R) ≤ C distL2 (u0,Σ(0))

‖q0‖L2(R) = ‖q(t)‖L2(R)

B distL2 (s(t),Σ(t)) ≤ C‖q(t)‖L2(R)

The main idea presented above is that the global bound on distL2(s(t),Σ(t))
comes from the L2 conservation of q, whose size is controlled by the initial condi-
tion.

The Bäcklund transformation B, spectrally speaking, removes or adds an eigen-
value of the spectral problem ∂xφ = LMTMφ with the Lax operator LMTM

LMTM =
i

4
(|u|2 − |v|2)σ3 −

iλ

2
σ1W (v) +

i

2λ
σ1W (u) +

i

4

(
λ2 − 1

λ2

)
σ3, (1.10)

where W (f) =

(
f 0

0 f

)
, and σ1, σ3 are the Pauli matrices.

Let {λj}Nj=1 be a set of eigenvalues of LMTM with the potential s0 = (u0, v0).

6
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Let ρ be an eigenvalue of LMTM with the pure one soliton sω. If distL2(s0,Σ(0))
is sufficiently small, then the first step is to locate a unique eigenvalue λ1 that is
close to ρ.

Im(λ)

Re(λ)

ρ

λ1

λ2 λ3 λ4 · · · sω s0

The eigenvalue λ1 contributes to the largest soliton in the initial data s0. After this
eigenvalue is removed, the eigenvalue picture of LMTM with a potential q0 := B[s0]
may look like

Im(λ)

Re(λ)

ρ

λ2 λ3 λ4 · · · q0

Possible eigenvalues λ2, λ3, · · · contribute as small solitary waves. These eigen-
values do not affect orbital stability theory. If, on the other hand, one asks for
asymptotic stability of a soliton, it is important to rule out all eigenvalues in q0

and to obtain dispersive estimates of the remaining wave packet in a suitable norm.

1.4 Global well-posedness of the derivative NLS

equation (Chapter 4)

Chapter 4 is based on our submitted paper:
D. E. Pelinovsky and Y. Shimabukuro, Existence of global solutions to the deriva-
tive NLS equation with the inverse scattering transform method, arXiv:1602.02118

The Cauchy problem of the derivative NLS equation is given as{
iut + uxx + i(|u|2u)x = 0, t > 0, x ∈ R,
u|t=0 = u0.

(1.11)

An interesting open problem concerns with global well-posedness of the Cauchy
problem (1.11) with a large initial data u0, see introduction of Chapter 4.

7
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Definition 2. The Cauchy problem (1.11) is globally well-posed in a Banach space
X if a solution u(t) ∈ X is unique and depends continuously with respect to u0 ∈ X
for every t ∈ [0,∞). We say that a solution map X 3 u0 7→ u(t) ∈ X is globally
well-posed.

Global well-posedness comes naturally from a local well-posedness in X and a
global bound on solution in X. However, for the derivative NLS, in order to obtain
such uniform bound by its energy, smallness condition on an initial data u0 in L2-
norm must be imposed. The inverse scattering transform, instead, constructs
a global solution map in Definition 2 without taking use of conservation laws.
Chapter 4 is devoted to proving solvability of (1.11) by the inverse scattering
transform R that is bijective and Lipschitz between weighted Sobolev spaces. A
global solution map is obtained through the following sequence of maps:

u0 7→ R(u0) 7→ R(u0)e2iλ4t 7→ R−1(R(u0)e2iλ4t) = u(t)

where an important assumption on u0 is that the spectrum problem of ∂xφ =
LdNLSφ with the Lax operator LdNLS

LdNLS = −iλ2σ3 + λσ1

(
u0 0
0 u0

)
(1.12)

does not admit any eigenvalue, i.e., u0 does not support any soliton. While a
sufficiently small initial data satisfies such condition, it is not yet known if large
initial data satisfy this condition.

In order to conclude the global well-posedness of the derivative NLS with a
large initial data, the case of N solition solution must be considered. We do not
include this in this dissertation, due to the lengthy algebraic computations. In
fact, once pure dispersion case is established, then adding solitons is more like
an algebraic operation. The n-fold Darboux transformations for the Kaup-Newell
spectral problem are found in [50, 100]. An excellent exposition of deriving various
families of solutions is given in [114].

Let us denote XN as a function space such that LdNLS admits N simple eigen-
values in the first quadrant. Combining with the result from Chapter 4, global
well-posedness of the derivative NLS would follow from the following scheme:

XN 3 u0 u ∈ XN

u ∈ X0X0 3 u0

DarbouxDarboux

Globally wellposed via IST

This scheme defines a global solution map XN 3 u0 7→ u(t) ∈ XN , which sup-
ports N solitons. Such initial data is taken to be arbitraly large. Continuity and
bijectivity of the above map are, yet, to be proven on defined function spaces.

8
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1.5 Transverse instability of Dirac line soliton

(Chapter 5)

Chapter 5 is based on our published paper:
D. Pelinovsky and Y. Shimabukuro, Transverse instability of line solitary waves
in massive Dirac equations, J. Nonlinear. Sci. 26 (2016), 365-403

This problem arises in the Gross-Pitaevskii equation with a periodic potential
V (x, y), i.e.,

iψt = −∆ψ + V (x, y)ψ +N(ψ) (x, y) ∈ R2, (1.13)

where N(ψ) is a nonlinear term. When V (x, y) is periodic in (x, y), a solution in
the equation (1.13) with N(ψ) = 0 is expressed in terms of Bloch functions by the
Floquet theory. If a nonlinear term is considered, one may make an ansatz where
coefficients of Bloch functions now vary in space and time. Direct subsitution may
lead to finding that these coefficients satisfy evolution equations of the Dirac type.

Chapter 5 presents the 2D massive Thirring model and the 2D Gross-Neveu
model that both can be formally derived from the Gross-Pitaeviskii equation
(1.13). The former is the case of the waveguide grating, e.g., V (x, y) = ε cos(x),
and the latter is the case of the honeycomb lattice. Here, line soliton is considered
to be a trapped wave in waveguides. In Chapter 5, line soliton is defined to be
exactly one soliton solution for 1D case which is independent of y and decays expo-
nentially in x. Due to the fact that line soliton is independent of y, the eigenvalue
problem, after linearization around line soliton and the Fourier transform in y,
takes the form of

iλF = (Diracx + Potentialx + Parameterp)F,

where Diracx is the linear Dirac operator in x, Potentialx is the potential term
in x, and Parameterp contains a Fourier variable p that comes from y-derivatives

∂y, i.e., f̂(p) =
∫

R f(y)eipydy. The first two terms correspond to exactly the 1D
case. We prove that for small |p| > 0 in Parameterp, the eigenvalue problem
above is spectrally unstable, i.e., there exists some λ ∈ C with an L2 eigenvector
F such that Reλ > 0. The proof is based on locating an unstable bifurcation of
zero eigenvalue. Our result indicates spectral instability of line solitons in the limit
of long-period transverse perturbations, since a small number |p| corresponds to
long-periodicity. For a larger value of |p|, we give numerical results, which indicate:

• Spectral instability of the MTM line soliton persists for all transverse wave
number p

• Spectral instability of the Gross-Neveu line soliton occurs only in a finite
interval of transverse wave number p.

The latter observation is particularly interesting due to the possibility that spectral
stability could be observed in a narrow wavequide in the y-direction.

9



Chapter 2

Orbital Stability of Dirac Soliton
by Energy Method

2.1 MTM orbital stability result

We consider the massive Thirring model (MTM){
i(ut + ux) + v = 2|v|2u,
i(vt − vx) + u = 2|u|2v, (2.1)

where (u, v)(x, t) : R × R+ → C2. We denote an initial condition (u, v)|t=0 =
(u0, v0). It has been proven that the MTM is globally well-posed with (u0, v0) ∈
Hm(R) for an integer m ≥ 0 [15]. The stationary MTM solitons are known in the
exact analytical form: {

u = Uω(x+ x0)eiωt+iα,
v = Ūω(x+ x0)eiωt+iα,

(2.2)

with

Uω(x) =

√
1− ω2

√
1 + ω cosh

(√
1− ω2x

)
+ i
√

1− ω sinh
(√

1− ω2x
) , (2.3)

where α and x0 are real parameters related to the gauge and space translations,
whereas ω ∈ (−1, 1) is a parameter that determines the frequency of the MTM
solitons inside the gap between two branches of the continuous spectrum of the
linearized problem at the zero solution. For the MTM (2.1), three conserved
quantities are referred to as the charge Q, momentum P , and Hamiltonian H
functionals:

Q =

∫
R

(
|u|2 + |v|2

)
dx,

P =
i

2

∫
R

(uūx − uxū+ vv̄x − vxv̄) dx,

and

H =
i

2

∫
R

(uūx − uxū− vv̄x + vxv̄) dx+

∫
R

(
−vū− uv̄ + 2|u|2|v|2

)
dx.

10
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To work with a vector function u = (u, v, u, v)t, we shall work in the function space
X = H1(R)×H1(R)×H1(R)×H1(R), equipped with the inner product

〈u,v〉X =

∫
R
(ux · vx + u · v)dx,

where u,v ∈ X are four component vector, and u·v denotes the usual dot product.
We define the norm on X as

‖u‖X =
√
〈u,u〉X .

We denote the L2 inner product as

〈u,v〉L2 =

∫
R

u · vdx.

We use a notation T (θ, s) for a two-parameter group of unitary operators on X
for each (θ, s) ∈ R2, i.e., T (θ, s)u for u ∈ X is defined as

T (θ, s)u(x) := (eiθu1(x+ s), eiθu2(x+ s), e−iθu3(x+ s), e−iθu4(x+ s))t.

For a fixed ω ∈ (−1, 1), we shall introduce the orbit

{T (θ, s)uω : (θ, s) ∈ R2}

and a small neighborhood around the orbit

Φε = {u ∈ X : inf
(θ,s)∈R2

‖u− T (θ, s)uω‖X < ε}.

From now, u denotes a solution to the MTM subject to natural constraint in the
last two components of the vector, i.e., u = (u, v, u, v)t. The inner product 〈u,v〉L2

is always real. The following Theorem presents the main result of this Chapter.

Theorem 1. There is ω0 ∈ (0, 1] such that for any ω ∈ (−ω0, ω0) and any ε > 0
there exists δ > 0 such that if ‖u0 − uω‖X < δ, then the corresponding MTM
solution u(t) satisfies u(t) ∈ Φε for every t ∈ R.

Here, one can easily construct a good candidate of a functional used for orbital
stability theory, that is,

E(u) = H(u)− ωQ(u),

which satisfies E ′(uω) = 0, where a functional derivative E ′(u) is determined from
the Fréchet derivative:

∀v ∈ X :
d

dε
E(u + εv)

∣∣∣∣
ε=0

= 〈E ′(u),v〉L2 . (2.4)

Critical points of E ′(u) = 0 satisfy the system of first-order differential equations{
+idu

dx
− ωu+ v = 2|v|2u,

−i dv
dx
− ωv + u = 2|u|2v. (2.5)

11
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The stationary MTM solitons (2.2) correspond to the reduction u = Uω and v =
Ūω, where Uω is a solution of the first-order differential equation

i
dU

dx
− ωU + Ū = 2|U |2U. (2.6)

Using definition (2.4) above, we shall write the Taylor expansion of the func-
tional E(u) around uω:

E(uω + u) = E(uω) + 〈E ′(uω),u〉L2 +
1

2
〈Hωu,u〉L2 + · · · , (2.7)

where 〈E ′(uω),u〉L2 = 0 and

Hω = Dω +Wω,

where

Dω =


−i∂x + ω −1 0 0
−1 i∂x + ω 0 0
0 0 i∂x + ω −1
0 0 −1 −i∂x + ω

 , Wω = 4


|v|2 uv 0 vu
uv |u|2 uv 0
0 vu |v|2 vu
uv 0 uv |u|2


where entries of the 4×4 matrix Wω are all smooth and rapidly decaying at infinity.

The essential spectrum of the non-potential part Dω coincides with the one of
Hω. As a consequence of Weyl Theorem, see [95, Theorem XIII.14] and [83, B.15],
one can show this explicitly by constructing an approximating sequence as given
below. We denote λ = ω −

√
1 + k2 < 0 for k ∈ R. We introduce the following

sequence:

ψn,k = n−1/2φk

(x
n

)
eikx(1, k +

√
1 + k2, 1,−k +

√
1 + k2)t,

where some smooth and rapidly decaying function φk(x) is suitably normalized so
that ‖ψn,k‖L2 = 1 for every n ∈ N for each fixed k ∈ R. Using this sequence, we
can show that

lim
n→∞

‖(Hω − λI)ψn,k‖L2 = 0 ∀k ∈ R.

One can show the same result, in the similar way, λ = ω +
√

1 + k2 > 0, k ∈ R.

It follows from the result above that the essential spectra of Hω is unbounded
both above and below:

σess(Hω) = R \ (−1 + ω, 1 + ω). (2.8)

The essential spectrum (2.8) signifies the sign-infinite property of the energy func-
tional E(u) since the Taylor expansion (2.7) gives

E(uω + u)− E(u) =
1

2
〈Hωu,u〉L2 + · · · ,

12



Ph.D. Thesis -Yusuke Shimabukuro Mathematics - McMaster University

where the sign of the difference depends on the spectral property of the Hessian
operatoar Hω.

In order to use the Grillakis-Shatah-Strauss theory [41], it is necessary to have
the condition that the negative spectrum of Hω is finite, which is not our case.

We shall consider the higher conserved quantity, denoted as R, whose derivation
is given in Section 2.5:

R =

∫
R

[
|ux|2 + |vx|2 −

i

2
(uxu− uxu)(|u|2 + 2|v|2) +

i

2
(vxv − vxv)(2|u|2 + |v|2)

−(uv + uv)(|u|2 + |v|2) + 2|u|2|v|2(|u|2 + |v|2)
]
dx. (2.9)

With the new energy functional Λ(u) := R(u) + ΩQ(u), Ω ∈ R, we consider the
critical point, Λ′(u) = 0, whose first two components are given by

d2u

dx2
+ 2i(|u|2 + |v|2)

du

dx
+ 2iuv

dv̄

dx
− 2|v|2(2|u|2 + |v|2)u+ (2|u|2 + |v|2)v + u2v̄ = Ωu,

d2v

dx2
− 2i(|u|2 + |v|2)

dv

dx
− 2iuv

dū

dx
− 2|u|2(|u|2 + 2|v|2)v + (|u|2 + 2|v|2)u+ v2ū = Ωv,

and the last two elements of Λ′(u) = 0 are conjugates of those. Using the reduction
u = U and v = Ū , we obtain a second-order differential equation

d2U

dx2
+ 6i|U |2dU

dx
− 6|U |4U + 3|U |2Ū + U3 = ΩU. (2.10)

Substituting the first-order equation (2.6) to the second-order equation (2.10)
yields the constraint

(1− ω2)U +
(
2|U |4 + 2ω|U |2 − U2 − Ū2

)
U = ΩU,

which is satisfied by the MTM soliton U = Uω in the explicit form (2.3) if Ω =
1−ω2. Therefore, the MTM soliton (2.3) is a critical point of the modified energy
functional

Λ := R + (1− ω2)Q, ω ∈ (−1, 1) (2.11)

2.2 Spectrum of the linearized operator

From the Taypor expansion (2.7), we first see that the Taylor expansion of Λω

around uω is given as

Λ(u + uω) = Λ(uω) +
1

2
〈Lu,u〉L2 + · · · ,

13
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for u ∈ X, where L is the Hessian operator from the energy functional Λω around
uω. This operator L is explicitly found as

L =


L1 2L2 L2 L3

2L̄2 L̄1 L̄3 L̄2

L̄2 L̄3 L̄1 2L̄2

L3 L2 2L2 L1

 , (2.12)

where

L1 = − d2

dx2
− 4i|Uω|2

d

dx
− 4iŪω

dUω
dx

+ 10|Uω|4 − 2U2
ω − 2Ū2

ω + 1− ω2,

L2 = −2iUω
dUω
dx

+ 4U2
ω|Uω|2 − 2|Uω|2,

L3 = −2i|Uω|2
d

dx
− 2iŪω

dUω
dx

+ 8|Uω|4 − U2
ω − Ū2

ω.

By taking derivative of the stationary equation Λ′(T (θ, s)uω) = 0 in θ or s and
setting θ = s = 0, we find that the kernel vectors iJuω and ∂xuω are in the kernels
of L, i.e.,

LiJuω = 0, L∂xuω = 0, (2.13)

where J = diag(1, 1,−1,−1) is a diagonal matrix. By the Weyl’s theorem, we
see that the continuous spectrum of L is a semi-infinite strip [1 − ω2,∞), which
corresponds to the essential spectrum of the linear operator − d2

dx2 + 1 − ω2. The
4 × 4 matrix operator L is diagonalized into two 2 × 2 matrix operators L± by
means of the self-similarity transformation

StLS =

[
L+ 0
0 L−

]
, where S =

1√
2


1 0 −1 0
0 1 0 1
0 1 0 −1
1 0 1 0


is the orthgonal matrix, i.e., St = S−1. The matrix operators L± are found from
this block-diagonalization in the explicit form:

L+ =

(
`+ −6ωU2

ω

−6ωŪ2
ω

¯̀
+

)
, L− =

(
`− 2ωU2

ω

2ωŪ2
ω

¯̀−

)
, (2.14)

where

`+ = − d2

dx2
− 6i|Uω|2

d

dx
+ 6|Uω|4 − 3U2

ω + 3Ū2
ω − 6ω|Uω|2 + 1− ω2,

`− = − d2

dx2
− 2i|Uω|2

d

dx
− 2|Uω|4 − U2

ω + Ū2
ω − 2ω|Uω|2 + 1− ω2.

The continuous spectrum of L±, by the Weyl theorem, is [1− ω2,∞). By ap-
plying self-similarity transformation St to kernel vectors iJuω and ∂xuω in (2.13),

14
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we obtain

StiJuω = −i
√

2(0, 0, Uω,−Uω)t, St∂xuω =
√

2(U ′ω, U
′
ω, 0, 0)t.

Therefore, vectors (U ′ω, U
′
ω)t and (Uω,−Uω)t are in the kernels of L+ and L− for

any ω ∈ (−1, 1), i.e.,

L+(U ′ω, U
′
ω)t = 0, L−(Uω,−Uω)t = 0. (2.15)

In addition, for ω = 0, operators L± are diagonal, and we can explicitly find
that

ω = 0 : L+(U ′0,−U
′
0)t = (0, 0)t, L−(U0, U0)t = (0, 0)t. (2.16)

Next, we count discrete eigenvalues of L± in (2.14).

Lemma 1. For any ω ∈ (−1, 1), operator L− has exactly two eigenvalues below the
continuous spectrum. Besides the zero eigenvalue associated with the eigenvector
in (2.15), L− has a positive eigenvalue for ω ∈ (0, 1) and a negative eigenvalue for
ω ∈ (−1, 0).

Proof. Let us consider the eigenvalue problem L−u = µu, where u = (u, ū) is an
eigenvector and µ is the spectral parameter. Using the transformation

u(x) = ϕ(x)e−i
R x
0 |Uω(x′)|2dx′

where ϕ is a new eigenfunction, we obtain an equivalent spectral problem:

(
sI2×2 + 2ω|Uω|2σ1

) [ϕ
ϕ

]
= µ

[
ϕ
ϕ

]
,

where s = −∂2
x + 1− ω2 − 2ω|Uω|2 − 3|Uω|4, thanks to the fact that

U2
ωe

2i
R x
0 |Uω(x′)|2dx′ =

1− ω2

ω + cosh(2
√

1− ω2x)
= |Uω|2.

Because the off-diagonal entries are real, we set

ψ± := ϕ(x)± ϕ̄(x), z :=
√

1− ω2x, µ := (1− ω2)λ

to diagonalize the spectral problem into two uncoupled spectral problems associ-
ated with the linear Schrödinger operators:

−d
2ψ+

dz2
+

[
1− 3(1− ω2)

(ω + cosh(2z))2

]
ψ+ = λψ+ (2.17)

and

−d
2ψ−
dz2

+

[
1− 3(1− ω2)

(ω + cosh(2z))2
− 4ω

ω + cosh(2z)

]
ψ− = λψ−. (2.18)

15
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The eigenvector (2.15) in the kernel of L− yields the eigenfunction

ψ0(z) =
1

(ω + cosh(2z))1/2

of the spectral problem (2.18) for λ = 0. Because the eigenfunction ψ0 is positive
definite, the simple zero eigenvalue of the spectral problem (2.18) is at the bot-
tom of the Schrödinger spectral problem for any ω ∈ (−1, 1), by Sturm’s Nodal
Theorem [83, Lemma 4.2]. Furthermore, the function

ψc(z) =
sinh(2z)

ω + cosh(2z)

corresponds to the end-point resonance at λ = 1 for the spectral problem

−d
2ψ

dz2
+

[
1− 8(1− ω2)

(ω + cosh(2z))2
− 4ω

ω + cosh(2z)

]
ψ = λψ. (2.19)

Because the function ψc has exactly one zero, there is only one isolated eigenvalue
below the continuous spectrum for the spectral problem (2.19) by Sturm’s Nodal
Theorem. Now the difference between the potentials of the spectral problems
(2.18) and (2.19) is

∆V (z) =
5(1− ω2)

(ω + cosh(2z))2
,

where ∆V > 0 for all z ∈ R and ω ∈ (−1, 1). By Sturm’s Comparison Theorem
[83, Theorem B.10], a solution of the spectral problem (2.18) for λ = 1, which
is bounded as z → −∞, has exactly one zero. Therefore, the spectral problem
(2.18) has exactly one isolated eigenvalue λ for all ω ∈ (−1, 1) and this is the zero
eigenvalue with the eigenfunction ψ0.

The difference between the potentials of the spectral problems (2.17) and (2.18)
is given by

∆V (z) =
4ω

ω + cosh(2z)
.

If ω = 0, ∆V = 0, so that the spectral problem has only one isolated eigenvalue
and it is located at λ = 0. Since ∆V > 0 for ω ∈ (0, 1), the spectral problem
(2.17) has precisely one isolated eigenvalue for ω ∈ (0, 1) by Sturm’s Comparison
Theorem and this eigenvalue is positive [54, Section I.6.10], i.e., λ > 0. On the
other hand, since ∆V < 0 for ω ∈ (−1, 0) and ψ0 > 0 is an eigenfunction of the
spectral problem (2.18) for λ = 0, the spectral problem (2.17) has at least one
negative eigenvalue λ < 0 for ω ∈ (−1, 0) [54, Section I.6.10]. To show that this
negative eigenvalue is the only isolated eigenvalue of the spectral problem (2.17),
we note that

ω + cosh(2z) ≥ ω + 1 + 2z2, z ∈ R
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and consider the spectral problem

−d
2ψ

dz2
+

[
1− 3(1− ω2)

(ω + 1 + 2z2)2

]
ψ = λψ. (2.20)

Rescaling the independent variable z :=
√

1+ω√
2
y and denoting ψ(z) := ψ̃(y), we

rewrite (2.20) in the equivalent form

−d
2ψ̃

dy2
− 3

(1 + y2)2

(
1− 1 + ω

2

)
ψ̃ =

(λ− 1)(1 + ω)

2
ψ̃. (2.21)

It follows that the function
ψ̃c(y) =

y√
1 + y2

corresponds to the end-point resonance at λ = 1 for the spectral problem

−d
2ψ̃

dy2
− 3

(1 + y2)2
ψ̃ =

(λ− 1)(1 + ω)

2
ψ̃. (2.22)

Because the function ψ̃c has exactly one zero, there is only one isolated eigenvalue
below the continuous spectrum for the spectral problem (2.22). Because the differ-
ence between potentials of the spectral problems (2.21) and (2.22) as well as those
of the spectral problems (2.17) and (2.20) is strictly positive for all ω ∈ (−1, 1), by
Sturm Comparison Theorem, the spectral problem (2.17) has exactly one isolated
eigenvalue λ for all ω ∈ (−1, 1) and this eigenvalue is negative for ω ∈ (−1, 0),
zero for ω = 0, and positive for ω ∈ (0, 1).

For the operator L+, we can only prove the statement for small ω due to the
technical reason.

Lemma 2. There is ω0 ∈ (0, 1] such that for any fixed ω ∈ (−ω0, ω0), operator L+

has exactly two eigenvalues below the continuous spectrum. Besides the zero eigen-
value associated with the eigenvector in (2.15), L+ also has a negative eigenvalue
for ω ∈ (0, ω0) and a positive eigenvalue for ω ∈ (−ω0, 0).

Proof of Lemma 2. Because the double zero eigenvalue of L+ at ω = 0 is isolated
from the continuous spectrum located for [1,∞), the assertion of the lemma will
follow by the Kato’s perturbation theory [54] if we can show that the zero eigen-
value is the lowest eigenvalue of L+ at ω = 0 and the end-point of the continuous
spectrum does not admit a resonance.

To develop the perturbation theory, we consider the eigenvalue problem L+u =
µu, where u = (u, ū) is an eigenvector and µ is the spectral parameter. Using the
transformation

u(x) = ϕ(x)e−3i
R x
0 |Uω(x′)|2dx′

where ϕ is a new eigenfunction, we obtain an equivalent spectral problem:

(sI2×2 − 6ωWσ1)

[
ϕ
ϕ

]
= µ

[
ϕ
ϕ

]
,
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where s = −∂2
x + 1− ω2 − 6ω|Uω|2 − 3|Uω|4 and

W = U2
ωe

6i
R x
0 |Uω(x′)|2dx′

= (1− ω2)

(
1 + ω cosh

(
2
√

1− ω2x
)

+ i
√

1− ω2 sinh
(
2
√

1− ω2x
))2(

ω + cosh
(
2
√

1− ω2x
))3 .

Setting now z :=
√

1− ω2x and µ := (1 − ω2)λ, we rewrite the spectral problem
in the form [

−∂2
z + 1 + V1(z) V2(z)
V̄2(z) −∂2

z + 1 + V1(z)

] [
ϕ
ϕ̄

]
= λ

[
ϕ
ϕ̄

]
, (2.23)

where

V1(z) := − 3(1− ω2)

(ω + cosh(2z))2
− 6ω

ω + cosh(2z)

and

V2(z) := −6ω

(
1 + ω cosh(2z) + i

√
1− ω2 sinh(2z)

)2

(ω + cosh(2z))3 .

The eigenvector (2.15) in the kernel of L+ yields the eigenvector (ϕω, ϕ̄ω) with

ϕω(z) =
ω sinh(2z) + i

√
1− ω2 cosh(2z)

(ω + cosh(2z))3/2
,

which exists in the spectral problem (2.23) with λ = 0 for all ω ∈ (−1, 1). Now,
for ω = 0, λ = 0 is a double zero eigenvalue of the spectral problem (2.23). The
other eigenvector is (ϕ0,−ϕ̄0) and it corresponds to the eigenvector in (2.16). The
end-point λ = 1 of the continuous spectrum of the spectral problem (2.23) does
not admit a resonance for ω = 0, which follows from the comparison results in
Lemma 1. No other eigenvalues exist for ω = 0.

To study the splitting of the double zero eigenvalue if ω 6= 0, we compute the
quadratic form of the operator on the left-hand side of the spectral problem (2.23)
at the vector (ϕ0,−ϕ̄0) to obtain

−2

∫
R
(V2ϕ

2
0 + V 2ϕ

2
0)dz = −12ω

∫
R

3− 2ω2 − cosh(4z)

(ω + cosh(2z))4
dz.

Since the integral is positive for ω = 0, Kato’s perturbation theory [54, Section
VII.4.6] implies that the zero eigenvalue of the spectral problem (2.23) becomes
negative for ω > 0 and positive for ω < 0 with sufficiently small |ω|.

Conjecture 1. The spectral problem (2.23) has exactly two isolated eigenvalues
and no endpoint resonances for all ω ∈ (−1, 1). The nonzero eigenvalue is positive
for all ω ∈ (−1, 0) and negative for all ω ∈ (0, 1).

To illustrate Conjecture 1, we approximate eigenvalues of the spectral problem
(2.23) numerically. We use the second-order central difference scheme for the
second derivative and the periodic boundary conditions. Figure 2.1 shows the only
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two isolated eigenvalues of the spectral problem (2.23) (asterisks) and the edge of
the continuous spectrum at λ = 1 (dashed line) versus parameter ω ∈ (−1, 1). The
nonzero eigenvalue is positive for all ω ∈ (−1, 0) and negative for all ω ∈ (0, 1).
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Figure 2.1: Isolated eigenvalue λ (asterisks) and the edge of the continuous spec-
trum λ = 1 (dashed line) versus parameter ω in the spectral problem (2.23).

From (2.16), by applying S to vectors (U ′0,−U
′
0, 0, 0)t and (0, 0, U0, U0)t, we

deduce that

ω = 0 : L(U ′0,−U
′
0,−U

′
0, U

′
0)t = 0, L(−U0, U0,−U0, U0)t = 0. (2.24)

Therefore, for ω = 0, operator L has four zero eigenvalues with eigenvectors from
(2.24) and (2.13). Now, when ω 6= 0, we have proved the following eigenvalue
bifurcations:

Corollary 1. There exists a ω0 ∈ (0, 1] such that for any ω ∈ (−ω0, ω0) \ {0} the
operator L has exactly four eigenvalues below the continuous spectrum. Besides
the zero eigenvales associated wth eigenvectors in (2.13), the other two eigenvalues
are nonzero with different signs when ω ∈ (−ω0, ω0) \ {0}.

2.3 Positivity of the Hessian operator

We denote the positive subspace of the operator L in space X by P . The
positive spectrum of L is bounded away from zero. By spectral theorem, there
exists a positive constant c > 0 such that

〈Lu,u〉L2 ≥ c‖u‖2
X ,

for every u ∈ P ⊂ X.
We denote the eigenvector of L for the only negative eigenvalue of L by n

(ifω 6= 0):
Ln = −λ2n, ‖n‖L2 = 1.

We have additionally the two dimensional kernel of L for ω 6= 0.
We first start with showing positivity of operator L for the case of ω ∈ (0, 1).
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Lemma 3. There exists a ω0 ∈ (0, 1] such that for any ω ∈ (0, ω0), if 0 =
〈Q′(uω),y〉L2 = 〈iJuω,y〉L2 = 〈∂xuω,y〉L2, then there exists a constant k > 0
such that

〈Ly,y〉L2 ≥ k‖y‖2
X ,

for y ∈ X.

Proof. Differentiating Λ(uω) twice in Ω = 1− ω2 yields ∂ΩΛ = Q and

∂2
ΩΛ(uω) = 〈Q′(uω), ∂Ωuω〉L2 = − 1

ω
∂ω

∫
R
|Uω|2dx =

1

ω
√

1− ω2
. (2.25)

We see that ∂2
ΩΛ(uω) > 0 for ω ∈ (0, 1). Differentiating the stationary equation

R′(uω) + ΩQ′(uω) = 0 in Ω gives

L∂Ωuω = −Q′(uω).

We find for ω ∈ (0, 1)

0 < 〈Q′(uω), ∂Ωuω〉L2 = −〈L∂Ωuω, ∂Ωuω〉L2 .

This implies that a vector ∂Ωuω is in a negative direction of L. We make the
spectral decomposition of ∂Ωuω with respect to the spectrum of L:

∂Ωuω = a0n + b0iJuω + c0∂xuω + p0, p0 ∈ P,

where some a0, b0, c0 ∈ C. We find that

0 > 〈L∂Ωuω, ∂Ωuω〉L2 = −|a0|2λ2 + 〈Lp0,p0〉L2 (2.26)

For any y ∈ X with 0 = 〈Q′(uω),y〉L2 = 〈iJuω,y〉L2 = 〈∂xuω,y〉L2 , we have the
decomposition

y = an + p, p ∈ P,

where some a ∈ C and since 0 = 〈Q′(uω),y〉L2 we have

0 = 〈Q′(uω),y〉L2 = −〈L∂Ωuω,y〉L2 = a0aλ
2 − 〈Lp0,p〉L2 . (2.27)

Therefore, by the Schwarz inequality 〈Lp,p〉L2〈Lp0,p0〉L2 ≥ |〈Lp,p0〉L2 |2 which
follows from

〈L(p0 − λp), (p0 − λp)〉L2 ≥ 0 with λ =

√
〈Lp0,p0〉L2

〈Lp,p〉L2

,

we find

〈Ly,y〉L2 = −|a|2λ2 + 〈Lp,p〉L2 ≥ −|a|2λ2 +
|〈Lp,p0〉L2|2

〈Lp0,p0〉L2

> 0. (2.28)

The last strict inequality is due to (2.26) and (2.27).
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From (2.28), we see that the orthogonal subspace to which y belongs to P .
Since the spectrum of L is bounded away from zero, it follows that there exists a
constant k > 0 such that

〈Ly,y〉L2 ≥ k.

When we replace y with y/‖y‖X in the above inequality, we attain the assertion
of the Lemma.

We have seen that the vector orthogonal to the change in mass, Q′(uω), satisfies
coercivity of L. Since the solution stays on the manifold of constant Q thanks to
the mass conservation, then, intuitively, the negativity of L that comes from the
change of mass does not contribute to instability.

To deal with the case of ω ∈ (−ω0, 0), on the other hand, we find that this
comes from the change in momentum,

P ′(uω) = i(−U ′ω,−U
′
ω, U

′
ω, U

′
ω)t.

Proposition 1. The vector g := i
2
xJuω + 1

4ω
γ2uω, where γ2 = diag(−1, 1,−1, 1),

satisfies
Lg = P ′(uω) (2.29)

and, furthermore,

〈Lg,g〉L2 =

√
1− ω2

2ω

negative for ω ∈ (−1, 0).

Proof of Proposition 1. In order to find g that satisfies (2.29), it is convenient to
carry out the block-diagonalization:

(StLS)Stg = StP ′(uω) = i
√

2(0, 0, U ′ω,−U
′
ω)t.

Since the first two components of StP ′(uω) are zero, we deduce that the first two
components of Stg are zero as well since the kernel of L+ is already found in (2.15).
Now, the last two components of Stg is found by using the differential equations
(2.6) and (2.10):

L−

(
−i
√

2

2
x

[
Uω
−Ūω

]
+
i
√

2

4iω

[
Uω
Ūω

])
= i
√

2

[
U ′ω
−Ū ′ω

]
, (2.30)
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from which we can explicitly find g as well as we can easily compute the following

〈Lg,g〉L2 = 〈(StLS)Stg, Stg〉L2

=

∫
R

(
|Uω|2 −

1

2iω

(
ŪωU

′
ω − UωŪ ′ω

))
dx

=
1

2ω

∫
R

(
4|Uω|4 − U2

ω − Ū2
ω + 4ω|Uω|2

)
dx

=
1− ω2

ω

∫
R

1 + ω cosh(2
√

1− ω2x)

(ω + cosh(2
√

1− ω2x))2
dx

=

√
1− ω2

ω
.

Thanks to Proposition 1, we can repeat the same proof in Lemma 3 to prove
the following:

Lemma 4. There exists a ω0 ∈ (0, 1] such that for any ω ∈ (−ω0, 0), if 0 =
〈P ′(uω),y〉L2 = 〈iJuω,y〉L2 = 〈∂xuω,y〉L2, then there exists a constant k > 0 such
that

〈Ly,y〉L2 ≥ k‖y‖2
X ,

for y ∈ X.

Here, we denote γ1 = diag(1,−1,−1, 1) and γ2 = diag(−1, 1,−1, 1) so that
vectors γ1∂xu0 and γ2u0 are kernel vectors of L at ω = 0 from (2.24), as well as
iJu0 and ∂xu0.

Lemma 5. For ω = 0, if 0 = 〈γ1∂xu0,y〉L2 = 〈γ2u0,y〉L2 and 0 = 〈iJu0,y〉L2 =
〈∂xu0,y〉L2, then there exists a constant k > 0 such that

〈Ly,y〉L2 ≥ k‖y‖2
X ,

for y ∈ X.

Proof. This follows from the fact that operator L has exactly four zero eigenvalues
below the positive continuous spectrum that is bounded away from zero.

2.4 Proof of orbital stability

Before giving a proof of Theorem 1, we will collect final key ingredients.

Lemma 6. There exist ε > 0 and a differentiable map

(θ, s) : Φε → R2
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such that, for all u ∈ Φε, the following is true:

〈T (θ(u), s(u))u, iJuω〉L2 = 〈T (θ(u), s(u))u, ∂xuω〉L2 = 0 (2.31)

and the function ρ(θ, s) := ‖T (θ, s)u − uω‖2
L2 has a local minimum at (θ, s) =

(θ(u), s(u)).

Proof. We define a function ρ(θ, s) = ‖T (θ, s)u − uω‖2
L2 at a fixed ω for every

u ∈ Φε. Derivatives of ρ in θ and s yield

∂θρ = 2〈T (θ, s)u, iJuω〉L2 , ∂sρ = 2〈T (θ, s)u, ∂xuω〉L2 ,

∂2
θρ = 2〈T (θ, s)u,uω〉L2 , ∂2

sρ = 2〈T (θ, s)∂xu, ∂xuω〉L2

and
∂s∂θρ = ∂θ∂sρ = 2〈T (θ, s)∂xu, iJuω〉L2 .

We find that ∂θρ = ∂sρ = 0 at θ = s = 0 and u = uω, but ∂2
θρ = 2‖uω‖2

L2 ,
∂2
sρ = 2‖∂suω‖2

L2 , and ∂s∂θρ = 0 at θ = s = 0 and u = uω. The determinant of[
∂2
θρ ∂s∂θρ

∂θ∂sρ ∂2
sρ

]
is strictly positive at θ = s = 0 and u = uω. In order to prove

Lemma, we want to run the implicit function theorem on F (θ, s) := (∂θρ, ∂sρ),
since F (θ, s) = 0 implies the orthogonality (2.31) and the positivity of the Jacobian
of F together with F (θ, s) = 0 implies a local minimum of ρ(θ, s) at (θ, s).

The implicit function theorem tells that there exist ε > 0 and the neighborhood
I ⊂ R around (θ, s) = (0, 0) such that for every u ∈ Φε there exists a unique
solution (θ, s) of F (θ, s) = 0. Furthermore, a map (θ, s) : Φε → I is a C1 map.

Thanks to the above Lemma, we can make the following decomposition in space
X:

Corollary 2. Let θ(u) and s(u) be the ones determined in Lemma 6. Then,

z := T (θ(u), s(u))u− uω

is orthogonal to the kernel vectors of L in space X, i.e.,

〈z, iJuω〉L2 = 〈z, ∂xuω〉L2 = 0. (2.32)

Proof. This follows from (2.31), because uω satisfies (2.32).

The following Lemma states that uω is a local constrained minimizer of the
energy functional R.

Lemma 7. There exists a ω0 ∈ (0, 1] such that for any ω ∈ (−ω0, ω0), there exist
c > 0 and ε > 0 such that

R(u)−R(uω) ≥ c‖T (θ(u), s(u))u− uω‖2

for every u ∈ Φε with a fixed mass Q(u) = Q(uω) and P (u) = P (uω).

23



Ph.D. Thesis -Yusuke Shimabukuro Mathematics - McMaster University

Proof. First, we consider the case of ω ∈ (0, ω0). We begin by decomposing
T (θ(u), s(u))u− uω as

T (θ(u), s(u))u− uω = aq + y, 〈q,y〉L2 = 0, (2.33)

where q = Q′(uω) and some a ∈ C. Since Q′(uω) is orthogonal to the kernel of L,
from Corollary 2, y is also orthogonal to the kernel of L. Since Q(u) = Q(uω), we
find

Q(uω) = Q(u) = Q(T (θ(u), s(u))u)

= Q(uω + aq + y)

= Q(uω) + 〈q, aq + y〉L2 +O(‖T (θ(u), s(u))u− uω‖2
L2)

= Q(uω) + a‖q‖2
L2 +O(‖T (θ(u), s(u))u− uω‖2

L2),

that is, a = O(‖T (θ(u), s(u))u−uω‖2
L2). Next, thanks to smallness of constant a,

we can show

Λ(u)− Λ(uω) =
1

2
〈L(aq + y), aq + y〉L2 +O(‖T (θ(u), s(u))u− uω‖3

H1)

=
1

2
〈Ly,y〉L2 +O(|a|2) +O(a‖T (θ(u), s(u))u− uω‖2

L2)

+O(‖T (θ(u), s(u))u− uω‖3
H1)

=
1

2
〈Ly,y〉L2 +O(‖T (θ(u), s(u))u− uω‖3

H1).

We obtained

R(u)−R(uω) =
1

2
〈Ly,y〉L2 +O(‖T (θ(u), s(u))u− uω‖3

H1) (2.34)

Therefore, by Lemma 3, inequality (2.34) becomes

R(u)−R(uω) ≥ 1

2
c‖y‖2

X +O(‖T (θ(u), s(u))u− uω‖3
H1). (2.35)

Since ‖y‖X = ‖T (θ(u), s(u))u− uω − aq‖X ≥ ‖T (θ(u), s(u))u− uω‖X − |a|‖q‖X
and a = O(‖T (θ(u), s(u))u−uω‖2

L2), for sufficiently small ε > 0 for Φε, inequality
(2.35) yields

R(u)−R(uω) ≥ 1

4
c‖T (θ(u), s(u))u− uω‖2

X .

The other cases can be shown with slight modifications. For the case of ω ∈
(−ω0, 0), we replace q = Q′(uω) with q = P ′(uω) in (2.33) and use P (u) = P (uω)
to show smallness of a constant a, and use Lemma 4 to obtain (2.35) since P ′(uω)
is orthogonal to the kernel of L, that is, y is also orthogonal to the kernel of L due
to Corollary 2.

For the case ω = 0, we use the decomposition T (θ(u), s(u))u−u0 = q+y with
q = aγ1∂xu0 + bγ2u0 and 〈q,y〉 = 0 in (2.33). One can easily verify that γ1∂xu0

and γ2u0 are orthogonal to the kernel vectors of L, and so is y. Lemma 5 is used
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to obtain (2.35).

Finally, we give a proof of Theorem 1. This is, in fact, a straightforward
consequence of Lemma 7 by a contradiction argument. We will denote {un(0)} as
a sequence of initial data and {un(t)} as a sequence of corresponding solutions.

Proof of Theorem 1. We only consider the case of ω ∈ (0, ω0) since the other cases
follow in the same way.
Suppose that Theorem 1 does not hold. For every ε > 0, there exist N, δ > 0 and
a sequence {un(0)} such that if n > N

inf
θ,s∈R
‖un(0)− T (θ, s)uω‖X < ε

and
sup
t>0

inf
θ,s∈R
‖un(t)− T (θ, s)uω‖X ≥ δ.

Since un(t) depends continuously on time t, we can pick tn so that infθ,s∈R ‖un(tn)−
T (θ, s)uω‖H1 = δ. By continuity of functionals R and Q on H1 space,

R(un(tn)) = R(un(0))→ R(uω)

Q(un(tn)) = Q(un(0))→ Q(uω).

We make decomposition:
vn = un(tn) + rn

for each n such that Q(vn) = Q(uω) and a remainder ‖rn‖H1 → 0. By continuity
of R, we have R(vn) → R(uω). Choosing ε sufficiently small, we apply Lemma 7
to obtain

R(vn)−R(uω) ≥ c‖T (θ(vn), s(vn))vn − uω‖2
X ,

for vn ∈ Φε, where the left hand side goes to zero. Hence

‖un(tn)− T (−θ(vn),−s(vn))uω‖X ≤ ‖T (θ(vn), s(vn))vn − uω‖X + ‖rn‖X < δ,

for n large enough. This contradicts our assumption.

2.5 Conserved quantities by the inverse scatter-

ing method

The MTM (2.1) is a compatibility condition of the Lax system

∂

∂x
φ = Lφ,

∂

∂t
φ = Aφ, (2.36)

where ~φ(x, t) : R× R→ C2 and L and A are given by

L =
i

2
(|v|2 − |u|2)σ3 −

iλ√
2

(
0 v
v 0

)
− i√

2λ

(
0 u
u 0

)
+
i

4

(
1

λ2
− λ2

)
σ3, (2.37)
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A =
i

2
(|v|2 + |u|2)σ3 −

iλ√
2

(
0 v
v 0

)
+

i√
2λ

(
0 u
u 0

)
− i

4

(
1

λ2
+ λ2

)
σ3.

The MTM (2.1) is equivalent to the expression

Lt − Ax + [L,A] = 0.

When the potential (u, v) is sufficiently smooth in x and t, existence of fundamental
solutions in (2.36) can be approached by the standard ODE theory. Here, we give
a formal argument. As |x| → ∞, the Lax operator L has the expression

lim
|x|→∞

L =
i

4

(
1

λ2
− λ2

)
σ3

which implies that solutions of φx = Lφ, denoted as ϕ± and φ± respectively, have
limits

lim
x→±∞

e−ik(λ)xϕ±(x) = (1, 0)t, lim
x→±∞

eik(λ)xφ±(x) = (0, 1)t

where k(λ) = 1
4
(λ−2 − λ2) ∈ R if λ2 ∈ R.

Since φx = Lφ is the first order 2 × 2 system, a solution is spanned by two
independent ones, e.g,

ϕ− = a(λ)ϕ+ + b(λ)φ+,

for λ2 ∈ R, where a(λ) and b(λ) are coefficients, given as

a(λ) = W (ϕ−, φ+), b(λ) = W (ϕ−, ϕ+), (2.38)

where W is the Wronskian determinant.

Now, looking at the time evolution system φt = Aφ, we notice that since

lim
|x|→∞

A = − i
4

(
1

λ2
+ λ2

)
σ3,

solutions ϕ± and φ± must be modified as e−id(λ)tϕ± and eid(λ)tφ± to incorporate
the boundary condition for φt = Aφ, where d(λ) = 1

4
(λ−2 + λ2). In order to find

the time evolution of coefficients a(λ) and b(λ) according to the time evolution of
the Lax system, we write (2.38) as

a(λ) = W (e−id(λ)tϕ−, e
id(λ)tφ+), b(λ) = e2id(λ)tW (e−id(λ)tϕ−, e

−id(λ)tϕ+). (2.39)

The Wronskians of solutions are independent of x and t since trances of L and A
are zero. It follows that a(λ) is independent of time.

We make the following ansatz:

ϕ−(x, t;λ) =

[
1

ν(x, t;λ)

]
exp

(
ik(λ)x+

∫ x

−∞
χ(x′, t;λ)dx′

)
(2.40)

for some suitable functions ν and χ. By substituting (2.40) into (2.38) for a(λ)
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and taking x→∞, we find

a(λ) = exp

(∫ ∞
−∞

χ(x;λ)dx

)
⇒ log a(λ) =

∫ ∞
−∞

χ(x;λ)dx. (2.41)

Since the scattering coefficient a(λ) does not depend on time t, expansion of∫∞
−∞ χ(x;λ)dx in powers of λ yields conserved quantities with respect to t [64].

Substituting equation (2.40) into the x-derivative part of the Lax system (2.36),
we find that functions ν and χ must satisfy

χ =
i

2
(|v|2 − |u|2)− i√

2

(
λv +

1

λ
u

)
ν, (2.42)

where ν satisfies a Ricatti equation

νx + i
(
2k(λ) + |v|2 − |u|2

)
ν − i√

2

(
λv +

1

λ
u

)
ν2 +

i√
2

(
λv +

1

λ
u

)
= 0. (2.43)

We consider the formal asymptotic expansion of χ(x;λ) in powers for suffi-
ciently small λ

χ(x;λ) =
N∑
n=0

λnχn(x) + o(λN), ν(x;λ) =
N∑
n=1

λnνn(x) + o(λN) (2.44)

and in inverse powers for sufficiently large λ

χ(x;λ) =
N∑
n=0

1

λn
χ̃n(x) + o(λ−N), ν(x;λ) =

N∑
n=1

1

λn
ν̃n(x) + o(λ−N). (2.45)

From (3.67), (2.43), (2.44) and (2.45), we can determine χn and χ̃n from which we
define

In :=

∫ ∞
−∞

χn(x)dx, I−n :=

∫ ∞
−∞

χ̃n(x)dx. (2.46)

Using expansions (2.44) and (2.45) for (2.41), we find the important expressions:

log a(λ) =
N∑
even

λnIn + o(λN), log a(1/λ) =
N∑
even

λnI−n + o(λN)

for sufficiently small λ. Finally, we arrive the formulas:

lim
λ→0

[
d2n

dλ2n
log a(λ)a(1/λ)

]
= I2n + I−2n

lim
λ→0

[
d2n

dλ2n
log

a(λ)

a(1/λ)

]
= I2n − I−2n
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for n ≥ 0. Let us explicitly write out first conserved quantities

I0 =

∫
R
(|u|2 + |v|2)dx,

I2 =

∫
R
(−2uxu+ ivu+ iuv − 2i|u|2|v|2)dx,

I−2 =

∫
R
(−2vxv − ivu− iuv + 2i|u|2|v|2)dx,

I4 =

∫
R
[−4iuuxx − 2(uxv + uvx) + 4u(u|v|2)x + 4uxu(|u|2 + |v|2) + i(|u|2 + |v|2)

− 2iuv(|u|2 + |v|2)− 2ivu(|u|2 + |v|2) + 4i|u|2|v|2(|u|2 + |v|2)]dx,

and

I−4 =

∫
R
[4ivvxx − 2(uxv + uvx) + 4v(v|u|2)x + 4vxv(|u|2 + |v|2)− i(|u|2 + |v|2)

+ 2iuv(|u|2 + |v|2) + 2ivu(|u|2 + |v|2)− 4i|u|2|v|2(|u|2 + |v|2)]dx.

Successively, we find the following:

I0 = Q

Re

[
1

2
i(I2 + I−2)

]
= P

Re

[
1

2
i(I2 − I−2)

]
= H,

where Q,P , and H are mass, momentum, and Hamiltonian of the MTM.
The higher conserved quantity R in (2.9) is given as

Re

[
−1

4
i(I4 − I−4)

]
= R

and we shall also include

Re

[
−1

4
i(I4 + I−4)

]
=

∫
R

[
|ux|2 − |vx|2 +

i

4
(uxv + uvx − uxv − uvx)

− i
2

(|u|2 + 2|v|2)(uxu− uxu)− i

2
(2|u|2 + |v|2)(vxv − vxv)

]
dx.
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Chapter 3

Orbital Stability Theory by
Bäcklund transformation

3.1 Main result

We consider the MTM of the form{
i(ut + ux) + v + |v|2u = 0,
i(vt − vx) + u+ |u|2v = 0,

(3.1)

subject to an initial condition (u, v)|t=0 = (u0, v0) in Hs(R) for s ≥ 0..
The Cauchy problem for the MTM system (3.1) is known to be locally well-

posed inHs(R) for s > 0 and globally well-posed for s > 1
2

[98] (see earlier results in
[32]). More pertinent to our study is the global well-posedness in L2(R) proved in
the recent works [15, 48]. The next theorem summarizes the global well-posedness
result for the scopes needed in our work.

Theorem 2. [15, 48] Let (u0, v0) ∈ L2(R). There exists a global solution (u, v) ∈
C(R;L2(R)) to the MTM system (2.1) such that the charge is conserved

‖u(·, t)‖2
L2 + ‖v(·, t)‖2

L2 = ‖u0‖2
L2 + ‖v0‖2

L2 (3.2)

for every t ∈ R. Moreover, the solution is unique in a certain subspace of C(R;L2(R))
and depends continuously on initial data (u0, v0) ∈ L2(R).

We are interested in orbital stability of Dirac solitons of the MTM system (3.1)
given by the explicit expressions{

uλ(x, t) = iδ−1 sin(γ) sech
[
α(x+ ct)− iγ

2

]
e−iβ(t+cx),

vλ(x, t) = −iδ sin(γ) sech
[
α(x+ ct) + iγ

2

]
e−iβ(t+cx),

(3.3)

where λ is an arbitrary complex nonzero parameter that determines δ = |λ|, γ =
2Arg(λ), as well as

c =
δ2 − δ−2

δ2 + δ−2
, α =

1

2
(δ2 + δ−2) sin γ, β =

1

2
(δ2 + δ−2) cos γ.
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Let us now state the main result of our work.

Theorem 3. Let (u, v) ∈ C(R;L2(R)) be a solution of the MTM system (2.1) in
Theorem 2 and λ0 be a complex non-zero number. There exists a real positive ε0
such that if the initial value (u0, v0) ∈ L2(R) satisfies

ε := ‖u0 − uλ0(·, 0)‖L2 + ‖v0 − vλ0(·, 0)‖L2 ≤ ε0, (3.4)

then for every t ∈ R, there exists λ ∈ C such that

|λ− λ0| ≤ Cε, (3.5)

inf
a,θ∈R

(‖u(·+ a, t)− e−iθuλ(·, t)‖L2 + ‖v(·+ a, t)− e−iθvλ(·, t)‖L2) ≤ Cε, (3.6)

where the positive constant C is independent of ε and t.

Remark 1. One can expect extension of Theorem 3 to N soliton case by the N-fold
Bäcklund transformation.

3.2 Bäcklund transformation for the MTM sys-

tem

The formal compatibility condition ~φxt = ~φtx for the system of linear equations

~φx = L~φ and ~φt = A~φ (3.7)

yields the MTM system (2.1), where L and A are given by

L =
i

4
(|u|2 − |v|2)σ3 −

iλ

2

(
0 v
v 0

)
+

i

2λ

(
0 u
u 0

)
+
i

4

(
λ2 − 1

λ2

)
σ3 (3.8)

and

A = − i
4

(|u|2 + |v|2)σ3 −
iλ

2

(
0 v
v 0

)
− i

2λ

(
0 u
u 0

)
+
i

4

(
λ2 +

1

λ2

)
σ3. (3.9)

The auto-Bäcklund transformation relates two solutions of the MTM system
(2.1) while preserving the linear system (3.7). Now let us state the auto-Bäcklund
transformation.

Proposition 2. Let (u, v) be a C1 solution of the MTM system (2.1) and ~φ =
(φ1, φ2)t be a C2 nonzero solution of the linear system (3.7) associated with the
potential (u, v) and the spectral parameter λ = δeiγ/2. Then, the following trans-
formations

u(x, t) = −u(x, t)
e−iγ/2|φ1|2 + eiγ/2|φ2|2

eiγ/2|φ1|2 + e−iγ/2|φ2|2
+

2iδ−1 sin γφ1φ2

eiγ/2|φ1|2 + e−iγ/2|φ2|2
(3.10)
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and

v(x, t) = −v(x, t)
eiγ/2|φ1|2 + e−iγ/2|φ2|2

e−iγ/2|φ1|2 + eiγ/2|φ2|2
− 2iδ sin γφ1φ2

e−iγ/2|φ1|2 + eiγ/2|φ2|2
, (3.11)

generates a new C1 solution of the MTM system (2.1). Furthermore, the transfor-
mation

ψ1 =
φ2

|eiγ/2|φ1|2 + e−iγ/2|φ2|2|
, ψ2 =

φ1

|eiγ/2|φ1|2 + e−iγ/2|φ2|2|
(3.12)

yields a new C2 nonzero solution ~ψ = (ψ1, ψ2)t of the linear system (3.7) associated
with the new potential (u,v) and the same spectral parameter λ.

Proof. Setting Γ = φ1/φ2 in the linear system (3.7) with Lax operators (3.8) and
(3.9) yields the Riccati equations{

Γx = 2i(ρ2
2 − ρ2

1)Γ + i
2
(|u|2 − |v|2)Γ + i(ρ2v − ρ1u)Γ2 − i(ρ2v − ρ1u),

Γt = 2i(ρ2
2 + ρ2

1)Γ− i
2
(|u|2 + |v|2)Γ + i(ρ2v + ρ1u)Γ2 − i(ρ2v + ρ1u),

(3.13)

where ρ1 = 1
2λ

and ρ2 = λ
2
. If we choose Γ′ := 1

Γ
, u := M(Γ; ρ1)f(Γ;u, ρ1), and

v := M(Γ; ρ2)f(Γ; v, ρ2) with

M(Γ; k) = −k|Γ|
2 + k

k|Γ|2 + k
, f(Γ; q, k) = q +

4iIm(k2)Γ

k|Γ|2 + k
,

then the Riccati equations (3.13) remain invariant in variables Γ′, u, and v. The
transformation formulas above yield representation (3.10) and (3.11). Note that

if ~φ = ~0 at one point (x0, t0), then ~φ = ~0 for all (x, t). If (u, v) is C1 in (x, t), ~φ is

C2 in (x, t), and ~φ 6= ~0, then (u,v) is C1 for every x ∈ R and t ∈ R.
The validity of (3.12) has been verified with Wolfram’s Mathematica. Again, if

~φ is C2 in (x, t) and ~φ 6= ~0, then ~ψ is C2 and ~ψ 6= ~0 for every x ∈ R and t ∈ R.

Let us denote the transformations (3.10)–(3.11) by B, hence

B : (u, v, ~φ, λ) 7→ (u,v),

where ~φ is a corresponding vector of the linear system (3.7) associated with the
potential (u, v) and the spectral parameter λ.

In the simplest example, the MTM soliton (3.3) is recovered by the transfor-
mations (3.10) and (3.11) from the zero solution (u, v) = (0, 0), that is,

B : (0, 0, ~φ, λ) 7→ (uλ, vλ).

Indeed, a solution satisfying the linear system (3.7) with (u, v) = (0, 0) is given by{
φ1 = e

i
4

(λ2−λ−2)x+ i
4

(λ2+λ−2)t,

φ2 = e−
i
4

(λ2−λ−2)x− i
4

(λ2+λ−2)t.
(3.14)
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Substituting this expression into (3.10) and (3.11) yields (u,v) = (uλ, vλ) given
by (3.3).

Another important example is a transformation from the MTM solitons (3.3) to
the zero solution. We shall only give the explicit expressions of this transformation
for the case |λ| = δ = 1. By (3.12) and (3.14), we can find the vector ~ψ solving

the linear system (3.7) with (uλ, vλ) given by (3.3). When λ = eiγ/2, the vector ~ψ
is given by {

ψ1 = e
1
2
x sin γ+ i

2
t cos γ

∣∣sech
(
x sin γ − iγ

2

)∣∣ ,
ψ2 = e−

1
2
x sin γ− i

2
t cos γ

∣∣sech
(
x sin γ − iγ

2

)∣∣ . (3.15)

We note that ~ψ has exponential decay as |x| → ∞ and, therefore, it is an eigen-
vector of the linear system (3.7) for the eigenvalue λ = eiγ/2. Substituting the

eigenvector ~ψ into the transformation (3.10) and (3.11), we obtain the zero solu-
tion from the MTM soliton, that is,

B : (uλ, vλ, ~ψ, λ) 7→ (0, 0).

When |λ| = δ = 1 for (uλ, vλ) given by (3.3), we realize that c = 0 and hence
the MTM solitons (3.3) are stationary. Travelling MTM solitons with c 6= 0
can be recovered from the stationary MTM solitons with c = 0 by the Lorentz
transformation. Hence, without loss of generality, we can choose λ0 = eiγ0/2 for
a fixed γ0 ∈ (0, π) in Theorem 3. Let us state the Lorentz transformation, which
can be verified with the direct substitutions.

Proposition 3. Let (u, v) be a solution of the MTM system (2.1) and let ~φ be a
solution of the linear system (3.7) associated with (u, v) and λ = eiγ/2. Then,{

u′(x, t) := δ−1u(k1x+ k2t, k1t+ k2x),
v′(x, t) := δv(k1x+ k2t, k1t+ k2x),

k1 :=
δ2 + δ−2

2
, k2 :=

δ2 − δ−2

2
,(3.16)

is a new solution of the MTM system (2.1), whereas

~φ′(x, t) := ~φ(k1x+ k2t, k1t+ k2x), (3.17)

is a new solution of the linear system (3.7) associated with (u′, v′) and λ = δeiγ/2.

We shall denote the stationary MTM solitons at t = 0 as{
uγ(x) = i sin γ sech

(
x sin γ − iγ

2

)
,

vγ(x) = −i sin γ sech
(
x sin γ + iγ

2

)
,

(3.18)

that depend on the parameter γ ∈ (0, π).
Let us now describe our method for the proof of Theorem 3. First we clarify

some notations: (uγ0 , vγ0) denotes one-soliton solution given by (3.18) with a fixed

γ0 ∈ (0, π), ~ψγ0 denotes the corresponding eigenvector given by (3.15) for t = 0,
whereas L(u, v, λ) and A(u, v, λ) denote the Lax operators L and A that contain
(u, v) and a spectral parameter λ.
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The main steps for the proof of Theorem 3 are the following. First, we fix an
initial data (u0, v0) ∈ H2(R) such that (u0, v0) is sufficiently close to (uγ0 , vγ0) in
L2-norm, according to the bound (3.4).

Step 1: From a perturbed one-soliton solution to a small solution at t = 0. In
this step, we need to study the vector solution ~ψ of the linear equation

∂x ~ψ = L(u0, v0, λ)~ψ at time t = 0. (3.19)

In addition to proving the existence of an exponentially decaying solution ~ψ of
the linear equation (3.19) for an eigenvalue λ, we need to prove that if (u0, v0) is

close to (uγ0 , vγ0) in L2-norm, then ~ψ is close to ~ψγ0 in H1-norm and λ is close
to eiγ0/2. Parameter λ in bound (3.5) is now determined by the eigenvalue of the
linear equation (3.19).

The earlier example of obtaining the zero solution from the one-soliton solution
gives a good insight that the auto-Bäcklund transformation given by Proposition
2 produces a function (p0, q0) at t = 0,

B : (u0, v0, ~ψ, λ) 7→ (p0, q0), (3.20)

such that (p0, q0) is small in L2-norm. Moreover, if (u0, v0) ∈ H2(R), then (p0, q0) ∈
H2(R).

Step 2: Time evolution of the transformed solution. By the standard well-
posedness theory for Dirac equations [32, 84, 98], there exists a unique global
solution (p, q) ∈ C(R;H2(R)) to the MTM system (2.1) such that (p, q)|t=0 =
(p0, q0). Thanks to the L2-conservation (3.2), the solution (p(·, t), q(·, t)) remains
small in the L2-norm for every t ∈ R.

Step 3: From a small solution to a perturbed one-soliton solution for all times
t ∈ R. In this step, we are interested in the existence problem of the vector
function ~φ that solves the linear system

∂x~φ = L(p, q, λ)~φ, ∂t~φ = A(p, q, λ)~φ (3.21)

where (p, q) ∈ C(R;H2(R)) is the unique global solution to the MTM system (2.1)

starting with the initial data (p, q)|t=0 = (p0, q0) in H2(R). Using the vector ~φ
and the auto-Bäcklund transformation given by Proposition 2, we obtain a new
solution (u, v) to the MTM system (2.1),

B : (p, q, ~φ, λ) 7→ (u, v). (3.22)

Moreover, if (p, q) ∈ C(R;H2(R)), then (u, v) ∈ C(R;H2(R)). Some translational
parameter a and θ arise as functions of time t in the construction of the most
general solution of the linear equation ∂x~φ = L(p, q, λ)~φ in the system (3.21).
Bound (3.6) on the solution (u, v) is found from the analysis of the auto–Bäcklund
transformation (3.22).

To summarize, there are three key ingredients in our method: mapping of an
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L2-neighborhood of the one-soliton solution to that of the zero solution at t = 0,
the L2-conservation of the MTM system, and mapping of an L2-neighborhood of
the zero solution to that of the one-soliton solution for every t ∈ R. As a result,
if the initial data is sufficiently close to the one-soliton solution in L2 according
to the initial bound (3.4), then the solution of the MTM system remains close to
the one-soliton solution in L2 for all times according to the final bound (3.6). A
schematic picture is as follows:

(u0, v0) (u, v)

(p0, q0) (p, q)

B B

Finally, we can remove the technical assumption that (u0, v0) ∈ H2(R) by an
approximation argument in L2(R). This is possible because the MTM system (2.1)
is globally well-posed in L2(R) by Theorem 2, whereas the bounds (3.5) and (3.6)
are found to be uniform for the sequence of approximating solutions of the MTM
system (2.1), the initial data of which approximate (u0, v0) in L2(R).

We note that the solution (p, q) to the MTM system (2.1) in a L2-neighborhood
of the zero solution could contain some L2-small MTM solitons, which are related
to the discrete spectrum of the spectral problem (3.19). Sufficient conditions for
the absence of the discrete spectrum were derived in [84], and the L2 smallness of
the initial data is not generally sufficient for excluding eigenvalues of the discrete
spectrum. If the small solitons occur in the Cauchy problem associated with the
MTM system (2.1), asymptotic decay of solutions (u, v) to the MTM solitons given
by (3.3) can not be proved, in other words, (p, q) do not decay to (0, 0) in L∞-norm
as t→∞. Therefore, a more restrictive hypothesis on the initial data is generally
needed to establish asymptotic stability of MTM solitons. See [24] for restrictions
on initial data of the cubic NLS equation required in the proof of asymptotic
stability of NLS solitons.

We also note that modulation equations for parameters a and θ in Theorem 3
are not included in our method. This can be viewed as an advantage of the auto-
Bäcklund transformation, which does not rely on the global control of the dynamics
of a and θ by means of the modulation equations. Values of a and θ are related to
arbitrary constants that appear in the construction of ~φ as a solution of the linear
equation ∂x~φ = L(p, q, λ)~φ in the system (3.21). These values are eliminated in
the infimum norm stated in the orbital stability result (3.6) in Theorem 3.

3.3 From a perturbed one-soliton solution to a

small solution

Here we use the auto-Bäcklund transformation given by Proposition 2 to trans-
form a L2-neighborhood of the one-soliton solution to that of the zero solution at
t = 0. Let (u0, v0) ∈ L2(R) be the initial data of the MTM system (2.1) satisfying

bound (3.4) for λ0 = eiγ0/2. Let ~ψ be a decaying eigenfunction of the spectral
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problem
∂x ~ψ = L(u0, v0, λ)~ψ, (3.23)

for an eigenvalue λ. First, we show that under the condition (3.4), an eigenvector
~ψ always exists and λ is close to λ0. Then, we write λ = δeiγ/2 and define

p0 := −u0
e−iγ/2|ψ1|2 + eiγ/2|ψ2|2

eiγ/2|ψ1|2 + e−iγ/2|ψ2|2
+

2iδ−1 sin γψ1ψ2

eiγ/2|ψ1|2 + e−iγ/2|ψ2|2
(3.24)

and

q0 := −v0
eiγ/2|ψ1|2 + e−iγ/2|ψ2|2

e−iγ/2|ψ1|2 + eiγ/2|ψ2|2
− 2iδ sin γψ1ψ2

e−iγ/2|ψ1|2 + eiγ/2|ψ2|2
. (3.25)

We intend to show that (p0, q0) is small in L2 norm.

When (u0, v0) = (uγ0 , vγ0) and λ = λ0 = eiγ0/2, the spectral problem (3.23) has

exactly one decaying eigenvector ~ψ given by{
ψ1 = e

1
2
x sin γ0

∣∣sech
(
x sin γ0 − iγ02

)∣∣ ,
ψ2 = e−

1
2
x sin γ0

∣∣sech
(
x sin γ0 − iγ02

)∣∣ . (3.26)

The other linearly independent solution ~ξ of the spectral problem (3.23) is given
by{

ξ1 = e
1
2
x sin γ0(e−2x sin γ0 − x sin(2γ0))| sech

(
x sin γ0 − iγ02

)
|,

ξ2 = −e− 1
2
x sin γ0(e2x sin γ0 + 2 cos γ0 + x sin(2γ0))| sech

(
x sin γ0 − iγ02

)
|.

(3.27)

This solution grows exponentially as |x| → ∞. Therefore, dim ker(∂x−L(uγ0 , vγ0 , λ0))
= 1 for the kernel subspace of the L2 space. For clarity, we denote the decaying
eigenvector (3.26) by ~ψγ0 .

When (u0, v0) is close to (uγ0 , vγ0) in L2-norm, we would like to construct a

decaying solution ~ψ of the spectral problem (3.23), which is close to the eigenvector
~ψγ0 . This is achieved in Lemma 8 below. To simplify analysis, we introduce a
unitary transformation in the linear equation (3.23),

~ψ =

[
f 0

0 f

]
~φ, (3.28)

where f(x) = e
i
4

R x
0 (|u0|2−|v0|2)dx is well defined for any (u0, v0) ∈ L2(R). Then, the

linear equation (3.23) becomes

∂x~φ = M(u0, v0, λ)~φ, (3.29)

where

M(u0, v0, λ) :=
i

4

[
λ2 − λ−2 2(u0λ

−1 − v0λ)f
2

2(u0λ
−1 − v0λ)f 2 λ−2 − λ2

]
.

The following lemma gives the main result of the perturbation theory. Below,
A . B means that there exists a positive constant C independent of ε such that
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A ≤ CB for all sufficiently small ε.

Lemma 8. For a fixed λ0 = eiγ0/2 with γ0 ∈ (0, π), there exist a real positive ε
such that if

‖u0 − uγ0‖L2 + ‖v0 − vγ0‖L2 ≤ ε, (3.30)

then there exists a solution ~ψ ∈ H1(R; C2) of the linear equation (3.23) for λ ∈ C
satisfying the bound

|λ− λ0|+ ‖~ψ − ~ψγ0‖H1 . ‖u0 − uγ0‖L2 + ‖v0 − vγ0‖L2 . (3.31)

Proof. Set u0 = uγ0 + us and v0 = vγ0 + vs, where (us, vs) ∈ L2(R) are remainder
terms, which are O(ε) small in L2 norm, according to the bound (3.30). We expand
1/λ2 and 1/λ around λ0 and expand u0f

2 and v0f
2 in Taylor series, e.g.,

u0f
2 = u0e

i
2

R x
0 (|u0|2−|v0|2)dx = (uγ0 + us)

(
1 + g +

1

2
g2 +O(g3)

)
, (3.32)

where

g := i

∫ x

0

Re (usuγ0 − vsvγ0) dx+
i

2

∫ x

0

(|us|2 − |vs|2)dx.

Note that g is well defined for (us, vs) ∈ L2(R). From these expansions, the linear
equation (3.29) becomes

(∂x −Mγ0)
~φ = ∆M~φ, (3.33)

where

Mγ0 = M(uγ0 , vγ0 , λ0) =
1

2

[
− sin γ0 i(e−iγ0/2uγ0 − eiγ0/2vγ0)

i(e−iγ0/2uγ0 − eiγ0/2vγ0) sin γ0

]
and the perturbation term ∆M applied to any ~φ ∈ H1(R) satisfies the inequality

‖∆M~φ‖L2 . (|λ− λ0|+ ‖us‖L2 + ‖vs‖L2)‖φ‖H1 , (3.34)

thanks to the embedding of H1(R) in L∞(R)∩L2(R). Note that the bound (3.34)
can not be derived in the context of the spectral problem (4.10) without the unitary
transformation (3.28), which removes the term i

4
(|u|2−|v|2)σ3 from the operator L

in (1.10). This explains a posteriori why we are using the technical transformation
(3.28).

We will later need the explicit computation of the leading order part in the
perturbation term ∆M with respect to (λ− λ0), that is,

∆M =
i

2
(λ−λ0)

[
(λ0 + λ−3

0 ) −(uγ0λ
−2
0 + vγ0)

−(uγ0λ
−2
0 + vγ0) −(λ0 + λ−3

0 )

]
+O((λ−λ0)2, ‖us‖L2 , ‖vs‖L2).

(3.35)

We aim to construct an appropriate projection operator by which we split the
linear equation (3.33) into two parts. Recall that dim ker(∂x −Mγ0) = 1 and let
~φγ0 ∈ ker(∂x −Mγ0) and ~ηγ0 ∈ ker(∂x +M∗

γ0
). These null vectors can be obtained
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explicitly:

~φγ0 =

[
e
x
2

sin γ0

e−
x
2

sin γ0

] ∣∣∣sech
(

sin γ0x− i
γ0

2

)∣∣∣ , ~ηγ0 =

[
e−

x
2

sin γ0

−ex2 sin γ0

] ∣∣∣sech
(

sin γ0x− i
γ0

2

)∣∣∣ .
We note that 〈~ηγ0 , ~φγ0〉L2 = 0 but 〈σ3~ηγ0 ,

~φγ0〉L2 6= 0, where σ3 =

[
1 0
0 −1

]
. Also

note that ~φγ0 = ~ψγ0 given by (3.26) because |uγ0| = |vγ0|. We make the following
decomposition:

~φ = ~φγ0 + ~φs, 〈σ3~ηγ0 ,
~φs〉L2 = 0. (3.36)

To deal with the existence of such decomposition (3.36), we introduce the projec-
tion operator Pγ0 : L2(R; C2)→ L2(R; C2) ∩ span{σ3~ηγ0}⊥ defined by

Pγ0
~φ = ~φ− 〈σ3~ηγ0 ,

~φ〉L2

〈σ3~ηγ0 ,
~φγ0〉L2

~φγ0 .

Note that Pγ0
~φs = ~φs and Pγ0

~φγ0 = ~0. From equations (3.33) and (3.36), we define
the operator equation

F (~φs, us, vs, λ) := (∂x −Mγ0)
~φs −∆M(~φγ0 + ~φs) = 0. (3.37)

Clearly, since dim ker(∂x−Mγ0) = 1 6= 0, the Fréchet derivative D~φs
F (0, 0, 0, λ0) =

∂x − Mγ0 has no bounded inverse. Let P̂γ0 = σ3Pγ0σ3 and notice that P̂γ0 :
L2(R; C2) → L2(R; C2) ∩ span{~ηγ0}⊥. We decompose equation (3.37) by the pro-

jection P̂ into two equations

G(~φs, us, vs, λ) := P̂γ0F (~φs, us, vs, λ) = 0, (3.38)

H(~φs, us, vs, λ) := (I − P̂γ0)F (~φs, us, vs, λ) = 0. (3.39)

Since dim ker(∂x−Mγ0) = dim ker(∂x+M∗
γ0

) = 1 <∞, then ∂x−Mγ0 is a Fredholm
operator of index zero. Observe that Range(G) = L2(R; C2) ∩ span{~ηγ0}⊥, where

~ηγ0 ∈ ker{∂x +M∗
γ0
}. By the Fredholm alternative theorem, P̂γ0(∂x−Mγ0)

−1Pγ0 is
a bounded operator:

Pγ0(∂x−Mγ0)
−1P̂γ0 : L2(R; C2)∩span{~ηγ0}⊥ → H1(R; C2)∩span{σ3~ηγ0}⊥. (3.40)

We can write equation (3.38) as

(I − Pγ0(∂x −Mγ0)
−1P̂γ0∆M)~φs = Pγ0(∂x −Mγ0)

−1P̂γ0∆M
~φγ0 . (3.41)

The operator in (3.41) is shown to be invertible by the Neumann series for operator

and there exists a unique solution ~φ∗ = ~φs ∈ H1 for (us, vs, λ) ∈ Uε with sufficiently

small ε, and furthermore ~φ∗ is a C∞ function in λ, where Uε = {(us, vs, λ) ∈
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[L2(R)]2 × C : ‖(us, vs)‖L2 + |λ− λ0| < ε}. Furthermore, ~φ∗ satisfies the estimate

‖~φ∗‖H1 . ‖Pγ0(∂x −Mγ0)
−1P̂γ0∆M

~φγ0‖L2 . ‖∆M~φγ0‖L2

. |λ− λ0|+ ‖us‖L2 + ‖vs‖L2 , (3.42)

if (us, vs, λ) ∈ Uε.
Lastly we address the bifurcation equation (3.39) to determine λ ∈ C. From

equations (3.37) and (3.39), the bifurcation equation can be written explicitly as

I(us, vs, λ) := 〈~ηγ0 ,∆M(~φγ0 + ~φ∗(us, vs, λ))〉L2 = 0, (3.43)

where ~φ∗(us, vs, λ) is uniquely expressed from (3.40) if (us, vs, λ) ∈ Uε and smooth
in λ. By using the explicit expression (3.35),we check that s := ∂λI(0, 0, λ0) 6= 0,
where

s =
i

2
〈~ηγ0 ,

[
(λ0 + λ−3

0 ) −(uγ0λ
−2
0 + vγ0)

−(uγ0λ
−2
0 + vγ0) −(λ0 + λ−3

0 )

]
~φγ0〉L2

= ie−iγ0/2
∫

R

(
2 cos γ0 |Q(x)|2 + sin2 γ0 |Q(x)|4

)
dx

= 4ie−iγ0/2
∫

R

1 + cos γ0 cosh(2x sin γ0)

(cosh(2x sin γ0) + cos γ0)2
dx

=
4ie−iγ0/2

sin γ0

,

where Q(x) = sech
(
x sin γ0 − iγ02

)
.

As a result, equation (3.43) can be used to uniquely determine the spectral
parameter λ if (us, vs, λ) ∈ Uε. From inequalities (3.35), (3.42) and (3.43), we
obtain that this λ satisfies the bound |λ− λ0| . ‖us‖L2 + ‖vs‖L2 .

Remark 2. A spectral parameter λ in Lemma 8 may not be on the unit circle
|λ| = 1 while λ0 = eiγ0/2 is on the unit circle. Thus, a soliton corresponding to a
spectral parameter λ may be a moving soliton in (3.3) at t = 0.

Im(λ)

Re(λ)

λ0

λ

Remark 3. In what follows, we develop the theory when λ occurs on the unit
circle, hence we write λ = eiγ/2 for some γ ∈ (0, π). All results obtained below
can be generalized to the case of |λ| 6= 1 by using the Lorentz transformation in
Proposition 3.
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In Lemma 11 below, we will show that a solution ~φ determined in the proof of
Lemma 8 can be written explicitly as the perturbed solution around ~φγ in suitable
function spaces. Then, in Lemma 12 below, we will use this representation and
the auto-Bäcklund transformation (3.24) and (3.25) to show that (p0, q0) is small
in L2 norm.

To develop this analysis, we first prove several technical results. We consider
the linear inhomogeneous equation

∂x ~w −Mγ ~w = ~f, (3.44)

where

Mγ =
1

2

[
− sin γ i(e−iγ/2uγ − eiγ/2vγ)

i(e−iγ/2uγ − eiγ/2vγ) sin γ

]
.

We introduce Banach spaces X = X1 × X2 and Y = Y1 × Y2 such that for ~w =
(w1, w2)t ∈ X and ~f = (f1, f2)t ∈ Y , we have

‖~w‖X := ‖w1‖X1 + ‖w2‖X2 , ‖~f‖Y := ‖f1‖Y1 + ‖f2‖Y2 ,

where

‖w1‖X1 := inf
w1=v1+u1

(∥∥∥v1e
−x

2
sin γ

∣∣∣cosh
(
x sin γ − iγ

2

)∣∣∣∥∥∥
L∞x

+
∥∥∥u1e

x
2

sin γ
∣∣∣cosh

(
x sin γ − iγ

2

)∣∣∣∥∥∥
L2
x∩L∞x

)
,

‖w2‖X2 := inf
w2=v2+u2

(∥∥∥v2e
x
2

sin γ
∣∣∣cosh

(
x sin γ − iγ

2

)∣∣∣∥∥∥
L∞x

+
∥∥∥u2e

−x
2

sin γ
∣∣∣cosh

(
x sin γ − iγ

2

)∣∣∣∥∥∥
L2
x∩L∞x

)
and

‖f1‖Y1 := inf
f1=g1+h1

(∥∥∥g1e
x
2

sin γ
∣∣∣cosh

(
x sin γ − iγ

2

)∣∣∣∥∥∥
L2
x

+
∥∥∥h1e

−x
2

sin γ
∣∣∣cosh

(
x sin γ − iγ

2

)∣∣∣∥∥∥
L2
x∩L1

x

)
,

‖f2‖Y2 := inf
f2=g2+h2

(∥∥∥g2e
−x

2
sin γ

∣∣∣cosh
(
x sin γ − iγ

2

)∣∣∣∥∥∥
L2
x

+
∥∥∥h2e

x
2

sin γ
∣∣∣cosh

(
x sin γ − iγ

2

)∣∣∣∥∥∥
L2
x∩L1

x

)
.

It is obvious that X and Y are continuously embedded into L2(R). We shall
estimate the bound of the operator Pγ(∂x −Mγ)

−1P̂γ : Y → X, where projection

operators Pγ and P̂γ are defined in the proof of Lemma 8. First, we will obtain
an explicit solution ~w ∈ H1(R; C2) ∩ span{σ3~ηγ}⊥ for the linear inhomogeneous

equation (3.44) when ~f ∈ L2(R; C2) ∩ ker(∂x + M∗
γ )⊥. Then, we will prove that
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the mapping Y 3 ~f 7→ ~w ∈ X is bounded. These goals are achieved in the next
two lemmas.

Lemma 9. For any ~f = (f1, f2)t ∈ L2(R; C2) ∩ span{~ηγ}⊥, there exists a unique
solution ~w ∈ H1(R; C2) ∩ span{σ3~ηγ}⊥ of the inhomogeneous equation (3.44) that
can be written as

~w(x) =
1

4
~φγ(x)

[
k(~f) +W−(x) +W+(x)

]
+

1

4
~ξγ(x)

∫ x

−∞
~ηγ(y) · ~f(y)dy, (3.45)

where

W−(x) :=

∫ x

−∞
e−

1
2
y sin γ(e2y sin γ + 2 cos γ + y sin(2γ))

∣∣∣sech
(
y sin γ − iγ

2

)∣∣∣ f1(y)dy,

W+(x) :=

∫ ∞
x

e−
3
2
y sin γ(−1 + e2y sin γy sin(2γ))

∣∣∣sech
(
y sin γ − iγ

2

)∣∣∣ f2(y)dy,

and k(~f) is a continuous linear functional on L2(R; C2).

Proof. Since ∂x−Mγ : H1(R; C2)→ L2(R; C2) is a Fredholm operator of index zero
and ker(∂x + M∗

γ ) = span{~ηγ}, the inhomogeneous equation (3.44) has a solution

in H1(R; C2) if and only if ~f ∈ L2(R; C2) ∩ span{~ηγ}⊥. For uniqueness, we add
the constraint ~w ∈ span{σ3~ηγ}⊥.

Recall that U = [~φγ, ~ξγ] is a fundamental matrix of the homogeneous equation
(∂x −Mγ)U = 0 and ~ηγ is a decaying solution of (∂x + M∗

γ )~η = ~0. All functions
are known explicitly as

~φγ(x) =

[
e

1
2
x sin γ

e−
1
2
x sin γ

]
Q(x), ~ηγ(x) =

[
e−

1
2
x sin γ

−e 1
2
x sin γ

]
Q(x),

and

~ξγ(x) =

[
e

1
2
x sin γ(e−2x sin γ − x sin(2γ))

−e− 1
2
x sin γ(e2x sin γ + 2 cos γ + x sin(2γ))

]
Q(x),

where

Q(x) :=
∣∣∣sech

(
x sin γ − iγ

2

)∣∣∣ .
From variation of parameters, we have the explicit representation (3.45), where

k(~f) is the constant of integration and the other constant is set to zero to ensure
that ~w ∈ H1(R; C2). It remains to prove that every term in the explicit expression
(3.45) belongs to L2(R; C2).
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Since |~φγ(x)| . e−
|x|
2

sin γ and |Q(x)| . e−|x| sin γ for all x ∈ R, we have

‖W−~φγ‖L2

.

∥∥∥∥e− 1
2
|x| sin γ

∫ x

−∞
e−

1
2
y sin γ(e2y sin γ + 2 cos γ + y sin(2γ))Q(y)f1(y)dy

∥∥∥∥
L2
x

.

∥∥∥∥∫ x

−∞
e

1
2

(y−x) sin γ|f1(y)|dy
∥∥∥∥
L2
x

+

∥∥∥∥e− 1
2
|x| sin γ

∫ x

−∞
e−

1
2
|y| sin γ(2 + |y|)|f1(y)|dy

∥∥∥∥
L2
x

.‖~f‖L2 .

and

‖W+
~φγ‖L2 .

∥∥∥∥e− 1
2
|x| sin γ

∫ ∞
x

e−
3
2
y sin γ(−1 + e2y sin γy sin(2γ))Q(y)f2(y)dy

∥∥∥∥
L2
x

.

∥∥∥∥∫ ∞
x

e
1
2

(x−y) sin γ|f2(y)|dy
∥∥∥∥
L2
x

+

∥∥∥∥e− 1
2
|x| sin γ

∫ ∞
x

e−
1
2
|y| sin γ|y||f2(y)|dy

∥∥∥∥
L2
x

.‖~f‖L2 ,

where notation ‖f(x)‖L2
x

is used in place of ‖f(·)‖L2 . Since ~f ∈ L2(R; C2) ∩
span{~ηγ}⊥, then ∫ ∞

x

~ηγ(y) · ~f(y)dy = −
∫ x

−∞
~ηγ(y) · ~f(y)dy.

Using this equality, we can estimate the last term in the explicit expression (3.45)
as follows∥∥∥∥~ξγ(x)

∫ x

−∞
~ηγ(y) · ~f(y)dy

∥∥∥∥
L2
x

.

∥∥∥∥e− 1
2
x sin γ

∫ x

−∞
~ηγ(y) · ~f(y)dy

∥∥∥∥
L2
x

+

∥∥∥∥e 1
2
x sin γ

∫ ∞
x

~ηγ(y) · ~f(y)dy

∥∥∥∥
L2
x

.

∥∥∥∥∫ x

−∞
e

1
2

(y−x) sin γ|~f(y)|dy
∥∥∥∥
L2
x

+

∥∥∥∥∫ ∞
x

e−
1
2

(y−x) sin γ|~f(y)|dy
∥∥∥∥
L2
x

.‖~f‖L2 ,

where |~f | is the vector norm of the 2-vector ~f . Since 〈σ3~ηγ, ~φγ〉L2 6= 0, k(~f) is
uniquely determined from the orthogonality condition 〈σ3~ηγ, ~w〉L2 = 0. Since all

other terms in (3.45) are in L2(R; C2), k(~f) is bounded for all ~f ∈ L2(R; C2).

Therefore, k(~f) is a continuous linear functional on L2(R; C2).

Lemma 10. Let ~f ∈ Y ∩ span{~ηγ0}⊥ and let ~w be a solution of the inhomogeneous

equation (3.44) in Lemma 9. Then there is a ~f -independent constant C > 0 such

that ‖~w‖X ≤ C‖~f‖Y .

Proof. The solution ~w is given by the explicit formula (3.45). We assume now that
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~f belongs to the exponentially weighted space Y and prove that ~w belongs to the
exponentially weighted space X. Since ‖a~φγ‖X ≤ 2‖a‖L∞ for any a ∈ L∞(R), k(~f)
is a continuous linear functional on L2(R; C2), and Y is embedded into L2(R; C2),
we have

‖k(~f)~φγ0‖X . |k(~f)| . ‖~f‖L2 . ‖~f‖Y .

The second term in (3.45) is estimated by

‖W−~φγ0‖X

.

∥∥∥∥∫ x

−∞
e−

1
2
y sin γ(e2y sin γ + 2 cos γ + y sin(2γ))Q(y)f1(y)dy

∥∥∥∥
L∞x

. inf
f1=g1+h1

(
‖g1e

− 1
2
x sin γ|Q(x)|‖L1

x
+ ‖h1e

1
2
x sin γ|Q(x)|‖L2

x

)
≤ ‖~f‖Y1 ,

where Q(x) = cosh(x sin γ − iγ/2).

Similarly, the third term in (3.45) is estimated by ‖W+
~φγ‖X . ‖~f‖Y2 . The last

term in (3.45) is estimated as follows:∥∥∥∥ξ ∫ x

−∞
η(y) · ~f(y)dy

∥∥∥∥
X

≤ N1 +N2 +N3 +N4,

where

N1 =

∥∥∥∥e−x sin γ

∫ x

−∞
η(y) · ~f(y)dy

∥∥∥∥
L∞x ∩L2

x

,

N2 =

∥∥∥∥x sin(2γ)

∫ x

−∞
η(y) · ~f(y)dy

∥∥∥∥
L∞x

,

N3 =

∥∥∥∥ex sin γ

∫ ∞
x

η(y) · ~f(y)dy

∥∥∥∥
L∞x ∩L2

x

,

N4 =

∥∥∥∥(2 cos γ + x sin(2γ))

∫ x

−∞
η(y) · ~f(y)dy

∥∥∥∥
L∞x

.

Since |η(x)| . e−
|x|
2

sin γ0 and ‖e
|x|
2

sin γ ~f‖L2
x

. ‖~f‖Y for all x ∈ R, we have

N1 .

∥∥∥∥∫ x

−∞
e−(y−x) sin γe

|y|
2

sin γ(|f1|+ |f2|)dy
∥∥∥∥
L∞x ∩L2

x

≤ ‖e
|x|
2

sin γf1‖L2
x

+ ‖e
|x|
2

sin γf2‖L2
x

. ‖~f‖Y .

The other terms N2, N3, and N4 are estimated similarly. All together, we have
justified the bound ‖~w‖X ≤ C‖~f‖Y for a ~f -independent positive constant C.

Lemma 11. Under the condition (3.30), assume that λ = eiγ/2 is the eigenvalue

of the spectral problem (4.10) for the eigenvector ~ψ ∈ H1(R; C2) determined in
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Lemma 8. Then, the eigenvector can be written in the form (3.28) with

~φ(x) =

[
e

1
2
x sin γ(1 + r11(x)) + e−

1
2
x sin γr12(x)

e
1
2
x sin γr21(x) + e−

1
2
x sin γ(1 + r22(x))

] ∣∣∣sech
(
x sin γ − iγ

2

)∣∣∣ , (3.46)

where components rij for 1 ≤ i, j ≤ 2 satisfy the bound

‖r11‖L∞+‖r12‖L2∩L∞+‖r21‖L2∩L∞+‖r22‖L∞ . ‖u0−uγ‖L2 +‖v0−vγ‖L2 . (3.47)

Proof. Recall the projection operators Pγ : L2(R; C2)→ L2(R; C2) ∩ span{σ3~ηγ}⊥
and P̂γ : L2(R; C2) → L2(R; C2) ∩ span{~ηγ}⊥ introduced in the proof of Lemma

8. The existence of the eigenvector ~φ ∈ H1(R; C2) of the spectral problem (3.29)
for the eigenvalue λ = eiγ/2 has been established in Lemma 8. Therefore, we are
using operators Pγ and P̂γ to prove additional properties of the eigenvector ~φ.

Using the projection operator Pγ, we decompose ~φ = ~φγ + ~φs and rewrite the
spectral problem (3.29) in the form

(∂x −Mγ) ~φs = ∆M̃(~φγ + ~φs), (3.48)

where ∆M̃ is the anti-diagonal matrix that contains the perturbation terms u0−uγ
and v0 − vγ only. Because ~φs ∈ H1(R; C2) exists by Lemma 8, we realize that

∆M̃(~φγ + ~φs) = P̂∆M̃(~φγ + ~φs), which yields equivalently the constraint

〈~ηγ,∆M̃(~φγ + ~φs)〉L2 = 0. (3.49)

Therefore, we write the perturbed equation (3.48) in the form

~φs = Pγ (∂x −Mγ)
−1 P̂γ∆M̃(~φγ + ~φs). (3.50)

Note that the operator P̂γ applies to the sum of the two terms in the right-hand-
side of (3.50) thanks to (3.49) and cannot be applied to each term separately.

Since ∆M̃ is anti-diagonal, for any ~ζ = (ζ1, ζ2)t ∈ X, we have

‖∆M̃~ζ‖Y = ‖(∆M̃)1,2ζ2‖Y1 + ‖(∆M̃)2,1ζ1‖Y2 ,

which is bounded as follows:

‖(∆M̃)1,2ζ2‖Y1 . (‖u0 − uγ‖L2 + ‖v0 − vγ‖L2)‖ζ2‖X2 , (3.51)

‖(∆M̃)2,1ζ1‖Y2 . (‖u0 − uγ‖L2 + ‖v0 − vγ‖L2)‖ζ1‖X1 . (3.52)
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Bound (3.51) follows simply from

‖(∆M̃)1,2ζ2‖Y1 ≤ inf
ζ2=ξ2+η2

(
‖(∆M̃)1,2ξ2e

x
2

sin γR(x)‖L2
x

+ ‖(∆M̃)1,2η2e
−x

2
sin γR(x)‖L2

x∩L1
x

)
. ‖(∆M̃)1,2‖L2 inf

ζ2=ξ2+η2

(
‖ξ2e

x
2

sin γR(x)‖L∞x

+ ‖η2e
−x

2
sin γR(x)‖L∞x ∩L2

x

)
= ‖(∆M̃)1,2‖L2‖ζ2‖X2 ,

where R(x) =
∣∣cosh

(
x sin γ − iγ

2

)∣∣. Bound (3.52) is obtained similarly. Because
~φγ ∈ X, the bound ‖~w‖X . ‖~f‖Y in Lemma 10 and bounds (3.51) and (3.52)
imply

‖Pγ (∂x −Mγ)
−1 P̂γ∆M̃(~φγ + ~φs)‖X . ‖∆M̃(~φγ + ~φs)‖Y

. (‖u0 − uγ‖L2 + ‖v0 − vγ‖L2) (1 + ‖~φs‖X).

Since ‖u0 − uγ‖L2 + ‖v0 − vγ‖L2 is sufficiently small, the component ~φs in (3.50)
satisfies the bound

‖~φs‖X . ‖u0 − uγ‖L2 + ‖v0 − vγ‖L2 . (3.53)

This completes the proof of the bound (3.47) in the representation (3.46), because

the bound (3.53) on ~φs in Banach space X yields the bounds on the components
rij in the corresponding spaces.

Corollary 3. In addition to the assumptions of Lemma 11, assume that (u0, v0) ∈
Hm(R) for an integer m ≥ 0. Then, rij for 1 ≤ i, j ≤ 2 defined by (3.46) are
Cm-functions of x.

Proof. The statement is proved for m = 0 in Lemma 11, because rij are bounded
functions according to the bound (3.47) and they are continuous functions since
~φ ∈ H1(R; C2).

For m = 1, we differentiate the equation (3.48) with respect to x to get

(∂x −Mγ) ∂x~φs = ~r +R~φs + ∆M̃∂x~φs, (3.54)

where ~r := ∂x(∆M̃ ~φγ) and R := ∂x(Mγ)+∂x(∆M̃). Recall that ~φs ∈ X by Lemma

11. If (u0, v0) ∈ H1(R), then ~r +R~φs ∈ Y according to the bounds

‖~r‖Y . ‖u0 − uγ‖H1 + ‖v0 − vγ‖H1 ,

‖R~φs‖Y . (1 + ‖u0 − uγ‖H1 + ‖v0 − vγ‖H1)‖~φs‖X .

From bootstrapping of solution of the linear equation (3.50), we have ∂x~φs ∈
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H1(R). Then, since ~r +R~φs ∈ Y , we have

~r +R~φs + ∆M̃∂x~φs = P̂γ(~r +R~φs + ∆M̃∂x~φs)

Therefore, we can write the derivative equation (3.54) in the form

∂x~φs = Pγ (∂x −Mγ)
−1 P̂γ(~r +R~φs + ∆M̃∂x~φs). (3.55)

Using bounds (3.51) and (3.52) and the smallness of ‖u0−uγ‖L2 + ‖v0− vγ‖L2 , we
obtain

‖∂x~φs‖X . ‖~r +R~φs‖Y <∞, (3.56)

from which it follows that ∂x~φs ∈ H1(R)∩X, hence ∂xrij ∈ C(R) for 1 ≤ i, j ≤ 2.
Note that the bound (3.47) does not hold for ∂xrij because ‖u0−uγ‖H1+‖v0−vγ‖H1

may not be small.
For m ≥ 2, we differentiate (3.48) m times and obtain the expression

(∂x −Mγ) ∂
m
x
~φs = ~rm + ∆M̃∂mx

~φs, (3.57)

where ~rm := ∂mx (∆M̃ ~φγ) + [∂mx ,Mγ + ∆M̃ ]~φs and we denote [∂x, f ]g = ∂x(fg) −
f∂x(g). We note that the term [∂mx ,Mγ + ∆M̃ ]~φs does not contain the m-th

derivative of ~φs. By an induction similar to the case m = 1, we find that ~rm ∈ Y
according to the bound

‖~rm‖Y . ‖u0 − uγ‖Hm + ‖v0 − vγ‖Hm .

Hence if (u0, v0) ∈ Hm(R), then ∂mx
~φs ∈ H1(R) ∩ X, hence ∂mx rij ∈ C(R) for

1 ≤ i, j ≤ 2.

Lemma 12. Under the condition (3.30), assume that λ = eiγ/2 is the eigenvalue

of the spectral problem (4.10) for the eigenvector ~ψ ∈ H1(R; C2) determined in
Lemma 8 and define

p0 := −u0
e−iγ/2|ψ1|2 + eiγ/2|ψ2|2

eiγ/2|ψ1|2 + e−iγ/2|ψ2|2
+

2i sin γψ1ψ2

eiγ/2|ψ1|2 + e−iγ/2|ψ2|2
, (3.58)

q0 := −v0
eiγ/2|ψ1|2 + e−iγ/2|ψ2|2

e−iγ/2|ψ1|2 + eiγ/2|ψ2|2
− 2i sin γψ1ψ2

e−iγ/2|ψ1|2 + eiγ/2|ψ2|2
. (3.59)

Then, (p0, q0) ∈ L2(R) satisfy the bound

‖p0‖L2 + ‖q0‖L2 . ‖u0 − uγ‖L2 + ‖v0 − vγ‖L2 . (3.60)

If, in addition, (u0, v0) ∈ Hm(R) for an integer m ≥ 1, then (p0, q0) ∈ Hm(R).

Proof. Let us rewrite equation (3.58) as

p0S = −u0 +
2i sin γψ1ψ2

e−iγ/2|ψ1|2 + eiγ/2|ψ2|2
, (3.61)
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where S is a module-one factor given by

S :=
eiγ/2|ψ1|2 + e−iγ/2|ψ2|2

e−iγ/2|ψ1|2 + eiγ/2|ψ2|2
.

We use the representation (3.28) and (3.46) for the eigenvector ~ψ. Substituting ~ψ
into the second term of (3.61), we obtain

2i sin γψ1ψ2

e−iγ/2|ψ1|2 + eiγ/2|ψ2|2
=

2if
2

sin γ
[
1 + ε1 + ε2e

x sin γ + ε3e
−x sin γ

]
ex sin γ−iγ/2(1 + ε4) + e−x sin γ+iγ/2(1 + ε5) + ε6

= if
2

sin γ sech
(
x sin γ − iγ

2

)
[1 +O(|ε1|+ |ε4|+ |ε5|+ |ε6|)] +O(|ε2|+ |ε3|),

where f(x) = e
i
4

R x
0 (|u0|2−|v0|2)dx and we have defined

ε1 := r11 + r22 + r11r22 + r12r21,

ε2 := r21 + r11r21,

ε3 := r12 + r12r22,

ε4 := r11 + r11 + |r11|2 + eiγ|r21|2,
ε5 := r22 + r22 + |r22|2 + e−iγ|r12|2,
ε6 := 2e−iγ/2Re(r12 + r11r12) + 2eiγ/2Re(r21 + r21r22).

Bound (3.47) in Lemma 11 implies that

‖ε1‖L∞+‖ε2‖L∞∩L2+‖ε3‖L∞∩L2+‖ε4‖L∞+‖ε5‖L∞+‖ε6‖L∞∩L2 . ‖u0−uγ‖L2+‖v0−vγ‖L2 .

Since uγ(x) = i sin γ sech
(
x sin γ − iγ

2

)
and |f(x)| = 1 for all x ∈ R, we obtain∥∥∥∥ 2i sin γψ1ψ2

e−iγ/2|ψ1|2 + eiγ/2|ψ2|2
− f 2

uγ

∥∥∥∥
L2

. ‖u0 − uγ‖L2 + ‖v0 − vγ‖L2 .

Applying the triangle inequality to the representation (3.61), we obtain

‖p0‖L2 = ‖p0S‖L2 ≤ ‖u0 − f
2
uγ‖L2 +

∥∥∥∥ 2i sin γψ1ψ2

e−iγ/2|ψ1|2 + eiγ/2|ψ2|2
− f 2

uγ

∥∥∥∥
L2

. ‖u0 − f
2
uγ‖L2 + ‖u0 − uγ‖L2 + ‖v0 − vγ‖L2 .

By the Taylor series expansion of f and the triangle inequality, we obtain

‖u0 − f
2
uγ‖L2 ≤ ‖u0 − uγ‖L2 + ‖uγ‖L2‖1− f 2‖L∞

. ‖u0 − uγ‖L2 + ‖v0 − vγ‖L2 ,

which finally yields the bound (3.60) for ‖p0‖L2 . The bound (3.60) for ‖q0‖L2 is
obtained in exactly the same way.

Now if (u0, v0) ∈ Hm(R) for an integer m ≥ 1, we can differentiate equation
(3.61) in x m times and use Corollary 3 to conclude that (p0, q0) ∈ Hm(R).
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3.4 From a small solution to a perturbed one-

soliton solution

Here we use the auto-Bäcklund transformation given by Proposition 2 to trans-
form a sufficiently smooth solution of the MTM system (2.1) in a L2-neighborhood
of the zero solution to the one in a L2-neighborhood of the one-soliton solution.

Let (p0, q0) ∈ H2(R) be the initial data for the MTM system (2.1), which is

sufficiently small in L2 norm. Let ~φ be a solution of the linear equation

∂x~φ = L(p0, q0, λ)~φ (3.62)

with λ = eiγ/2. Two linearly independent solutions of the linear equation (3.62)
are constructed in Lemma 13 below.

Now, let (p, q) ∈ C(R;H2(R)) be the unique global solution to the MTM
system (2.1) such that (p, q)|t=0 = (p0, q0). This solution exists in H2(R) by the
global well-posedness theory for Dirac equations [32, 84, 98]. The time evolution

of the vector function ~φ in t for every x ∈ R is defined by the linear equation

∂t~φ = A(p, q, λ)~φ (3.63)

for the same λ = eiγ/2. Lemma 14 characterizes two linearly independent solutions
of the linear equation (3.63) for every t ∈ R.

Lastly, Lemma 15 constructs a new solution (u, v) ∈ C(R;H2(R)) to the MTM
system (2.1) in a L2-neighborhood of the one-soliton solution from the auto–

Bäcklund transformation involving (p, q) and ~φ for every t ∈ R. Let us introduce
the following unitary matrices

M1 = diag(m1,m1) and M2 = diag(m2,m2), (3.64)

where m1(x) := e
i
4

R x
−∞(|p0|2−|q0|2)ds and m2(x) := e

i
4

R∞
x (|p0|2−|q0|2)ds. We make sub-

stitution

~φ1(x) = e−
sin γ

2
xM1(x)

[
ϕ1(x)
ϕ2(x)

]
and ~φ2(x) = e

sin γ
2
xM2(x)

[
χ1(x)
χ2(x)

]
, (3.65)

into the linear equation (3.62) with λ = eiγ/2 and obtain two boundary value
problems: {

ϕ′1 = i
2
(e−iγ/2p0 − eiγ/2q0)m2

1ϕ2,
ϕ′2 = i

2
(e−iγ/2p0 − eiγ/2q0)m2

1ϕ1 + sin γϕ2,
(3.66)

and {
χ′1 = − sin γχ1 + i

2
(e−iγ/2p0 − eiγ/2q0)m2

2χ2,
χ′2 = i

2
(e−iγ/2p0 − eiγ/2q0)m2

2χ1,
(3.67)
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subject to the boundary conditions{
lim

x→−∞
ϕ1(x) = 1,

lim
x→∞

e−x sin γϕ2(x) = 0,
and

{
lim

x→−∞
ex sin γχ1(x) = 0,

lim
x→∞

χ2(x) = 1.
(3.68)

The following lemma characterizes solutions of the boundary value problems (3.66),
(3.67), and (3.68) if (p0, q0) is small in the L2-norm.

Lemma 13. There exists a real positive δ such that if ‖p0‖L2 + ‖q0‖L2 ≤ δ, then
the boundary value problems (3.66), (3.67), and (3.68) have unique solutions in
the class

(ϕ1, ϕ2) ∈ L∞(R)×(L2(R)∩L∞(R)), and (χ1, χ2) ∈ (L2(R)∩L∞(R))×L∞(R),

satisfying bounds

‖ϕ1 − 1‖L∞ + ‖ϕ2‖L2∩L∞ . ‖p0‖L2 + ‖q0‖L2 (3.69)

and
‖χ1‖L2∩L∞ + ‖χ2 − 1‖L∞ . ‖p0‖L2 + ‖q0‖L2 . (3.70)

Proof. The boundary value problem (3.66) and (3.68) can be written in the integral
form{
ϕ1(x) = T1(ϕ1, ϕ2)(x) := 1 + i

2

∫ x
−∞

[
e−iγ/2p0(y)− eiγ/2q0(y)

]
m2

1(y)ϕ2(y)dy,

ϕ2(x) = T2(ϕ1, ϕ2)(x) := − i
2

∫∞
x
e(x−y) sin γ

[
e−iγ/2p0(y)− eiγ/2q0(y)

]
m2

1(y)ϕ1(y)dy.
(3.71)

We introduce a Banach space Z := L∞(R)× (L2(R) ∩ L∞(R)) equipped with the
norm

‖~u‖Z := ‖u1‖L∞ + ‖u2‖L∞∩L2

and show that ~T = (T1, T2)t : Z → Z is a contraction mapping. Using the Schwartz
inequality, the Younge inequality, and the triangle inequality, we obtain for any
~ϕ, ~̃ϕ ∈ Z,

‖T1(ϕ1, ϕ2)− T1(ϕ̃1, ϕ̃2)‖L∞

= sup
x∈R

∣∣∣∣ i2
∫ x

−∞

[
e−iγ/2p0(y)− eiγ/2q0(y)

]
m2

1(y)(ϕ2(y)− ϕ̃2(y))dy

∣∣∣∣
≤1

2
(‖p0‖L2 + ‖q0‖L2) ‖ϕ2 − ϕ̃2‖L2

and

‖T2(ϕ1, ϕ2)− T2(ϕ̃1, ϕ̃2)‖L∞∩L2

≤1

2
‖ex sin γ‖L1

x(R−)∩L2
x(R−)‖e−iγ/2p0 − eiγ/2q0‖L2‖ϕ1 − ϕ̃1‖L∞

≤ 1

sin γ
(‖p0‖L2 + ‖q0‖L2) ‖ϕ1 − ϕ̃1‖L∞ .
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If ‖p0‖L2 +‖q0‖L2 ≤ δ is sufficiently small such that δ < sin γ for a fixed γ ∈ (0, π),

then ~T = (T1, T2)t is a contraction mapping on Z. To prove the inequality (3.69),
we have

‖ϕ1 − 1‖L∞ + ‖ϕ2‖L2∩L∞ ≤ ‖~T (ϕ1, ϕ2)− ~T (0, 0)‖Z

≤ ‖p0‖L2 + ‖q0‖L2

sin γ
(1 + ‖ϕ1 − 1‖L∞ + ‖ϕ2‖L∞∩L2).

Since ‖p0‖L2 +‖q0‖L2 ≤ δ < sin γ, the above estimates yields the inequality (3.69).
Repeating similar estimates for the boundary-value problem (3.67) and (3.68), we
can prove that (χ1, χ2) ∈ (L2(R) ∩ L∞(R)) × L∞(R) and the inequality (3.70)
holds.

Remark 4. Bounds (3.69) and (3.70) imply that a parameter λ is not an L2

eigenvalue in the spectrum problem (3.62).

Let us now define the time evolution of the vector functions ~φ1 and ~φ2 in t
for every x ∈ R, according to the linear equation (3.63), where λ = eiγ/2 and
(p, q) ∈ C(R;H2(R)) is the unique solution of the MTM system (2.1) such that

(p, q)|t=0 = (p0, q0). We also consider the initial data for ~φ1 and ~φ2 at t = 0 given
by the two linearly independent solutions (3.65) of the linear equation (3.62). The

linear equation (3.63) for ~φ1,2 with λ = eiγ/2 take the form

∂t~φ1,2 =

[
− i

4
(|p|2 + |q|2) + i

2
cos γ − i

2
(e−iγ/2p+ eiγ/2q)

− i
2
(e−iγ/2p+ eiγ/2q) i

4
(|p|2 + |q|2)− i

2
cos γ

]
~φ1,2. (3.72)

We set

~φ1(x, t) := e−
x
2

sin γM1(x, t)~ϕ(x, t), ~φ2(x, t) := e
x
2

sin γM2(x, t)~χ(x, t), (3.73)

where M1(x, t) and M2(x, t) are given by (3.64) with

m1(x, t) := e
i
4

R x
−∞(|p(s,t)|2−|q(s,t)|2)ds, m2(x, t) := e

i
4

R∞
x (|p(s,t)|2−|q(s,t)|2)ds. (3.74)

The following lemma characterizes vector functions ~ϕ and ~χ.

Lemma 14. Let (p0, q0) ∈ H2(R) and assume that there exists a sufficiently small
δ such that ‖p0‖L2 + ‖q0‖L2 ≤ δ. Let (p, q) ∈ C(R;H2(R)) be the unique solution

of the MTM system (2.1) such that (p, q)|t=0 = (p0, q0). Let ~φ1 and ~φ2 be solutions
of the linear equation (3.72) starting with the initial data given by (3.65). Then,

for every t ∈ R, ~φ1 and ~φ2 are given by (3.73), where

(ϕ1, ϕ2)(·, t) ∈ L∞(R)×(L2(R)∩L∞(R)) and (χ1, χ2)(·, t) ∈ (L2(R)∩L∞(R))×L∞(R)

satisfy the differential equations

∂x~ϕ =

[
0 i

2
(e−iγ/2p− eiγ/2q)m̄2

1
i
2
(e−iγ/2p− eiγ/2q)m2

1 sin γ

]
~ϕ (3.75)
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and

∂x~χ =

[
− sin γ i

2
(e−iγ/2p− eiγ/2q)m2

2
i
2
(e−iγ/2p− eiγ/2q)m̄2

2 0

]
~χ, (3.76)

subject to the boundary values{
lim

x→−∞
ϕ1(x, t) = e

i
2
t cos γ,

lim
x→∞

e−x sin γϕ2(x, t) = 0,
and

{
lim

x→−∞
ex sin γχ1(x, t) = 0,

lim
x→∞

χ2(x, t) = e−
i
2
t cos γ.

(3.77)

Furthermore, for every t ∈ R, these functions satisfy the bounds

‖ϕ1(·, t)− e
i
2
t cos γ‖L∞ + ‖ϕ2(·, t)‖L2∩L∞ . ‖p0‖L2 + ‖q0‖L2 (3.78)

and

‖χ1(·, t)‖L2∩L∞ + ‖χ2(·, t)− e−
i
2
t cos γ‖L∞ . ‖p0‖L2 + ‖q0‖L2 . (3.79)

Proof. By Sobolev embedding of H2(R) into C1(R), the x-derivatives of solutions
(p, q) ∈ C(R;H2(R)) are continuous and bounded functions of x for every t ∈ R.
Moreover, bootstrapping arguments for the MTM system (2.1) show that the same
solution (p, q) exists in C1(R;H1(R)). Therefore, the t-derivatives of solutions
(p, q) are also continuous and bounded functions of x for every t ∈ R. Thus,
the technical assumption (p0, q0) ∈ H2(R) simplifies working with the system of
Lax equations (3.62) and (3.63). In particular, we shall prove that ~ϕ satisfies the

differential equation (3.75) for every t ∈ R if ~φ1 satisfies the differential equation
(3.72) for every x ∈ R and the representation (3.73) is used.

By Lemma 13, ~ϕ is a bounded function of x for t = 0 and by bootstrapping
arguments, ~ϕ ∈ C(R) for t = 0. We now claim that the differential equation (3.72)
preserves this property for every t ∈ R. From the differential equation (3.72) and
the representation (3.73), we obtain

∂t(|ϕ1|2 + |ϕ2|2) = sin
(γ

2

) [
(q̄ − p̄)m̄2

1ϕ̄1ϕ2 + (q − p)m2
1ϕ1ϕ̄2

]
≤ (|p|+ |q|)(|ϕ1|2 + |ϕ2|2).

By Gronwall’s inequality, for any T > 0, we obtain

|ϕ1(x, t)|2 + |ϕ2(x, t)|2 ≤ eαTT (|ϕ1(x, 0)|2 + |ϕ2(x, 0)|2) x ∈ R, t ∈ [−T, T ],
(3.80)

where
αT := sup

t∈[−T,T ]

sup
x∈R

(|p(x, t)|+ |q(x, t)|) .

Since the exponential factor remains bounded for any finite time T > 0, then it
follows that ~ϕ(·, t) ∈ L∞(R) for every t ∈ R. Bootstrapping then yields ~ϕ(·, t) ∈
C(R) for every t ∈ R.

Since coefficients of the linear system (3.72) are continuous functions of (x, t),
we have ∂t~ϕ(·, t) ∈ C(R) for every t ∈ R. Now, if (p, q) are C1 functions of x and
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t, then a similar method shows that ∂x~ϕ, ∂t∂x~ϕ, ∂
2
t ~ϕ ∈ C(R) for every t ∈ R.

We shall now establish the validity of the differential equation (3.75). For ~φ1 in

(3.73), we write this equation in the abstract form ∂x~φ1 = L~φ1. We also write the

differential equation (3.72) for ~φ1 in the abstract form ∂t~φ1 = A~φ1. To establish

(3.75) for every t ∈ R, we construct the residual function ~F := ∂x~φ1 − L~φ1. This

function is zero for every x ∈ R and t = 0. We shall prove that ~F is zero for every
x ∈ R and t ∈ R.

The compatibility condition ∂xA− ∂tL+ [A,L] = 0 is satisfied for every x ∈ R
and t ∈ R, if (p, q) is a C1 solution of the MTM system (2.1). After differentiating
~F with respect to t, we obtain

∂t ~F = ∂t∂x~φ1 − (∂tL)~φ1 − L∂t~φ1

= ∂x(A~φ1)− (∂tL)~φ1 − LA~φ1

= (∂xA− ∂tL+ [A,L])~φ1 + A~F

= A~F .

Let ~F = (F1, F2)t. From the linear evolution ∂t ~F = AF , we again obtain

∂t(|F1|2 + |F2|2) = sin
(γ

2

) [
(q̄ − p̄)F̄1F2 + (q − p)F1F̄2

]
≤ (|p|+ |q|)(|F1|2 + |F2|2),

which yields with Gronwall’s inequality for any T > 0

|F1(x, t)|2 + |F2(x, t)|2 ≤ eαTT (|F1(x, 0)|2 + |F2(x, 0)|2), x ∈ R, t ∈ [−T, T ],

with the same definition of αT . Since ~F (x, 0) = ~0, then the above inequality yields
~F (x, t) = ~0 for every x ∈ R and t ∈ [−T, T ]. Hence, ~ϕ satisfies the differential
equation (3.75).

We have shown that ~ϕ(·, t) ∈ L∞(R) for every t ∈ R. We now show that
ϕ2(·, t) ∈ L2(R) for every t ∈ R. It follows from the differential equation (3.72)
and the representation (3.73) that

∂t(|ϕ2|2) ≤ (|p|+ |q|)|ϕ̄1ϕ2|
. |ϕ2|2 + (|p|2 + |q|2)|ϕ1|2.

Using Gronwall’s inequality and the previous bound (3.80), we have for any T > 0

|ϕ2(x, t)|2

≤ eT
[
|ϕ2(x, 0)|2 +

∫ T

−T
(|p(x, s)|2 + |q(x, s)|2)|ϕ1(x, s)|2ds

]
≤ eT |ϕ2(x, 0)|2 + e(1+αT )T

∫ T

−T
(|p(x, s)|2 + |q(x, s)|2)

(
|ϕ1(x, 0)|2 + |ϕ2(x, 0)|2

)
ds,
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where x ∈ R and t ∈ [−T, T ]. Therefore, we have

‖ϕ2(·, t)‖2
L2 ≤ eT‖ϕ2(·, 0)‖2

L2

+ e(1+αT )T
(
‖ϕ1(·, 0)‖2

L∞ + ‖ϕ2(·, 0)‖2
L∞

) ∫ T

−T
(‖p(·, s)‖2

L2 + ‖q(·, s)‖2
L2)ds.

Since the right-hand side of this inequality remains bounded for any finite time
T > 0, then it follows that ϕ2(·, t) ∈ L2(R) for every t ∈ R.

It remains to prove the boundary values for ~ϕ1(x, t) as x→ ±∞ in (3.77). The
second boundary condition

lim
x→∞

e−x sin γϕ2(x, t) = 0

follows from the fact that ϕ2(·, t) ∈ L∞(R) for every t ∈ R. To prove the first
boundary condition, we use Duhamel’s formula to write the differential equation
(3.72) in the integral form:

~φ1(x, t) = e
i
2
tσ3 cos γ~φ1(x, 0) +

∫ t

0

e
i
2

(t−s)σ3 cos γA1(x, s)~φ1(x, s)ds,

where

A1(x, t) :=

[
− i

4
(|p|2 + |q|2) − i

2
(e−iγ/2p+ eiγ/2q)

− i
2
(e−iγ/2p+ eiγ/2q) i

4
(|p|2 + |q|2)

]
.

Using the representation (3.73), we have for t ∈ R

|M1~ϕ(x, t)− e
i
2
tσ3 cos γM1~ϕ(x, 0)| ≤

∫ |t|
0

|A1(x, s)M1~ϕ(x, s)|ds,

where |~f | denotes the vector norm of the 2-vector ~f . Since ~ϕ(·, t) ∈ L∞(R) ×
(L∞(R) ∩ L2(R)) for every t ∈ R and p(·, t), q(·, t) ∈ H2(R), we claim that

• |A1(x, s)M1~ϕ(x, s)| is bounded by some s-independent constant for every
x ∈ R and |s| ≤ |t|

• lim
|x|→∞

A1(x, s)M1~ϕ(x, s) = ~0 pointwise for every |s| ≤ |t|.

Then, the dominated convergence theorem gives

lim
x→−∞

|M1(x, t)~ϕ(x, t)− e
i
2
tσ3 cos γM1(x, 0)~ϕ(x, 0)| = 0, t ∈ R.

Since ~ϕ(x, 0)→ (1, 0)t as x→ −∞ and M1(x, t)→ I as x→ −∞ for every t ∈ R,
the above limit recovers the first boundary condition

lim
x→−∞

ϕ1(x, t) = e
i
2
t cos γ.

The proof of the differential equation (3.76) and the boundary condition for ~χ
in (3.77) is analogous. Finally, since the L2 norm of solutions of the MTM system
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(2.1) is constant in time t, according to (3.2), the proof of bounds (3.78) and (3.79)
is analogous to the proof in Lemma 13.

Lemma 15. Let (p0, q0) ∈ H2(R) and assume that there exists a sufficiently small
δ such that ‖p0‖L2 + ‖q0‖L2 ≤ δ. Let (p, q) ∈ C(R;H2(R)) be the unique solution
to the MTM system (2.1) such that (p, q)|t=0 = (p0, q0). Using solutions ~ϕ and ~χ
in Lemma 14, let us define[

φ1(x, t)
φ2(x, t)

]
:= c1(t)e−

x
2

sin γM1(x, t)~ϕ(x, t) + c2(t)e
x
2

sin γM2(x, t)~χ(x, t), (3.81)

where c1(t) := e(a+iθ)/2, c2(t) := e−(a+iθ)/2 are given in terms of the real coefficients
a, θ, which may depend on t. Then, the auto–Bäcklund transformation

u := −pe
−iγ/2|φ1|2 + eiγ/2|φ2|2

eiγ/2|φ1|2 + e−iγ/2|φ2|2
+

2i sin γφ1φ2

eiγ/2|φ1|2 + e−iγ/2|φ2|2
(3.82)

and

v := −q e
iγ/2|φ1|2 + e−iγ/2|φ2|2

e−iγ/2|φ1|2 + eiγ/2|φ2|2
− 2i sin γφ1φ2

e−iγ/2|φ1|2 + eiγ/2|φ2|2
(3.83)

generates a new solution (u, v) ∈ C(R;H2(R)) to the MTM system (2.1) satisfying
the bound∥∥∥u(x, t)− ie−iθ−it cos γ sin γ sech

(
x sin γ − iγ

2
− a
)∥∥∥

L2
x

. ‖p0‖L2 + ‖q0‖L2 (3.84)

and∥∥∥v(x, t) + ie−iθ−it cos γ sin γ sech
(
x sin γ + i

γ

2
− a
)∥∥∥

L2
x

. ‖p0‖L2 + ‖q0‖L2 (3.85)

for every t ∈ R.

Proof. Let us introduce ~ψ = (ψ1, ψ2)t by

ψ1 :=
φ2

|eiγ/2|φ1|2 + e−iγ/2|φ2|2|
, ψ2 :=

φ1

|eiγ/2|φ1|2 + e−iγ/2|φ2|2|
. (3.86)

The inequalities (3.78) and (3.79) imply that (u, v) and ~ψ are bounded for every

x ∈ R and t ∈ R. If (p, q) are C1 functions of (x, t) and ~φ is a C2 function of (x, t),

then (u, v) are C1 functions of (x, t) and ~ψ is a C2 function of (x, t). Proposition

2 states that ~ψ given by (3.86) satisfies the evolution equations

∂x ~ψ = L(u, v, λ)~ψ, ∂t ~ψ = A(u, v, λ)~ψ,

for λ = eiγ/2. As a result, the compatibility condition ∂x∂t ~ψ = ∂t∂x ~ψ for every
x ∈ R and t ∈ R yields the MTM system (2.1) for the functions (u, v).

We shall now prove inequality (3.84). The proof of inequality (3.85) is analo-
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gous. First, we write (3.82) in the form of

R :=
2i sin γφ1φ2

eiγ/2|φ1|2 + e−iγ/2|φ2|2
= u+ p

e−iγ/2|φ1|2 + eiγ/2|φ2|2

eiγ/2|φ1|2 + e−iγ/2|φ2|2
. (3.87)

Explicit substitutions of (3.81) into (3.87) yield

R :=
2i sin γ

(
m1m2e

−iθϕ1χ2 +R1

)
eiγ/2+a−x sin γ|ϕ1|2 + e−iγ/2−a+x sin γ|χ2|2 +R2

,

where
R1 := m2

1e
a−x sin γϕ1ϕ2 +m1m2e

iθϕ2χ1 +m2
2e
−a+x sin γχ1χ2

and

R2 := eiγ/2−a+x sin γ|χ1|2 + e−iγ/2+a−x sin γ|ϕ2|2 + 2eiγ/2Re[m1m2e
iθϕ1χ1]

+ 2e−iγ/2Re[m1m2e
iθϕ2χ2].

By bounds (3.78) and (3.79) in Lemma 14, we have |ϕ1|, |χ2| ∼ 1 and |ϕ2|, |χ1| ∼
0, so that for a− x sin γ ≤ 0,

R =
2i sin γm1m2e

−iθ+a−x sin γϕ1χ2

eiγ/2+2(a−x sin γ)|ϕ1|2 + e−iγ/2|χ2|2
+O(|ϕ2|+ |χ1|) (3.88)

and for a− x sin γ ≥ 0,

R =
2i sin γm1m2e

−iθ−a+x sin γϕ1χ2

eiγ/2|ϕ1|2 + e−iγ/2−2(a−x sin γ)|χ2|2
+O(|ϕ2|+ |χ1|). (3.89)

Combining (3.88) and (3.89), we get∣∣∣∣R− 2i sin γe−iθ−it cos γ

eiγ/2+a−x sin γ + e−iγ/2 − a+ x sin γ

∣∣∣∣
. e−|a−x sin γ|(|ϕ1 − eit

cos γ
2 |+ |χ2 − e−it

cos γ
2 |+ |m1 − 1|+ |m2 − 1|) + |ϕ2|+ |χ1|

Since m1 = e
i
4

R x
−∞(|p|2−|q|2)ds and m2 = e

i
4

R∞
x (|p|2−|q|2)ds, we obtain the bounds

‖m1,2(·, t)− 1‖L∞ . ‖p‖2
L2 + ‖q‖2

L2 ,

provided that ‖p‖L2 and ‖q‖L2 are sufficiently small. Then, by Lemma 14 and the
L2 conservation law (3.2), the previous estimate yields∥∥∥R(x, t)− ie−iθ−it cos γ sin γ sech

(
x sin γ − iγ

2
− a
)∥∥∥

L2
x

. ‖p0‖L2 + ‖q0‖L2 . (3.90)

Using the definition (3.87), the bound (3.90), and the triangle inequality, we obtain
inequality (3.84).

Lastly, if (p, q) ∈ C(R;H2(R)), we can differentiate equations (3.88) and (3.89)
in x twice to show from (3.82) and (3.83) that (u, v) ∈ C(R;H2(R)).
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3.5 Proof of the main result

Proof of Theorem 3. Thanks to the Lorentz transformation given by Proposition
3, we may choose λ0 = eiγ0/2, γ0 ∈ (0, π) in Theorem 3. For a given initial
data (u0, v0) satisfying the inequality (3.4) for sufficiently small ε, we map a L2-
neighborhood of one-soliton solution to that of the zero solution. To do so, we
use Lemma 8 and obtain an eigenvector ~ψ of the spectral problem (4.10) for an
eigenvalue λ ∈ C satisfying

|λ− eiγ0/2| . ‖u0 − uγ0‖L2 + ‖v0 − vγ0‖L2 ≤ ε. (3.91)

We should note that the same Lorentz transformation cannot be used twice to
consider the cases of λ0 = eiγ0/2 and λ = eiγ/2 simultaneously; the assumption
λ0 = eiγ0/2 implies that λ is not generally on the unit circle, and vice versa.
Hence, if λ0 = eiγ0/2 is set, all formulas in Section 3 below Remark 3 must in
fact be generalized for a general λ. However, this generalization is straightforward
thanks again to the existence of the Lorentz transformation given by Proposition
3. In what follows, we then use the general MTM solitons (uλ, vλ) given by (3.3).

By Lemma 12, the auto–Bäcklund transformation (3.24) and (3.25) with ~ψ in
Lemma 8 yields an initial data (p0, q0) ∈ L2(R) of the MTM system (2.1) satisfying
the estimate

‖p0‖L2 + ‖q0‖L2 . ‖u0 − uλ(·, 0)‖L2 + ‖v0 − vλ(·, 0)‖L2

. ‖u0 − uγ0‖L2 + ‖v0 − vγ0‖L2 + ‖uλ(·, 0)− uγ0‖L2

+ ‖vλ(·, 0)− vγ0‖L2

. ‖u0 − uγ0‖L2 + ‖v0 − vγ0‖L2 =: ε, (3.92)

where we have used the triangle inequality and the bound (3.91).

Since the time evolution in Section 4 is well-defined if (p0, q0) ∈ H2(R), let
us first assume that the initial data (u0, v0) ∈ L2(R) satisfying the inequality
(3.4) also satisfy (u0, v0) ∈ H2(R). Then, (p0, q0) ∈ H2(R) by Lemma 12. Let
(p, q) ∈ C(R;H2(R)) be the unique solution of the MTM system (2.1) such that
(p, q)|t=0 = (p0, q0). Next we will map a L2-neighborhood of the zero solution to
that of one-soliton solution for all t ∈ R.

By Lemma 14, we construct a solution of the Lax equations

∂x~φ = L(p, q, λ)~φ and ∂t~φ = A(p, q, λ)~φ (3.93)

for the same eigenvalue λ as in (3.91). Let

k1(λ) :=
i

4

(
λ2 − 1

λ2

)
, k2(λ) :=

1

4

(
λ2 +

1

λ2

)
.

The solution of the Lax system (3.93) is constructed in the form

~φ(x, t) = c1(t)M1(x, t)exk1(λ)~ϕ(x, t) + c2(t)M2(x, t)e−xk1(λ)~χ(x, t), (3.94)
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where unitary matrices M1 and M2 are given in (3.64) with m1 and m2 given by
(3.74), whereas the vectors ~ϕ and ~χ satisfy the estimates

‖ϕ1(·, t)− eitk2(λ)‖L∞ + ‖ϕ2(·, t)‖L2∩L∞ . ‖p0‖L2 + ‖q0‖L2 ≤ ε (3.95)

and

‖χ1(·, t)‖L2∩L∞ + ‖χ2(·, t)− e−itk2(λ)‖L∞ . ‖p0‖L2 + ‖q0‖L2 ≤ ε. (3.96)

The coefficients c1 and c2 of the linear superposition (3.94) can be parameterized
by parameters a and θ as follows:

c1 = e(a+iθ)/2, c2 = e−(a+iθ)/2,

where parameters a and θ may depend on the time variable t but not on the space
variable x. These parameters determine the spatial and gauge translations of the
MTM solitons according to the transformation (??).

By Lemma 15, the auto–Bäcklund transformation generates a new solution
(u, v) of the MTM system (2.1) satisfying the bound for every t ∈ R,

inf
a,θ∈R

(‖u(·+a, t)−e−iθuλ(·, t)‖L2 +‖v(·+a, t)−e−iθvλ(·, t)‖L2) . ‖p0‖L2 +‖q0‖L2 ≤ ε.

(3.97)
Theorem 3 is proved if (u0, v0) ∈ H2(R). To obtain the same result for (u0, v0) ∈

L2(R) but (u0, v0) /∈ H2(R), we construct an approximating sequence (u0,n, v0,n) ∈
H2(R) (n ∈ N) that converges as n→∞ to (u0, v0) ∈ L2(R) in the L2-norm. For
a sufficiently small ε > 0, we let

‖u0,n − uγ0‖L2 + ‖v0,n − vγ0‖L2 ≤ ε, for every n ∈ N.

Under this condition, for each (u0,n, v0,n) ∈ H2(R), we obtain inequalities (3.91),
(3.92), and (3.97) independently of n. Therefore, there is a subsequence of solutions
(un, vn) ∈ C(R;H2(R)) (n ∈ N) of the MTM system (2.1) such that it converges
as n→∞ to a solution (u, v) ∈ C(R;L2(R)) of the MTM system (2.1) satisfying
inequalities (3.5) and (3.6). The proof of Theorem 3 is now complete.
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Chapter 4

Global well-posedness of the
derivative NLS by the inverse
scattering transform

4.1 Main result

We consider the Cauchy problem for the derivative nonlinear Schrödinger (DNLS)
equation {

iut + uxx + i(|u|2u)x = 0, t > 0,
u|t=0 = u0,

(4.1)

where the subscripts denote partial derivatives and u0 is defined in a suitable
function space, e.g., in Sobolev spaceHm(R) of distributions with square integrable
derivatives up to the order m.

Local existence of solutions for u0 ∈ Hs(R) with s > 3
2

was established by
Tsutsumi & Fukuda [106] by using a parabolic regularization. Later, the same
authors [107] used the first five conserved quantities of the DNLS equation and
established the global existence of solutions for u0 ∈ H2(R) provided the initial
data is small in the H1(R) norm.

Using a gauge transformation of the DNLS equation to a system of two semi-
linear NLS equations, for which a contraction argument can be used in the space
L2(R) with the help of the Strichartz estimates, Hayashi [43] proved local and
global existence of solutions to the DNLS equation for u0 ∈ H1(R) provided that
the initial data is small in the L2(R) norm. More specifically, the initial data u0

is required to satisfy the precise inequality:

‖u0‖L2 <
√

2π. (4.2)

The space H1(R) is referred to as the energy space for the DNLS equation because
its first three conserved quantities having the meaning of the mass, momentum,
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and energy are well-defined in the space H1(R):

I0 =

∫
R
|u|2dx, (4.3)

I1 = i

∫
R
(ūux − uūx)dx−

∫
R
|u|4dx, (4.4)

I2 =

∫
R
|ux|2dx+

3i

4

∫
R
|u|2(uūx − uxū)dx+

1

2

∫
R
|u|6dx. (4.5)

Using the gauge transformation u = ve−
3i
4

R x
−∞ |v(y)|2dy and the Gagliardo–Nirenberg

inequality [109]

‖u‖6
L6 ≤

4

π2
‖u‖4

L2‖ux‖2
L2 , (4.6)

one can obtain

I2 = ‖vx‖2
L2 −

1

16
‖v‖6

L6 ≥
(

1− 1

4π2
‖v‖4

L2

)
‖vx‖2

L2 .

Under the small-norm assumption (4.2), the H1(R) norm of the function v (and
hence, the H1(R) norm of the solution u to the DNLS equation) is controlled by
the conserved quantities I0 and I2, once the local existence of solutions in H1(R)
is established.

Developing the approach based on the gauge transformation and a priori energy
estimates, Hayashi & Ozawa [44, 45, 81] considered global solutions to the DNLS
equation in weighted Sobolev spaces under the same small-norm assumption (4.2),
e.g., for u0 ∈ Hm(R) ∩ L2,m(R), where m ∈ N. Here and in what follows, L2,m(R)
denotes the weighted L2(R) space with the norm

‖u‖L2,m :=

(∫
R
(1 + x2)m|u|2dx

)1/2

=

(∫
R
〈x〉2m|u|2dx

)1/2

,

where 〈x〉 := (1 + x2)1/2.

More recently, local well-posedness of solutions to the DNLS equation was
established in spaces of lower regularity, e.g., for u0 ∈ Hs(R) with s ≥ 1

2
by

Takaoka [101] who used the Fourier transform restriction method. This result was
shown to be sharp in the sense that the flow map fails to be uniformly continuous
for s < 1

2
[10]. Global existence under the constraint (4.2) was established in

Hs(R) with subsequent generations of the Fourier transform restriction method
and the so-called I-method, e.g., for s > 32

33
by Takaoka [102], for s > 2

3
and s > 1

2

by Colliander et al. [19] and [20] respectively, and finally for s = 1
2

by Miao, Wu
and Xu [75].

The key question, which goes back to the paper of Hayashi & Ozawa [44], is
to find out if the bound (4.2) is optimal for existence of global solutions to the
DNLS equation. By analogy with the quintic nonlinear Schrödinger (NLS) and
Korteweg–de Vries (KdV) equations, one can ask if solutions with the L2(R) norm
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exceeding the threshold value in the inequality (4.2) can blow up in a finite time.

The threshold value
√

2π for the L2(R) norm corresponds to the constant value
of the L2(R) norm of the stationary solitary wave solutions to the DNLS equation.
These solutions can be written in the explicit form:

u(x, t) = φω(x)eiω
2t− 3i

4

R x
−∞ |φω(y)|2dy, φω(x) =

√
4ω sech(2ωx), ω ∈ R+, (4.7)

from which we have ‖φω‖L2 =
√

2π for every ω ∈ R+. Although the solitary
wave solutions are unstable in the quintic NLS and KdV equations, it was proved
by Colin & Ohta [21] that the solitary wave of the DNLS equation is orbitally
stable with respect to perturbations in H1(R). This result indicates that there
exist global solutions to the DNLS equation (4.1) in H1(R) with the L2(R) norm
exceeding the threshold value in (4.2).

Moreover, Colin & Ohta [21] proved that the moving solitary wave solutions
of the DNLS equation are also orbitally stable in H1(R). Since the L2(R) norm
of the moving solitary wave solutions is bounded from above by 2

√
π, the orbital

stability result indicates that there exist global solutions to the DNLS equation
(4.1) if the initial data u0 satisfies the inequality

‖u0‖L2 < 2
√
π. (4.8)

These orbital stability results suggest that the inequality (4.2) is not sharp for
the global existence in the DNLS equation (4.1). Furthermore, recent numerical
explorations of the DNLS equation (4.1) indicate no blow-up phenomenon for
initial data with any large L2(R) norm [70, 71]. The same conclusion is indicated
by the asymptotic analysis in the recent work [16].

Towards the same direction, Wu [110] proved that the solution to the DNLS
equations with u0 ∈ H1(R) does not blow up in a finite time if the L2(R) norm
of the initial data u0 slightly exceed the threshold value in (4.2). The technique
used in [110] is a combination of a variational argument together with the mass,
momentum and energy conservation in (4.3)–(4.5). On the other hand, the solution
to the DNLS equation restricted on the half line R+ blows up in a finite time if the
initial data u0 ∈ H2(R+)∩L2,1(R+) yields the negative energy I2 < 0 given by (4.5)
[110]. Proceeding further with sharper Gagliardo–Nirenberg-type inequalities, Wu
[111] proved very recently that the global solutions to the DNLS equation exists in
H1(R) if the initial data u0 ∈ H1(R) satisfies the inequality (4.8), which is larger
than the inequality (4.2).

Our approach to address the same question concerning global existence in the
Cauchy problem for the DNLS equation (4.1) without the small L2(R)-norm as-
sumption relies on a different technique involving the inverse scattering transform
theory [6, 7]. As was shown by Kaup & Newell [57], the DNLS equation appears
to be a compatibility condition for suitable solutions to the linear system given by

∂xψ =
[
−iλ2σ3 + λQ(u)

]
ψ (4.9)
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and

∂tψ =
[
−2iλ4σ3 + 2λ3Q(u) + iλ2|u|2σ3 − λ|u|2Q(u) + iλσ3Q(ux)

]
ψ, (4.10)

where ψ ∈ C2 is assumed to be a C2 function of x and t, λ ∈ C is the (x, t)-
independent spectral parameter, and Q(u) is the (x, t)-dependent matrix potential
given by

Q(u) =

[
0 u
−u 0

]
. (4.11)

The Pauli matrices that include σ3 are given by

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 i
−i 0

]
, σ3 =

[
1 0
0 −1

]
. (4.12)

A long but standard computation shows that the compatibility condition ∂t∂xψ =
∂x∂tψ for eigenfunctions ψ ∈ C2(R × R) is equivalent to the DNLS equation
iut + uxx + i(|u|2u)x = 0 for classical solutions u. The linear equation (4.9) is
usually referred to as the Kaup–Newell spectral problem.

In a similar context of the cubic NLS equation, it is well known that the inverse
scattering transform technique applied to the linear system (associated with the so-
called Zakharov–Shabat spectral problem) provides a rigorous framework to solve
the Cauchy problem in weighted L2 spaces, e.g., for u0 ∈ H1(R)∩L2,1(R) [29, 31,
121] or for u0 ∈ H1(R) ∩ L2,s(R) with s > 1

2
[?]. In comparison with the spectral

problem (4.9), the Zakharov–Shabat spectral problem has no multiplication of
matrix potential Q(u) by λ. As a result, Neumann series solutions for the Jost
functions of the Zakharov–Shabat spectral problem converge if u belongs to the
space L1(R), see, e.g., Chapter 2 in [1]. As was shown originally by Deift & Zhou
[31, 121], the inverse scattering problem based on the Riemann–Hilbert problem
of complex analysis with a jump along the real line can be solved uniquely if u is
defined in a subspace of L2,1(R), which is continuously embedded into the space
L1(R). The time evolution of the scattering data is well defined if u is posed in
space H1(R) ∩ L2,1(R) [29, 31].

For the Kaup–Newell spectral problem (4.9), the key feature is the presence of
the spectral parameter λ that multiplies the matrix potential Q(u). As a result,
Neumann series solutions for the Jost functions do not converge uniformly if u is
only defined in the space L1(R). Although the Lax system (4.9)–(4.10) appeared
long ago and was used many times for formal methods, such as construction of
soliton solutions [57], temporal asymptotics [59, 108], and long-time asymptotic
expansions [112, 113], no rigorous results on the function spaces for the matrix
Q(u) have been obtained so far to ensure bijectivity of the direct and inverse
scattering transforms for the Kaup–Newell spectral problem (4.9).

In this connection, we mention the works of Lee [66, 67] on the local solvability
of a generalized Lax system with λn dependence for an integer n ≥ 2 and generic
small initial data u0 in Schwarz class. In the follow-up paper [68], Lee also claimed
existence of a global solution to the Cauchy problem (4.1) for large u0 in Schwarz
class, but the analysis of [68] relies on a “Basic Lemma”, where the Jost functions
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are claimed to be defined for u0 in L2(R). However, equation (4.9) shows that the
condition u0 ∈ L2(R) is insufficient for construction of the Jost functions uniformly
in λ.

We address the bijectivity of the direct and inverse scattering transform for the
Lax system (4.9)–(4.10) in this work. We show that the direct scattering transform
for the Jost functions of the Lax system (4.9)–(4.18) can be developed under the
requirement u0 ∈ L1(R) ∩ L∞(R) and ∂xu0 ∈ L1(R). This requirement is satisfied
if u0 is defined in the weighted Sobolev space H1,1(R) defined by

H1,1(R) =
{
u ∈ L2,1(R), ∂xu ∈ L2,1(R)

}
. (4.13)

Note that it is quite common to use notation H1,1(R) to denote H1(R)∩L2,1(R) [31,
121], which is not what is used here in (4.13). Moreover, we show that asymptotic
expansions of the Jost functions are well defined if u0 ∈ H2(R) ∩ H1,1(R), which
also provide a rigorous framework to study the inverse scattering transform based
on the Riemann–Hilbert problem of complex analysis. Finally, the time evolution
of the scattering data is well defined if u0 ∈ H2(R) ∩H1,1(R).

We shall now define eigenvalues and resonances for the spectral problem (4.9)
and present the global existence result for the DNLS equation (4.1).

Definition 3. We say that λ ∈ C is an eigenvalue of the spectral problem (4.9) if
the linear equation (4.9) with this λ admits a solution in L2(R).

Definition 4. We say that λ ∈ R ∪ iR is a resonance of the spectral problem
(4.9) if the linear equation (4.9) with this λ admits a solution in L∞(R) with the
asymptotic behavior

ψ(x) ∼
{
a+e

−iλ2xe1, x→ −∞,
a−e

+iλ2xe2, x→ +∞,

where a+ and a− are nonzero constant coefficients, whereas e1 = [1, 0]t and e2 =
[0, 1]t.

Theorem 4. For every u0 ∈ H2(R) ∩H1,1(R) such that the linear equation (4.9)
admits no eigenvalues or resonances in the sense of Definitions 3 and 4, there
exists a unique global solution u(t, ·) ∈ H2(R) ∩ H1,1(R) of the Cauchy problem
(4.1) for every t ∈ R. Furthermore, the map

H2(R) ∩H1,1(R) 3 u0 7→ u ∈ C(R;H2(R) ∩H1,1(R))

is Lipschitz continuous.

Remark 5. A sufficient condition that the spectral problem (4.9) admits no eigen-
values was found in [84]. This condition is satisfied under the small-norm assump-
tion on the H1,1(R) norm of the initial data u0. See Remark 9 below. Although we
believe that there exist initial data u0 with large H1,1(R) norm that yield no eigen-
values in the spectral problem (4.9), we have no constructive examples of such
initial data. Nevertheless, a finite number of eigenvalues λ ∈ C in the spectral
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problem (4.9) can be included by using algebraic methods such as the Backlünd,
Darboux, or dressing transformations [22, 24].

Remark 6. The condition that the spectral problem (4.9) admits no resonance
is used to identify the so-called generic initial data u0. The non-generic initial
data u0 violating this condition are at the threshold case in the sense that a small
perturbation to u0 may change the number of eigenvalues λ in the linear equation
(4.9).

Remark 7. Compared to the results of Hayashi & Ozawa [43, 44, 45, 81], where
global well-posedness of the Cauchy problem for the DNLS equation (4.1) was es-
tablished in H2(R) ∩ H1,1(R) under the small L2(R) norm assumption (4.2), the
inverse scattering transform theory is developed without the smallness assumption
on the initial data u0.

Remark 8. An alternative proof of Theorem 4 is developed in [69] by using a
different version of the inverse scattering transform for the Lax system (4.9)–
(4.10). The results of [69] are formulated in space H2(R) ∩ L2,2(R), which is
embedded into space H2(R) ∩H1,1(R).

The paper is organized as follows. Section 2 reports the solvability results on
the direct scattering transform for the spectral problem (4.9). Section 3 gives
equivalent formulations of the Riemann–Hilbert problem associated with the spec-
tral problem (4.9). Section 4 is devoted to the solvability results on the inverse
scattering transform for the spectral problem (4.9). Section 5 incorporates the
time evolution of the linear equation (4.10) and contains the proof of Theorem 4.

4.2 Direct scattering transform

The direct scattering transform is developed for the Kaup–Newell spectral prob-
lem (4.9), which we rewrite here for convenience:

∂xψ =
[
−iλ2σ3 + λQ(u)

]
ψ, (4.14)

where ψ ∈ C2, λ ∈ C, and the matrices Q(u) and σ3 are given by (4.11) and (4.12).
The formal construction of the Jost functions is based on the construction of

the fundamental solution matrices Ψ±(x;λ) of the linear equation (4.14), which
satisfy the same asymptotic behavior at infinity as the linear equation (4.14) with
Q(u) ≡ 0:

Ψ±(x;λ)→ e−iλ
2xσ3 as x→ ±∞, (4.15)

where parameter λ is fixed in an unbounded subset of C. However, the standard
fixed point argument for Volterra’s integral equations associated with the linear
equation (4.14) is not uniform in λ as |λ| → ∞ if Q(u) ∈ L1(R). Integrating by
parts, it was suggested in [84] that uniform estimates on the Jost functions of the
linear equation (4.14) can be obtained under the condition

‖u‖L1(‖u‖L∞ + ‖∂xu‖L1) <∞.
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Here we explore this idea further and introduce a transformation of the linear
equation (4.14) to a spectral problem of the Zakharov–Shabat type. This will allow
us to adopt the direct and inverse scattering transforms, which were previously
used for the cubic NLS equation [31, 121] (see also [24, 29] for review). Note that
the pioneer idea of a transformation of the linear equation (4.14) to a spectral
problem of the Zakharov–Shabat type can be found already in the formal work of
Kaup & Newell [57].

Let us define the transformation matrices for any u ∈ L∞(R) and λ ∈ C,

T1(x;λ) =

[
1 0

−u(x) 2iλ

]
and T2(x;λ) =

[
2iλ −u(x)
0 1

]
, (4.16)

If the vector ψ ∈ C2 is transformed by ψ1,2 = T1,2ψ, then straightforward compu-
tations show that ψ1,2 satisfy the linear equations

∂xψ1 =
[
−iλ2σ3 +Q1(u)

]
ψ1, Q1(u) =

1

2i

[
|u|2 u

−2iux − u|u|2 −|u|2
]

(4.17)

and

∂xψ2 =
[
−iλ2σ3 +Q2(u)

]
ψ2, Q2(u) =

1

2i

[
|u|2 −2iux + u|u|2
−u −|u|2

]
. (4.18)

Note that Q1,2(u) ∈ L1(R) if u ∈ L1(R) ∩ L3(R) and ∂xu ∈ L1(R). The linear
equations (4.17) and (4.18) are of the Zakharov–Shabat-type, after we introduce
the complex variable z = λ2. In what follows, we study the Jost functions and the
scattering coefficients for the linear equations (4.17) and (4.18).

4.2.1 Jost functions

Let us introduce the normalized Jost functions from solutions ψ1,2 of the linear
equations (4.17) and (4.18) with z = λ2 in the form

m±(x; z) = ψ1(x; z)eixz, n±(x; z) = ψ2(x; z)e−ixz, (4.19)

according to the asymptotic behavior

m±(x; z)→ e1,
n±(x; z)→ e2,

}
as x→ ±∞, (4.20)

where e1 = [1, 0]t and e2 = [0, 1]t. The normalized Jost functions satisfy the
following Volterra’s integral equations

m±(x; z) = e1 +

∫ x

±∞

[
1 0
0 e2iz(x−y)

]
Q1(u(y))m±(y; z)dy (4.21)

and

n±(x; z) = e2 +

∫ x

±∞

[
e−2iz(x−y) 0

0 1

]
Q2(u(y))n±(y; z)dy. (4.22)
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The next two lemmas describe properties of the Jost functions, which are analogues
to similar properties of the Jost functions in the Zakharov–Shabat spectral problem
(see, e.g., Lemma 2.1 in [1]).

Lemma 16. Let u ∈ L1(R)∩L3(R) and ∂xu ∈ L1(R). For every z ∈ R, there exist
unique solutions m±(·; z) ∈ L∞(R) and n±(·; z) ∈ L∞(R) satisfying the integral
equations (4.21) and (4.22). Moreover, for every x ∈ R, m−(x; ·) and n+(x; ·)
are continued analytically in C+, whereas m+(x; ·) and n−(x; ·) are continued an-
alytically in C−. Finally, there exists a positive z-independent constant C such
that

‖m∓(·; z)‖L∞ + ‖n±(·; z)‖L∞ ≤ C, z ∈ C±. (4.23)

Proof. It suffices to prove the statement for one Jost function, e.g., for m−. The
proof for other Jost functions is analogous. Let us define the integral operator K
by

(Kf)(x; z) :=
1

2i

∫ x

−∞

[
1 0
0 e2iz(x−y)

] [
|u(y)|2 u(y)

−2i∂yu(y)− u(y)|u(y)|2 −|u(y)|2
]
f(y)dy.

(4.24)
For every z ∈ C+ and every x0 ∈ R, we have

‖(Kf)(·; z)‖L∞(−∞,x0)

≤ 1

2

[
‖u‖2

L2(−∞,x0) ‖u‖L1(−∞,x0)

2‖∂xu‖L1(−∞,x0) + ‖u‖3
L3(−∞,x0) ‖u‖2

L2(−∞,x0)

]
‖f(·; z)‖L∞(−∞,x0).

The operator K is a contraction from L∞(−∞, x0) to L∞(−∞, x0) if the two
eigenvalues of the matrix

A =
1

2

[
‖u‖2

L2(−∞,x0) ‖u‖L1(−∞,x0)

2‖∂xu‖L1(−∞,x0) + ‖u‖3
L3(−∞,x0) ‖u‖2

L2(−∞,x0)

]
are located inside the unit circle. The two eigenvalues are given by

λ± =
1

2
‖u‖2

L2(−∞,x0) ±
1

2

√
‖u‖L1(−∞,x0)(2‖∂xu‖L1(−∞,x0) + ‖u‖3

L3(−∞,x0)),

so that |λ−| < |λ+|. Hence, the operator K is a contraction if x0 ∈ R is chosen so
that

1

2
‖u‖2

L2(−∞,x0) +
1

2

√
‖u‖L1(−∞,x0)(2‖∂xu‖L1(−∞,x0) + ‖u‖3

L3(−∞,x0)) < 1. (4.25)

By the Banach Fixed Point Theorem, for this x0 and every z ∈ C+, there exists a
unique solution m−(·; z) ∈ L∞(−∞, x0) of the integral equation (4.21). To extend
this result to L∞(R), we can split R into a finite number of subintervals such
that the estimate (4.25) is satisfied in each subinterval. Unique solutions in each
subinterval can be glued together to obtain the unique solution m−(·; z) ∈ L∞(R)
for every z ∈ C+.
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Analyticity of m−(x; ·) in C+ for every x ∈ R follows from the absolute and
uniform convergence of the Neumann series of analytic functions in z. Indeed, let
us denote the L1 matrix norm of the 2-by-2 matrix function Q as

‖Q‖L1 :=
2∑

i,j=1

‖Qi,j‖L1 .

If u ∈ H1,1(R), then u ∈ L1(R) ∩ L3(R) and ∂xu ∈ L1(R) so that Q1(u) ∈ L1(R),
where the matrix Q1(u) appears in the integral kernel K given by (4.24). For every
f(x; z) ∈ L∞(R× C+), we have

‖(Knf)‖L∞ ≤
1

n!
‖Q1(u)‖nL1‖f‖L∞ . (4.26)

As a result, the Neumann series for Volterra’s integral equation (4.21) for m−
converges absolutely and uniformly for every x ∈ R and z ∈ C+ and contains
analytic functions of z for z ∈ C+. Therefore, m−(x; ·) is analytic in C+ for every
x ∈ R and it satisfies the bound (4.23).

Remark 9. If u is sufficiently small so that the estimate

1

2
‖u‖2

L2 +
1

2

√
‖u‖L1(2‖∂xu‖L1 + ‖u‖3

L3) <
1

2
(4.27)

holds on R, then Banach Fixed Point Theorem yields the existence of the unique
solution m−(·; z) ∈ L∞(R) of the integral equation (4.21) such that ‖m−(·; z) −
e1‖L∞ < 1. This is in turn equivalent to the conditions that the linear equation
(4.14) has no L2(R) solutions for every λ ∈ C and the linear equation (4.14) has
no resonances for every λ ∈ R∪ iR in the sense of Definitions 3 and 4. Therefore,
the small-norm constraint (4.27) is a sufficient condition that the assumptions of
Theorem 4 are satisfied.

Lemma 17. Under the conditions of Lemma 16, for every x ∈ R, the Jost func-
tions m±(x; z) and n±(x; z) satisfy the following limits as |Im(z)| → ∞ along a
contour in the domains of their analyticity:

lim
|z|→∞

m±(x; z) = m∞± (x)e1, m∞± (x) := e
1
2i

R x
±∞ |u(y)|2dy (4.28)

and
lim
|z|→∞

n±(x; z) = n∞± (x)e2, n∞± (x) := e−
1
2i

R x
±∞ |u(y)|2dy. (4.29)

If in addition, u ∈ C1(R), then for every x ∈ R, the Jost functions m±(x; z)
and n±(x; z) satisfy the following limits as |Im(z)| → ∞ along a contour in the
domains of their analyticity:

lim
|z|→∞

z
[
m±(x; z)−m∞± (x)e1

]
= q

(1)
± (x)e1 + q

(2)
± (x)e2 (4.30)
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and
lim
|z|→∞

z
[
n±(x; z)− n∞± (x)e2

]
= s

(1)
± (x)e1 + s

(2)
± (x)e2, (4.31)

where

q
(1)
± (x) := −1

4
e

1
2i

R x
±∞ |u(y)|2dy

∫ x

±∞

[
u(y)∂yū(y) +

1

2i
|u(y)|4

]
dy,

q
(2)
± (x) :=

1

2i
∂x

(
ū(x)e

1
2i

R x
±∞ |u(y)|2dy

)
,

s
(1)
± (x) := − 1

2i
∂x

(
u(x)e−

1
2i

R x
±∞ |u(y)|2dy

)
,

s
(2)
± (x) :=

1

4
e−

1
2i

R x
±∞ |u(y)|2dy

∫ x

±∞

[
ū(y)∂yu(y)− 1

2i
|u(y)|4

]
dy.

Proof. Again, we prove the statement for the Jost function m− only. The proof for

other Jost functions is analogous. Let m− = [m
(1)
− ,m

(2)
− ]t and rewrite the integral

equation (4.21) in the component form:

m
(1)
− (x; z) = 1 +

1

2i

∫ x

−∞
u(y)

[
ū(y)m

(1)
− (y; z) +m

(2)
− (y; z)

]
dy, (4.32)

and

m
(2)
− (x; z) = − 1

2i

∫ x

−∞
e2iz(x−y) [(2i∂yū(y)

+|u(y)|2ū(y))m
(1)
− (y; z) + |u(y)|2m(2)

− (y; z)
]
dy. (4.33)

Recall that for every x ∈ R, m−(x; ·) is analytic in C+. By bounds (4.23) in
Lemma 16, for every u ∈ L1(R) ∩ L3(R) and ∂xu ∈ L1(R), the integrand of the
second equation (4.33) is bounded for every z ∈ C+ by an absolutely integrable z-
independent function. Also, the integrand converges to zero for every y ∈ (−∞, x)
as |z| → ∞ in C+. By Lebesgue’s Dominated Convergence Theorem, we obtain

lim|z|→∞m
(2)
− (x; z) = 0, hence m∞− (x) := lim|z|→∞m

(1)
− (x; z) satisfies the inhomo-

geneous integral equation

m∞− (x) = 1 +
1

2i

∫ x

−∞
|u(y)|2m∞− (y)dy, (4.34)

with the unique solution m∞− (x) = e
1
2i

R x
−∞ |u(y)|2dy. This proves the limit (4.28) for

m−.

We now add the condition u ∈ C1(R) and use the technique behind Watson’s
Lemma related to the Laplace method of asymptotic analysis [76]. For every
x ∈ R and every small δ > 0, we split integration in the second equation (4.33)
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for (−∞, x− δ) and (x− δ, x), rewriting it in the equivalent form:

m
(2)
− (x; z) =

∫ x−δ

−∞
e2iz(x−y)φ(y; z)dy + φ(x; z)

∫ x

x−δ
e2iz(x−y)dy

+

∫ x

x−δ
e2iz(x−y) [φ(y; z)− φ(x; z)] dy ≡ I + II + III, (4.35)

where

φ(x; z) := − 1

2i

[
(2i∂xū(x) + |u(x)|2ū(x))m

(1)
− (x; z) + |u(x)|2m(2)

− (x; z)
]
.

Since φ(·; z) ∈ L1(R), we have

|I| ≤ e−2δIm(z)‖φ(·; z)‖L1 .

Since φ(·; z) ∈ C0(R), we have

|III| ≤ 1

2Im(z)
‖φ(x− ·; z)− φ(x; z)‖L∞(x−δ,x).

On the other hand, we have the exact value

II = − 1

2iz

[
1− e2izδ

]
φ(x; z).

Let us choose δ := [Im(z)]−1/2 such that δ → 0 as Im(z) → ∞. Then, by taking
the limit along the contour in C+ such that Im(z)→∞, we obtain

lim
|z|→∞

zm
(2)
− (x; z) = − 1

2i
lim
|z|→∞

φ(x; z) = −1

4
(2i∂xū(x) + |u(x)|2ū(x))m∞− (x),(4.36)

which yields the limit (4.30) for m
(2)
− . On the other hand, the first equation (4.32)

can be rewritten as the differential equation

∂xm
(1)
− (x; z) =

1

2i
|u(x)|2m(1)

− (x; z) +
1

2i
u(x)m

(2)
− (x; z).

Using m̄∞− as the integrating factor,

∂x(m
∞
− (x)m

(1)
− (x; z)) =

1

2i
u(x)m∞− (x)m

(2)
− (x; z),

we obtain another integral equation for m
(1)
− :

m
(1)
− (x; z) = m∞− (x) +

1

2i
m∞− (x)

∫ x

−∞
u(y)m∞− (y)m

(2)
− (y; z)dy, (4.37)
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Multiplying this equation by z and taking the limit |z| → ∞, we obtain

lim
|z|→∞

z
[
m

(1)
− (x; z)−m∞− (x)

]
= −1

4
m∞− (x)

∫ x

−∞

[
u(y)∂yū(y) +

1

2i
|u(y)|4

]
dy,

(4.38)

which yields the limit (4.30) for m
(1)
− .

We shall now study properties of the Jost functions on the real axis of z. First,
we note that following elementary result from the Fourier theory. For notational
convenience, we use sometimes ‖f(z)‖L2

z
instead of ‖f(·)‖L2 .

Proposition 4. If w ∈ H1(R), then

sup
x∈R

∥∥∥∥∫ x

−∞
e2iz(x−y)w(y)dy

∥∥∥∥
L2
z(R)

≤
√
π‖w‖L2 . (4.39)

and

sup
x∈R

∥∥∥∥2iz

∫ x

−∞
e2iz(x−y)w(y)dy + w(x)

∥∥∥∥
L2
z(R)

≤
√
π‖∂xw‖L2 . (4.40)

Moreover, if w ∈ L2,1(R), then for every x0 ∈ R−, we have

sup
x∈(−∞,x0)

∥∥∥∥〈x〉∫ x

−∞
e2iz(x−y)w(y)dy

∥∥∥∥
L2
z(R)

≤
√
π‖w‖L2,1(−∞,x0), (4.41)

where 〈x〉 := (1 + x2)1/2.

Proof. Here we give a quick proof based on Plancherel’s theorem of Fourier anal-
ysis. For every x ∈ R and every z ∈ R, we write

f(x; z) :=

∫ x

−∞
e2iz(x−y)w(y)dy =

∫ 0

−∞
e−2izyw(y + x)dy,

so that

‖f(x; ·)‖2
L2 =

∫ ∞
−∞

∫ 0

−∞

∫ 0

−∞
w̄(y1 + x)w(y2 + x)e2i(y1−y2)zdy1dy2dz

= π

∫ 0

−∞
|w(y + x)|2dy = π

∫ x

−∞
|w(y)|2dy. (4.42)

Bound (4.39) holds if w ∈ L2(R).

If y ≤ x ≤ 0, we have 1 + y2 ≥ 1 + x2, so that equation (4.42) implies

‖f(x; ·)‖2
L2 ≤

π

1 + x2

∫ x

−∞
(1 + y2)|w(y)|2dy ≤ π

1 + x2
‖w‖2

L2,1(−∞,x),

which yields the bound (4.41) for any fixed x0 ∈ R−.

To get the bound (4.40), we note that if w ∈ H1(R), then w ∈ L∞(R) and
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w(x)→ 0 as |x| → ∞. As a result, we have

2izf(x; z) + w(x) =

∫ x

−∞
e2iz(x−y)∂yw(y)dy.

The bound (4.40) follows from the computation similar to (4.42).

Subtracting the asymptotic limits (4.28) and (4.29) in Lemma 17 from the
Jost functions m± and n± in Lemma 16, we prove that for every fixed x ∈ R±, the
remainder terms belongs to H1(R) with respect to the variable z if u belongs to
the space H1,1(R) defined in (4.13). Moreover, subtracting also the O(z−1) terms
as defined by (4.30) and (4.31) and multiplying the result by z, we prove that the
remainder term belongs to L2(R) if u ∈ H2(R)∩H1,1(R). Note that if u ∈ H1,1(R),
then the conditions of Lemma 16 are satisfied, so that u ∈ L1(R) ∩ L3(R) and
∂xu ∈ L1(R). Also if u ∈ H2(R)∩H1,1(R), then the additional condition u ∈ C1(R)
of Lemma 17 is also satisfied.

Lemma 18. If u ∈ H1,1(R), then for every x ∈ R±, we have

m±(x; ·)−m∞± (x)e1 ∈ H1(R), n±(x; ·)− n∞± (x)e2 ∈ H1(R). (4.43)

Moreover, if u ∈ H2(R) ∩H1,1(R), then for every x ∈ R, we have

z
[
m±(x; z)−m∞± (x)e1

]
− (q

(1)
± (x)e1 + q

(2)
± (x)e2) ∈ L2

z(R) (4.44)

and
z
[
n±(x; z)− n∞± (x)e2

]
− (s

(1)
± (x)e1 + s

(2)
± (x)e2) ∈ L2

z(R). (4.45)

Proof. Again, we prove the statement for the Jost function m−. The proof for
other Jost functions is analogous. We write the integral equation (4.21) for m− in
the abstract form

m− = e1 +Km−, (4.46)

where the operator K is given by (4.24). Although equation (4.46) is convenient
for verifying the boundary condition m−(x; z) → e1 as x → −∞, we note that
the asymptotic limit as |z| → ∞ is different by the complex exponential factor.
Indeed, for every x ∈ R, the asymptotic limit (4.28) is written as

m−(x; z)→ m∞− (x)e1 as |z| → ∞, where m∞− (x) := e
1
2i

R x
−∞ |u(y)|2dy.

Therefore, we rewrite equation (4.46) in the equivalent form

(I −K)(m− −m∞− e1) = he2, (4.47)

where we have used the integral equation (4.34) that yields e1−(I−K)m∞− e1 = he2

with

h(x; z) =

∫ x

−∞
e2iz(x−y)w(y)dy, w(x) := −∂x

(
u(x)e

1
2i

R x
−∞ |u(y)|2dy

)
. (4.48)
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If u ∈ H1,1(R), then w ∈ L2(R). By the bounds (4.39) and (4.41) in Proposition
4, we have h(x; z) ∈ L∞x (R;L2

z(R)) and for every x0 ∈ R−, the following bound is
satisfied:

sup
x∈(−∞,x0)

‖〈x〉 h(x; z)‖L2
z(R) ≤

√
π

(
‖∂xu‖L2,1 +

1

2
‖u3‖L2,1

)
≤ C(‖u‖H1,1 + ‖u‖3

H1,1), (4.49)

where C is a positive u-independent constant and the Sobolev inequality ‖u‖L∞ ≤
1√
2
‖u‖H1 is used.

By using estimates similar to those in the derivation of the bound (4.26) in
Lemma 16, we find that for every f(x; z) ∈ L∞x (R;L2

z(R)), we have

‖(Knf)(x; z)‖L∞x L2
z
≤ 1

n!
‖Q1(u)‖nL1‖f(x; z)‖L∞x L2

z
. (4.50)

Therefore, the operator I−K is invertible on the space L∞x (R;L2
z(R)) and a bound

on the inverse operator is given by

‖(I −K)−1‖L∞x L2
z→L∞x L2

z
≤

∞∑
n=0

1

n!
‖Q1(u)‖nL1 = e‖Q1(u)‖L1 . (4.51)

Moreover, the same estimate (4.51) can be obtained in the norm L∞x ((−∞, x0);L2
z(R))

for every x0 ∈ R. By using (4.47), (4.49), and (4.51), we obtain the following es-
timate for every x0 ∈ R−:

sup
x∈(−∞,x0)

∥∥〈x〉 (m−(x; z)−m∞− (x)e1

)∥∥
L2
z(R)
≤ Ce‖Q1(u)‖L1

(
‖u‖H1,1 + ‖u‖3

H1,1

)
.

(4.52)

Next, we want to show ∂zm−(x; z) ∈ L∞x ((−∞, x0);L2
z(R)) for every x0 ∈ R−.

We differentiate the integral equation (4.46) in z and introduce the vector v =
[v(1), v(2)]t with the components

v(1)(x; z) := ∂zm
(1)
− (x; z) and v(2)(x; z) := ∂zm

(2)
− (x; z)− 2ixm

(2)
− (x; z).

Thus, we obtain from (4.46):

(I −K)v = h1e1 + h2e2 + h3e2, (4.53)

where

h1(x; z) =

∫ x

−∞
yu(y)m

(2)
− (y; z)dy,

h2(x; z) =

∫ x

−∞
ye2iz(x−y)(2iuy(y) + |u(y)|2u(y))(m

(1)
− (y; z)−m∞− (y))dy,

h3(x; z) =

∫ x

−∞
ye2iz(x−y)(2iuy(y) + |u(y)|2u(y))m∞− (y)dy.
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For every x0 ∈ R−, each inhomogeneous term of the integral equation (4.53) can
be estimated by using Hölder’s inequality and the bound (4.39) of Proposition 4:

sup
x∈(−∞,x0)

‖h1(x; z)‖L2
z(R) ≤ ‖u‖L1 sup

x∈(−∞,x0)

‖〈x〉 m(2)
− (x; z)‖L2

z(R),

sup
x∈(−∞,x0)

‖h2(x; z)‖L2
z(R)

≤ (2‖∂xu‖L1 + ‖u3‖L1) sup
x∈(−∞,x0)

∥∥∥〈x〉(m(1)
− (x; z)−m∞− (x)

)∥∥∥
L2
z(R)

,

sup
x∈(−∞,x0)

‖h3(x; z)‖L2
z(R) ≤

√
π
(
2‖∂xu‖L2,1 + ‖u3‖L2,1

)
.

The upper bounds in the first two inequalities are finite due to estimate (4.52)
and the embedding of L2,1(R) into L1(R). Using the bounds (4.51), (4.52), and
the integral equation (4.53), we conclude that v(x; z) ∈ L∞x ((−∞, x0);L2

z(R)) for

every x0 ∈ R−. Since xm
(2)
− (x; z) is bounded in L∞x ((−∞, x0);L2

z(R)) by the same
estimate (4.52), we finally obtain ∂zm−(x; z) ∈ L∞x ((−∞, x0);L2

z(R)) for every
x0 ∈ R−. This completes the proof of (4.43) for m−.

To prove (4.44) for m−, we subtract the O(z−1) term as defined by (4.30) from
the integral equation (4.47) and multiply the result by z. Thus, we obtain

(I −K)
[
z
(
m− −m∞− e1

)
− (q

(1)
− e1 + q

(2)
− e2)

]
= zhe2 − (I −K)(q

(1)
− e1 + q

(2)
− e2),

(4.54)

where the limiting values q
(1)
− and q

(2)
− are defined in Lemma 17. Using the integral

equation (4.37), we obtain cancelation of the first component of the source term,
so that

zhe2 − (I −K)(q
(1)
− e1 + q

(2)
− e2) = h̃e2

with

h̃(x; z) = z

∫ x

−∞
e2iz(x−y)w(y)dy +

1

2i
w(x)

− 1

2i

∫ x

−∞
e2iz(x−y)

[
(2i∂yū(y) + ū(y)|u(y)|2)q

(1)
− (y) + |u(y)|2q(2)

− (y)
]
dy,

where w is the same as in (4.48). By using bounds (4.39) and (4.40) in Proposition
4, we have h̃(x; z) ∈ L∞x (R;L2

z(Z)) if w ∈ H1(R) in addition to u ∈ H1,1(R), that
is, if u ∈ H2(R) ∩H1,1(R). Inverting (I −K) on L∞x (R;L2

z(Z)), we finally obtain
(4.44) for m−.

The following result is deduced from Lemma 18 to show that the mapping

H1,1(R) 3 u→ [m±(x; z)−m∞± (x)e1, n±(x; z)−n∞± (x)] ∈ L∞x (R±;H1
z (R)) (4.55)

is Lipschitz continuous. Moreover, by restricting the potential to H2(R)∩H1,1(R),
subtracting O(z−1) terms from the Jost functions, and multiplying them by z, we
also have Lipschitz continuity of remainders of the Jost functions in function space
L∞x (R;L2

z(R)).
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Corollary 4. Let u, ũ ∈ H1,1(R) satisfy ‖u‖H1,1 , ‖ũ‖H1,1 ≤ U for some U > 0.
Denote the corresponding Jost functions by [m±, n±] and [m̃±, ñ±] respectively.
Then, there is a positive U-dependent constant C(U) such that for every x ∈ R±,
we have

‖m±(x; ·)−m∞± (x)e1 − m̃±(x; ·) + m̃∞± (x)e1‖H1 ≤ C(U)‖u− ũ‖H1,1 (4.56)

and

‖n±(x; ·)− n∞± (x)e2 − ñ±(x; ·) + ñ∞± (x)e2‖H1 ≤ C(U)‖u− ũ‖H1,1 . (4.57)

Moreover, if u, ũ ∈ H2(R) ∩H1,1(R) satisfy ‖u‖H2∩H1,1 , ‖ũ‖H2∩H1,1 ≤ U , then for
every x ∈ R, there is a positive U-dependent constant C(U) such that

‖m̂±(x; ·)− ˆ̃m±(x; ·)‖L2 + ‖n̂±(x; ·)− ˆ̃n±(x; ·)‖L2 ≤ C(U)‖u− ũ‖H2∩H1,1 . (4.58)

where

m̂±(x; z) := z
[
m±(x; z)−m∞± (x)e1

]
− (q

(1)
± (x)e1 + q

(2)
± (x)e2),

n̂±(x; z) := z
[
n±(x; z)− n∞± (x)e2

]
− (s

(1)
± (x)e1 + s

(2)
± (x)e2).

Proof. Again, we prove the statement for the Jost function m−. The proof for
other Jost functions is analogous. First, let us consider the limiting values of m−
and m̃− given by

m∞− (x) := e
1
2i

R x
−∞ |u(y)|2dy, m̃∞− (x) := e

1
2i

R x
−∞ |ũ(y)|2dy

Then, for every x ∈ R, we have

|m∞− (x)− m̃∞− (x)| =
∣∣∣e 1

2i

R x
−∞(|u(y)|2−|ũ(y)|2)dy − 1

∣∣∣
≤ C1(U)

∫ x

−∞
(|u(y)|2 − |ũ(y)|2)dy

≤ 2UC1(U)‖u− ũ‖L2 , (4.59)

where C1(U) is a U -dependent positive constant. Using the integral equation
(4.47), we obtain

(m− −m∞− e1)− (m̃− − m̃∞− e1)

= (I −K)−1he2 − (I − K̃)−1h̃e2

= (I −K)−1(h− h̃)e2 + [(I −K)−1 − (I − K̃)−1]h̃e2

= (I −K)−1(h− h̃)e2 + (I −K)−1(K − K̃)(I − K̃)−1h̃e2, (4.60)

where K̃ and h̃ denote the same as K and h but with u being replaced by ũ. To
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estimate the first term, we write

h(x; z)− h̃(x; z) =

∫ x

−∞
e2iz(x−y) [w(y)− w̃(y)] dy, (4.61)

where

w − w̃ =

(
∂x ¯̃u+

1

2i
|ũ|2 ¯̃u

)
m̃∞− −

(
∂xū+

1

2i
|u|2ū

)
m∞− .

By using (4.59), we obtain ‖w−w̃‖L2,1 ≤ C2(U)‖u−ũ‖H1,1 , where C2(U) is another
U -dependent positive constant. By using (4.61) and Proposition 4, we obtain for
every x0 ∈ R−:

sup
x∈(−∞,x0)

∥∥∥〈x〉(h(x; z)− h̃(x; z)
)∥∥∥

L2
z(R)

≤
√
πC2(U)‖u− ũ‖H1,1 . (4.62)

This gives the estimate for the first term in (4.60). To estimate the second
term, we use (4.24) and observe that K is a Lipschitz continuous operator from
L∞x (R;L2

z(R)) to L∞x (R;L2
z(R)) in the sense that for every f ∈ L∞x (R;L2

z(R)), we
have

‖(K − K̃)f‖L∞x L2
z
≤ C3(U)‖u− ũ‖H1,1‖f‖L∞x L2

z
, (4.63)

where C3(U) is another U -dependent positive constant that is independent of f .
By using (4.49), (4.51), (4.60), (4.62), and (4.63), we obtain for every x0 ∈ R−:

sup
x∈(−∞,x0)

∥∥〈x〉 (m−(x; ·)−m∞− (x)e1 − m̃−(x; ·) + m̃∞− (x)e1

)∥∥
L2
z(R)
≤ C(U)‖u−ũ‖H1,1 .

This yields the first part of the bound (4.56) for m− and m̃−. The other part of
the bound (4.56) and the bound (4.58) for m− and m̃− follow by repeating the
same analysis to the integral equations (4.53) and (4.54).

4.2.2 Scattering coefficients

Let us define the Jost functions of the original Kaup–Newell spectral problem
(4.14). These Jost functions are related to the Jost functions of the Zakharov–
Shabat spectral problems (4.17) and (4.18) by using the matrix transformations
(4.16). To be precise, we define

ϕ±(x;λ) = T−1
1 (x;λ)m±(x; z), φ±(x;λ) = T−1

2 (x;λ)n±(x; z), (4.64)

where the inverse matrices are given by

T−1
1 (x;λ) =

1

2iλ

[
2iλ 0
u(x) 1

]
and T−1

2 (x;λ) =
1

2iλ

[
1 u(x)
0 2iλ

]
. (4.65)

It follows from the integral equations (4.21)–(4.22) and the transformation (4.64)
that the original Jost functions ϕ± and φ± satisfy the following Volterra’s integral
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equations

ϕ±(x;λ) = e1 + λ

∫ x

±∞

[
1 0

0 e2iλ2(x−y)

]
Q(u(y))ϕ±(y;λ)dy, (4.66)

and

φ±(x;λ) = e2 + λ

∫ x

±∞

[
e−2iλ2(x−y) 0

0 1

]
Q(u(y))φ±(y;λ)dy. (4.67)

The following corollary is obtained from Lemma 16 and the representations (4.64)–
(4.65).

Corollary 5. Let u ∈ L1(R) ∩ L∞(R) and ∂xu ∈ L1(R). For every λ2 ∈ R\{0},
there exist unique functions ϕ±(·;λ) ∈ L∞(R) and φ±(·;λ) ∈ L∞(R) such that

ϕ±(x;λ)→ e1,
φ±(x;λ)→ e2,

}
as x→ ±∞. (4.68)

Moreover, ϕ
(1)
± (x;λ) and φ

(2)
± (x;λ) are even in λ, whereas ϕ

(2)
± (x;λ) and φ

(1)
± (x;λ)

are odd in λ.

Proof. To the conditions of Lemma 16, we added the condition u ∈ L∞(R),
which ensures that T−1

1,2 (x;λ) are bounded for every x ∈ R and for every λ ∈
C\{0}. Then, the existence and uniqueness of the functions ϕ±(·;λ) ∈ L∞(R) and
φ±(·;λ) ∈ L∞(R), as well as the limits (4.68) follow by the representation (4.64)–
(4.65) and by the first assertion of Lemma 16. The parity argument for components
of ϕ±(x;λ) and ψ±(x;λ) in λ follow from the representation (4.64)–(4.65) and the
fact that m±(x; z) and n±(x; z) are even in λ since z = λ2.

Remark 10. There is no singularity in the definition of Jost functions at the
value λ = 0. The integral equations (4.66) and (4.67) with λ = 0 admit unique
Jost functions ϕ±(x; 0) = e1 and φ±(x; 0) = e2, which yield unique definitions for
m±(x; 0) and n±(x; 0):

m±(x; 0) =

[
1

−ū(x)

]
, n±(x; 0) =

[
−u(x)

1

]
,

which follow from the unique solutions to the integral equations (4.21) and (4.22)
at z = 0.

Remark 11. The only purpose in the definition of the original Jost functions
(4.64) is to introduce the standard form of the scattering relations, similar to the
one used in the literature [57]. After introducing the scattering data for λ ∈ R∪iR,
we analyze their behavior in the complex z-plane, instead of the complex λ-plane,
where z = λ2.

Analytic properties of the Jost functions ϕ±(x; ·) and ψ±(x; ·) for every x ∈ R
are summarized in the following result. The result is a corollary of Lemmas 16
and 18.
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Corollary 6. Under the same assumption as Corollary 5, for every x ∈ R, the
Jost functions ϕ−(x; ·) and φ+(x; ·) are analytic in the first and third quadrant of
the λ plane (where Im(λ2) > 0), whereas the Jost functions ϕ+(x; ·) and φ−(x; ·)
are analytic in the second and fourth quadrant of the λ plane (where Im(λ2) < 0).
Moreover, if u ∈ H1,1(R), then for every x ∈ R±, we have

ϕ
(1)
± (x;λ)−m∞± (x), 2iλϕ

(2)
± (x;λ)− ū(x)m∞± (x), λ−1ϕ

(2)
± (x;λ) ∈ H1

z (R) (4.69)

and

λ−1φ
(1)
± (x;λ), 2iλφ

(1)
± (x;λ)− u(x)n∞± (x), φ

(2)
± (x;λ)− n∞± (x) ∈ H1

z (R), (4.70)

where m∞± and n∞± are the same as in Lemma 17.

Proof. By chain rule, we obtain

∂

∂λ̄
= 2λ̄

∂

∂z̄
.

As a result, the analyticity result for the Jost functions ϕ± and φ± follows from
the corresponding result of Lemma 16. With the transformation (4.64)–(4.65) and

the result of Lemma 18, we obtain (4.69) and (4.70) for ϕ
(1)
± , λϕ

(2)
± , λφ

(1)
± , and φ

(2)
± .

It remains to consider λ−1ϕ
(2)
± and λ−1φ

(1)
± . Although the result also follows

from Remark 10, we will give a direct proof. We write explicitly from the integral
equation (4.66):

λ−1ϕ
(2)
± (x;λ) = −

∫ x

±∞
e2iz(x−y)u(y)m∞± (y)dy

−
∫ x

±∞
e2iz(x−y)u(y)

(
m

(1)
± (y; z)−m∞± (y)

)
dy, (4.71)

where m∞± = e
1
2i

R x
±∞ |u(y)|2dy and z = λ2 as the same as in Lemma 18. By using

Proposition 4 in the same way as it was used in the proof of Lemma 18, we obtain
λ−1ϕ

(2)
± (x;λ) ∈ H1

z (R) for every x ∈ R±. The proof of λ−1φ
(1)
± (x;λ) ∈ H1

z (R) is
similar.

We note that ψ(x) := ϕ±(x;λ)e−iλ
2x and ψ(x) := φ±(x;λ)eiλ

2x satisfies the
Kaup–Newell spectral problem (4.14), see asymptotic limits (4.15) and (4.68). By
the ODE theory for the second-order differential systems, only two solutions are
linearly independent. Therefore, for every x ∈ R and every λ2 ∈ R\{0}, we define
the scattering data according to the following transfer matrix[

ϕ−(x;λ)
φ−(x;λ)

]
=

[
a(λ) b(λ)e2iλ2x

c(λ)e−2iλ2x d(λ)

] [
ϕ+(x;λ)
φ+(x;λ)

]
. (4.72)

By Remark 10, the transfer matrix is extended to λ = 0 with a(0) = d(0) = 1 and
b(0) = c(0) = 0.
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Since the coefficient matrix in the Kaup–Newell spectral problem (4.14) has
zero trace, the Wronskian determinant, denoted by W , of two solutions to the
differential system (4.14) for any λ ∈ C is independent of x. As a result, we verify
that the scattering coefficients a, b, c, and d are independent of x:

a(λ) = W (ϕ−(x;λ)e−iλ
2x, φ+(x;λ)e+iλ2x) = W (ϕ−(0;λ), φ+(0;λ)), (4.73)

b(λ) = W (ϕ+(x;λ)e−iλ
2x, ϕ−(x;λ)e−iλ

2x) = W (ϕ+(0;λ), ϕ−(0;λ)), (4.74)

where we have used the Wronskian relation W (ϕ+, φ+) = 1, which follows from
the boundary conditions (4.68) as x→ +∞.

Now we note the symmetry on solutions to the linear equation (4.14). If ψ is
a solution for any λ ∈ C, then σ1σ3ψ is also a solution for λ̄ ∈ C, where σ1 and
σ3 are Pauli matrices in (4.12). As a result, using the boundary conditions for the
normalized Jost functions, we obtain the following relations:

φ±(x;λ) = σ1σ3ϕ±(x;λ),

where ϕ±(x;λ) means that we take complex conjugation of ϕ± constructed from
the system of integral equations (4.66) for λ̄. By applying complex conjugation
to the first equation in system (4.72) for λ̄, multiplying it by σ1σ3, and using the
relations σ1σ3 = −σ3σ1 and σ2

1 = σ2
3 = 1, we obtain the second equation in system

(4.72) with the correspondence

c(λ) = −b(λ), d(λ) = a(λ), λ ∈ R ∪ iR. (4.75)

From the Wronskian relation W (ϕ−, φ−) = 1, which can be established from
the boundary conditions (4.68) as x→ −∞, we verify that the transfer matrix in
system (4.72) has the determinant equals to unity. In view of the correspondence
(4.75), this yields the result

a(λ)a(λ) + b(λ)b(λ) = 1, λ ∈ R ∪ iR. (4.76)

We now study properties of the scattering coefficients a and b in suitable func-
tion spaces. We prove that

a(λ)→ a∞ := e
1
2i

R
R |u|

2dx as |λ| → ∞, (4.77)

whereas a(λ) − a∞, λb(λ), and λ−1b(λ) are H1
z (R) functions with respect to z if

u belongs to H1,1(R) defined in (4.13). Moreover, we show that λb(λ) is also in
L2,1
z (R) if u ∈ H2(R) ∩H1,1(R).

Lemma 19. If u ∈ H1,1(R), then the functions a(λ) and a(λ) are continued
analytically in C+ and C− with respect to z, and, in addition,

a(λ)− a∞, λb(λ), λ−1b(λ) ∈ H1
z (R), (4.78)
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where a∞ := e
1
2i

R
R |u|

2dx. Moreover, if u ∈ H2(R) ∩H1,1(R), then

λb(λ), λ−1b(λ) ∈ L2,1
z (R). (4.79)

Proof. We consider the integral equations (4.66) and (4.67). By taking the limit
x→ +∞, which is justified due to Corollary 5 and Remark 10 for every λ ∈ R∪iR,
and using the scattering relation (4.72) and the transformation (4.64)–(4.65), we
obtain

a(λ) = 1 + λ

∫
R
u(x)ϕ

(2)
− (x;λ)dx (4.80)

and

a(λ) = 1− λ
∫

R
u(x)φ

(1)
− (x;λ)dx. (4.81)

It follows from the representations (4.80) and (4.81), as well as Corollary 6, that

a(λ) is continued analytically in C+ with respect to z, whereas a(λ) is continued
analytically in C− with respect to z. Using limits (4.28) in Lemma 17 and trans-
formation (4.65), we obtain the following limit for the scattering coefficient a(λ)
as |Im(z)| → ∞ along a contour in C+:

lim
|z|→∞

a(λ) = 1 +
1

2i

∫
R
|u(x)|2e

1
2i

R x
−∞ |u(y)|2dydx = e

1
2i

R
R |u(x)|2dx =: a∞.

In order to prove that a(λ) − a∞ is a H1
z (R) function, we use the Wronskian

representation (4.73). Recall from the transformation (4.64)–(4.65) that

ϕ
(1)
± (x;λ) = m

(1)
± (x; z) and φ

(2)
± (x;λ) = n

(2)
± (x; z).

Subtracting the limiting values for a and the normalized Jost functions m± and
n±, we rewrite the Wronskian representation (4.73) explicitly

a(λ)− a∞ = (m
(1)
− (0; z)−m∞− (0))(n

(2)
+ (0; z)− n∞+ (0))

+m∞− (0)(n
(2)
+ (0; z)− n∞+ (0)) + n∞+ (0)(m

(1)
− (0; z)−m∞− (0))

− ϕ(2)
− (0;λ)φ

(1)
+ (0;λ). (4.82)

By (4.43) in Lemma 18, all but the last term in (4.82) belong to H1
z (R). Fur-

thermore, λ−1ϕ
(2)
± (0;λ) and 2iλφ

(1)
± (0;λ) − u(0)n∞± (0) also belong to H1

z (R) by
Corollary 6. Using the representation (4.82) and the Banach algebra property of
H1(R), we conclude that a(λ)− a∞ ∈ H1

z (R).

Next, we analyze the scattering coefficient b. By using the representation
(4.64)–(4.65) and the Wronskian representation (4.74), we write

2iλb(λ) = m
(1)
+ (0; z)m

(2)
− (0; z)−m(2)

+ (0; z)m
(1)
− (0; z). (4.83)

77



Ph.D. Thesis -Yusuke Shimabukuro Mathematics - McMaster University

By (4.43) in Lemma 18 (after the corresponding limiting values are subtracted

from m
(1)
± (0; z)), we establish that λb(λ) ∈ H1

z (R). On the other hand, the same
Wronskian representation (4.74) can also be written in the form

λ−1b(λ) = m
(1)
+ (0; z)λ−1ϕ

(2)
− (0;λ)−m(1)

− (0; z)λ−1ϕ
(2)
+ (0;λ). (4.84)

Recalling that λ−1ϕ
(2)
± (0;λ) belongs to H1

z (R) by Corollary 6, we obtain λ−1b(λ) ∈
H1
z (R). The first assertion (4.78) of the lemma is proved.

To prove the second assertion (4.79) of the lemma, we note that λ−1b(λ) ∈
L2,1
z (R) because zλ−1b(λ) = λb(λ) ∈ H1

z (R). On the other hand, to show that
λb(λ) ∈ L2,1

z (R), we multiply equation (4.83) by z and write the resulting equation
in the form

2iλzb(λ) = m
(1)
+ (0; z)

(
zm

(2)
− (0; z)− q(2)

− (0)
)
−m(1)

− (0; z)
(
zm

(2)
+ (0; z)− q(2)

+ (0)
)

+q
(2)
− (0)

(
m

(1)
+ (0; z)−m∞+ (0)

)
− q(2)

+ (0)
(
m

(1)
− (0; z)−m∞− (0)

)
,(4.85)

where we have used the identity q
(2)
− (0)m∞+ (0)−q(2)

+ (0)m∞− (0) = 0 that follows from
limits (4.28) and (4.30). By (4.43) and (4.44) in Lemma 18, all the terms in the
representation (4.85) are in L2

z(R), hence λb(λ) ∈ L2,1
z (R). The second assertion

(4.79) of the lemma is proved.

We show that the mapping

H1,1(R) 3 u→ a(λ)− a∞, λb(λ), λ−1b(λ) ∈ H1
z (R) (4.86)

is Lipschitz continuous. Moreover, we also have Lipschitz continuity of the map-
ping

H2(R) ∩H1,1(R) 3 u→ λb(λ), λ−1b(λ) ∈ L2,1
z (R). (4.87)

The corresponding result is deduced from Lemma 19 and Corollary 4.

Corollary 7. Let u, ũ ∈ H1,1(R) satisfy ‖u‖H1,1 , ‖ũ‖H1,1 ≤ U for some U > 0.
Denote the corresponding scattering coefficients by (a, b) and (ã, b̃) respectively.
Then, there is a positive U-dependent constant C(U) such that

‖a(λ)− a∞ − ã(λ) + ã∞‖H1
z

+ ‖λb(λ)− λb̃(λ)‖H1
z

+ ‖λ−1b(λ)− λ−1b̃(λ)‖H1
z
≤ C(U)‖u− ũ‖H1,1 . (4.88)

Moreover, if u, ũ ∈ H2(R)∩H1,1(R) satisfy ‖u‖H2∩H1,1 , ‖ũ‖H2∩H1,1 ≤ U , then there
is a positive U-dependent constant C(U) such that

‖λb(λ)− λb̃(λ)‖L2,1
z

+ ‖λ−1b(λ)− λ−1b̃(λ)‖L2,1
z
≤ C(U)‖u− ũ‖H2∩H1,1 . (4.89)

Proof. The assertion follows from the representations (4.82), (4.83), (4.84), and
(4.85), as well as the Lipschitz continuity of the Jost functions m± and n± estab-
lished in Corollary 4.
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Remark 12. Since Corollary 7 yields Lipschitz continuity of the mappings (4.86)
and (4.87) for every u, ũ in a ball of a fixed (but possibly large) radius U , the
mappings (4.86) and (4.87) are one-to-one for every u in the ball.

Another result, which follows from Lemma 19, is the parity property of the
scattering coefficients a and b with respect to λ. The corresponding result is given
in the following corollary.

Corollary 8. The scattering coefficients a and b are even and odd functions in λ
for λ ∈ R ∪ iR. Moreover, they satisfy the following scattering relation{

|a(λ)|2 + |b(λ)|2 = 1, λ ∈ R,
|a(λ)|2 − |b(λ)|2 = 1, λ ∈ iR. (4.90)

Proof. Because a(λ) and λ−1b(λ) are functions of z = λ2, as follows from Lemma
19, we have a(−λ) = a(λ) and b(−λ) = −b(λ) for all λ ∈ R ∪ iR. For λ ∈ R, the
scattering relation (4.76) yields the first line of (4.90). For λ = iγ with γ ∈ R, the
parity properties of a and b imply

a(λ̄) = a(−iγ) = a(iγ) = a(λ) and b(λ) = b(−iγ) = −b(iγ) = −b(λ).

Substituting these relations to the scattering relation (4.76), we obtain the second
line of (4.90)

4.3 Formulations of the Riemann–Hilbert prob-

lem

We deduce the Riemann–Hilbert problem of complex analysis from the jump
condition for normalized Jost functions on R∪iR in the λ plane, which corresponds
to R in the z plane, where z = λ2. The jump condition yields boundary conditions
for the Jost functions extended to sectionally analytic functions in different do-
mains of the corresponding complex plane. In the beginning, we derive the jump
condition in the λ plane by using the Jost functions of the original Kaup–Newell
spectral problem (4.14).

Let us define the reflection coefficient by

r(λ) :=
b(λ)

a(λ)
, λ ∈ R ∪ iR. (4.91)

Each zero of a on R∪iR corresponds to the resonance, according to Definition 4. By
the assumptions of Theorem 4, the spectral problem (4.14) admits no resonances,
therefore, there exists a positive number A such that

|a(λ)| ≥ A > 0, λ ∈ R ∪ iR. (4.92)

Thus, r(λ) is well-defined for every λ ∈ R ∪ iR.
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Under the condition (4.92), the scattering relations (4.72) with (4.75) can be
rewritten in the equivalent form:

ϕ−(x;λ)

a(λ)
− ϕ+(x;λ) = r(λ)e2iλ2xφ+(x;λ) (4.93)

and
φ−(x;λ)

a(λ̄)
− φ+(x;λ) = −r(λ̄)e−2iλ2xϕ+(x;λ), (4.94)

where λ ∈ R ∪ iR.

By Lemma 19, a(λ) is continued analytically in the first and third quadrants
of the λ plane, where Im(λ2) > 0. Also a(λ) approaches to a finite limit a∞ 6= 0
as |λ| → ∞. By a theorem of complex analysis on zeros of analytic functions, a
has at most finite number of zeros in each quadrant of the λ plane. Each zero of a
corresponds to an eigenvalue of the spectral problem (4.14) with the L2(R) solution
ψ(x) decaying to zero exponentially fast as |x| → ∞. Indeed, this follows from
the Wronskian relation (4.73) between the Jost functions ϕ− and ψ+ extended to
the first and third quadrant of the λ plane by Corollary 6. By the assumptions of
Theorem 4, the spectral problem (4.14) admits no eigenvalues, hence the bound
(4.92) is extended to the first and third quadrants of the λ plane. Therefore, the

functions ϕ−(x;λ)
a(λ)

and φ−(x;λ)

a(λ̄)
are analytic in the corresponding domains of the λ

plane.

From the scattering relations (4.93) and (4.94), we can define the complex
functions

Φ+(x;λ) :=

[
ϕ−(x;λ)

a(λ)
, φ+(x;λ)

]
, Φ−(x;λ) :=

[
ϕ+(x;λ),

φ−(x;λ)

a(λ̄)

]
. (4.95)

By Corollary 6, Lemma 19, and the condition (4.92) on a, for every x ∈ R, the
function Φ+(x; ·) is analytic in the first and third quadrants of the λ plane, whereas
the function Φ−(x; ·) is analytic in the second and fourth quadrants of the λ plane.
For every x ∈ R and λ ∈ R ∪ iR, the two functions are related by the jump
condition

Φ+(x;λ)− Φ−(x;λ) = Φ−(x;λ)S(x;λ), (4.96)

where

S(x;λ) :=

[
|r(λ)|2 r(λ)e−2iλ2x

r(λ)e2iλ2x 0

]
, λ ∈ R (4.97)

and

S(x;λ) :=

[
−|r(λ)|2 −r(λ)e−2iλ2x

r(λ)e2iλ2x 0

]
, λ ∈ iR. (4.98)

Note that r(−λ) = −r(λ) by Corollary 8, so that r(0) = 0. By Corollary 6, the
functions Φ±(x;λ) satisfy the limiting behavior as |λ| → ∞ along a contour in the
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corresponding domains of their analyticity in the λ plane:

Φ±(x;λ)→ Φ∞(x) :=
[
e

1
2i

R x
+∞ |u(y)|2dye1, e−

1
2i

R x
+∞ |u(y)|2dye2

]
as |λ| → ∞.

(4.99)

The jump conditions (4.96) and the boundary conditions (4.99) set up a Riemann–
Hilbert problem to find sectionally analytic functions Φ(x; ·) for every x ∈ R. It is
quite remarkable that the matrix S is Hermitian for λ ∈ R. In this case, we can use
the theory of Zhou [122] to obtain a unique solution to the Riemann–Hilbert prob-
lem (4.96), (4.97), and (4.99). However, the matrix S is not Hermitian for λ ∈ iR.
Nevertheless, the second scattering relation (4.90) yields a useful constraint:

1− |r(λ)|2 =
1

|a(λ)|2
≥ c2

0 > 0, λ ∈ iR, (4.100)

where c0 := supλ∈iR |a(λ)|. The constraint (4.100) will be used to obtain a unique
solution to the Riemann–Hilbert problem (4.96), (4.98), and (4.99).

We note that only the latter case (4.98), which is relevant to the imaginary
values of λ, was considered in the context of the Kaup–Newell spectral problem
by Kitaev & Vartanian [59], who studied the long time asymptotic solution of
the derivative NLS equation (4.1, also in the case of no solitons. The smallness
condition (4.100) does not need to be assumed a priori, as it is done in Lemma
2.2 in [59], but appears naturally from the second scattering relation (4.90). The
Hermitian case of real values of λ was missed in [59].

We also note that the scattering matrix S(x;λ) is analogous to the one known
for the focusing NLS equation if λ ∈ R and the one known for the defocusing NLS
equation if λ ∈ iR. As a result, the inverse scattering transform for the derivative
NLS equation combines elements of the inverse scattering transforms developed
for the focusing and defocusing cubic NLS equations [29, 31, 121].

In the rest of this section, we reformulate the jump condition in the z plane and
introduce two scattering coefficients r±, which are defined on the real line in the
function space H1(R) ∩ L2,1(R). The scattering coefficients r± allow us to recover
a potential u in the function space H2(R) ∩H1,1(R) (in Section 4).

4.3.1 Reformulation of the Riemann–Hilbert problem

Using transformation matrices in (4.64)–(4.65), we can rewrite the scattering
relations (4.93) and (4.94) in terms of the z-dependent Jost functions m± and n±:

m−(x; z)

a(λ)
−m+(x; z) =

2iλb(λ)

a(λ)
e2izxp+(x; z) (4.101)

and
p−(x; z)

a(λ̄)
− p+(x; z) = − b(λ̄)

2iλa(λ̄)
e−2izxm+(x; z), (4.102)
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where z ∈ R, m± are defined by Lemma 16, and p± are given explicitly by

p±(x; z) =
1

2iλ
T1(x;λ)T−1

2 (x;λ)n±(x; z) = − 1

4z

[
1 u(x)

−ū(x) −|u(x)|2 − 4z

]
n±(x; z).

(4.103)
Properties of the new functions p± are summarized in the following result.

Lemma 20. Under the conditions of Lemma 16, for every x ∈ R, the func-
tions p±(x; z) are continued analytically in C± and satisfy the following limits as
|Im(z)| → ∞ along a contour in the domains of their analyticity:

lim
|z|→∞

p±(x; z) = n∞± (x)e2, (4.104)

where n∞± are the same as in the limits (4.29).

Proof. The asymptotic limits (4.104) follow from the representation (4.103) and
the asymptotic limits (4.29) for n±(x; z) as |z| → ∞ in Lemma 17. Using the
transformation (4.64)–(4.65), functions p± can be written in the equivalent form

p±(x; z) = n
(2)
± (x; z)e2 +

1

2iλ

[
1

−ū(x)

]
φ

(1)
± (x;λ), (4.105)

where both n
(2)
± (x; z) and λ−1φ

(1)
± (x;λ) are continued analytically in C± with re-

spect to z by Lemma 16 and Corollary 6. From the Volterra integral equation
(4.67), we also obtain

λ−1φ
(1)
± (x;λ) =

∫ x

±∞
e−2iz(x−y)u(y)n

(2)
± (y; z)dy, (4.106)

therefore, p±(x; 0) exists for every x ∈ R. Thus, for every x ∈ R, the analyticity
properties of p±(x; ·) are the same as those of n±(x; ·).

Let us now introduce the new scattering data:

r+(z) := − b(λ)

2iλa(λ)
, r−(z) :=

2iλb(λ)

a(λ)
, z ∈ R. (4.107)

which satisfy the relation

r−(z) = 4zr+(z), z ∈ R. (4.108)

It is worthwhile noting that{
r+(z)r−(z) = |r(λ)|2, z ∈ R+, λ ∈ R,
r+(z)r−(z) = −|r(λ)|2, z ∈ R−, λ ∈ iR. (4.109)

The scattering data r± satisfy the following properties, which are derived from the
previous results.
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Lemma 21. Assume the condition (4.92) on a. If u ∈ H1,1(R), then r± ∈ H1(R),
whereas if u ∈ H2(R) ∩H1,1(R), then r± ∈ L2,1(R). Moreover, the mapping

H2(R) ∩H1,1(R) 3 u→ (r+, r−) ∈ H1(R) ∩ L2,1(R) (4.110)

is Lipschitz continuous.

Proof. The first assertion on r± follows from Lemma 19. To prove Lipschitz con-
tinuity of the mapping (4.110), we use the following representation for r− and r̃−
that correspond to two potentials u and ũ,

r− − r̃− =
2iλ(b− b̃)

a
+

2iλb̃

aã
[(ã− ã∞)− (a− a∞)] +

2iλb̃

aã
(ã∞ − a∞). (4.111)

Lipschitz continuity of the mapping (4.110) for r− follows from the representation
(4.111) and Corollary 7. Lipschitz continuity of the mapping (4.110) for r+ is
studied by using a representation similar to (4.111).

Remark 13. By Corollary 8, a(−λ) = a(λ) for every λ ∈ R ∪ iR. Therefore,
when we introduce z = λ2 and start considering functions of z, it makes sense to
introduce a(z) := a(λ) for every z ∈ R. In what follows, we drop the bold notations
in the definition of a(z).

For every x ∈ R and z ∈ R, we define two matrices P+(x; z) and P−(x; z) by

P+(x; z) :=

[
m−(x; z)

a(z)
, p+(x; z)

]
, P−(x; z) :=

[
m+(x; z),

p−(x; z)

a(z)

]
. (4.112)

By Lemmas 16, 19, and 20, as well as the condition (4.92) on a, the functions
P±(x; ·) for every x ∈ R are continued analytically in C±. The scattering relations
(4.101) and (4.102) are now rewritten as the jump condition between functions
P±(x; z) across the real axis in z for every x ∈ R:

P+(x; z)− P−(x; z) = P−(x; z)R(x; z), R(x; z) :=

[
r+(z)r−(z) r+(z)e−2izx

r−(z)e2izx 0

]
.

(4.113)
By Lemmas 17, 19, and 20, the functions P±(x; ·) satisfy the limiting behavior as
|z| → ∞ along a contour in the domain of their analyticity in the z plane:

P±(x; z)→ Φ∞(x) as |z| → ∞, (4.114)

where Φ∞ is the same as in (4.99). The boundary conditions (4.114) depend
on x, which represents an obstacle in the inverse scattering transform, where we
reconstruct the potential u(x) from the behavior of the analytic continuations of
the Jost functions P±(x; ·) for x ∈ R. Therefore, we fix the boundary conditions
to the identity matrix by defining new matrices

M±(x; z) := [Φ∞(x)]−1 P±(x; z), x ∈ R, z ∈ C±. (4.115)
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As a result, we obtain the Riemann–Hilbert problem for analytic functionsM±(x; ·)
in C±, which is given by the jump condition equipped with the uniform boundary
conditions:{

M+(x; z)−M−(x; z) = M−(x; z)R(x; z), z ∈ R,
M±(x; z)→ I as |z| → ∞. (4.116)

The scattering data r± ∈ H1(R) ∩ L2,1(R) are defined in Lemma 21.
Figure 4.1 shows the regions of analyticity of functions Φ± in the λ plane (left)

and those of functions M± in the z plane (right).

Φ+Φ−

Φ−Φ+

Im(λ)

Re(λ)

M+

M−

Im(z)

Re(z)

Figure 4.1: Blue and red regions mark domains of analyticity of Φ± in the λ plane
(left) and those of M± in the z plane (right).

The scattering matrix R in the Riemann–Hilbert problem (4.116) is not Her-
mitian. As a result, it is difficult to use the theory of Zhou [122] in order to
construct a unique solution for M± in the Riemann–Hilbert problem (4.116) with-
out restricting the scattering data r± to be small in their norms. On the other
hand, the original Riemann–Hilbert problem (4.96) in the λ plane does not have
these limitations. Therefore, in the following subsection, we consider two equiv-
alent reductions of the Riemann–Hilbert problem (4.116) in the z plane to those
related with the scattering matrix S instead of the scattering matrix R.

4.3.2 Two transformations of the Riemann-Hilbert prob-
lem

For every λ ∈ C\{0}, we denote

τ1(λ) :=

[
1 0
0 2iλ

]
, τ2(λ) :=

[
(2iλ)−1 0

0 1

]
(4.117)

and observe that

τ−1
1 (λ)R(x; z)τ1(λ) = τ−1

2 (λ)R(x; z)τ2(λ) = S(x;λ), z ∈ R, λ ∈ R ∪ iR,

where S(x;λ) is defined in (4.97) and (4.98), whereas R(x; z) is defined in (4.113).
Using these properties, we introduce two formally equivalent reformulations of the
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Riemann–Hilbert problem (4.116):{
G+1,2(x;λ)−G−1,2(x;λ) = G−1,2(x;λ)S(x;λ) + F1,2(x;λ), λ ∈ R ∪ iR,
lim|λ|→∞G±1,2(x;λ) = 0,

(4.118)
where

G±1,2(x;λ) := M±(x; z)τ1,2(λ)− τ1,2(λ), F1,2(x;λ) := τ1,2(λ)S(x;λ). (4.119)

The functions G+1,2(x;λ) are analytic in the first and third quadrants of the λ
plane, whereas the functions G−1,2(x;λ) are analytic in the second and fourth
quadrants of the λ plane. Although the behavior of functions M±(x; z)τ1,2(λ) may
become singular as λ→ 0, we prove in Corollary 9 below that G±1,2(x;λ) are free
of singularities as λ→ 0.

Figure 4.2 summarizes on the transformations of the Riemann–Hilbert prob-
lems.

Φ±

M±

G±1 G±2

T1,2

τ1 τ2

2iλ

Figure 4.2: A useful diagram showing transformations of the Riemann–Hilbert
problems

Solvability of the Riemann–Hilbert problem (4.118) is obtained in Section 4.1.
Then, in Section 4.2, we show that the solution to the two related Riemann-
Hilbert problems (4.118) can be used to obtain the solution to the Riemann-
Hilbert problem (4.116). In Section 4.3, we show how this procedure defines the
inverse scattering transform to recover the potential u of the Kaup–Newell spectral
problem (4.14) from the scattering data r±.

4.4 Inverse scattering transform

We are now concerned with the solvability of the Riemann-Hilbert problem
(4.116) for the given scattering data r+, r− ∈ H1(R) ∩ L2,1(R) satisfying the con-
straint (4.108). We are looking for analytic matrix functions M±(x; ·) in C± for
every x ∈ R. Let us introduce the following notations for the column vectors of
the matrices M± as

M±(x; z) = [µ±(x; z), η±(x; z)]. (4.120)
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Before we proceed, let us inspect regularity of the reflection coefficient r(λ) as a
function of z on R.

Proposition 5. If r±(z) ∈ H1
z (R) ∩ L2,1

z (R), then r(λ) ∈ L2,1
z (R) ∩ L∞z (R).

Proof. Since r± ∈ L2,1(R) and |r(λ)|2 = sign(z) r+(z)r−(z) for every z ∈ R, we
have r(λ) ∈ L2,1

z (R) by Cauchy–Schwarz inequality.
To show that r(λ) ∈ L∞z (R), we notice that r(λ) can be defined equivalently

from (4.107) in the following form:

r(λ) =

{
−2iλr+(z) |λ| ≤ 1

(2iλ)−1r−(z) |λ| ≥ 1.

Since r± ∈ L∞(R) as it follows from r± ∈ H1(R), then we have r(λ) ∈ L∞z (R).

Remark 14. We do not expect generally that r(λ) belongs to H1
z (R). For instance,

if

h(λ) :=
λ

(1 + λ4)s
, s >

5

4
,

then λh(λ), λ−1h(λ) ∈ H1
z (R)∩L2,1

z (R), h(λ) ∈ L2,1
z (R)∩L∞z (R) but h(λ) /∈ H1

z (R).

We also note another useful elementary result.

Proposition 6. If r−(z) ∈ H1
z (R) ∩ L2,1

z (R), then ‖λr−(z)‖L∞z ≤ ‖r−‖H1∩L2,1.

Proof. The result follows from the representation

zr−(z)2 =

∫ z

0

(
r−(z)2 + 2zr−(z)r′−(z)

)
dz.

Using Cauchy–Schwarz inequality for r−(z) ∈ H1
z (R) ∩ L2,1

z (R), we obtain the
desired bound.

4.4.1 Solution to the Riemann–Hilbert problem

Let us start with the definition of the Cauchy operator, which can be found
in many sources, e.g., in [31]. For any function h ∈ Lp(R) with 1 ≤ p < ∞, the
Cauchy operator denoted by C is given by

C(h)(z) :=
1

2πi

∫
R

h(s)

s− z
ds, z ∈ C \ R. (4.121)

The function C(h) is analytic off the real line such that C(h)(·+ iy) is in Lp(R) for
each y 6= 0. When z approaches to a point on the real line transversely from the
upper and lower half planes, that is, if y → ±0, the Cauchy operator C becomes
the Plemelj projection operators, denoted respectively by P±. These projection
operators are given explicitly by

P±(h)(z) := lim
ε↓0

1

2πi

∫
R

h(s)

s− (z ± εi)
ds, z ∈ R. (4.122)
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The following proposition summarizes the basic properties of the Cauchy and pro-
jection operators.

Proposition 7. For every h ∈ Lp(R), 1 ≤ p < ∞, the Cauchy operator C(h) is
analytic off the real line, decays to zero as |z| → ∞, and approaches to P±(h)
almost everywhere, when a point z ∈ C± approaches to a point on the real axis by
any non-tangential contour from C±. If 1 < p < ∞, then there exists a positive
constant Cp (with Cp=2 = 1) such that

‖P±(h)‖Lp ≤ Cp‖h‖Lp . (4.123)

If h ∈ L1(R), then the Cauchy operator admits the following asymptotic limit in
either C+ or C−:

lim
|z|→∞

zC(h)(z) = − 1

2πi

∫
R
h(s)ds. (4.124)

Proof. Analyticity, decay, and boundary values of C on the real axis follow from
Theorem 11.2 and Corollary 2 on pp. 190–191 in [35]. By Sokhotski–Plemelj
theorem, we have the relations

P±(h)(z) = ±1

2
h(z)− i

2
H(h)(z), z ∈ R, (4.125)

where H is the Hilbert transform given by

H(h)(z) :=
1

π
lim
ε↓0

(∫ z−ε

−∞
+

∫ ∞
z+ε

)
h(s)

s− z
ds, z ∈ R.

By Riesz’s theorem (Theorem 3.2 in [34]), H is a bounded operator from Lp(R)
to Lp(R) for every 1 < p < ∞, so that the bound (4.123) holds with C2 = 1 and
Cp → +∞ as p→ 1 and p→∞. Finally, the asymptotic limit (4.124) is justified
by Lebesgue’s dominated convergence theorem if h ∈ L1(R).

We recall the scattering matrix S(x;λ) given explicitly by (4.97) and (4.98).
The following proposition states that if r(λ) is bounded and satisfies (4.100), then
the quadratic form associated with the matrix I + S(x;λ) is strictly positive for
every x ∈ R and every λ ∈ R ∪ iR, whereas the matrix I + S(x;λ) is bounded. In
what follows, ‖ · ‖ denotes the Euclidean norm of vectors in C2.

Proposition 8. For every r(λ) ∈ L∞z (R) satisfying (4.100), there exist positive
constants C− and C+ such that for every x ∈ R and every column-vector g ∈ C2,
we have

Re gt (I + S(x;λ)) g ≥ C−g
tg, λ ∈ R ∪ iR (4.126)

and
‖(I + S(x;λ)) g‖ ≤ C+‖g‖, λ ∈ R ∪ iR. (4.127)

Proof. For λ ∈ R, we use representation (4.97). Since I + S(x;λ) is Hermitian for
every x ∈ R and λ ∈ R, we compute the two real eigenvalues of I + S(x;λ) given
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by

µ±(λ) = 1 +
1

2
|r(λ)|2 ± |r(λ)|

√
1 +

1

4
|r(λ)|2 =

(√
1 +

1

4
|r(λ)|2 ± 1

2
|r(λ)|

)2

> 0.

Note that

1

(1 + |r(λ)|)2
≤ µ−(λ) ≤ µ+(λ) ≤ (1 + |r(λ)|)2, λ ∈ R.

It follows from the above inequalities that the bounds (4.126) and (4.127) for λ ∈ R
hold with

C− :=
1

(1 + supλ∈R |r(λ)|)2
> 0 and C+ := (1 + sup

λ∈R
|r(λ)|)2 <∞.

For λ ∈ iR, we use representation (4.98). Since I + S(x;λ) is no longer Her-
mitian, we define the Hermitian part of S(x;λ) by

SH(λ) :=
1

2
S(x;λ) +

1

2
S∗(x;λ) =

[
−|r(λ)|2 0

0 0

]
,

where the asterisk denotes Hermite conjugate (matrix transposition and complex
conjugate). It follows from (4.100) that supλ∈iR r(λ) ≤ 1 − c2

0 < 1 so that the
diagonal matrix I+SH(λ) is positive definite for every λ ∈ iR. The bound (4.126)
for λ ∈ iR follows from this estimate with C− := 1 − supλ∈iR |r(λ)|2 ≥ c2

0 > 0.
Finally, estimating componentwise

‖(I + S(x;λ))g‖2 ≤ (1 + |r(λ)|2)‖g‖2 + |r(λ)|2
(
r(λ)g(1)g(2) + r(λ)g(1)g(2)

)
≤

(
1 + |r(λ)|2

)(
1 +

1

2
|r(λ)|2

)
‖g‖2,

we obtain the bound (4.127) for λ ∈ iR with C+ := (1 + supλ∈iR |r(λ)|2) <∞.

Thanks to the result of Proposition 8, we shall prove solvability of the two
related Riemann–Hilbert problems (4.118) by using the method of Zhou [122].
Dropping the subscripts, we rewrite the two related Riemann–Hilbert problems
(4.118) in the following abstract form{

G+(x;λ)−G−(x;λ) = G−(x;λ)S(x;λ) + F (x;λ), λ ∈ R ∪ iR,
G±(x, λ)→ 0 as |λ| → ∞. (4.128)

If r± ∈ H1
z (R)∩L2,1(R), then Proposition 5 implies that S(x;λ) ∈ L1

z(R)∩L∞z (R)
and F (x;λ) ∈ L2

z(R) for every x ∈ R. We consider the class of solutions to the
Riemann–Hilbert problem (4.128) such that for every x ∈ R,

• G±(x;λ) are analytic functions of z = λ2 in C±

• G±(x;λ) ∈ L2
z(R)
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• The same columns of G±(x;λ), G−(x;λ)S(x;λ), and F (x;λ) are either even
or odd in λ.

By Proposition 7 with p = 2, for every x ∈ R, the Riemann-Hilbert problem
(4.128) has a solution given by the Cauchy operator

G±(x;λ) = C (G−(x;λ)S(x;λ) + F (x;λ)) (z), z ∈ C± (4.129)

if and only if there is a solution G−(x;λ) ∈ L2
z(R) of the Fredholm integral equa-

tion:
G−(x;λ) = P− (G−(x;λ)S(x;λ) + F (x;λ)) (z), z ∈ R. (4.130)

Once G−(x;λ) ∈ L2
z(R) is found from the Fredholm integral equation (4.130), then

G+(x;λ) ∈ L2
z(R) is obtained from the projection formula

G+(x;λ) = P+ (G−(x;λ)S(x;λ) + F (x;λ)) (z), z ∈ R. (4.131)

Remark 15. The complex integrals in C and P± over the real line z = λ2 can be
parameterized by λ on R+ ∪ iR+. Extensions of integral representations (4.129),
(4.130), and (4.131) for λ ∈ R−∪iR− is performed with the account of parity sym-
metries of the corresponding columns of G±(x;λ), G−(x;λ)S(x;λ), and F (x;λ).
See Proposition 9, Corollary 10, and Remark 16 below.

The following lemma relies on the positivity result of Proposition 8 and states
solvability of the integral equation (4.130) in L2

z(R). For simplicity of notations,
we drop dependence of S, F and G± from the variable x.

Lemma 22. For every r(λ) ∈ L2
z(R)∩L∞z (R) satisfying (4.100) and every F (λ) ∈

L2
z(R), there is a unique solution G(λ) ∈ L2

z(R) of the linear inhomogeneous equa-
tion

(I − P−S )G(λ) = F (λ), λ ∈ R ∪ iR, (4.132)

where P−S G := P−(GS).

Proof. The operator I − P−S is known to be a Fredholm operator of the index
zero [6, 7, 122]. By Fredholm’s alternative, a unique solution to the linear integral
equation (4.132) exists for G(λ) ∈ L2

z(R) if and only if the zero solution to the
homogeneous equation (I − P−S )g = 0 is unique in L2

z(R).

Suppose that there exists nonzero g ∈ L2
z(R) such that (I − P−S )g = 0. Since

S(λ) ∈ L2
z(R) ∩ L∞z (R), we define two analytic functions in C \ R by

g1(z) := C(gS)(z) and g2(z) := C(gS)∗(z),

where the asterisk denotes Hermite conjugate. We multiply the two functions
by each other and integrate along the semi-circle of radius R centered at zero in
C+. Because g1 and g2 are analytic functions in C+, the Cauchy–Goursat theorem
implies that

0 =

∮
g1(z)g2(z)dz.
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Because g(λ), S(λ) ∈ L2
z(R), we have g(λ)S(λ) ∈ L1

z(R), so that the asymptotic
limit (4.124) in Proposition 7 implies that g1,2(z) = O(z−1) as |z| → ∞. Therefore,
the integral on arc goes to zero as R→∞, so that we obtain

0 =

∫
R
g1(z)g2(z)dz

=

∫
R
P+(gS) [P−(gS)]∗dz

=

∫
R

[
P−(gS) + gS

]
[P−(gS)]∗dz,

where we have used the identity P+ − P− = I following from relations (4.125).
Since P−(gS) = g, we finally obtain

0 =

∫
R
g(I + S)g∗dz. (4.133)

By bound (4.126) in Proposition 8, the real part of the quadratic form associated
with the matrix I+S is strictly positive definite for every z ∈ R. Therefore, equa-
tion (4.133) implies that g = 0 is the only solution to the homogeneous equation
(I − P−S )g = 0 in L2

z(R).

As a consequence of Lemma 22, we obtain solvability of the two related Riemann–
Hilbert problems (4.118).

Corollary 9. Let r± ∈ H1(R)∩L2,1(R) such that the inequality (4.100) is satisfied.
There exists a unique solution to the Riemann–Hilbert problems (4.118) for every
x ∈ R such that the functions

G±1,2(x;λ) := M±(x; z)τ1,2(λ)− τ1,2(λ)

are analytic functions of z in C± and G±1,2(x;λ) ∈ L2
z(R).

Proof. For every x ∈ R, the two related Riemann–Hilbert problems (4.118) are
rewritten for G±1,2 and F1,2 given by (4.119) in the form (4.128). By Proposition 5,
we have S(x;λ) ∈ L1

z(R)∩L∞z (R) and F1,2(x;λ) ∈ L2
z(R), hence P−(F1,2) ∈ L2

z(R).
By Lemma 22, equation (4.130) admits a unique solution for G−1,2(x;λ) ∈ L2

z(R)
for every x ∈ R. Then, we define a unique solution for G+1,2(x;λ) ∈ L2

z(R)
by equation (4.131). Analytic extensions of G±1,2(x;λ) as functions of z in C±
are defined by the Cauchy integrals (4.129). These functions solve the Riemann–
Hilbert problem (4.128) by Proposition 7 with p = 2.

For further estimates, we modify the method of Lemma 22 and prove that the
operator (I −P−S )−1 in the integral Fredholm equation (4.132) is invertible with a
bounded inverse in space L2

z(R).

Lemma 23. For every r(λ) ∈ L2
z(R) ∩ L∞z (R) satisfying (4.100), the inverse

operator (I − P−S )−1 is a bounded operator from L2
z(R) to L2

z(R). In particular,
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there is a positive constant C that only depends on ‖r(λ)‖L∞z such that for every
row-vector f ∈ L2

z(R), we have

‖(I − P−S )−1f‖L2
z
≤ C‖f‖L2

z
. (4.134)

Proof. We consider the linear inhomogeneous equation (4.132) with F ∈ L2
z(R).

Recalling that P+ − P− = I, we write G = G+ − G−, where G+ and G− satisfy
the inhomogeneous equations

G− − P−(G−S) = P−(F ), G+ − P−(G+S) = P+(F ). (4.135)

By Lemma 22, since P±(F ) ∈ L2
z(R), there are unique solutions to the inhomoge-

neous equations (4.132) and (4.135), so that the decomposition G = G+ − G− is
unique. Therefore, we only need to find the estimates of G+ and G− in L2

z(R).

To deal with G−, we define two analytic functions in C \ R by

g1(z) := C(G−S)(z) and g2(z) := C(G−S + F )∗(z),

similarly to the proof of Lemma 22. By Proposition 7, g1(z) = O(z−1) and g2(z)→
0 as |z| → ∞, since F ∈ L2

z(R), G− ∈ L2
z(R), and S(λ) ∈ L2

z(R) ∩ L∞z (R).
Therefore, the integral on the semi-circle of radius R > 0 in the upper half-
plane still goes to zero as R→∞ by Lebesgue’s dominated convergence theorem.
Performing the same manipulations as in the proof of Lemma 22, we obtain

0 =

∮
g1(z)g2(z)dz

=

∫
R
P+(G−S)

[
P−(G−S + F )

]∗
dz

=

∫
R

[
P−(G−S) +G−S

] [
P−(G−S + F )

]∗
dz

=

∫
R

[
G− − P−(F ) +G−S

]
G∗−dz,

where we have used the first inhomogeneous equation in system (4.135). By the
bound (4.126) in Proposition 8, there is a positive constant C− such that

C−‖G−‖2
L2 ≤ Re

∫
R
G−(I + S)G∗−dz = Re

∫
R
P−(F )G∗−dz ≤ ‖F‖L2‖G−‖L2 ,

where we have used the Cauchy–Schwarz inequality and bound (4.123) with Cp=2 =
1. Note that the above estimate holds independently for the corresponding row-
vectors of the matrices G− and F . Since G− = (I − P−S )−1P−F , for every row-
vector f ∈ L2

z(R) of the matrix F ∈ L2
z(R), the above inequality yields

‖(I − P−S )−1P−f‖L2
z
≤ C−1

− ‖f‖L2
z
. (4.136)

To deal with G+, we use P+ −P− = I and rewrite the second inhomogeneous
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equation in system (4.135) as follows:

G+(I + S)− P+(G+S) = P+(F ). (4.137)

We now define two analytic functions in C \ R by

g1(z) := C(G+S)(z) and g2(z) := C(G+S + F )∗(z)

and integrate the product of g1 and g2 on the semi-circle of radius R > 0 in the
lower half-plane. Performing the same manipulations as above, we obtain

0 =

∮
g1(z)g2(z)dz

=

∫
R
P−(G+S)

[
P+(G+S + F )

]∗
dz

=

∫
R

[
G+ − P+(F )

]
[G+(I + S)]∗ dz,

where we have used equation (4.137).

By the bounds (4.126) and (4.127) in Proposition 8, there are positive constants
C+ and

C−‖G+‖2
L2 ≤ Re

∫
R
G+(I + S)∗G∗+dz = Re

∫
R
P+(F )(I + S)∗G∗+dz

≤ C+‖F‖L2‖G+‖L2 ,

where we have used the Cauchy–Schwarz inequality and bound (4.123) with Cp=2 =
1. Again, the above estimate holds independently for the corresponding row-
vectors of the matrices G+ and F . Since G+ = (I − P−S )−1P+F , for every row-
vector f ∈ L2

z(R) of the matrix F ∈ L2
z(R), the above inequality yields

‖(I − P−S )−1P+f‖L2
z
≤ C−1

− C+‖f‖L2
z
. (4.138)

The assertion of the lemma is proved with bounds (4.136), (4.138), and the triangle
inequality.

4.4.2 Estimates on solutions to the Riemann-Hilbert prob-
lem

Using Corollary 9, we obtain solvability of the Riemann–Hilbert problem (4.116).
Indeed, the abstract Riemann–Hilbert problem (4.128) is derived for two versions
of G± and F± given by (4.119). For the first version, we have

G±1(x;λ) := M±(x; z)τ1(λ)− τ1(λ) = [µ±(x; z)− e1, 2iλ (η±(x; z)− e2)] (4.139)

and
F1(x;λ) := τ1(λ)S(x;λ) = R(x; z)τ1(λ). (4.140)
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By Corollary 9, there is a solution G±1(x;λ) ∈ L2
z(R) of the integral Fredholm

equations

G±1(x;λ) = P± (G−1(x;λ)S(x;λ) + F1(x;λ)) (z), z ∈ R. (4.141)

Using equation (4.141) for the first column of G±, we obtain

µ±(x; z)− e1 = P± (M−(x; ·)R(x; ·))(1) (z), z ∈ R, (4.142)

where we have used the following identities:

(G−1S + F1)(1) = (M−τ1S)(1) = (M−Rτ1)(1) = (M−R)(1).

For the second version of the abstract Riemann–Hilbert problem (4.128), we
have

G±2(x;λ) := M±(x; z)τ2(λ)− τ2(λ) =
[
(2iλ)−1 (µ±(x; z)− e1) , η±(x; z)− e2

]
(4.143)

and
F2(x;λ) := τ2(λ)S(x;λ) = R(x; z)τ2(λ). (4.144)

Again by Corollary 9, there is a solution G±2(x;λ) ∈ L2
z(R) of the integral Fred-

holm equations (4.141), where G±1 and F1 are replaced by G±2 and F2. Using
equation (4.141) for the second column of G±2, we obtain

η±(x; z)− e2 = P± (M−(x; ·)R(x; ·))(2) (z), z ∈ R. (4.145)

where we have used the following identities:

(G−2S + F2)(2) = (M−τ2S)(2) = (M−Rτ2)(2) = (M−R)(2).

Equations (4.142) and (4.145) can be written in the form

M±(x; z) = I + P± (M−(x; ·)R(x; ·)) (z), z ∈ R, (4.146)

which represents the solution to the Riemann–Hilbert problem (4.116) on the real
line. The analytic continuation of functions M±(x; ·) in C± is given by the Cauchy
operators

M±(x; z) = I + C (M−(x; ·)R(x; ·)) (z), z ∈ C±. (4.147)

The corresponding result on solvability of the integral equations (4.146) is given
by the following lemma.

Lemma 24. Let r± ∈ H1(R)∩L2,1(R) such that the inequality (4.100) is satisfied.
There is a positive constant C that only depends on ‖r±‖L∞ such that the unique
solution to the integral equations (4.146) enjoys the estimate for every x ∈ R,

‖M±(x; ·)− I‖L2 ≤ C (‖r+‖L2 + ‖r−‖L2) . (4.148)

Proof. By Proposition 5, if r± ∈ H1(R) ∩ L2,1(R), then r(λ) ∈ L2(R) ∩ L∞z (R).
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Under these conditions, it follows from the explicit expressions (4.140) and (4.144)
that R(x; z)τ1,2(λ) belong to L2

z(R) for every x ∈ R and there is a positive constant
C that only depends on ‖r±‖L∞(R) such that for every x ∈ R,

‖R(x; z)τ1,2(λ)‖L2
z
≤ C (‖r+‖L2 + ‖r−‖L2) . (4.149)

By derivation above, the integral equation (4.146) for the projection operator
P− is obtained from two versions of the integral equation (4.132) corresponding
to F1,2(x;λ) := P− (R(x; z)τ1,2(λ)) (z). Therefore, each element of M−(x; z) en-
joys the bound (4.134) for the corresponding row vectors of the two versions of
F1,2(x; z). Combining the estimates (4.134) and (4.149), we obtain the bound
(4.148).

Before we continue, let us discuss the redundancy between solutions to the two
versions of the Riemann–Hilbert problems (4.118). By using equation (4.141) for
the second column of G±1, we obtain

2iλ (η±(x; z)− e2) = P±
(

2iλ (M−(x; ·)R(x; ·))(2)
)

(z), z ∈ R. (4.150)

By using equation (4.141) for the first column of G±2, we obtain

(2iλ)−1 (µ±(x; z)− e1) = P±
(

(2iλ)−1 (M−(x; ·)R(x; ·))(1)
)

(z), z ∈ R. (4.151)

Unless equations (4.150) and (4.151) are redundant in view of equations (4.142)
and (4.145), the two versions of the Riemann–Hilbert problems (4.130) may seem
to be inconsistent. In order to show the redundancy explicitly, we use the following
result.

Proposition 9. Let f(λ) ∈ L1
z(R)∩L∞z (R) be even in λ for all λ ∈ R∪ iR. Then

P±even (λf(λ)) (λ) = λP±even(f)(λ), λ ∈ R ∪ iR, (4.152)

where

P±even(f)(λ) :=

(∫ +∞

0

+

∫ i0

+i∞
+

∫ −∞
0

+

∫ i0

−i∞

)
f(λ′)dλ′

λ′ − (λ± i0)
≡ P±(f(λ))(λ2).

(4.153)
Similarly, let g(λ) ∈ L1

z(R) ∩ L2
z(R) be odd in λ for all λ ∈ R ∪ iR. Then

P±odd (λg(λ)) (λ) = λP±odd(g)(λ), λ ∈ R ∪ iR, (4.154)

where

P±odd(g)(λ) :=

(∫ +∞

0

+

∫ i0

+i∞
+

∫ 0

−∞
+

∫ −i∞
i0

)
g(λ′)dλ′

λ′ − (λ± i0)
≡ P±(g(λ))(λ2).

(4.155)
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Proof. First, we note the validity of the definition (4.153) if f(−λ) = f(λ):

P±(f(λ))(λ2) =

∫ ∞
−∞

f(λ′)2λ′dλ′

(λ′)2 − (λ2 ± i0)

=

(∫ +∞

0

+

∫ i0

+i∞

)
f(λ′)

[
1

λ′ − (λ± i0)
+

1

λ′ + (λ± i0)

]
dλ′

=: P±even(f)(λ).

Then, relation (4.152) is established from the trivial result(∫ +∞

0

+

∫ i0

+i∞
+

∫ −∞
0

+

∫ i0

−i∞

)
f(λ′)dλ′ = 0,

which is justified if f(λ) ∈ L1
z(R) and even in λ. The relation (4.154) is proved

similarly, thanks to the changes in the definition (4.155).

Im(λ)

Re(λ)

Im(λ)

Re(λ)

Figure 4.3: The left and right panels show the direction of contours used for P±even

and P±odd

Figure 4.3 shows the contours of integration used in the definitions of P±even and
P±odd in (4.153) and (4.155). The following corollary of Proposition 9 specifies the
redundancy between the two different versions of the Riemann–Hilbert problems
(4.118).

Corollary 10. Consider two unique solutions to the Riemann–Hilbert problems
(4.118) in Corollary 9. Then, for every x ∈ R, we have

G±1(x;λ) = 2iλsign(λ)G±2(x;λ), λ ∈ R ∪ iR, (4.156)

where the sign function returns the sign of either real or imaginary part of λ.

Proof. We note the relation τ−1
2 (λ)τ1(λ) = 2iλI, where I is the identity 2-by-2

matrix. From here, the relation (4.156) follows for λ ∈ R+ ∪ iR+. To consider
the continuation of this relation to λ ∈ R− ∪ iR−, we apply Proposition 9 with
the explicit parametrization of the contours of integrations as on Figure 4.3. We
choose the even function f and the odd function g in the form

f(λ) :=
(
M−(x;λ2)R(x;λ2)

)(2)
, g(λ) := (2iλ)−1

(
M−(x;λ2)R(x;λ2)

)(1)
.
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Then, equation (4.150) follows from equation (4.145), thanks to the relation (4.152),
whereas equation (4.142) follows from equation (4.151) thanks to the relation
(4.154). Thus, the relation (4.156) is verified for every λ ∈ R ∪ iR. To ensure
that the integrations (4.153) and (4.155) returns P± for λf(λ) and λg(λ), the sign
function is used in the relation (4.156).

Remark 16. Corollary 10 shows that the complex integration in the z plane in
the integral equations (4.141) has to be extended in two different ways in the λ
plane. For the first vector columns of the integral equation (4.141), we have to
use the definition (4.155) for odd functions in λ, whereas for the second vector
columns of the integral equation (4.141), we have to use the definition (4.153) for
even functions in λ.

Next, we shall obtain refined estimates on the solution to the integral equations
(4.146). We start with estimates on the scattering coefficients r+ and r− obtained
with the Fourier theory.

Proposition 10. For every x0 ∈ R+ and every r± ∈ H1(R), we have

sup
x∈(x0,∞)

∥∥〈x〉P+
(
r̄+(z)e−2izx

)∥∥
L2
z
≤ ‖r+‖H1 (4.157)

and
sup

x∈(x0,∞)

∥∥〈x〉P− (r−(z)e2izx
)∥∥

L2
z
≤ ‖r−‖H1 , (4.158)

where 〈x〉 := (1 + x2)1/2. In addition, if r± ∈ H1(R), then

sup
x∈R

∥∥P+
(
r̄+(z)e−2izx

)∥∥
L∞z
≤ 1√

2
‖r+‖H1 (4.159)

and

sup
x∈R

∥∥P− (r−(z)e2izx
)∥∥

L∞z
≤ 1√

2
‖r−‖H1 . (4.160)

Furthermore, if r± ∈ L2,1(R), then

sup
x∈R

∥∥P+
(
zr̄+(z)e−2izx

)∥∥
L2
z
≤ ‖zr+(z)‖L2

z
, (4.161)

and
sup
x∈R

∥∥P− (zr−(z)e2izx
)∥∥

L2
z
≤ ‖zr−(z)‖L2

z
. (4.162)

Proof. Recall the following elementary result from the Fourier theory. For a given
function r ∈ L2(R), we use the Fourier transform r̂ ∈ L2(R) with the definition
r̂(k) := 1

2π

∫
R r(z)e−ikzdz, so that

‖r‖2
L2 = 2π‖r̂‖2

L2 .

Then, we have r ∈ H1(R) if and only if r̂ ∈ L2,1(R). Similarly, r ∈ L2,1(R) if and
only if r̂ ∈ H1(R).
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In order to prove (4.157), we write explicitly

P+
(
r̄+(z)e−2izx

)
(z) =

1

2πi
lim
ε↓0

∫
R

r+(s)e−2isx

s− (z + iε)
ds

=
1

2πi

∫
R
r̂+(k)

(
lim
ε↓0

∫
R

ei(k−2x)s

s− (z + iε)
ds

)
dk

=

∫ ∞
2x

r̂+(k)ei(k−2x)zdk, (4.163)

where the following residue computation has been used:

lim
ε↓0

1

2πi

∫
R

eis(k−2x)

s− iε
ds = lim

ε↓0

{
e−ε(k−2x), if k − 2x > 0
0, if k − 2x < 0

= χ(k − 2x), (4.164)

with χ being the characteristic function. The bound (4.157) is obtained from the
bound (4.41) of Proposition 4 for every x0 ∈ R+:

sup
x∈(x0,∞)

∥∥∥∥〈x〉∫ ∞
2x

r̂+(k)ei(k−2x)zdk

∥∥∥∥
L2
z

≤
√

2π‖r̂+‖L2,1 = ‖r+‖H1 .

Similarly, we use the representation (4.163) and obtain bound (4.159) for every
x ∈ R:

‖P+
(
r̄+(z)e−2izx

)
(z)‖L∞z ≤ ‖r̂+(k)‖L1

k
≤
√
π‖r̂+(k)‖L2,1

k
≤ 1√

2
‖r+‖H1 . (4.165)

The bounds (4.158) and (4.160) are obtained similarly from the representation

P−
(
r−(z)e2izx

)
(z) =

1

2πi
lim
ε↓0

∫
R

r−(s)e2isx

s− (z − iε)
ds = −

∫ −2x

−∞
r̂−(k)ei(k+2x)zdk.

The bounds (4.161) and (4.162) follow from the bound (4.123) with Cp=2 = 1 of
Proposition 7.

We shall use the estimates of Lemma 24 and Proposition 10 to derive useful
estimates on the solutions to the Riemann–Hilbert problem (4.116). By Lemma
24, these solutions on the real line can be written in the integral Fredholm form
(4.146). We only need to obtain estimates on the vector columns µ− − e1 and
η+ − e2. From equation (4.142), we obtain

µ−(x; z)− e1 = P−
(
r−(z)e2izxη+(x; z)

)
(z), z ∈ R, (4.166)

where we have used the following identities

(M−R)(1) = Φ−1
∞ (P−R)(1) = r−(z)e2izxΦ−1

∞ p+ = r−(z)e2izxM
(2)
+ ,

which follow from the representations (4.107), (4.112), and (4.115), as well as the

97



Ph.D. Thesis -Yusuke Shimabukuro Mathematics - McMaster University

scattering relation (4.102). From equation (4.145), we obtain

η+(x; z)− e2 = P+
(
r̄+(z)e−2izxµ−(x; z)

)
(z), z ∈ R, (4.167)

where we have used the following identities

(M−R)(2) = Φ−1
∞ (P−R)(2) = r̄+(z)e−2izxΦ−1

∞m+ = r̄+(z)e−2izxM
(1)
− ,

which also follow from the representations (4.107), (4.112), and (4.115).
Let us introduce the 2-by-2 matrix

M(x; z) = [µ−(x; z)− e1, η+(x; z)− e2] (4.168)

and write the system of integral equations (4.166) and (4.167) in the matrix form

M − P+(MR+)− P−(MR−) = F, (4.169)

where

R+(x; z) =

[
0 r̄+(z)e−2izx

0 0

]
, R−(x; z) =

[
0 0

r−(z)e2izx 0

]
(4.170)

and

F (x; z) :=
[
e2P−(r−(z)e2izx), e1P+(r̄+(z)e−2izx)

]
. (4.171)

The inhomogeneous term F given by (4.171) isestimated by Proposition 10. The
following lemma estimates solutions to the system of integral equations (4.169).

Lemma 25. For every x0 ∈ R+ and every r± ∈ H1(R), the unique solution to the
system of integral equations (4.166) and (4.167) satisfies the estimates

sup
x∈(x0,∞)

∥∥∥〈x〉µ(2)
− (x; z)

∥∥∥
L2
z

≤ C‖r−‖H1 (4.172)

and
sup

x∈(x0,∞)

∥∥∥〈x〉η(1)
+ (x; z)

∥∥∥
L2
z

≤ C‖r+‖H1 , (4.173)

where C is a positive constant that depends on ‖r±‖L∞. Moreover, if r± ∈ H1(R)∩
L2,1(R), then

sup
x∈R

∥∥∥∂xµ(2)
− (x; z)

∥∥∥
L2
z

≤ C (‖r+‖H1∩L2,1 + ‖r−‖H1∩L2,1) (4.174)

and
sup
x∈R

∥∥∥∂xη(1)
+ (x; z)

∥∥∥
L2
z

≤ C (‖r+‖H1∩L2,1 + ‖r−‖H1∩L2,1) (4.175)

where C is another positive constant that depends on ‖r±‖L∞.

Proof. Using the identity P+ − P− = I following from relations (4.125) and the
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identity
R+ +R− = (I −R+)R,

which follows from the explicit form (4.113), we rewrite the inhomogeneous equa-
tion (4.169) in the matrix form

G− P−(GR) = F, (4.176)

where G := M(I −R+) is given explicitly from (4.168) and (4.170) by

G(x; z) =

[
µ

(1)
− (x; z)− 1 η

(1)
+ (x; z)− r̄+(z)e−2izx(µ

(1)
− (x; z)− 1)

µ
(2)
− (x; z) η

(2)
+ (x; z)− 1− r̄+(z)e−2izxµ

(2)
− (x; z)

]
. (4.177)

From the explicit expression (4.171) for F (x; z), we can see that the sec-
ond row vector of F (x; z) and F (x; z)τ1(λ) remains the same and is given by
[P−(r−(z)e2izx), 0]. From the explicit expressions (4.177), the second row vector
of G(x; z)τ1(λ) is given by[

µ
(2)
− (x; z), 2iλ

(
η

(2)
+ (x; z)− 1− r̄+(z)e−2izxµ

(2)
− (x; z)

)]
Using bound (4.134) for the second row vector of G(x; z)τ1(λ), we obtain the
following bounds for every x ∈ R,

‖µ(2)
− (x; z)‖L2

z
≤ C‖P−(r−(z)e2izx)‖L2

z
(4.178)

and

‖2iλ
(
η

(2)
+ (x; z)− 1− r̄+(z)e−2izxµ

(2)
− (x; z)

)
‖L2

z
≤ C‖P−(r−(z)e2izx)‖L2

z
, (4.179)

where the positive constant C only depends on ‖r±‖L∞ . By substituting bound
(4.158) of Proposition 10 into (4.178), we obtain bound (4.172). Also note that
since |2iλr̄+(z)| = |r(λ)| and r(λ) ∈ L∞z (R), we also obtain from (4.178) and
(4.179) by the triangle inequality,

‖2iλ
(
η

(2)
+ (x; z)− 1

)
‖L2

z
≤ C‖P−(r−(z)e2izx)‖L2

z
, (4.180)

where the positive constant C still depends on ‖r±‖L∞ only.

Similarly, from the explicit expression (4.171) for F (x; z), we can see that the
first row vector of F (x; z) and F (x; z)τ2(λ) remains the same and is given by
[0,P+(r̄+(z)e−2izx)]. From the explicit expressions (4.177), the first row vector of
G(x; z)τ2(λ) is given by[

(2iλ)−1(µ
(1)
− (x; z)− 1), η

(1)
+ (x; z)− r̄+(z)e−2izx(µ

(1)
− (x; z)− 1)

]
Using bound (4.134) for the first row vector of G(x; z)τ2(λ), we obtain the following
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bounds for every x ∈ R,

‖(2iλ)−1(µ
(1)
− (x; z)− 1)‖L2

z
≤ C‖P+(r̄+(z)e−2izx)‖L2

z
(4.181)

and

‖η(1)
+ (x; z)− r̄+(z)e−2izx(µ

(1)
− (x; z)− 1)‖L2

z
≤ C‖P+(r̄+(z)e−2izx)‖L2

z
, (4.182)

where the positive constant C only depends on ‖r±‖L∞ . Since |2iλr̄+(z)| = |r(λ)|
and r(λ) ∈ L∞z (R), we also obtain from (4.181) and (4.182) by the triangle in-
equality,

‖η(1)
+ (x; z)‖L2

z
≤ ‖(2iλ)r̄+(z)e−2izx(2iλ)−1(µ

(1)
− (x; z)− 1)‖L2

z

+C‖P+(r̄+(z)e−2izx)‖L2
z

≤ C ′‖P+(r̄+(z)e−2izx)‖L2
z
, (4.183)

where the positive constant C ′ still depends on ‖r±‖L∞ only. By substituting
bound (4.157) of Proposition 10 into (4.183), we obtain bound (4.173).

In order to obtain bounds (4.174) and (4.175), we take derivative of the inho-
mogeneous equation (4.169) in x and obtain

∂xM − P+ (∂xM)R+ − P− (∂xM)R− = F̃ , (4.184)

where

F̃ := ∂xF + P+M∂xR+ + P−M∂xR−

= 2i
[
e2P−(zr−(z)e2izx), e1P+(−zr̄+(z)e−2izx)

]
+2i

[
zr−(z)η

(1)
+ (x; z)e2izx −zr̄+(z)(µ

(1)
− (x; z)− 1)e−2izx

zr−(z)(η
(2)
+ (x; z)− 1)e2izx −zr̄+(z)µ

(2)
− (x; z)e−2izx

]
.

Recall that λr−(z) ∈ L∞z (R) by Proposition 6. The second row vector of F̃ (x; z)τ1(λ)
and the first row vector of F̃ (x; z)τ2(λ) belongs to L2

z(R), thanks to bounds (4.161)
and (4.162) of Proposition 10, as well as bounds (4.148), (4.180), and (4.181).
As a result, repeating the previous analysis, we obtain the bounds (4.174) and
(4.175).

4.4.3 Reconstruction formulas

We shall now recover the potential u of the Kaup–Newell spectral problem
(4.14) from the matrices M±, which satisfy the integral equations (4.146). This
will gives us the map

H1(R) ∩ L2,1(R) 3 (r−, r+) 7→ u ∈ H2(R) ∩H1,1(R), (4.185)

where r− and r+ are related by (4.108).

Let us recall the connection formulas between the potential u and the Jost
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functions of the direct scattering transform in Section 2. By Lemma 17, if u ∈
H2(R) ∩H1,1(R), then

∂x

(
ū(x)e

1
2i

R x
±∞ |u(y)|2dy

)
= 2i lim

|z|→∞
zm

(2)
± (x; z). (4.186)

On the other hand, by Lemma 17 and the representation (4.103), if u ∈ H2(R) ∩
H1,1(R), then

u(x)e−
1
2i

R x
±∞ |u(y)|2dy = −4 lim

|z|→∞
zp

(1)
± (x; z). (4.187)

We shall now study properties of the potential u recovered by equations (4.186)
and (4.187) from properties of the matrices M±. The two choices in the reconstruc-
tion formulas (4.186) and (4.187) are useful for controlling the potential u on the
positive and negative half-lines. We shall proceed separately with the estimates
on the two half-lines.

Estimates on the positive half-line

By comparing (4.112) with (4.120), we rewrite the reconstruction formulas

(4.186) and (4.187) for the choice of m
(2)
+ and p

(1)
+ as follows:

∂x

(
ū(x)e

1
2i

R x
+∞ |u(y)|2dy

)
= 2ie−

1
2i

R x
+∞ |u(y)|2dy lim

|z|→∞
zµ

(2)
− (x; z) (4.188)

and
u(x)e−

1
2i

R x
+∞ |u(y)|2dy = −4e

1
2i

R x
+∞ |u(y)|2dy lim

|z|→∞
zη

(1)
+ (x; z) (4.189)

Since r± ∈ H1(R)∩L2,1(R), we have R(x; ·) ∈ L1(R)∩L2(R) for every x ∈ R, so
that the asymptotic limit (4.124) in Proposition 7 is justified since M−(x; ·)− I ∈
L2(R) by Lemma 24. Therefore, we use the solution representation (4.147) and
rewrite the reconstruction formulas (4.188) and (4.189) in the explicit form

e
1
2i

R x
+∞ |u(y)|2dy∂x

(
ū(x)e

1
2i

R x
+∞ |u(y)|2dy

)
= − 1

π

∫
R
r−(z)e2izx

[
η

(2)
− (x; z) + r̄+(z)e−2izxµ

(2)
− (x; z)

]
dz

= − 1

π

∫
R
r−(z)e2izxη

(2)
+ (x; z)dz (4.190)

and

u(x)ei
R x
+∞ |u(y)|2dy =

2

πi

∫
R
r̄+(z)e−2izxµ

(1)
− (x; z)dz. (4.191)

where we have used the jump condition (4.116) for the second equality in (4.190).

If r+, r− ∈ H1(R), then the reconstruction formulas (4.190) and (4.191) recover
u in class H1,1(R+). Furthermore, if r+, r− ∈ L2,1(R), then u is in class H2(R+).

Lemma 26. Let r± ∈ H1(R)∩L2,1(R) such that the inequality (4.100) is satisfied.
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Then, u ∈ H2(R+) ∩H1,1(R+) satisfies the bound

‖u‖H2(R+)∩H1,1(R+) ≤ C (‖r+‖H1∩L2,1 + ‖r−‖H1∩L2,1) , (4.192)

where C is a positive constant that depends on ‖r±‖H1∩L2,1.

Proof. We use the reconstruction formula (4.191) rewritten as follows:

u(x)ei
R x
+∞ |u(y)|2dy =

2

πi

∫
R
r̄+(z)e−2izxdz

+
2

πi

∫
R
r̄+(z)e−2izx

[
µ

(1)
− (x; z)− 1

]
dz. (4.193)

The first term is controlled in L2,1(R) because r+ is in H1(R) and its Fourier
transform r̂+is in L2,1(R). To control the second term in L2,1(R+), we denote

I(x) :=

∫ ∞
−∞

r̄+(z)e−2izx
[
µ

(1)
− (x; z)− 1

]
dz,

use the inhomogeneous equation (4.166), and integrate by parts to obtain

I(x) = −
∫

R
r−(z)η

(1)
+ (x; z)e2izxP+

(
r+(z)e−2izx

)
(z)dz.

By bounds (4.157) in Proposition 10, bound (4.173) in Lemma 25, and the Cauchy–
Schwarz inequality, we have for every x0 ∈ R+,

sup
x∈(x0,∞)

|〈x〉2I(x)|

≤ ‖r−‖L∞ sup
x∈(x0,∞)

‖〈x〉η(1)
+ (x; z)‖L2

z
sup

x∈(x0,∞)

∥∥〈x〉P+
(
r+(z)e−2izx

)∥∥
L2
z

≤ C‖r+‖2
H1 ,

where the positive constant C only depends on ‖r±‖L∞ . By combining the esti-
mates for the two terms with the triangle inequality, we obtain the bound

‖u‖L2,1(R+) ≤ C (1 + ‖r+‖H1) ‖r+‖H1 . (4.194)

On the other hand, the reconstruction formula (4.190) can be rewritten in the
form

e
1
2i

R x
+∞ |u(y)|2dy∂x

(
ū(x)e

1
2i

R x
+∞ |u(y)|2dy

)
= − 1

π

∫
R
r−(z)e2izxdz

− 1

π

∫
R
r−(z)e2izx

[
η

(2)
+ (x; z)− 1

]
dz. (4.195)

Using the same analysis as above yields the bound∥∥∥∂x (ūe 1
2i

R x
+∞ |u(y)|2dy

)∥∥∥
L2,1(R+)

≤ C (1 + ‖r−‖H1) ‖r−‖H1 , (4.196)

102



Ph.D. Thesis -Yusuke Shimabukuro Mathematics - McMaster University

where C is another positive constant that depends on ‖r±‖L∞ . Combining bounds

(4.194) and (4.196), we set v(x) := u(x)e−
1
2i

R x
+∞ |u(y)|2dy and obtain

‖v‖H1,1(R+) ≤ C (‖r+‖H1 + ‖r−‖H1) , (4.197)

where C is a new positive constant that depends on ‖r±‖H1 . Since |v(x)| = |u(x)|
and H1(R) is embedded into L6(R), the estimate (4.197) implies the bound

‖u‖H1,1(R+) ≤ C (‖r+‖H1 + ‖r−‖H1) , (4.198)

where C is a positive constant that depends on ‖r±‖H1 .

In order to obtain the estimate u in H2(R+) and complete the proof of the
bound (4.192), we differentiate I in x, substitute the inhomogeneous equation
(4.166) and its x derivative, and integrate by parts to obtain

I ′(x) = −2i

∫ ∞
−∞

zr̄+(z)e−2izx
[
µ

(1)
− (x; z)− 1

]
dz +

∫ ∞
−∞

r̄+(z)e−2izx∂xµ
(1)
− (x; z)dz

= 2i

∫ ∞
−∞

r−(z)η
(1)
+ (x; z)e2izxP+(zr̄+(z)e−2izx)(z)dz

−2i

∫ ∞
−∞

zr−(z)η
(1)
+ (x; z)e2izxP+(r̄+(z)e−2izx)(z)dz

−
∫ ∞
−∞

r−(z)∂xη
(1)
+ (x; z)e2izxP+(r̄+(z)e−2izx)(z)dz.

Using bounds (4.157), (4.159) and (4.161) in Proposition 10, bounds (4.173) and
(4.175) in Lemma 25, as well as the Cauchy–Schwarz inequality, we have for every
x0 ∈ R+,

sup
x∈(x0,∞)

|〈x〉I ′(x)| ≤ 2‖r−‖L∞ sup
x∈(x0,∞)

‖〈x〉η(1)
+ (x; z)‖L2

z
sup

x∈(x0,∞)

∥∥P+
(
zr+(z)e−2izx

)∥∥
L2
z

+2‖zr−‖L2 sup
x∈(x0,∞)

‖〈x〉η(1)
+ (x; z)‖L2

z
sup

x∈(x0,∞)

∥∥P+
(
r+(z)e−2izx

)∥∥
L∞z

+‖r−‖L∞ sup
x∈(x0,∞)

‖∂xη(1)
+ (x; z)‖L2

z
sup

x∈(x0,∞)

∥∥〈x〉P+
(
r+(z)e−2izx

)∥∥
L2
z

≤ C‖r−‖H1∩L2,1‖r+‖H1∩L2,1 (‖r+‖H1∩L2,1 + ‖r−‖H1∩L2,1) ,

where C is a positive constant that only depends on ‖r±‖L∞ . This bound on
supx∈R+ |〈x〉I ′(x)| is sufficient to control I ′ in L2(R+) norm and hence the derivative
of (4.193) in x. Using the same analysis for the derivative of (4.195) in x yields
similar estimates. The proof of the bound (4.192) is complete.

By Lemma 26, we obtain the existence of the mapping

H1(R) ∩ L2,1(R) 3 (r−, r+) 7→ u ∈ H2(R+) ∩H1,1(R+). (4.199)

We now show that this map is Lipschitz.
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Corollary 11. Let r±, r̃± ∈ H1(R) ∩ L2,1(R) satisfy ‖r±‖H1∩L2,1 , ‖r̃±‖H1∩L2,1 ≤ ρ
for some ρ > 0. Denote the corresponding potentials by u and ũ respectively. Then,
there is a positive ρ-dependent constant C(ρ) such that

‖u− ũ‖H2(R+)∩H1,1(R+) ≤ C(ρ) (‖r+ − r̃+‖H1∩L2,1 + ‖r− − r̃−‖H1∩L2,1) . (4.200)

Proof. By the estimates in Lemma 26, if r± ∈ H1(R)∩L2,1(R), then the quantities

v(x) := u(x)ei
R x
+∞ |u(y)|2dy and w(x) :=

(
∂xu(x) +

i

2
|u(x)|2u(x)

)
ei

R x
+∞ |u(y)|2dy,

are defined in function space H1(R+) ∩ L2,1(R+). Lipschitz continuity of the cor-
responding mappings follows from the reconstruction formula (4.193) and (4.195)
by repeating the same estimates in Lemma 26. Since |v| = |u|, we can write

u− ũ = (v − ṽ)e−i
R x
+∞ |v(y)|2dy + ṽ

(
e−i

R x
+∞ |v(y)|2dy − e−i

R x
+∞ |ṽ(y)|2dy

)
.

Therefore, Lipschitz continuity of the mapping (r+, r−) 7→ v ∈ H1(R+)∩L2,1(R+)
is translated to Lipschitz continuity of the mapping (r+, r−) 7→ u ∈ H1(R+) ∩
L2,1(R+). Using a similar representation for ∂xu in terms of v and w, we obtain
Lipschitz continuity of the mapping (4.199) with the bound (4.200).

Estimates on the negative half-line

Estimates on the positive half-line were found from the reconstruction formulas
(4.188) and (4.189), which only use estimates of vector columns µ− and η+, as
seen in (4.190) and (4.191). By comparing (4.112) with (4.120), we can rewrite

the reconstruction formulas (4.186) and (4.187) for the lower choice of m
(2)
− and

p
(2)
− as follows:

∂x

(
ū(x)e

1
2i

R x
−∞ |u(y)|2dy

)
= 2ie−

1
2i

R x
+∞ |u(y)|2dya∞ lim

|z|→∞
zµ

(2)
+ (x; z) (4.201)

and
u(x)e−

1
2i

R x
−∞ |u(y)|2dy = −4e

1
2i

R x
+∞ |u(y)|2dyā∞ lim

|z|→∞
zη

(1)
− (x; z), (4.202)

where a∞ := lim|z|→∞ a(z) = e
1
2i

R
R |u(y)|2dy. If we now use the same solution repre-

sentation (4.147) in the reconstruction formulas (4.201) and (4.202), we obtain the
same explicit expressions (4.190) and (4.191). On the other hand, if we rewrite the
Riemann–Hilbert problem (4.116) in an equivalent form, we will be able to find
nontrivial representation formulas for u, which are useful on the negative half-line.
To do so, we need to factorize the scattering matrix R(x; z) in an equivalent form.

Let us consider the scalar Riemann–Hilbert problem{
δ+(z)− δ−(z) = r̄+(z)r−(z)δ−(z), z ∈ R,
δ±(z)→ 1 as |z| → ∞, (4.203)
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and look for analytic continuations of functions δ± in C±. The solution to the
scalar Riemann–Hilbert problem (4.203) and some useful estimates are reported
in the following two propositions, where we recall from (4.109) that{

1 + r+(z)r−(z) = 1 + |r(λ)|2 ≥ 1, z ∈ R+,
1 + r+(z)r−(z) = 1− |r(λ)|2 ≥ c2

0 > 0, z ∈ R−,

where the latter inequality is due to (4.100).

Proposition 11. Let r± ∈ H1(R) ∩ L2,1(R) such that the inequality (4.100) is
satisfied. There exists unique analytic functions δ± in C± of the form

δ(z) = eC log(1+r+r−), z ∈ C±, (4.204)

which solve the scalar Riemann–Hilbert problem (4.203) and which have the limits

δ±(z) = eP
± log(1+r+r−), z ∈ R, (4.205)

as z ∈ C± approaches to a point on the real axis by any non-tangential contour in
C±.

Proof. First, we prove that log(1 + r+r−) ∈ L1(R). Indeed, since r± ∈ L2,1
z (R) ∩

L∞(R), we have r+r− ∈ L1(R). Furthermore, it follows from the representation
(4.107) as well as from Propositions 5 and 6 that

〈z〉|r(λ)| ≤ |r(λ)|+ 1

2
|λ||r−(z)| ≤ C, z ∈ R,

where C is a positive constant. Therefore,

log(1 + |r(λ)|2) ≤ log(1 + C2〈z〉−2), z ∈ R+, λ ∈ R,

so that log(1 + r+r−) ∈ L1(R+). On the other hand, it follows from the inequality
(4.100) that

| log(1− |r(λ)|2)| ≤ − log(1− C2〈z〉−2), z ∈ R−, λ ∈ R,

so that log(1 + r+r−) ∈ L1(R−).
Thus, we have log(1 + r+r−) ∈ L1(R). It also follows from the above estimates

that log(1 + r+r−) ∈ L∞(R). By Hölder inequality, we hence obtain log(1 +
r+r−) ∈ L2(R). By Proposition 7 with p = 2, the expression (4.204) defines
unique analytic functions in C±, which recover the limits (4.205) and the limits at
infinity: lim|z|→∞ δ±(z) = 1. Finally, since P+ − P− = I, we obtain

δ+(z)δ−1
− (z) = elog(1+r+(z)r−(z)) = 1 + r+(z)r−(z), z ∈ R,

so that δ± given by (4.204) satisfy the scalar Riemann–Hilbert problem (4.203).

Proposition 12. Let r± ∈ H1(R) ∩ L2,1(R) such that the inequality (4.100) is
satisfied. Then, δ+δ−r± ∈ H1(R) ∩ L2,1(R).
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Proof. We first note that P+ +P− = −iH due to the projection formulas (4.125),
where H is the Hilbert transform. Therefore, we write

δ+δ− = e−iH log(1+r+r−).

Since log(1 + r+r−) ∈ L2(R), we have H log(1 + r+r−) ∈ L2(R) being a real-
valued function. Therefore, |δ+(z)δ−(z)| = 1 for almost every z ∈ R. Then,
δ+δ−r± ∈ L2,1(R) follows from r± ∈ L2,1(R).

It remains to show that ∂zδ+δ−r± ∈ L2(R). To do so, we shall prove that
∂zH log(1 + r+r−) ∈ L2(R). Due to Parseval’s identity and the fact ‖Hf‖L2 =
‖f‖L2 for every f ∈ L2(R), we obtain

‖∂zH log(1 + r+r−)‖L2 = ‖∂z log(1 + r+r−)‖L2 .

The right-hand side is bounded since ∂z log(1 + r+r−) = ∂z(r+r−)
1+r+r−

∈ L2(R) under

the conditions of the proposition. The assertion ∂zδ+δ−r± ∈ L2(R) is proved.

Next, we factorize the scattering matrix R(x; z) in an equivalent form:[
δ−(z) 0

0 δ−1
− (z)

]
[I +R(x; z)]

[
δ−1

+ (z) 0
0 δ+(z)

]
=

[
1 δ−(z)δ+(z)r+(z)e−2izx

δ+(z)δ−(z)r−(z)e2izx 1 + r+(z)r−(z)

]
,

where we have used δ−1
− δ−1

+ = δ−δ+. Let us now define new jump matrix

R̃δ(x; z) :=

[
0 r+,δ(z)e−2ixz

r−,δ(z)e2ixz r+,δ(z)r−,δ(z)

]
,

associated with new scattering data

r±,δ(z) := δ+(z)δ−(z)r±(z).

By Proposition 12, we have r±,δ ∈ H1(R)∩L2,1(R) similarly to the scattering data
r±.

By using the functions M±(x; z) and δ±(z), we define functions

M±,δ(x; z) := M±(x; z)

[
δ−1
± (z) 0

0 δ±(z)

]
. (4.206)

By Proposition 11, the new functions M±,δ(x; ·) are analytic in C± and have the
same limit I as |z| → ∞. On the real axis, the new functions satisfy the jump con-
dition associated with the jump matrix R̃δ(x; z). All together, the new Riemann–
Hilbert problem{

M+,δ(x; z)−M−,δ(x; z) = M−,δ(x; z)R̃δ(x; z), z ∈ R,
lim|z|→∞M±,δ(x; z) = I,

(4.207)
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follows from the previous Riemann–Hilbert problem (4.116). By Corollary 9 and
analysis preceding Lemma 24, the Riemann–Hilbert problem (4.207) admits a
unique solution, which is given by the Cauchy operators in the form:

M±,δ(x; z) = I + C
(
M−,δ(x; ·)R̃δ(x; ·)

)
(z), z ∈ C±. (4.208)

Let us denote the vector columns of M±,δ by M±,δ = [µ±,δ, η±,δ]. What is nice
in the construction of M±,δ that

lim
|z|→∞

zµ
(2)
±,δ(x; z) = lim

|z|→∞
zµ

(2)
± (x; z) and lim

|z|→∞
zη

(1)
±,δ(x; z) = lim

|z|→∞
zη

(1)
± (x; z).

Since r±,δ ∈ H1(R) ∩ L2,1(R), we have R̃δ(x; ·) ∈ L1(R) ∩ L2(R) for every
x ∈ R, so that the asymptotic limit (4.124) in Proposition 7 is justified for the
integral representation (4.208). As a result, the reconstruction formulas (4.201)
and (4.202) can be rewritten in the explicit form:

e
1
2i

R x
+∞ |u(y)|2dy∂x

(
ū(x)e

1
2i

R x
+∞ |u(y)|2dy

)
= − 1

π

∫
R
r−(z)e2izxη

(2)
−,δ(x; z)dz (4.209)

and

u(x)ei
R x
+∞ |u(y)|2dy =

2

πi

∫
R
r̄+,δ(z)e−2izx

[
µ

(1)
−,δ(x; z) + r−,δ(z)e2izxη

(1)
−,δ(x; z)

]
dz

=
2

πi

∫
R
r̄+,δ(z)e−2izxµ

(1)
+,δ(x; z)dz, (4.210)

where we have used the first equation of the Riemann–Hilbert problem (4.207) for
the second equality in (4.210).

The reconstruction formulas (4.209) and (4.210) can be studied similarly to
the analysis in the previous subsection. First, we obtain the system of integral
equations for vectors µ+,δ and η−,δ from projections of the solution representation
(4.208) to the real line:

µ+,δ(x; z) = e1 + P+
(
r−,δe

2izxη−,δ(x; ·)
)

(z), (4.211)

η−,δ(x; z) = e2 + P−
(
r̄+,δe

−2izxµ+,δ(x; ·)
)

(z). (4.212)

The integral equations above can be written as

Gδ − P−(GδRδ) = Fδ, (4.213)

where

Gδ(x; z) := [µ+,δ(x; z)− e1, η−,δ(x; z)− e2]

[
1 0

−r−,δ(z)e2izx 1

]
and

Fδ(x; z) :=
[
e2P+(r−,δ(z)e2izx), e1P−(r+,δ(z)e−2izx)

]
.
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The estimates of Proposition 10, Lemma 25, Lemma 26, and Corollary 11 apply to
the system of integral equations (4.211) and (4.212) with the only change: x0 ∈ R+

is replaced by x0 ∈ R− because the operators P+ and P− swap their places in
comparison with the system (4.176). As a result, we extend the statements of
Lemma 26 and Corollary 11 to the negative half-line. This construction yields
existence and Lipschitz continuity of the mapping

H1(R) ∩ L2,1(R) 3 (r−, r+) 7→ u ∈ H2(R−) ∩H1,1(R−). (4.214)

Lemma 27. Let r± ∈ H1(R)∩L2,1(R) such that the inequality (4.100) is satisfied.
Then, u ∈ H2(R−) ∩H1,1(R−) satisfies the bound

‖u‖H2(R−)∩H1,1(R−) ≤ C (‖r+,δ‖H1∩L2,1 + ‖r−,δ‖H1∩L2,1) , (4.215)

where C is a positive constant that depends on ‖r±,δ‖H1∩L2,1.

Corollary 12. Let r±, r̃± ∈ H1(R) ∩ L2,1(R) satisfy ‖r±‖H1∩L2,1 , ‖r̃±‖H1∩L2,1 ≤ ρ
for some ρ > 0. Denote the corresponding potentials by u and ũ respectively. Then,
there is a positive ρ-dependent constant C(ρ) such that

‖u− ũ‖H2(R−)∩H1,1(R−) ≤ C(ρ) (‖r+ − r̃+‖H1∩L2,1 + ‖r− − r̃−‖H1∩L2,1) . (4.216)

Remark 17. Since Corollaries 11 and 12 yield Lipschitz continuity of the map-
pings (4.199) and (4.214) for every r±, r̃± in a ball of a fixed (but possibly large)
radius ρ, the mappings (4.199) and (4.214) are one-to-one for every r± in the ball.

4.5 Proof of the main result

Thanks to the local well-posedness theory in [106, 107] and the weighted es-
timates in [44, 45], there exists a local solution u(t, ·) ∈ H2(R) ∩ H1,1(R) to the
Cauchy problem (4.1) with an initial data u0 ∈ H2(R) ∩H1,1(R) for t ∈ [0, T ] for
some finite T > 0.

For every t ∈ [0, T ], we define fundamental solutions

ψ(t, x;λ) := e−i2λ
4t−iλ2xϕ±(t, x;λ)

and
ψ(t, x;λ) := ei2λ

4t+iλ2xφ±(t, x;λ)

to the Kaup–Newell spectral problem (4.9) and the time-evolution problem (4.10)
associated with the potential u(t, x) that belongs to C([0, T ], H2(R) ∩ H1,1(R)).
By Corollaries 5 and 6, the bounded Jost functions ϕ±(t, x;λ) and ψ±(t, x;λ) have
the same analytic property in λ plane and satisfy the same boundary conditions{

ϕ±(t, x;λ)→ e1

φ±(t, x;λ)→ e2
as x→ ±∞
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for every t ∈ [0, T ]. From linear independence of two solutions to the Kaup–Newell
spectral problem (4.9), the bounded Jost functions satisfy the scattering relation

ϕ−(t, x;λ) = a(λ)ϕ+(t, x;λ) + b(λ)e2iλ2x+4iλ4tφ+(t, x;λ), x ∈ R, λ ∈ R ∪ iR,
(4.217)

where the scattering coefficients a(λ) and b(λ) are independent of (t, x) due to
the fact that the matrices of the linear system (4.9) and (4.10) have zero trace.
Indeed, in this case, the Wronskian determinants are independent of (t, x), so that
we have

a(λ) = W (ϕ−(t, x;λ)e−i2λ
4t−iλ2x, φ+(t, x;λ)ei2λ

4t+iλ2x)

= W (ϕ−(0, 0;λ), φ+(0, 0;λ)),

b(λ) = W (ϕ+(t, x;λ)e−i2λ
4t−iλ2x, ϕ−(t, x;λ)e−i2λ

4t−iλ2x)

= W (ϕ+(0, 0;λ), ϕ−(0, 0;λ)).

By Lemma 19 and assumptions on zeros of a in the λ plane, we can define the
time-dependent scattering data

r+(t; z) = −b(λ)e4iλ4t

2iλa(λ)
, r−(t; z) =

2iλb(λ)e4iλ4t

a(λ)
, z ∈ R, (4.218)

so that the scattering relation (4.217) becomes equivalent to the first scattering
relation in (4.72). Thus, we define

r±(t; z) = r±(0; z)e4iz2t, (4.219)

where r±(0; ·) are initial spectral data found from the initial condition u(0, ·) and
the direct scattering transform in Section 2. By Lemma 19 and Corollary 7,
under the condition that u0 ∈ H2(R)∩H1,1(R) admits no resonances of the linear
equation (4.9), the scattering data r±(0; ·) is defined in H1(R) ∩ L2,1(R) and is a
Lipschitz continuous function of u0.

Now the time evolution (4.219) implies that r±(t; ·) remains in H1(R)∩L2,1(R)
for every t ∈ [0, T ]. Indeed, we have

‖r±(t; ·)‖L2,1 = ‖r±(0; ·)‖L2,1 and ‖∂zr±(t; ·) + 4itzr±(t; ·)‖L2 = ‖∂zr(0; ·)‖L2 .

Hence, r(t; ·) ∈ H1(R) ∩ L2,1(R) for every t ∈ [0, T ]. Moreover, the constraint
(4.100) and the relation (4.108) remain valid for every t ∈ [0, T ].

The potential u(t, ·) is recovered from the scattering data r±(t; ·) with the
inverse scattering transform in Section 4. By Lemmas 26, 27 and Corollaries 11,
12, the potential u(t, ·) is defined in H2(R) ∩H1,1(R) for every t ∈ [0, T ] and is a
Lipschitz continuous function of r(t; ·). Thus, for every t ∈ [0, T ) we have proved
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that

‖u(t, ·)‖H2∩H1,1 ≤ C1 (‖r+(t; ·)‖H1∩L2,1 + ‖r−(t; ·)‖H1∩L2,1)

≤ C2 (‖r+(0; ·)‖H1∩L2,1 + ‖r−(0; ·)‖H1∩L2,1)

≤ C3‖u0‖H2∩H1,1 , (4.220)

where the positive constants C1, C2, and C3 depends on ‖r±(t; ·)‖H1∩L2,1 ,
(T, ‖r±(0; ·)‖H1∩L2,1), and (T, ‖u0‖H2∩H1,1) respectively. Moreover, the mapH2(R)∩
H1,1(R) 3 u0 7→ u ∈ C([0, T ], H2(R) ∩H1,1(R)) is Lipschitz continuous.

Since ‖r(t; ·)‖H1 may grow at most linearly in t and constants C1, C2, C3 in
(4.221) depends polynomially on their respective norms, we have

‖u(t, ·)‖H2∩H1,1 ≤ C(T )‖u0‖H2∩H1,1 , t ∈ [0, T ], (4.221)

where the positive constant C(T ) (that also depends on ‖u0‖H2∩H1,1) may grow at
most polynomially in T but it remains finite for every T > 0. From here, we derive
a contradiction on the assumption that the local solution u ∈ C([0, T ], H2(R) ∩
H1,1(R)) blows up in a finite time. Indeed, if there exists a maximal existence
tim Tmax > 0 such that limt↑Tmax ‖u(t; ·)‖H2∩H1,1 = ∞, then the bound (4.221)
is violated as t ↑ T , which is impossible. Therefore, the local solution u ∈
C([0, T ], H2(R) ∩ H1,1(R)) can be continued globally in time for every T > 0.
This final argument yields the proof of Theorem 4.

Figure 4.4 illustrates the proof of Theorem 4 and summarizes the main ingre-
dients of our results.

u0(x) r±(z)

r±(z)ei4z
2tu(t, x)

injective and Lipschitz

injective and Lipschitz

Figure 4.4: The scheme behind the proof of Theorem 4.
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Chapter 5

Transverse instability of line
solitary waves in massive Dirac
equations

5.1 Background

Starting with pioneer contributions of V.E. Zakharov and his school [119], stud-
ies of transverse instabilities of line solitary waves in various nonlinear evolution
equations have been developed in many different contexts. With the exception
of the Kadometsev–Petviashvili-II (KP-II) equation, line solitary waves in many
evolution equations are spectrally unstable with respect to transverse periodic
perturbations [60].

More recently, it was proved for the prototypical model of the KP-I equation
that the line solitary waves under the transverse perturbations of sufficiently small
periods remain spectrally and orbitally stable [94]. Similar thresholds on the pe-
riod of transverse instability exist in other models such as the elliptic nonlinear
Schrödinger (NLS) equation [115] and the Zakharov–Kuznetsov (ZK) equation
[85]. Nevertheless, this conclusion is not universal and the line solitary waves can
be spectrally unstable for all periods of the transverse perturbations, as it happens
for the hyperbolic NLS equation [86].

Conclusions on the transverse stability or instability of line solitary waves may
change in the presence of the periodic potentials. In the two-dimensional prob-
lems with square periodic potentials, it was found numerically in [49, 58, 116]
that line solitary waves are spectrally stable with respect to periodic transverse
perturbations if they bifurcate from the so-called X point of the Brillouin zone.
Line solitary waves remain spectrally unstable if they bifurcate from the Γ point
of the Brillouin zone. These numerical results were rigorously justified in [93]
from the analysis of the two-dimensional discrete NLS equation, which models the
tight-binding limit of the periodic potentials [92].

For the one-dimensional periodic (stripe) potentials, similar stabilization of
the line solitary waves was observed numerically in [117]. In the contrast to these
results, it was proven within the tight-binding limit in [93] that transverse instabil-
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ities of line solitary waves persist for any parameter configurations of the discrete
NLS equation. One of the motivations for our present work is to inspect if the
line solitary waves become spectrally stable with respect to the periodic transverse
perturbations in periodic stripe potentials far away from the tight–binding limit.

In particular, we employ the massive Dirac equations also known as the coupled-
mode equations, which have been derived and justified in the reduction of the
Gross–Pitaevskii equation with small periodic potentials [97]. Similar models were
also introduced in the context of the periodic stripe potentials in [33], where the
primary focus was on the existence and stability of fully localized two-dimensional
solitary waves. From the class of massive Dirac models, we will be particularly
interested in a generalization of the massive Thirring model [104], for which orbital
stability of one-dimensional solitons was proved in our previous work with the help
of conserved quantities [88] and auto–Bäcklund transformation [23]. In the present
work, we prove analytically that the line solitary waves of the massive Thirring
model in two spatial dimensions are spectrally unstable with respect to the peri-
odic transverse perturbations of large periods. The spectral instability is induced
by the spatial translation of the line solitary waves. We also show numerically that
the instability persists for smaller periods of transverse perturbations.

In the context of numerical results in [117], we now confirm that line solitary
waves in the periodic stripe potential remain spectrally unstable with respect to
periodic transverse perturbations both in the tight-binding and small-potential
limits. The numerical results in [117] are observed apparently in a narrow interval
of the existence domain for the line solitary waves supported by the periodic stripe
potential.

Different versions of the massive Dirac equations were derived recently in the
context of hexagonal potentials. The corresponding systems generalize the massive
Gross–Neveu model (also known as the Soler model in (1 + 1) dimensions) [42].
These equations were derived formally in [2, 3] and were justified recently in [36,
37, 38]. Extending the scope of our work, we prove analytically that the line
solitary waves of the massive Gross–Neveu model in two spatial dimensions are also
spectrally unstable with respect to the periodic perturbations of large periods. The
spectral instability is induced by the gauge rotation. Numerical results indicate
that the instability exhibits a finite threshold on the period of the transverse
perturbations.

The method we employ in our work is relatively old [119] (see review in [60]),
although it has not been applied to the class of massive Dirac equations even at
the formal level. We develop analysis at the rigorous level of arguments. Our work
relies on the resolvent estimates for the spectral stability problem in (1+1) dimen-
sions, where the zero eigenvalue is disjoint from the continuous spectrum, whereas
the eigenfunctions for the zero eigenvalue are known from the translational and
gauge symmetries of the massive Dirac equations. When the transverse wave num-
ber is nonzero but small, the multiple zero eigenvalue split and one can rigorously
justify if this splitting induces the spectral instability or not. It becomes notori-
ously more difficult to prove persistence of instabilities for large transverse wave
numbers (small periods), hence, we have to retreat to numerical computations for
such studies of the corresponding transverse stability problem.
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The approach we undertake in this paper is complementary to the computa-
tions based on the Evans function method [52, 53]. Although both approaches
stand on rigorous theory based on the implicit function theorem, we believe that
the perturbative computations are shorter and provide the binary answer on the
spectral stability or instability of the line solitary wave with respect to periodic
transverse perturbations in a simple and concise way.

The structure of this paper is as follows. Section 2 introduces two systems of
the massive Dirac equations and their line solitary waves in the context of stripe
and hexagonal potentials. Section 3 presents the analytical results and gives details
of algorithmic computations of the perturbation theory for the massive Thirring
and Gross–Neveu models in two spatial dimensions. Section 4 contains numer-
ical approximations of eigenvalues of the spectral stability problem. Transverse
instabilities of small-amplitude line solitary waves in more general massive Dirac
models are discussed in Section 5.

5.2 Massive Dirac equations

The class of massive Dirac equations on the line can be written in the following
general form [17, 84],{

i(ut + ux) + v = ∂ūW (u, v, ū, v̄),
i(vt − vx) + u = ∂v̄W (u, v, ū, v̄),

x ∈ R, (5.1)

where the subscripts denote partial differentiation, (u, v) are complex-valued am-
plitudes in spatial x and temporal t variables, and W is the real function of
(u, v, ū, v̄), which is symmetric with respect to u and v and satisfies the gauge
invariance

W (eiαu, eiαv, e−iαū, e−iαv̄) = W (u, v, ū, v̄) for every α ∈ R.

As it is shown in [17], under the constraints on W , it can be expressed in terms
of variables (|u|2 + |v|2), |u|2|v|2, and (ūv + uū). For the cubic Dirac equations,
W is a homogeneous quartic polynomial in u and v, which is written in the most
general form as

W = c1(|u|2 + |v|2)2 + c2|u|2|v|2 + c3(|u|2 + |v|2)(ūv + uū) + c4(ūv + uū)2,

where c1, c2, c3, and c4 are real coefficients. In this case, a family of stationary
solitary waves of the massive Dirac equations can be found in the explicit form
[17] (see also [73]).

Among various nonlinear Dirac equations, the following particular cases have
profound significance in relativity theory:

• W = |u|2|v|2 - the massive Thirring model [104];

• W = 1
2
(ūv + uv̄)2 - the massive Gross–Neveu model [42].
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Global well-posedness of the massive Thirring model was proved both in Hs(R)
for s > 1

2
[98] and in L2(R) [15]. Recently, global well-posedness of the massive

Gross–Neveu equations was proved both in Hs(R) for s > 1
2

[48] and in L2(R)
[120].

When the massive Dirac equations are used in modeling of the Gross–Pitaevskii
equation with small periodic potentials, the realistic nonlinear terms are typically
different from the two particular cases of the massive Thirring and Gross–Neveu
models. (In this context, the nonlinear Dirac equations are also known as the
coupled-mode equations.) In the following two subsections, we describe the con-
nection of the generalized massive Thirring and Gross–Neveu models in two spatial
dimensions to physics of nonlinear states of the Gross–Pitaevskii equation trapped
in periodic potentials.

5.2.1 Periodic stripe potentials

In the context of one-dimensional periodic (stripe) potentials, the massive Dirac
equations (5.1) can be derived in the following form [33],{

i(ut + ux) + v + uyy = (α1|u|2 + α2|v|2)u,
i(vt − vx) + u+ vyy = (α2|u|2 + α1|v|2)v,

(x, y) ∈ R2, (5.2)

where y is a new coordinate in the transverse direction to the stripe potential, the
complex-valued amplitudes (u, v) correspond to two counter-propagating resonant
Fourier modes interacting with the small periodic potential, and (α1, α2) are real-
valued parameters. For the stripe potentials, the parameters satisfy the constraint
α2 = 2α1.

To illustrate the derivation of the massive Dirac equations (5.2), we can consider
a two-dimensional Gross–Pitaevskii equation with a small periodic potential

iψt = −ψxx − ψyy + 2ε cos(x)ψ + |ψ|2ψ, (5.3)

and apply the Fourier decomposition

ψ(x, y, t) =
√
ε
[
u(εx,

√
εy, εt)e

i
2
x− i

4
t + v(εx,

√
εy, εt)e−

i
2
x− i

4
t + εR(x, y, t)

]
, (5.4)

where ε is a small parameter and R is the remainder term. From the condition
that R is bounded in variables (x, y, t), it can be obtained from (5.3) and (5.4)
that (u, v) satisfy the nonlinear Dirac equations (5.2) with α1 = 1 and α2 = 2.
Justification of the Fourier decomposition (5.4) and the nonlinear Dirac equations
(5.2) in the context of the Gross–Pitaevskii equation (5.3) has been reported for
y-independent perturbations in [97]. Transverse modulations can be taken into
account in the same justification procedure, since the error R is bounded in the
supremum norm, whereas the solution of the massive Dirac equations (5.2) and the
solution of the Gross–Pitaevskii equation (5.3) can be defined in Sobolev spaces
of sufficiently high regularity (see Chapter 2.2 in the book [83]).

The stationary y-independent solitary waves of the massive Dirac equations
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(5.2) are referred to as the line solitary waves. According to the analysis in [17, 73],
the corresponding solutions can be represented in the form

u(x, t) = Uω(x)eiωt, v(x, t) = Ūω(x)eiωt, (5.5)

where ω ∈ (−1, 1) is taken in the gap between two branches of the linear wave
spectrum of the massive Dirac equations (5.2). The complex-valued amplitude Uω
satisfies the first-order differential equation

iU ′ω − ωUω + Uω = (α1 + α2)|Uω|2Uω. (5.6)

In terms of physical applications, the line solitary wave (5.5) of the massive Dirac
equations (5.2) corresponds to a localized mode (the so-called gap soliton) trapped
by the periodic stripe potential [83].

In our work, we perform transverse spectral stability analysis of the line solitary
waves (5.5) for the particular configuration α1 = 0 and α2 = 1, which correspond
to the massive Thirring model on the line [104]. If α1 = 0 and α2 = 1, the solitary
wave solution of the differential equation (5.6) exists for every ω ∈ (−1, 1) in the
explicit form

Uω(x) =
√

2µ

√
1 + ω cosh(µx)− i

√
1− ω sinh(µx)

ω + cosh(2µx)
, (5.7)

where µ =
√

1− ω2. The solitary wave solution of the differential equation (5.6)
is unique up to the translational and gauge transformation. As ω → 1, the family
of solitary waves (5.7) approaches the NLS profile Uω→1(x) → µsech(µx). As
ω → −1, it degenerates into the algebraic profile

Uω=−1(x) =
2(1− 2ix)

1 + 4x2
.

When y-independent perturbations are considered, solitary waves (5.5) and
(5.7) are orbitally stable in the time evolution of the massive Thirring model on
the line for every ω ∈ (−1, 1). The corresponding results were obtained in our
previous works [88] in H1(R) and [23] in a weighted subspace of L2(R). Note that
the solitary waves in more general nonlinear Dirac equations (5.2) are spectrally
unstable for y-independent perturbations if α1 6= 0 but the instability region and
the number of unstable eigenvalues depend on the parameter ω [17].

We will show (see Theorem 5 below) that the line solitary waves (5.5) and
(5.7) for α1 = 0 and α2 = 1 are spectrally unstable with respect to long periodic
transverse perturbations for every ω ∈ (−1, 1). In the more general massive Dirac
equations (5.2), we also show (see Section 5.1 below) that the instability conclusion
remains true at least in the small-amplitude limit (when either ω → 1 or ω → −1)
if α1 + α2 6= 0.
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5.2.2 Hexagonal potentials

In the context of the hexagonal potentials in two spatial dimensions, the mas-
sive Dirac equations can be derived in a different form [38],{

i∂tϕ1 + i∂xϕ2 − ∂yϕ2 + ϕ1 = (β1|ϕ1|2 + β2|ϕ2|2)ϕ1,
i∂tϕ2 + i∂xϕ1 + ∂yϕ1 − ϕ2 = (β2|ϕ1|2 + β1|ϕ2|2)ϕ2,

(x, y) ∈ R2, (5.8)

where (ϕ1, ϕ2) are complex-valued amplitudes for two resonant Floquet–Bloch
modes in the hexagonal lattice and (β1, β2) are real-valued positive parameters.
The nonlinear Dirac equations (5.8) correspond to equations (4.4)–(4.5) in [38].
Derivation of these equations can also be found in [2, 3]. Justification of the linear
part of these equations is performed by Fefferman and Weinstein [37].

To transform the nonlinear Dirac equations (5.8) to the form (5.1), we use the
change of variables, (

u
v

)
=

1

2

(
1 1
1 −1

)(
ϕ1

ϕ2

)
,

and obtain{
i(ut + ux) + v + vy = β1(u|u|2 + uv2 + 2u|v|2) + β2u(u2 − v2),
i(vt − vx) + u− uy = β1(v|v|2 + vu2 + 2v|u|2) + β2v(v2 − u2).

(5.9)

In comparison with the nonlinear Dirac equations (5.2), we note that both the
cubic nonlinearities and the y-derivative diffractive terms are different.

For the family of line solitary waves (5.5), the complex-valued amplitude Uω
satisfies the first-order differential equation

iU ′ω − ωUω + Uω = (3β1 + β2)Uω|Uω|2 + (β1 − β2)U
3

ω. (5.10)

In terms of physical applications, the line solitary wave (5.5) of the massive Dirac
equations (5.9) corresponds to a localized mode trapped by the deformed hexagonal
potential with broken Dirac points [3, 38].

In what follows, we perform the transverse spectral stability analysis of the
line solitary waves (5.5) for the particular configuration β1 = −β2 = 1

2
, which

corresponds to the massive Gross–Neveu model on the line [42]. If β1 = −β2 = 1
2
,

the solitary wave solution of the differential equation (5.10) exists for every ω ∈
(0, 1) in the explicit form

Uω(x) = µ

√
1 + ω cosh(µx)− i

√
1− ω sinh(µx)

1 + ω cosh(2µx)
, (5.11)

where µ =
√

1− ω2. Again the solitary wave solution of the differential equation
(5.10) is unique up to the translational and gauge transformation. The family of
solitary waves (5.11) diverges at infinity as ω → 0 and can not be continued for
ω ∈ (−1, 0) [8]. As ω → 1, the family approaches the NLS profile Uω→1(x) →
2−1/2µsech(µx).

When y-independent perturbations are considered, solitary waves (5.5) and
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(5.11) are orbitally stable in H1(R) in the time evolution of the massive Gross–
Neveu model for ω ≈ 1 [13]. Regarding spectral stability, two numerical studies
exist, which show contradictory results to each other. A numerical approach based
on the Evans function computation leads to the conclusion on the spectral stability
of solitary waves for all ω ∈ (0, 1) [8, 9]. However, another approach based on
the finite-difference discretization indicates existence of ωc ≈ 0.6 such that the
family of solitary waves is spectrally stable for ω ∈ (ωc, 1) and unstable for ω ∈
(0, ωc) [73, 99]. The presence of additional unstable eigenvalues in the case of
y-independent perturbations, if they exist, is not an obstacle in our analysis of
transverse stability of line solitary waves.

Our work concerns both y-independent and y-dependent perturbations. In the
case of y-independent perturbations, we show numerically (see Section 4.2 below)
that the solitary waves of the massive Gross–Neveu model are spectrally stable for
every ω ∈ (0, 1) thus supporting the numerical results of [8, 9] with an independent
numerical method based on the Chebyshev interpolation method. In the case of
y-periodic perturbations, we show analytically (see Theorem 5 below) that the
line solitary waves (5.5) and (5.11) for β1 = −β2 = 1

2
are spectrally unstable with

respect to long periodic transverse perturbations for every ω ∈ (0, 1). In the more
general massive Dirac equations (5.9), we also show (see Section 5.2 below) that
the instability conclusion remains true at least in the small-amplitude limit (when
either ω → 1 or ω → −1) if β1 6= 0.

5.3 Transverse of line solitary waves

We consider two versions (5.2) and (5.9) of the nonlinear Dirac equations for
spatial variables (x, y) in the domain R × T, where T = R/(LZ) is the one di-
mensional torus and L ∈ R is the period of the transverse perturbation. To study
stability of the line solitary wave (5.5) under periodic transverse perturbations, we
use the Fourier series and write

u(x, y, t) = eiωt

[
Uω(x) +

∑
n∈Z

f̂n(x, t)e
2πniy
L

]
. (5.12)

In the setting of the spectral stability theory, we are going to use the linear super-
position principle and consider just one Fourier mode with continuous parameter
p ∈ R. In the context of the Fourier series (5.12), the parameter p takes the
countable set of values {2πn

L
}n∈Z. The limit p→ 0 corresponds to the limit of long

periodic perturbations with L→∞.

For each p ∈ R, we separate the time evolution of the linearized system and
introduce the spectral parameter λ in the decomposition f̂n(x, t) = F̂n(x)eλt. This
decomposition reduces the linearized equations for f̂n to the eigenvalue problem for
F̂n and λ. Performing similar manipulations with four components of the nonlinear
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Dirac equations, we set the transverse perturbation in the form

u(x, y, t) = eiωt[Uω(x) + u1(x)eλt+ipy], u(x, y, t) = e−iωt[Uω(x) + u2(x)eλt+ipy],

v(x, y, t) = eiωt[Uω(x) + v1(x)eλt+ipy], v(x, y, t) = e−iωt[Uω(x) + v2(x)eλt+ipy].

Remark 18. Since the perturbation to the line solitary wave is just one linear
mode, the component (u2, v2) are not the complex conjugate of (u1, v1). However,
given a solution (u1, u2, v1, v2) of the eigenvalue problem for λ and p, there exists
another solution (ū2, ū1, v̄2, v̄1) of the same eigenvalue problem for λ̄ and −p.

Let F = (u1, u2, v1, v2)t. The eigenvalue problem for F and λ can be written in
the form

iλσF = (Dω + Ep +Wω)F, (5.13)

where

Dω =


−i∂x + ω 0 −1 0

0 i∂x + ω 0 −1
−1 0 i∂x + ω 0
0 −1 0 −i∂x + ω

 , σ =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ,
whereas matrices Ep and Wω depend on the particular form of the nonlinear Dirac
equations. For the model (5.2) with α1 = 0 and α2 = 1, we obtain Ep = p2I with

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Wω =


|Uω|2 0 U2

ω |Uω|2

0 |Uω|2 |Uω|2 U
2

ω

U
2

ω |Uω|2 |Uω|2 0
|Uω|2 U2

ω 0 |Uω|2

 , (5.14)

where Uω is given by (5.7). For the model (5.9) with β1 = −β2 = 1
2
, we obtain

Ep = −ipJ with

J =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , Wω =


|Uω|2 Ū2

ω U2
ω + 2U

2

ω |Uω|2

U2
ω |Uω|2 |Uω|2 2U2

ω + U
2

ω

2U2
ω + U

2

ω |Uω|2 |Uω|2 U2
ω

|Uω|2 U2
ω + 2U

2

ω U
2

ω |Uω|2

 ,
(5.15)

where Uω is now given by (5.11).

Remark 19. Let us denote the existence interval for the line solitary wave (5.5)
of the nonlinear Dirac equations (5.1) by Ω ⊂ (−1, 1). For the model (5.2) with
α1 = 0 and α2 = 1, we have Ω = (−1, 1). For the model (5.9) with β1 = −β2 = 1

2
,

we have Ω = (0, 1).

The linear operator Dω +Ep +Wω is self-adjoint in L2(R,C4) with the domain
in H1(R,C4) thanks to the boundness of the potential term Wω. We shall use the
notation 〈·, ·〉L2 for the inner product in L2(R,C4) and the notation ‖ · ‖L2 for the
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induced norm. Our convention is to apply complex conjugation to the element at
the first position of the inner product 〈·, ·〉L2 .

The next elementary result shows that the zero eigenvalue is isolated from the
continuous spectrum of the spectral stability problem (5.13) both for Ep = p2I
and Ep = −ipJ if the real parameter p is sufficiently small.

Proposition 13. Assume that Wω(x)→ 0 as |x| → ∞ according to an exponential
rate. For every ω ∈ Ω and every p ∈ R, the continuous spectrum of the stability
problem (5.13) is located along the segments ±iΛ1 and ±iΛ2, where for with Ep =
p2I,

Λ1 :=
{√

1 + k2 + ω + p2, k ∈ R
}
, Λ2 :=

{√
1 + k2 − ω − p2, k ∈ R

}
,

(5.16)
whereas for Ep = −ipJ ,

Λ1 :=
{√

1 + p2 + k2 + ω, k ∈ R
}
, Λ2 :=

{√
1 + p2 + k2 − ω, k ∈ R

}
.

(5.17)

Proof. By Weyl’s lemma, the continuous spectrum of the stability problem (5.13)
coincides with the purely continuous spectrum of the same problem with Wω ≡ 0,
thanks to the exponential decay of the potential terms Wω to zero as |x| → ∞. If
Wω ≡ 0, we solve the spectral stability problem (5.13) with the Fourier transform
in x, which means that we simply replace ∂x in the operator Dω with ik for
k ∈ R and denote the resulting matrix by Dω,k. As a result, we obtain the matrix
eigenvalue problem

(Dω,k + Ep − iλσ)F = 0.

After elementary algebraic manipulations, the characteristic equation for this lin-
ear system yields four solutions for λ given by ±iΛ1 and ±iΛ2, where the ex-
plicit expressions for Λ1 and Λ2 are given by (5.16) and (5.17) for Ep = p2I and
Ep = −ipJ , respectively.

Remark 20. We note the different role of the matrix Ep in the location of the
continuous spectrum for larger values of the real parameter p. If Ep = p2I, then
the two bands ±iΛ2 touches each other for |p| = pω :=

√
1− ω and overlap for

|p| > pω. If Ep = −ipJ , all the four bands do not overlap for all values of p ∈ R
and the zero point λ = 0 is always in the gap between the branches of the continuous
spectrum.

The next result shows that if p = 0, then the spectral stability problem (5.13)
admits the zero eigenvalue of quadruple multiplicity. The zero eigenvalue is de-
termined by the symmetries of the nonlinear Dirac equations with respect to the
spatial translation and the gauge rotation.

Proposition 14. For every ω ∈ Ω and p = 0, the stability problem (5.13) admits
exactly two eigenvectors in H1(R) for the eigenvalue λ = 0 given by

Ft = ∂xUω, Fg = iσUω, (5.18)
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where Uω = (Uω, Ūω, Ūω, Uω)t. For each eigenvector Ft,g, there exists a generalized
eigenvector F̃t,g in H1(R) from solutions of the inhomogeneous problem

(Dω +Wω)F = iσFt,g, (5.19)

in fact, in the explicit form,

F̃t = iωxσUω −
1

2
σ̃Uω, F̃g = ∂ωUω, (5.20)

where σ̃ = diag(1, 1,−1,−1). Moreover, if 〈Ft,g, σF̃t,g〉L2 6= 0, no solutions of the
inhomogeneous problem

(Dω +Wω)F = iσF̃t,g (5.21)

exist in H1(R).

Proof. Existence of the eigenvectors (5.18) follows from the two symmetries of
the massive Dirac equations and is checked by elementary substitution as (Dω +
Wω)Ft,g = 0. Because (Dω +Wω) is a self-adjoint operator of the fourth order and
solutions of (Dω + Wω)F = 0 have constant Wronskian determinant in x, there
exists at most two spatially decaying solutions of these homogeneous equations,
which means that the stability problem (5.13) with p = 0 admits exactly two
eigenvectors in H1(R) for λ = 0. Since

〈Ft,g, σFt,g〉L2 = 〈Ft,g, σFg,t〉L2 = 0

there exist solutions of the inhomogeneous problem (5.19) in H1(R). Existence of
the generalized eigenvectors (5.20) is checked by elementary substitution. Finally,
under the condition 〈Ft,g, σF̃t,g〉L2 6= 0, no solutions of the inhomogeneous problem
(5.21) exist in H1(R) by Fredholm’s alternative.

Our main result is formulated in the following theorem. The theorem guaran-
tees spectral instability of the line solitary waves with respect to the transverse
perturbations of sufficiently large period both for the massive Thirring model and
the massive Gross–Neveu model in two spatial dimensions.

Theorem 5. For every ω ∈ Ω, there exists p0 > 0 such that for every p in
0 < |p| < p0, the spectral stability problem (5.13) with either (5.14) or (5.15)
admits at least one eigenvalue λ with Re(λ) > 0. Moreover, up to a suitable
normalization, as p → 0, the corresponding eigenvector F converges in L2(R) to
Ft for (5.13) and (5.14) and to Fg for (5.13) and (5.15).

Simultaneously, there exists at least one pair of purely imaginary eigenvalues
λ of the spectral stability problem (5.13) and the corresponding eigenvector F con-
verges as p→ 0 to the other eigenvector of Proposition 14.

The proof of Theorem 5 is based on the perturbation theory for the Jordan
block associated with the zero eigenvalue of the spectral problem (5.13) existing
for p = 0, according to Proposition 14. The zero eigenvalue is isolated from the
continuous spectrum, according to Proposition 13. Consequently, we do not have
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to deal with bifurcations from the continuous spectrum (unlike the difficult tasks
of the recent work [13]), but can develop straightforward perturbation expansions
based on a modification of the Lyapunov–Schmidt reduction method.

A useful technical approach to the perturbation theory for the spectral stability
problem (5.13) is based on the block diagonalization of the 4× 4 matrix operator
into two 2 × 2 Dirac operators. This block diagonalization technique was intro-
duced in [17] and used for numerical approximations of eigenvalues of the spectral
stability problem for the massive Dirac equations. After the block diagonalization,
each Dirac operator has a one-dimensional kernel space induced by either trans-
lational or gauge symmetries. It enables us to uncouple the invariant subspaces
associated with the Jordan block for the zero eigenvalue of the spectral stability
problem (5.13) with p = 0.

Using the self-similarity transformation matrix

T =
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0


and setting F = TV, we can rewrite the spectral stability problem (5.13) in the
following form:

iλT tσTV = T t(Dω + Ep +Wω)TV, (5.22)

where

T tDωT =


−i∂x + ω −1 0 0
−1 i∂x + ω 0 0
0 0 −i∂x + ω 1
0 0 1 i∂x + ω

 , T tσT =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 ,
(5.23)

whereas the transformation of matrices Ep and Wω depend on the particular form
of the nonlinear Dirac equations. For the model (5.2) with α1 = 0 and α2 = 1, we
obtain

T tEpT = p2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , T tWωT =


2|Uω|2 U2

ω 0 0

U
2

ω 2|Uω|2 0 0
0 0 0 −U2

ω

0 0 −U2

ω 0

 . (5.24)
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For the model (5.9) with β1 = −β2 = 1
2
, we obtain

T tEpT = ip


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,

T tWωT =


2|Uω|2 U2

ω + 3Ū2
ω 0 0

3U2
ω + Ū2

ω 2|Uω|2 0 0
0 0 0 −U2

ω − Ū2
ω

0 0 −U2
ω − Ū2

ω 0

 . (5.25)

Let us apply the self-similarity transformation to the eigenvectors and gen-
eralized eigenvectors of Proposition 14. Using F = TV, the eigenvectors (5.18)
become

Vt =


U ′ω
U
′
ω

0
0

 and Vg = i


0
0
Uω
−Uω

 , (5.26)

whereas the generalized eigenvectors (5.20) become

Ṽt = iωx


0
0
Uω
−Uω

− 1

2


0
0
Uω
Uω

 and Ṽg = ∂ω


Uω
Uω

0
0

 . (5.27)

Setting ΦV = [Vt,Vg, Ṽt, Ṽg] and denoting S = T tσT , we compute elements of
the matrix of skew-symmetric inner products between eigenvectors and generalized
eigenvectors:

〈ΦV ,SΦV 〉L2 =


0 0 〈Vt,SṼt〉L2 0

0 0 0 〈Vg,SṼg〉L2

〈Ṽt,SVt〉L2 0 0 0

0 〈Ṽg,SVg〉L2 0 0

 ,
(5.28)

where only nonzero elements are included. Verification of (5.28) is straightforward
except for the term

〈Ṽt,SṼg〉L2 = −iω
∫

R
x∂ω|Uω|2dx−

1

2

∫
R

(
Ūω∂ωUω − Uω∂ωŪω

)
dx = 0. (5.29)

Both integrals in (5.29) are zero because x∂ω|Uω|2 and Im(Ūω∂ωUω) are odd func-
tions of x. As for the nonzero elements, we compute them explicitly from (5.26)
and (5.27):

〈Vt,SṼt〉L2 = −iω
∫

R
|Uω|2dx+

1

2

∫
R

(
ŪωU

′
ω − UωŪ ′ω

)
dx (5.30)
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and

〈Vg,SṼg〉L2 = −i d
dω

∫
R
|Uω|2dx. (5.31)

Remark 21. In further analysis, we obtain explicit expressions for (5.30) and
(5.31) and show that they are nonzero for every ω ∈ Ω. Consequently, the assump-
tion 〈Ft,g, σF̃t,g〉L2 6= 0 in Proposition 14 is verified for either (5.14) or (5.15) in
the spectral stability problem (5.13).

We shall now proceed separately with the proof of Theorem 5 for the massive
Thirring and Gross–Neveu models in two spatial dimensions. Moreover, we derive
explicit asymptotic expressions for the eigenvalues mentioned in Theorem 5.

5.3.1 Perturbation theory for the massive Thirring model

The block-diagonalized system (5.22) with (5.23) and (5.24) can be rewritten
in the explicit form(

H+ 0
0 H−

)
V + p2

(
σ0 0
0 σ0

)
V = iλ

(
0 σ3

σ3 0

)
V, (5.32)

where

H+ =

(
−i∂x + ω + 2|Uω|2 −1 + U2

ω

−1 + U
2

ω i∂x + ω + 2|Uω|2

)
, H− =

(
−i∂x + ω 1− U2

ω

1− U2

ω i∂x + ω

)
,

(5.33)
and the following Pauli matrices are used throughout our work:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
. (5.34)

Note that H+ and H− are self-adjoint operators in L2(R,C2) with the domain in
H1(R,C2). The operators H± satisfy the symmetry

σ1H± = H̄±σ1, (5.35)

whereas the Pauli matrices satisfy the relation

σ1σ1 = σ3σ3 = σ0, σ1σ3 + σ3σ1 = 0, (5.36)

Before proving the main result of the perturbation theory for the massive Thirring
model in two spatial dimensions, we note the following elementary result.

Proposition 15. For every ω ∈ (−1, 1) and every p ∈ R, eigenvalues λ of the
spectral problem (5.32) are symmetric about the real and imaginary axes in the
complex plane.

Proof. It follows from symmetries (5.35) and (5.36) that if λ is an eigenvalue of the
spectral problem (5.32). with the eigenvector V = (v1, v2, v3, v4)t, then λ̄, −λ, and
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−λ̄ are also eigenvalues of the same problem with the eigenvectors (v̄2, v̄1, v̄4, v̄3)t,
(v1, v2,−v3,−v4)t, and (v̄2, v̄1,−v̄4,−v̄3)t. Consequently, we have the following:

• if λ is a simple real nonzero eigenvalue, then the eigenvector V can be chosen
to satisfy the reduction v1 = v̄2, v3 = v̄4, whereas −λ is also an eigenvalue
with the eigenvector (v1, v2,−v3,−v4)t = (v̄2, v̄1,−v̄4,−v̄3)t;

• if λ is a simple purely imaginary nonzero eigenvalue, then the eigenvector V
can be chosen to satisfy the reduction v1 = v̄2, v3 = −v̄4, whereas λ̄ is also
an eigenvalue with the eigenvector (v̄2, v̄1, v̄4, v̄3)t = (v1, v2,−v3,−v4)t;

• if a simple eigenvalue λ occurs in the first quadrant, then the symmetry gen-
erates eigenvalues in all other quadrants and all four eigenvectors generated
by the symmetry are linearly independent.

The symmetry between eigenvalues also applies to multiple nonzero eigenvalues
and the corresponding eigenvectors of the associated Jordan blocks.

For the sake of simplicity, we denote

H =

(
H+ 0
0 H−

)
, I =

(
σ0 0
0 σ0

)
, S =

(
0 σ3

σ3 0

)
.

It follows from Proposition 14 and the explicit expressions (5.26) and (5.27) that

HVt,g = 0, HṼt,g = iSVt,g. (5.37)

Setting ΦV = [Vt,Vg, Ṽt, Ṽg] as earlier, we note that

〈ΦV , IΦV 〉L2 =


‖Vt‖2

L2 0 0 0
0 ‖Vg‖2

L2 0 0

0 0 ‖Ṽt‖2
L2 0

0 0 0 ‖Ṽg‖2
L2

 , (5.38)

where only nonzero terms are included. Again, it is straightforward to verify (5.38)
from (5.26) and (5.27), except for the elements

〈Vt, Ṽg〉L2 =

∫
R

(
Ū ′ω∂ωUω + U ′ω∂ωŪω

)
dx = 0

and

〈Vg, Ṽt〉L2 = 2ω

∫
R
x|Uω|2dx = 0.

These elements are zero because x|Uω|2 and Re(Ū ′ω∂ωUω) are odd functions of x.
The following result gives the outcome of the perturbation theory associated

with the generalized null space of the spectral stability problem (5.32). The result
is equivalent to the part of Theorem 5 corresponding to the spectral stability
problem (5.13) with (5.14). The asymptotic expressions Λr and Λi of the real and
imaginary eigenvalues λ at the leading order in p versus parameter ω are shown
on Fig. 5.1a.
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Lemma 28. For every ω ∈ (−1, 1), there exists p0 > 0 such that for every p with
0 < |p| < p0, the spectral stability problem (5.32) admits a pair of real eigenvalues
λ with the eigenvectors V ∈ H1(R) such that

λ = ±pΛr(ω) +O(p3), V = Vt ± pΛr(ω)Ṽt +OH1(p2) as p→ 0, (5.39)

where Λr = (1 − ω2)−1/4‖U ′ω‖L2 > 0. Simultaneously, it admits a pair of purely
imaginary eigenvalues λ with the eigenvector V ∈ H1(R) such that

λ = ±ipΛi(ω) +O(p3), V = Vg ± ipΛi(ω)Ṽg +OH1(p2) as p→ 0, (5.40)

where Λi =
√

2(1− ω2)1/4‖Uω‖L2 > 0.

Before proving Lemma 28, we give formal computations of the perturbation
theory, which recover expansions (5.39) and (5.40) with explicit expressions for
Λr(ω) and Λi(ω). Consider the following formal expansions

λ = pΛ1 + p2Λ2 +O(p3), V = V0 + pΛ1V1 + p2V2 +OH1(p3), (5.41)

where V0 is spanned by the eigenvectors (5.26), V1 is spanned by the generalized
eigenvectors (5.27), and V2 satisfies the linear inhomogeneous equation

HV2 = −IV0 + iΛ2
1SV1 + iΛ2SV0. (5.42)

By Fredholm’s alternative, there exists a solution V2 ∈ H1(R) of the linear inho-
mogeneous equation (5.42) if and only if Λ1 is found from the quadratic equation

iΛ2
1〈W0,SV1〉L2 = 〈W0,V0〉L2 , (5.43)

where W0 is spanned by the eigenvectors (5.26) independently of V0. Because
of the block diagonalization of the projection matrices in (5.28) and (5.38), the
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Figure 5.1: Asymptotic expressions Λr (solid line) and Λi (dashed line) versus
parameter ω for the massive Thirring (left) and Gross–Neveu (right) models.
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2-by-2 matrix eigenvalue problem (5.43) is diagonal and we can proceed separately
with precise computations for each eigenvector in V0.

Selecting V0 = W0 = Vt and V1 = Ṽt, we rewrite the solvability condition
(5.43) as the following quadratic equation

Λ2
1

∫
R

(
ω|Uω|2 +

i

2

(
ŪωU

′
ω − UωŪ ′ω

))
dx = 2

∫
R
|U ′ω|2dx,

where we have used relation (5.30). Substituting the exact expression (5.7), we
obtain ∫

R

(
ω|Uω|2 +

i

2

(
ŪωU

′
ω − UωŪ ′ω

))
dx = 2

√
1− ω2 (5.44)

and ∫
R
|U ′ω|2dx = −4ω

√
1− ω2 + 4(1 + ω2) arctan

(√
1− ω
1 + ω

)
,

which yields the expression Λ2
1 = (1− ω2)−1/2‖U ′ω‖2

L2 = Λr(ω)2.

Selecting now V0 = W0 = Vg and V1 = Ṽg, we rewrite the solvability condi-
tion (5.43) as the following quadratic equation

Λ2
1

d

dω

∫
R
|Uω|2dx = 2

∫
R
|Uω|2dx,

where we have used relation (5.31). Substituting the exact expression (5.7), we
obtain ∫

R
|Uω|2dx = 4 arctan

(√
1− ω
1 + ω

)
and

d

dω

∫
R
|Uω|2dx = − 1√

1− ω2
, (5.45)

which yields the expression for Λ2
1 = −2(1 − ω2)1/2‖Uω‖2

L2 = −Λi(ω)2. Note that
the nonzero values in (5.44) and (5.45) verify the nonzero values in (5.30) and
(5.31), hence the assumption 〈Ft,g, σF̃t,g〉L2 6= 0 in Proposition 14, according to
Remark 21.

We shall now justify the asymptotic expansions (5.39) and (5.40) to give the
proof of Lemma 28. Note that Λ2 in (5.41) is not determined in the linear equation
(5.42). Nevertheless, we will show in the proof of Lemma 28 that Λ2 = 0, see (5.47),
(5.55), and (5.57) below.

I have made a change from proof1 to proof

Proof of Lemma 28. Consider the linearized operator for the spectral problem
(5.32):

Aλ,p = H + p2I − iλS : H1(R)→ L2(R).

This operator is self-adjoint if λ ∈ iR and nonself-adjoint if λ /∈ iR.
Since SS = I, it follows from Proposition 14 and the computations (5.37) that

SH has the four-dimensional generalized null space X0 ⊂ L2(R) spanned by the
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vectors in ΦV . By Propositions 13, the rest of spectrum of SH is bounded away
from zero. By Fredholm’s theory, the range of SH is orthogonal with respect to the
generalized null space Y0 ⊂ L2(R) of the adjoint operator HS, which is spanned
by the vectors in SΦV .

The inhomogeneous equation (H−iλS)g = f for f ∈ L2(R) is equivalent to the
inhomogeneous equation (SH− iλ)g = Sf . By Fredholm’s alternative, for λ = 0,
a solution g ∈ H1(R) exists if and only if Sf is orthogonal to the generalized kernel
of HS, which means that Sf ∈ Y ⊥0 or equivalently, f ∈ X⊥0 . For λ 6= 0 but small,
it is natural to define the solution g ∈ H1(R) uniquely by the constraint g ∈ Y ⊥0 .

Consequently, there is λ0 > 0 sufficiently small such that Aλ,0 with |λ| < λ0 is
invertible on X⊥0 with a bounded inverse in Y ⊥0 . Since p2I is a bounded self-adjoint
perturbation to H, there exist positive constants λ0, p0, and C0 such that for all
|λ| < λ0, |p| < p0, and all f ∈ X⊥0 ⊂ L2(R), there exists a unique A−1

λ,pf ∈ Y ⊥0
satisfying

‖A−1
λ,pf‖L2 ≤ C0‖f‖L2 . (5.46)

Moreover, A−1
λ,pf ∈ H1(R).

Let us now use the method of the Lyapunov–Schmidt reduction. We apply the
partition of ΦV as Φ

(0)
V = [Vt,Vg] and Φ

(1)
V = [Ṽt, Ṽg]. Given the computations

above, we consider the decomposition of the solution of the spectral problem (5.32)
in the form {

λ = p(Λ + µp),

V = Φ
(0)
V ~αp + pΦ

(1)
V ((Λ + µp)~αp + ~γp) + Vp,

(5.47)

where Λ ∈ C is p-independent, whereas µp ∈ C, ~αp ∈ C2, ~γp ∈ C2, and Vp ∈ H1(R)
may depend on p. For uniqueness of the decomposition, we use the Fredholm
theory and require that the correction term Vp satisfy the orthogonality conditions:

〈ΦV ,SVp〉L2 = 0, (5.48)

which ensures that Vp ∈ H1(R) ∩ Y ⊥0 . Substituting expansions (5.47) into the
spectral problem (5.32), we obtain(

H + p2I − ip(Λ + µp)S
)

Vp + p2
(

Φ
(0)
V ~αp + pΦ

(1)
V ((Λ + µp)~αp + ~γp)

)
= ip2(Λ + µp)SΦ

(1)
V ((Λ + µp)~αp + ~γp)− ipSΦ

(0)
V ~γp. (5.49)

In order to solve equation (5.49) for Vp in H1(R) ∩ Y ⊥0 , we project the equation

to X⊥0 . It makes sense to do so separately for Φ
(0)
V and Φ

(1)
V . Using the projection

matrices (5.28) and (5.38) as well as the orthogonality conditions (5.48), we obtain

p2〈Φ(0)
V ,Vp〉L2 + p2〈Φ(0)

V ,Φ
(0)
V 〉L2~αp

= ip2(Λ + µp)〈Φ(0)
V ,SΦ

(1)
V 〉L2((Λ + µp)~αp + ~γp) (5.50)

and

p2〈Φ(1)
V ,Vp〉L2 + p3〈Φ(1)

V ,Φ
(1)
V 〉L2((Λ + µp)~αp + ~γp) = −ip〈Φ(1)

V ,SΦ
(0)
V 〉L2~γp. (5.51)
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Under the constraints (5.50) and (5.51), the right-hand-side of equation (5.49)
belongs to X⊥0 . The resolvent estimate (5.46) implies that the operator Aλ,p can be
inverted with a bounded inverse in Y ⊥0 . By the inverse function theorem, there are
positive numbers p1 ≤ p0, µ1, and C1 such that for every |p| < p1 and |µp| < µ1,
there exists a unique solution of equation (5.49) for Vp in H1(R) ∩ Y ⊥0 satisfying
the estimate

‖Vp‖L2 ≤ C1

(
p2‖~αp‖+ |p|‖~γp‖)

)
. (5.52)

Substituting this solution to the projection equations (5.50) and (5.51), we shall
be looking for values of Λ, µp, ~αp, and ~γp for |p| < p1 sufficiently small. Using the
estimate (5.52), we realize that the leading order of equation (5.50) is

〈Φ(0)
V ,Φ

(0)
V 〉L2~c = iΛ2〈Φ(0)

V ,SΦ
(1)
V 〉L2~c, ~c ∈ C2. (5.53)

This equation is diagonal and admits two eigenvalues for Λ2 given by Λr(ω)2 and
−Λi(ω)2, so that

‖Vt‖2
L2 = iΛr(ω)2〈Vt,SṼt〉L2 , ‖Vg‖2

L2 = −iΛi(ω)2〈Vg,SṼg〉L2 .

Choosing Λ2 being equal to one of the two eigenvalues (which are distinct), we
obtain a rank-one coefficient matrix for equation (5.50) at the leading order. In
what follows, we omit the argument ω from Λr and Λi

For simplicity, let us choose Λ2 = Λ2
r (the other case is considered similarly)

and represent ~αp = (αp, βp)
t and ~γp = (γp, δp)

t. In this case, αp can be normalized
to unity independently of p, after which equation (5.50) divided by p2 is rewritten
in the following explicit form

[
‖Vt‖2

L2 0
0 ‖Vg‖2

L2

] (
1 + µp

Λr

)2

− 1 + Λr+µp
Λ2
r
γp

−Λ2
r

Λ2
i

(
1 + µp

Λr

)2

βp − βp − Λr+µp
Λ2
i
δp

 = 〈Φ(0)
V ,Vp〉L2 .(5.54)

We invoke the implicit function theorem for vector functions. It follows from
the estimate (5.52) that there are positive numbers p2 ≤ p1 and C2 such that for
every |p| < p2, there exists a unique solution of equation (5.54) for µp and βp
satisfying the estimate

|µp|+ |βp| ≤ C2 (‖~γp‖+ ‖Vp‖L2) ≤ C2

(
‖~γp‖+ p2

)
, (5.55)

where the last inequality with a modified value of constant C2 is due to the estimate
(5.52).

Finally, we divide equation (5.51) by p and rewrite it in the form

−i〈Φ(1)
V ,SΦ

(0)
V 〉L2~γp = p〈Φ(1)

V ,Vp〉L2 + p2〈Φ(1)
V ,Φ

(1)
V 〉L2((Λ + µp)~αp + ~γp). (5.56)

Thanks to the estimates (5.52) and (5.55), equation (5.56) can be solved for ~γp
by the implicit function theorem, if p is sufficiently small and ~Vp, µp, and ~αp are
substituted from solutions of the previous equations. As a result, there are positive
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numbers p3 ≤ p2 and C3 such that for every |p| < p3, there exists a unique solution
of equation (5.56) for ~γp satisfying the estimate

‖~γp‖ ≤ C3

(
p2 + p‖Vp‖L2

)
≤ C3p

2, (5.57)

where the last inequality with a modified value of constant C3 is due to the estimate
(5.52).

Decomposition (5.47) and estimates (5.52), (5.55), and (5.57) justify the asymp-
totic expansion (5.39). It remains to prove that the eigenvalue λ = p(Λr + µp) is
purely real. Since Λr is real, the result holds if µp is real. Assume that µp has
a nonzero imaginary part. By Proposition 15, there exists another distinct eigen-
value of the spectral problem (5.32) given by λ = (pΛr + µ̄p) such that µ̄p = O(p2)
as p→ 0. However, the existence of this distinct eigenvalue contradicts the unique-
ness of constructing of µp and all terms in the decomposition (5.47). Therefore,
µ̄p = µp, so that λ = p(Λr + µp) is real.

The asymptotic expansion (5.40) is proved similarly with the normalization
βp = 1 and the choice Λ2 = −Λ2

i among eigenvalues of the reduced eigenvalue
problem (5.53).

5.3.2 Perturbation theory for the massive Gross–Neveu
model

The block-diagonalized system (5.22) with (5.23) and (5.25) can be rewritten
in the explicit form(

H+ 0
0 H−

)
V + ip

(
0 σ1

−σ1 0

)
V = iλ

(
0 σ3

σ3 0

)
V, (5.58)

where σ1 and σ3 are the Pauli matrices, whereas

H+ =

(
−i∂x + ω + 2|Uω|2 −1 + U2

ω + 3U
2

ω

−1 + U
2

ω + 3U2
ω i∂x + ω + 2|Uω|2

)
,

H− =

(
−i∂x + ω 1− U2

ω − U
2

ω

1− U2
ω − U

2

ω i∂x + ω

)
.

We note again the symmetry relation (5.35), which applies to the Dirac operators
H± for the massive Gross–Neveu model as well. From this symmetry, we derive
the result, which is similar to Proposition 15 and is proved directly.

Proposition 16. For every ω ∈ (0, 1), if λ is an eigenvalue of the spectral problem
(5.58) with p ∈ R and the eigenvector V = (v1, v2, v3, v4)t, then −λ̄ is also an
eigenvalue of the same problem with the eigenvector (v̄2, v̄1,−v̄4,−v̄3)t, whereas
λ̄ and −λ are eigenvalues of the spectral problem (5.58) with −p ∈ R and the
eigenvectors (v̄2, v̄1, v̄4, v̄3)t and (v1, v2,−v3,−v4)t, respectively. Consequently, for
every p ∈ R, eigenvalues λ of the spectral problem (5.58) are symmetric about the
imaginary axis.
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For the sake of simplicity, we use again the notations

H =

(
H+ 0
0 H−

)
, P = i

(
0 σ1

−σ1 0

)
, S =

(
0 σ3

σ3 0

)
.

The relations (5.37) hold true for this case as well. Besides the eigenvectors (5.26)
and the generalized eigenvectors (5.27), we need solutions of the linear inhomoge-
neous equations

HV = −PVt,g, (5.59)

which are given by

V̌t = −1

2


0
0
Uω

−Uω

 and V̌g = − 1

2ω


Uω

−Uω
0
0

 . (5.60)

The existence of these explicit expressions is checked by elementary substitution.

We apply again the partition of ΦV as Φ
(0)
V = [Vt,Vg] and Φ

(1)
V = [Ṽt, Ṽg].

In addition, we augment the matrix ΦV with Φ
(2)
V = [V̌t, V̌g] and compute the

missing entries in the projection matrices:

〈Φ(0)
V ,SΦ

(2)
V 〉L2 = 〈Φ(2)

V ,SΦ
(2)
V 〉L2 =

[
0 0
0 0

]
, (5.61)

and

〈Φ(1)
V ,SΦ

(2)
V 〉L2 =

[
0 0

〈Ṽg,SV̌t〉L2 0

]
. (5.62)

Indeed, in addition to the matrix elements, which are trivially zero, we check that

〈Vg,SV̌g〉L2 =
i

2ω

∫
R

(
Ū2
ω − U2

ω

)
dx = 0, (5.63)

because Im(U2
ω) is an odd function of x, and

〈Ṽt,SV̌g〉L2 =
i

2

∫
R
x
(
Ū2
ω − U2

ω

)
dx+

1

4ω

∫
R
(Ū2

ω + U2
ω)dx = 0, (5.64)

where the exact expression (5.11) is used. On the other hand, we have

〈Ṽg,SV̌t〉L2 = −1

4

d

dω

∫
R

(
Ū2
ω + U2

ω

)
dx

= −1

2

d

dω
log

(
1 + ω +

√
1− ω2

1 + ω −
√

1− ω2

)
=

1

2ω
√

1− ω2
, (5.65)

which is nonzero.
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Similarly, we compute the zero projection matrices

〈Φ(0)
V ,PΦ

(0)
V 〉L2 = 〈Φ(0)

V ,PΦ
(1)
V 〉L2 = 〈Φ(1)

V ,PΦ
(2)
V 〉L2 =

[
0 0
0 0

]
(5.66)

and the nonzero projection matrices

〈Φ(1)
V ,PΦ

(1)
V 〉L2 =

[
0 〈Ṽt,PṼg〉L2

〈Ṽg,PṼt〉L2 0

]
, (5.67)

〈Φ(0)
V ,PΦ

(2)
V 〉L2 =

[
〈Vt,PV̌t〉L2 0

0 〈Vg,PV̌g〉L2

]
, (5.68)

and

〈Φ(2)
V ,PΦ

(2)
V 〉L2 =

[
0 〈V̌t,PV̌g〉L2

〈V̌g,PV̌t〉L2 0

]
. (5.69)

Indeed, the first matrix in (5.66) is zero because the Fredholm conditions for
the inhomogeneous linear systems (5.59) are satisfied. The second matrix in (5.66)
is zero because

〈Vt,PṼt〉L2 =
ω

2

∫
R

(
U2
ω − Ū2

ω

)
dx = 0 (5.70)

and

〈Vg,PṼg〉L2 =
1

2

d

dω

∫
R

(
U2
ω − Ū2

ω

)
dx = 0. (5.71)

The third matrix in (5.66) is zero because

〈Ṽt,PV̌g〉L2 = −
∫

R
x|Uω|2dx = 0 (5.72)

and

〈Ṽg,PV̌t〉L2 =
i

2

∫
R

(
Uω∂ωŪω − Ūω∂ωUω

)
dx = 0. (5.73)

For the projection matrices (5.67), (5.68), and (5.69), we compute the nonzero
elements explicitly:

〈Ṽt,PṼg〉L2 =
i

4

d

dω

∫
R

(
U2
ω + Ū2

ω

)
dx+

ω

2

d

dω

∫
R
x
(
U2
ω − Ū2

ω

)
dx, (5.74)

〈Vt,PV̌t〉L2 =
i

2

∫
R

(
UωŪ

′
ω − ŪωU ′ω

)
dx, (5.75)

〈Vg,PV̌g〉L2 = − 1

ω

∫
R
|Uω|2dx, (5.76)

〈V̌t,PV̌g〉L2 =
i

4ω

∫
R

(
U2
ω + Ū2

ω

)
dx. (5.77)

The following result gives the outcome of the perturbation theory associated
with the generalized null space of the spectral stability problem (5.58). The re-
sult is equivalent to the part of Theorem 5 corresponding to the spectral stability
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problem (5.13) with (5.15). The asymptotic expressions Λr and Λi for the corre-
sponding eigenvalues λ at the leading order in p versus parameter ω are shown on
Fig. 5.1b.

Lemma 29. For every ω ∈ (0, 1), there exists p0 > 0 such that for every p with
0 < |p| < p0, the spectral stability problem (5.58) admits a pair of purely imaginary
eigenvalues λ with the eigenvectors V ∈ H1(R) such that

λ = ±ipΛi(ω)+O(p3), V = Vt±ipΛi(ω)Ṽt+pV̌t+pβVg+OH1(p2) as p→ 0,
(5.78)

where Λi(ω) =
√

I(ω)
1+I(ω)

> 0 with I(ω) > 0 given by the explicit expression (5.87)

below and β is uniquely defined in (5.94) below.

Simultaneously, the spectral stability problem (5.58) admits a pair of eigenvalues
λ with Re(λ) 6= 0 symmetric about the imaginary axis, and the eigenvector V ∈
H1(R) such that

λ = ±pΛr(ω)+O(p3), V = Vg±pΛr(ω)Ṽg+pV̌g+pαVt+OH1(p2) as p→ 0,
(5.79)

where Λr = (1− ω2)1/2 > 0 and α is uniquely defined in (5.93) below.

We proceed with formal expansions, which are similar to the expansions (5.41).
However, because theO(p) terms appear explicitly in the spectral stability problem
(5.58), we introduce the modified expansions as follows,

λ = pΛ1 +p2Λ2 +O(p3), V = V0 +p(Λ1V1 +V̌1 +V′0)+p2V2 +OH1(p3), (5.80)

where V0 and V′0 are spanned independently by the eigenvectors (5.26), V1 is
spanned by the generalized eigenvectors (5.27), V̌1 is spanned by the vectors (5.60),
and V2 satisfies the linear inhomogeneous equation

HV2 = (iΛ1S − P)(Λ1V1 + V̌1 + V′0) + iΛ2SV0. (5.81)

By Fredholm’s alternative, there exists a solution V2 ∈ H1(R) of the linear inho-
mogeneous equation (5.81) if and only if Λ1 is found from the quadratic equation

〈W0, (iΛ1S − P)(Λ1V1 + V̌1 + V′0)〉L2 = 0, (5.82)

where W0 is again spanned by the eigenvectors (5.26) independently of V0. Similar
to (5.43), the matrix eigenvalue problem (5.82) is diagonal with respect to the
translational and gauge symmetries. As a result, subsequent computations can be
constructed independently for the two corresponding eigenvectors.

Selecting V0 = W0 = Vg, V1 = Ṽg, V̌1 = V̌g, and V′0 = αVt, we use (5.28),
(5.31), (5.61), (5.66), (5.68), and (5.76) in the solvability condition (5.82) and
obtain the quadratic equation for Λ1 in the explicit form

Λ2
1

d

dω

∫
R
|Uω|2dx+

1

ω

∫
R
|Uω|2dx = 0. (5.83)
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Using the explicit expression (5.11), we obtain∫
R
|Uω|2dx =

√
1− ω2

ω
,

d

dω

∫
R
|Uω|2dx = − 1

ω2
√

1− ω2
, (5.84)

which yield Λ2
1 = 1−ω2 = Λr(ω)2. Correction terms Λ2 and α are not determined

up to this order of the asymptotic expansion.

Selecting now V0 = W0 = Vt, V1 = Ṽt, V̌1 = V̌t, and V′0 = βVg, we use
(5.28), (5.30), (5.61), (5.66), (5.68), and (5.75) in the solvability condition (5.82)
and obtain the quadratic equation for Λ1 in the explicit form

Λ2
1

∫
R

[
ω|Uω|2 +

i

2
(ŪωU

′
ω − UωŪ ′ω)

]
dx+

i

2

∫
R
(ŪωU

′
ω − UωŪ ′ω)dx = 0. (5.85)

Expressing

i

2

∫
R
(ŪωU

′
ω − UωŪ ′ω)dx =

∫
R

(1− ω2)2

(1 + ω cosh(2µx))2
dx =

√
1− ω2I(ω),

and ∫
R

[
ω|Uω|2 +

i

2
(ŪωU

′
ω − UωŪ ′ω)

]
dx =

√
1− ω2 [1 + I(ω)] , (5.86)

where

I(ω) := (1− ω2)

∫ ∞
0

dz

(1 + ω cosh(z))2
= 1− 1√

1− ω2
log

(
1−
√

1− ω2

ω

)
> 0,

(5.87)

we obtain Λ2
1 = − I(ω)

1+I(ω)
= −Λi(ω)2. Again, correction terms Λ2 and β are not

determined up to this order of the asymptotic expansion.

Note again that the nonzero values in (5.84) and (5.86) verify the nonzero values
in (5.30) and (5.31), hence the assumption 〈Ft,g, σF̃t,g〉L2 6= 0 in Proposition 14,
according to Remark 21.

Justification of the formal expansion (5.80) and the proof of Lemma 29 is
achieved by exactly the same argument as in the proof of Lemma 28. The proof
relies on the resolvent estimate (5.46), which is valid for the massive Gross–Neveu
model, because by Propositions 13 and 14, the zero eigenvalue of the operator SH
(which has algebraic multiplicity four) is isolated from the rest of the spectrum.

Persistence of eigenvalues is proved with the symmetry in Proposition 16. If an
eigenvalue is expressed as λ = p(iΛi(ω)+µp) with unique µp = O(p) and Λi(ω) > 0,
then nonzero real part of µp would contradict the symmetry of eigenvalues about
the imaginary axis. Therefore, Re(µp) = 0 and the eigenvalues in the expansion
(5.78) remain on the imaginary axis. On the other hand, if another eigenvalue
is expressed as λ = p(Λr(ω) + µp) with unique µp = O(p) and Λr(ω) > 0, then
µp may have in general a nonzero imaginary part, as it does not contradict the
symmetry of Proposition 16 for a fixed p 6= 0. This is why the statement of Lemma
29 does not guarantee that the corresponding eigenvalues in the expansion (5.79)
are purely real.
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In the end of this section, we will show that µp = O(p2), which justifies the
O(p3) bound for the eigenvalues in the asymptotic expansions (5.78) and (5.79).
In this procedure, we will uniquely determine the parameters β and α in the same
asymptotic expansions. Extending the expansion (5.80) to p3Λ3 and p3V3 terms,
we obtain the linear inhomogeneous equation

HV3 = (iΛ1S − P)V2 + iΛ2S(Λ1V1 + V̌1 + V′0) + iΛ3SV0. (5.88)

The Fredholm solvability condition

〈W0, (iΛ1S − P)V2 + iΛ2S(Λ1V1 + V̌1 + V′0)〉L2 = 0 (5.89)

determines the correction terms Λ2, β, and α uniquely. Indeed, using (5.28) and
(5.61), we rewrite the solvability condition (5.89) in the form

i〈W0,SV1〉L2Λ2Λ1 = −〈W0, (iΛ1S − P)V2〉L2

= −〈(−iΛ̄1S − P)W0,V2〉L2

= −〈H(−Λ̄1W1 + W̌1),V2〉L2

= −〈(−Λ̄1W1 + W̌1),HV2〉L2

= −〈(−Λ̄1W1 + W̌1), iΛ2SV0

+(iΛ1S − P)(Λ1V1 + V̌1 + V′0)〉L2 ,

where we have used the linear inhomogeneous equation (5.81) and have introduced
W1 and W̌1 from solutions of the inhomogeneous equations HW1 = iSW0 and
HW̌1 = −PW0. Using

〈W1, iSV0〉L2 = 〈W1,HV1〉L2 = 〈HW1,V1〉L2 = 〈iSW0,V1〉L2 = −i〈W0,SV1〉L2

and

〈W̌1, iSV0〉L2 = 〈W̌1,HV1〉L2 = 〈HW̌1,V1〉L2

= −〈PW0,V1〉L2 = −〈W0,PV1〉L2 = 0,

where the last equality is due to (5.66), we rewrite the solvability equation in the
form

2i〈W0,SV1〉L2Λ2Λ1 = −〈(−Λ̄1W1+W̌1), (iΛ1S−P)(Λ1V1+V̌1+V′0)〉L2 . (5.90)

Removing zero entries by using (5.28), (5.61), and (5.66), we rewrite equation
(5.90) in the form

2i〈W0,SV1〉L2Λ2Λ1 = Λ2
1

(
i〈W1,SV′0〉L2 + i〈W1,SV̌1〉L2 − i〈W̌1,SV1〉L2

−〈W1,PV1〉L2 + 〈W̌1,PV̌1〉L2 + 〈W̌1,PV′0〉L2 . (5.91)

We shall now write equation (5.91) explicitly as the 2-by-2 matrix equation by
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using V0 = W0 = Φ
(0)
V , V1 = W1 = Φ

(1)
V , V̌1 = W̌1 = Φ

(2)
V , and

V′0 = Φ
(0)
V

[
0 α
β 0

]
= [βVg, αVt] .

Using (5.28), (5.62), (5.67), (5.68), and (5.69), we rewrite equation (5.91) in the
matrix form

2i

[
〈Vt,SṼt〉L2 0

0 〈Vg,SṼg〉L2

]
Λ2Λ1 = iΛ2

1

[
〈Ṽt,SVt〉L2 0

0 〈Ṽg,SVg〉L2

] [
0 α
β 0

]
+

[
〈V̌t,PVt〉L2 0

0 〈V̌g,PVg〉L2

] [
0 α
β 0

]
+iΛ2

1

[
0 −〈V̌t,SṼg〉L2

〈Ṽg,SV̌t〉L2 0

]
−Λ2

1

[
0 〈Ṽt,PṼg〉L2

〈Ṽg,PṼt〉L2 0

]
+

[
0 〈V̌t,PV̌g〉L2

〈V̌g,PV̌t〉L2 0

]
, (5.92)

where Λ1 is defined uniquely from either solution of the quadratic equations (5.83)
and (5.85). Because the 2-by-2 matrix on the right-hand side of equation (5.92) is
anti-diagonal, we obtain Λ2 = 0 for every choice of Λ1.

Now, we check that the coefficients α and β are uniquely determined from the
right-hand side of the matrix equation (5.92). The coefficient α is determined for
Λ2

1 = Λr(ω)2 > 0 from the anti-diagonal entry

iΛ2
1〈Ṽt,SVt〉L2 + 〈V̌t,PVt〉L2 = i〈Ṽt,SVt〉L2

(
Λr(ω)2 + Λi(ω)2

)
,

which is nonzero for every ω ∈ (0, 1). Therefore, we obtain from (5.92) the unique
expression for α:

α =
Λr(ω)2

(
〈Ṽt,PṼg〉L2 + i〈V̌t,SṼg〉L2

)
− 〈V̌t,PV̌g〉L2

i〈Ṽt,SVt〉L2 (Λr(ω)2 + Λi(ω)2)
. (5.93)

Similarly, the coefficient β is determined for Λ2
1 = −Λi(ω)2 < 0 from the anti-

diagonal entry

iΛ2
1〈Ṽg,SVg〉L2 + 〈V̌g,PVg〉L2 = −i〈Ṽg,SVg〉L2

(
Λi(ω)2 + Λr(ω)2

)
,

which is nonzero for every ω ∈ (0, 1). Therefore, we obtain from (5.92) the unique
expression for β:

β =
Λi(ω)2

(
i〈V̌g,SṼt〉L2 − 〈Ṽg,PṼt〉L2

)
− 〈V̌g,PV̌t〉L2

−i〈Ṽg,SVg〉L2 (Λi(ω)2 + Λr(ω)2)
. (5.94)
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These computations justify the O(p3) terms in the expansions (5.78) and (5.79)
for the eigenvalues λ.

5.4 Numerical approximations

We approximate eigenvalues of the spectral stability problems (5.32) and (5.58)
with the Chebyshev interpolation method. This method has been already applied
to the linearized Dirac system in one dimension in [17]. The block diagonalized
systems in (5.32) and (5.58) are discretized on the grid points

xj = L tanh−1(zj), j = 0, 1, . . . , N,

where zj = cos
(
jπ
N

)
is the Chebyshev node and a scaling parameter L is chosen

suitably so that the grid points are concentrated in the region, where the solitary
wave Uω changes fast. Note that x0 =∞ and xN = −∞.

According to the standard Chebyshev interpolation method [105], the first
derivative that appears in the systems (5.32) and (5.58) is constructed from the

scaled Chebyshev differentiation matrix D̃N of the size (N + 1)× (N + 1), whose
each element at ith row and jth column is given by

[D̃N ]ij =
1

L
sech2

(xi
L

)
[DN ]ij,

where DN is the standard Chebyshev differentiation matrix (see page 53 of [105])
and the chain rule du

dx
= dz

dx
du
dz

has been used. Denoting IN as an identity matrix of
the size (N + 1)× (N + 1), we replace each term in the systems (5.32) and (5.58)
as follows:

∂x → D̃N , 1→ IN , Uω → diag(Uω(x0), Uω(x1), · · · , Uω(xN)),

Due to the decay of the solitary wave Uω to zero at infinity, we have Uω(x0) =
Uω(xN) = 0.

The resulting discretized systems from (5.32) and (5.58) are of the size 4(N +
1) × 4(N + 1). Boundary conditions are naturally built into this formulation,

because the elements of the first and last rows of the matrix [D̃N ]ij are zero. As a
result, eigenvalues from the first and last rows of the linear discretized system are
nothing but the end points of the continuous spectrum in Proposition 13, whereas
the boundary values of the vector V at the end points x0 and xN are identically
zero for all other eigenvalues of the linear discretized system.

Throughout all our numerical results, we pick the value of a scaling parameter
L to be L = 10. This choice ensures that the solitary wave solutions Uω for all
values of ω used in our numerical experiments remain nonzero up to 16 decimals
on all interior grid points xj with 1 ≤ j ≤ N − 1.
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5.4.1 Eigenvalue computations for the massive Thirring
model

Figure 5.2 shows eigenvalues of the spectral stability problem (5.32) for the
solitary wave (5.7) of the massive Thirring model. We set ω = 0 and display
eigenvalues λ in the complex plane for different values of p. The subfigure at
p = 0.2 demonstrates our analytical result in Lemma 28, which predicts splitting
of the zero eigenvalue of algebraic multiplicity four into two pairs of real and
imaginary eigenvalues. Increasing the value of p further, we observe emergence
of imaginary eigenvalues from the edges of the continuous spectrum branches, as
seen at p = 0.32. A pair of imaginary eigenvalues coalesces and bifurcates into the
complex plane with nonzero real parts, as seen at p = 0.36, and later absorbs back
into the continuous spectrum branches, seen in the next subfigures. We can also
see emergence of a pair of imaginary eigenvalues from the edges of the continuous
spectrum branches at p = 0.915. The pair bifurcates along the real axis after
coalescence at the origin, as seen at p = 0.93. The gap of the continuous spectrum
closes up at p = 1. For a larger value of p, two pairs of real eigenvalues are seen
to approach each other.

Figure 5.3 show how the positive imaginary and real eigenvalues bifurcating
from the zero eigenvalue depends on p for ω = 0.5, 0,−0.5, respectively at each
row. Red solid lines show asymptotic approximations established in Lemma 28
for λ = Λr(ω)p and λ = iΛi(ω)p. Green filled regions in Figures (5.3a), (5.3c),
and (5.3e) denote the location of the continuous spectrum. Symbols ∗ and + in
Figures (5.3b), (5.3d), and (5.3f) denote purely real eigenvalues and eigenvalues
with nonzero imaginary part.

Numerical results suggest the persistence of transverse instability for any period
p because of purely real eigenvalues, which come close to each other and persist
for a large p. We observe a stronger instability for a larger solitary wave with
ω = −0.5 than for a smaller solitary wave with ω = 0.5. We notice that an
imaginary eigenvalue does not reach the edge of the continuous spectrum for ω =
0.5 and ω = 0 due to colliding with other imaginary eigenvalue coming from the
edge of the continuous spectrum. On the other hand, an imaginary eigenvalue
for ω = −0.5 gets absorbed in the edge of the continuous spectrum. This is
explained by the movement of the two branches of the continuous spectrum in the
opposite directions: up and down as the value of p varies. Moving-down branch
on Im(λ) > 0, as seen in ω = 0.5 and ω = 0, expels an eigenvalue from its edge
that makes collision with the other imaginary eigenvalue, while moving-up branch
on Im(λ) > 0, as seen in ω = −0.5, absorbs an imaginary eigenvalue approaching
the edge.

To verify a reasonable accuracy of the numerical method, we measure the
maximum real part of eigenvalues along the imaginary axis with |Im(λ)| < 10.
This quantity shows the level of spurious parts of the eigenvalues and it is known
to be large in the finite-difference methods applied to the linearized Dirac systems
(see discussion in [17]). Table 5.1 shows values of max

| Imλ|<10
|Reλ| for three values

of ω and three values of the number N of the Chebyshev points. In all numerical
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Figure 5.2: Numerical approximations for the spectral problem (5.32) associated
with the solitary wave (5.7) of the massive Thirring model at ω = 0.
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Figure 5.3: Numerical approximations of isolated eigenvalues of the spectral prob-
lem (5.32) versus parameter p.
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(b) ω = 1/3

Figure 5.4: Numerical approximations for the spectral problem (5.58) associated
with the solitary wave (5.11) of the massive Gross-Neveu model.
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(d) ω = 1/3

Figure 5.5: Numerical approximations of isolated eigenvalues of the spectral prob-
lem (5.58) versus parameter p.
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computations reported on Figures 5.2 and 5.3, we choose N = 300, in this way
spurious eigenvalues are hardly visible on the figures.

ω = −0.5 ω = 0 ω = 0.5
N = 100 1.96× 10−1 2.57× 10−1 1.16× 10−1

N = 300 1.36× 10−4 2.18× 10−4 7.02× 10−5

N = 500 2.22× 10−7 8.77× 10−5 6.56× 10−8

Table 5.1: max
| Imλ|<10

|Reλ| versus values of ω and N for the spectral problem (5.32)

with p = 0.

5.4.2 Eigenvalue computations for the massive Gross–Neveu
model

Figures 5.4 and 5.5 show eigenvalues of the spectral stability problem (5.58)
for the solitary wave (5.11) of the massive Gross–Neveu equation with parameter
values ω = 2/3 and ω = 1/3, respectively. We confirm spectral stability of the
solitary wave for p = 0. In agreement with numerical results in [8], we also observe
that the spectrum of a linearized operator for p = 0 has an additional pair of
imaginary eigenvalues in the case ω = 1/3. (Recall that this issue was considered
to be contradictory in the literature with some results reporting spectral instability
of solitary waves for ω = 1/3 [73, 99].)

The subfigures of Figure 5.4 at p = 0.1 demonstrate our analytical result in
Lemma 29, which predicts splitting of the zero eigenvalue of algebraic multiplic-
ity four into two pairs of eigenvalues along the real and imaginary axes. Note
that the pair along the real axis persists as the pair of real eigenvalues up to the
numerical accuracy. (Recall that the statement of Lemma 29 lacks the result on
the persistence of real eigenvalues.) Increasing the values of p further, we observe
that the real eigenvalues move back to the origin and split along the imaginary
axis, as seen on the subfigures at p = 1. The gap of the continuous spectrum
branches around the origin is preserved for all values of parameter p. The pairs of
imaginary eigenvalues persist in the gap of continuous spectrum for larger values
of the parameter p.

Figure 5.5 shows real and imaginary eigenvalues versus p for the same cases
ω = 2/3 and ω = 1/3. The green shaded region indicates the location of the
continuous spectrum. Red solid lines show asymptotic approximations established
in Lemma 29 for λ = Λr(ω)p and λ = iΛi(ω)p. It follows from our numerical results
that the transverse instability has a threshold on the p values so that the solitary
waves are spectrally stable for sufficiently large values of p. These thresholds on
the transverse instability were observed for other values of ω in (0, 1).

To control the accuracy of the numerical method, we again compute the values
of max
| Imλ|<10

|Reλ| for spurious parts of eigenvalues along the imaginary axis. Table

5.2 shows the result for two values of ω and three values of N . Compared to Table
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Figure 5.6: Numerically computed λ for the spectral problem (5.58) with p = 0
for different values of the number N of Chebyshev points.

5.1, we observe a slower convergence rate and lower accuracy of our numerical
approximations.

ω = 1/3 ω = 2/3
N = 100 6.48× 10−2 2.03× 10−3

N = 300 1.72× 10−2 1.68× 10−3

N = 500 1.38× 10−2 1.20× 10−3

Table 5.2: max
| Imλ|<10

|Reλ| versus values of ω and N for the spectral problem (5.58)

with p = 0.

We found that spurious eigenvalues are more visible for smaller values of ω,
in particular, for the value ω = 1/3, evidenced in Figure 5.6. While spurious
eigenvalues in the case of ω = 1/3 in Figure 5.6 are quite visible, the maximum
real part of eigenvalues with | Imλ| < 2 is much smaller for N = 400. As a result,
the value N = 400 was chosen for numerical approximations reported on Figures
5.4 and 5.5, this choice guarantees that spurious eigenvalues are hardly visible on
the figures.

142



Bibliography

[1] M. J. Ablowitz, B. Prinari, A.D. Trubatch, “Discrete and continuous nonlinear
Schrödinger systems” (Cambridge University Press, Cambridge, 2004).

[2] M.J. Ablowitz and Y. Zhu, “Nonlinear waves in shallow honeycomb lattices”,
SIAM J. Appl. Math. 72 (2012), 240–260.

[3] M.J. Ablowitz and Y. Zhu, “Nonlinear wave packets in deformed honeycomb
lattice”, SIAM J. Appl. Math. 73 (2013), 1959-1979.

[4] M.A. Alejo and C. Munoz, “Nonlinear stability of MKdV breathers”,
arXiv:1206.3157 (2012).

[5] I.V. Barashenkov, D.E. Pelinovsky, and E.V. Zemlyanaya, ”Vibrations and
oscillatory instabilities of gap solitons”, Phys. Rev. Lett. 80 (1998), 5117–
5120.

[6] R. Beals and R. R. Coifman, “Scattering and inverse scattering for first order
systems”, Comm. Pure Appl. Math. 37 (1984), 39–90.

[7] R. Beals and R. R. Coifman, “Inverse scattering and evolution equations”,
Comm. Pure Appl. Math. 38 (1985), 29–42.

[8] G. Berkolaiko, A. Comech, and A. Sukhtayev, “Vakhitov–Kolokolov and en-
ergy vanishing conditions for linear instability of solitary waves in models of
classical self-interacting spinor fields”, Nonlinearity 28 (2015), 577–592.

[9] G. Berkolaiko and A. Comech, “On spectral stability of solitary waves of
nonlinear Dirac equations in 1D”, Math. Model. Nat. Phenom. 7 (2012), no.
2, 13–31.

[10] H.A. Biagioni and F. Linares, “Ill-posedness for the derivative Schrödinger and
generalized Benjamin-Ono equations”, Trans. Amer. Math. Soc. 353 (2001),
3649–3659.

[11] N. Boussaid, “Stable directions for small nonlinear Dirac standing waves”,
Comm. Math. Phys. 268 (2006), no. 3, 757–817.

[12] N. Boussaid, “On the asymptotic stability of small nonlinear Dirac standing
waves in a resonant case,” SIAM J. Math. Anal. 40 (2008), no. 4, 1621–1670.

143



Ph.D. Thesis -Yusuke Shimabukuro Mathematics - McMaster University

[13] N. Boussaid and A. Comech, “On spectral stability of the nonlinear Dirac
equation”, arXiv:1211.3336 (2012).

[14] N. Boussaid and S. Cuccagna, “On stabibity of standing waves of nonlinear
Dirac equations”, Comm. PDEs 37 (2012), no. 6, 1001–1056.

[15] T. Candy, “Global existence of an L2-critical Dirac equation in one dimen-
sion”, Adv. Diff. Eqs. 7-8 (2011), 643-666

[16] Y. Cher, G. Simpson, and C. Sulem, “Local structure of singular profiles for
a derivative Schrödinger equation”, to be submitted (2016).

[17] M. Chugunova, D. Pelinovsky, “Block-diagonalization of the symmetric first-
order coupled-mode system,” SIAM J. Appl. Dyn. Syst. 5 (2006), 66–83.

[18] A. Comech, M. Guan, and S. Gustafson, “On linear instability of solitary
waves for the nonlinear Dirac equation”, Annales de ĺInstitute Henri Poincaré
31 (2014), 639–654.

[19] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Global well-
posedness for Schrödinger equations with derivative”, SIAM J. Math. Anal.,
33 (2001), 649–669.

[20] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “A refined
global well-posedness result for Schrödinger equations with derivative”, SIAM
J. Math. Anal., 34 (2002), 64–86.

[21] M. Colin and M. Ohta, “Stability of solitary waves for derivative nonlinear
Schrödinger equation”, Ann. I.H. Poincaré-AN 23 (2006), 753–764.
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