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Stability criterion for multicomponent solitary waves
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We obtain the most general matrix criterion for stability and instability of multicomponent solitary waves by
considering a system of incoherently coupled nonlinear Schlinger equations. Soliton stability is studied as
a constrained variational problem which is reduced to finite-dimensional linear algebra. We prove that unstable
(all real and positive eigenvalues of the linear stability problem for multicomponent solitary waves are
connected with negative eigenvalues of the Hessian matrix. The latter is constructed for the energetic surface
of N-component spatially localized stationary solutions.

PACS numbdis): 42.65.Tg, 05.45.Yv, 47.20.Ky

I. INTRODUCTION the corresponding unstable eigenvalue of the associated
spectral problem is treated as a small parameter of multiscale
The recent discovery of self-focusing of partially coherentasymptotic expansiongl6]. In the case of multiparameter
light and experimental observation of the so-called incohersolitary waves, a simplified version of this method is usually
ent spatial soliton§l] has called for a systematic analysis of reduced to a number of “magic determinants” constructed
the properties and stability of multicomponent and multipa-from the derivatives of the system invariants near a marginal
rameter solitary waves. Incoherent solitons are generated gfability line [17—20. However, such a bifurcation method
noninstantaneous nonlinear media such as biased photor@as no rigorous proof, and it does not allow one to predict
fractive crystals. In this case, a self-consistent modal theorjhe complete domains of soliton stability and instability,
[2], which is equivalent to the coherent density approachSince more general oscillatory instabilities may occur as well
describes the incoherent solitons with the help of a system dfl4,21,23.

coupled nonlinear Schdinger (NLS) equations(see also In this paper, we present a complete theory for stability
[3-5]). Similar models appear, in different physical contexts,and instability of multiparameter solitary waves by consider-
in the theory of soliton wavelength-division multiplexif@], ~ ing a particular example of a system ®f incoherently

multichannel bit-parallel-wavelength optical fiber networkscoupled NLS equations. Our results include the asymptotic
[7], multispecies and spinor Bose-Einstein condensggs bifurcation method with the determinant criterion as a simple
and other important applicatio®]. In all such physical near-threshold limiting case. They also expand the applica-
models solitary waves are multicomponent, being describe8ility boundaries of the previously known mathematical
by localized solutions of the coupled nonlinear equations. Ifheorems[15] to the case of multicomponent and multipa-
some very special cases, the coupled system allows for exameter solitary waves.

plicit analytical solutiongsee, e.g., Refl4]) but, generally The system of incoherently coupled NLS equations has
speaking, the nonlinear models with multicomponent solitany2lready been studied in many papésse, e.g., Ref$23-25
waves are nonintegrable. The stability of solitary waves ido cite a few. However, the study of stability of single-hump
therefore a crucial issue for any kind of application. and multihump solitary waves was restricted to a single-

The study of soliton stability has a long history. The sta-parameter case, when the soliton components have a similar
bility of one-parameter solitary waves is already well under-shape and their amplitudes are proportional to each other
stood for both fundament&ingle hump and nodelessoli- ~ [23]. In this paper, we expand those results and present, for
tons [10-19 and solitons with nodes and multiple humps the first time to our knowledge, a complete matrix analysis of
[13,14. The pioneering results of Vakhitov and Kolokolov the constrained variational problem leading to finite-
[10] found their rigorous justification in the general math- dimensional linear algebra. Although some of our results de-
ematical theory of Grillakis, Shatah, and Stra(is5]. Al-  pend on properties that are specific to the model under con-
though the corresponding stability and instability theoremssideration, we believe that both the method and the basic
for scalar NLS models extend formally to the case of multi-results can be generalized, under proper assumptions, to be
parametric soliton§15], all the cases analyzed so far corre- applied to other types of nonlinear physical model that sup-
spond to solitary waves with effectively a single parameter.port multiparameter solitary waves.

Recent progress in the study of soliton instabilities is as-
sociated with the app_hcatlon of a bifurcation theory valid for Il. MODEL AND BASIC RESULTS
weakly unstable stationary localized waves. In this method,

We consider the nonlinear interaction lgfoptical modes
that describe either the multimode structure of a partially
*Permanent address: Department of Mathematics, McMaster Unincoherent self-trapped beam or incoherent coupling between
versity, Hamilton, Ontario, Canada L8S 4K1. Email address:optical channels with different wavelengths in a fiber. Then,
dmpeli@math.mcmaster.ca the amplitude envelopes of the partial modes satisfy the fol-
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lowing system of incoherently coupled NLS equations: %
Fom | ax@eu-o, ®
o N o
i 9 ¥ +dnv>2('/fn+ E 7nm|'rl/m|2> =0, ) ) . .
z m=1 where g, is the nth unit vector, which correspond to the

5 . ) ) conservation of the individual powe€®, under the action of
where V{ stands for the Laplacian in thB-dimensional 5 perturbation described by a vectar, ).

spacex=(xy, ... Xp), and all the coefficientsl, are as- First of all, we recall the main result of Ref4.0—12 that
sumed to be positive. When one of the variables of the VeCt%ne-parameter solitary waves with no noddé=(1) are

x stands for time, Eqs(1) describe the spatiotemporal dy- staple in the framework of the constrained variational prob-

namics of self-focused and self-modulated light in the formg, (3)—(5) provided the energetic surface(8) = A[®] is
of so-called light bullets. concave up, i.e.,
Provided the symmetry conditions,,= v, are satisfied,
the system(1) conserves the Hamiltonian A, dO,
S

=—=>0.
dgz  dBs

- N 1NN (6)
H :f wdx( nZl dn|vxl/fn|2_ E nZl le 'ynm|wn|2| l/fm|2 )
Under this condition, the linear eigenvalue probléfh has
the individual mode power®,=3[|#,|%dx, and the total no unstable eigenvalues, i.e., those with a positive real part
field momentum. Localized solutions of Eq4) for funda- ~ \. Otherwise, the second variati¢8) constrained by the set
mental solitary waves are defined gg=®,(x)e'#r?, where (5) has a single negative direction that corresponds to a
®,(x) are real functions with no nodes, agg are positive  single positive eigenvalug in the linear eigenvalue problem
propagation constants. The soliton solutions are stationar{#) [10,11. The stability criterion for scalar(or one-
points of the Lyapunov functional componentNLS solitons holds when the self-adjoint opera-
tor L, has a single negative eigenvalue, i.e., when the second
N variation(3), without the constraints) imposed, has a single
ALgl=H[ 1+ 2 BQul ], (2)  negative direction. If the last condition is not satisfied, as
=t happens for solitary waves with nodes, the fundamental cri-
i.e., the first variation ofA[#] vanishes aiy=®(x). The terion for soliton instability can be extended only for a spe-

second variation of\[ 4] defines the stability properties: ¢l casd13,14, while more generic mechanisms of oscilla-

negative directions of the second variation correspond to ur'{—Ory instabilities, associated with complex eigenvalues of the

stable eigenvalues in the soliton stability problésee, e.g., Ineéar eigenvalue problem, may appear beyond the prediction
Ref.[11] for a review of the basic resujts of the fundamental criteriofl4,21,23.

The stability problem is defined by minimizing the second Here we extend the soliton stability analysis to the case of
variation of the Lyapunov functional[ ] multicomponent solitary waves described by a system of in-

coherently coupled NLS equatiori$). We assume that the
o number of negative direction@igenvalues of the second

52A=f dx[(u|Lyu)+(w|Low)], (3)  variation 8%A is fixed, and we denote it ag(A). The un-
o stable eigenvalues of the linear problen{4) are connected

with some negative eigenvalues of the matdixdefined by

where u(x) and w(x) are perturbations of the multicom-
the elements

ponent solitary wave taken in the forngre=®(x)+[u
+iw](x)e*?, and the scalar product is defined &8g)

=3N_.f*g,. The matrix Sturm-Liouville operatdr, has a U. = P*As - 9Qn — 9Qm @)
diagonal form with the elements " BrdBm  IBm  IBn’
) N ) The matrixU is the Hessian matrix of the energetic surface
(Lo)n= —ngx+Bn—m§::l Yom®Ph A4(B). We denote the number of positive eigenvalues of the
matrix U asp(U), and the number of its negative eigenval-
and the matrix operatdr; has the elements ues az(U), so thatp(U)+n(U)=<N, since some eigenval-

ues may be zero in a degenerdbgfurcation case. As is

N shown below, bothp(U) andn(U) satisfy some additional

(L)nn= _ng>2<+,8n_ 21 Ynmq)ﬁq_zynnq)ﬁ constraints,
m=

at the diagonal, and.() ym= — 2¥nm® P, Off the diagonal. p(U)=min{N,n(A)}, n(U)=maxON—n(A)}. (8)

The operatord, and L, determine the linear eigenvalue )
problem for the stability of multicomponent solitary waves, Within these notations, we formulatand prove belowthe
following fundamental results on the stability and instability

L,u=—Aw, Low=X\u. (4) of multicomponent solitary waves of the coupled NLS equa-
tions (1).
Both the linear probleni4) and minimization problen{3) (i) The linear problem4) may have at mosh(A) un-

should satisfy a set dfl constraints, stable eigenvalues, all real andpositive.
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(i) A multicomponent soliton is linearly unstable pro-

vided p(U)<n(A); then the linear problent4) hasn(A)
—p(U) real (positive or zero-becoming-positiveigenval-
uesA\.

(iii) A multicomponent soliton is linearly stable provided

p(U)=n(A)(=<N); in the casen(A)=N this criterion im-
plies that the energetic surfade(B) is concave up in thg
space.

(iv) A single eigenvaluen crosses a marginal stability
curve when the matrixtU possesses a zero-becoming-
negative eigenvalue; the normal form for the instability-
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o

dx(ulLyuy=2 MJOC dx(uy| ug).
o0 M —oC
(1)

(min) 8°A = J

Here (u,u,) are eigenvalues and eigenfunctions of the aux-
iliary linear problem,

N

Lluk:Muk_mE:l Vi@ m(X)€n - 12

induced dynamics of multicomponent solitary waves re-The jinear problent12) is constrained by the sé) and the

sembles the equation of motion for an effective classicaharametersy,,

particle subjected to aN-dimensional potential field,

dv, dv,

1 N N
E=52 2 Mgy, tWB», 9

vy, ...,vy have the meaning of Lagrange
multipliers.

Let us suppose that the Sturm-Liouville matrix operator
L, has n(A) negative eigenvalues pu
={M—n(A) M-n(A)+1+ - - - -1} cCOrresponding to the
eigenfunctions u={¢_nx)(X), ¥_nry+1(X), - . . P 1(X)};

a single zero eigenvalue with a one-node eigenfunction

whereM ,,, are the elements of the positive-definite “mass =d®/dx; and that the rest of the spectrum is positive and

matrix” [see EQq.(28) below], » is the vector describing a
perturbation to the soliton parametgr and W(B,v) is an
effective potential energy defined as

W(B,»)=H(B+v)—Hy(B)

N
+n§1 (Bt ) [ Qen( B+ ¥)— Qen(B)].

(10

These results should be compared with the results follow:
ing from the stability and instability theorems earlier formu-

lated by Grillakis, Shatah, and Straugkb|. The stability
result (iii), i.e., the conditionp(U)=n(A), is identical to
that of the stability theorerfil5], but the instability result§)

and(ii) are more general and explicit. In particular, the theo-
rem of Grillakiset al. [15] guarantees soliton instability pro-

vided the differencen(A)—p(U) is odd. However, our re-
sults predict that soliton instability always occurs fofA)
—p(U)>0, being associated with exactlg(A)—p(U)
non-negative real eigenvalues of the linear eigenvalue
problem (4). Moreover, according to our resuliv), each

new unstable eigenvalue appears via a bifurcation at the
marginal stability curve where the determinant of the matrix

contains N branches of the continuous spectrum far
>{B1.B>, - ..,Bn}, and some isolated positive eigenvalues
for w={m1,m2, ... .up}. The mathematical problem can
then be reformulated in the following way. The linear opera-
tor L, hasn(A) negative eigenvalues that generate negative
directions of the second variatiaffA. However, the corre-
sponding eigenfunctions do not generally satisfy the con-
straints (5). By introducing the Lagrangian multipliers in
Egs. (11 and (12), we satisfy a constrained minimization
problem(3) and(5) but, due to this procedure, the number of
negative eigenvalues may be reduced. We will show how to
connect the total number of negative eigenvalues of the con-
strained problent5), (11), and(12) with the negative eigen-
values of the Hessian matri¥). But, as a prerequisite, we
prove two additional results for the spectrum of the problem
(4): (i) the spectrum ok? is real, i.e., oscillatory instabilities
are prohibited;(ii) each negative directionu(u,) of the
problem(12) generates an unstablpositive eigenvaluex
of the problem(4).

To prove the statemerti), we notice that the matrix op-
eratorL, can be factorized as,==5_;MjMy, whereMg
has a diagonal form with the following matrix elements:

1
(M@)nn= \/d—n _axd"'maxd@n(x) )

U vanishes, i.e., it is connected with a zero-becoming-

negative eigenvalue of the Hessian matdx If n(A)>N,

unstable eigenvalues originating from the negative eigen-

values of the Hessian matrid coexist withn(A)—N un-
stable eigenvalues of the linear probldd), i.e., a solitary
wave is unconditionally unstable wherfA)>N.

I11. A PROOF OF THE BASIC RESULTS

Here we develop the analysis of the probl€®(5), in
order to prove the result§)—(iv) formulated above. The
Sturm-Liouville operatorsl(,),, are all non-negative since
the fundamentalnodelesssolution®(x) for a solitary wave
reaches the bottom of the spectrum at zetq;)§,$,=0.
As a result,

provided the soliton solutiond,(x) have no nodes in a
finite domain. Using this factorization, the linear probléfh
can be rewritten for the function==g_;M jv4 as follows:

D

2 MdLlMa—'Vd’: _)\ZVd .
d'=1

Since the matrix operator with the eIemerMIs,LlM;, is
Hermitian, its eigenvalues{\?) are all real.

To prove the statemefii), we suppose that we have con-
structed a negative direction.(u,) of the problem(11) and
(12) subject to the constrain{®). Then the linear problem
(4) has an unstable eigenvaliedefined as
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o {ulobaug) _M<Uk|Lon>
(i ug) (uu)

13

Since the linear operatdr, is positive definite for anyuy
#(0,®), we havex®>0 for any u<0.
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N

E Vn<¢r|q)nen>

n=1

2

b= =0, (17)

Since allb, may not vanish simultaneously far#0, the
eigenvaluesy(u) are negative definite in Eq16) so that

Our next goal is to construct solutions to the auxiliary Y(u)— -0 asp——.

problem(12). Since the matrix operatdr; is Hermitian, it

To show the propertyii), we take the derivative of the

has a complete spectrum in a Hilbert space that is suitable fgyStemA»=y(x) v and use the algebra of quadratic forms.

expanding the vector function,(x). We present such a
spectral decomposition in the form

3 (| P em)

fl
(x)
20 AT My v

N
uk<x>=mE:1 vm(

L)

Kr>0

—— (X (14

M My

where the surE”r<o containsn(A) terms from the negative
spectrum, while the sull, ~o includes schematically both
the discrete and continuous positive spectra of The con-
tribution from the neutral eigenfunctiamn= d®/dx vanishes
due to the symmetry properties. The general solutibf
has to be constrained by the conditid$. This system re-

The derivative ofy(u) is then defined fo <0, excluding

the resonant planes at={u _n() 4 -n(A)+1s - - - -1}, @S
dy(u) 1 dA(u)
= 14 14
du  (vy) du
1 ( b, b,
) |20 (u—p)? iso (m—pn)?)
(18)

where b, are defined by the same relatigh7). Since the
derivative of y(u) is negative definite in Eq18), all eigen-
values y(u) are decreasing functions ofc whenever
dy(u)/du exists.

To show the propertyiii), we consider the behavior of
the eigenvaluesy(u) at the resonant plang=u,<0. In

duces to the linear algebra for the Lagrange multipliersthis limit, the matrix element#\,,(«) have the following

A(un)v=0, where the matrixA(u) has a symmetric form
with the elements

3 (P nen| P ) | P rmem)

Anm(;“«):,ur<0 a—
q)n r r(I)m
3 ( en|¢>_<¢f| Em) 15
mr>0 M My

The linear system\(u) v= yv has generall\ real eigen-
values yi(u), vo(u), - -
continuous functions oft for <0, except fom(A) reso-

nant planes apw={u_n)M-n(r)+1s - - - M—1}. At these
planes, the matriA(w) has poles and the eigenvalug&u)

,Yn(u). These eigenvalues are

asymptotic form:

<<I>nen|¢r><¢r|<l>mem>_

Anm( )= (= pr)

Therefore, the matriXA(u) has (N—1) zero eigenvalues
v(pn) and a single nonzero eigenvalug () with the
asymptotic value

(19

1 N
yi(p)— 21 (@ nenl )]

(= pr) 7=

If the sum in Eq.(19) does not vanish, the eigenvalye(u)
has an infinite discontinuity described (ifi ) and, according
to the property(ii), it is the minimal eigenvalue. Another

may have singularities. Below, we prove the following three(N—1) eigenvalues are in fact nonzero in the limit

properties of the eigenvalueg «): (i) all eigenvaluesy(u)
are negative fopu<u _n4)(<0); (ii) each eigenvalug(u)
is a decreasing function g& for u=<0, except forn(A)
resonant planes ai={u_n) 4-nr)+1s - - - -1} (iii)
at least N—1) eigenvaluesy(ux) are continuous at any of
the resonant planeg=u,<0, while the minimal eigen-
value, sayy;(w), may have an infinite discontinuity, jump-
ing from negative infinity, aju— w,—0, to positive infinity,
atu—pu,+0.

To show the propertyi), we consider the asymptotic limit
of A(u) asu— —oo. In this limit, the eigenvalueg () can
be expressed from the algebra of quadratic forms as

(16)

> b+ > br),

Hy<0 ur=>0

1
'}/(,LL)— /.L<V| V)(

where

— u, . Since the matriA(u) is a meromorphic function of
p as u<0, the eigenvalue f— u,) y(u) is of order of
O(u— ) for (N—1) nonsingular eigenvalues. Therefore,
the values ofy(u) are generally nonzero in the limjt

— My -

Thus, we have a clear of picture how the eigenvalues
v(1) behave as functions qf [see Figs. (a,b]. Starting
with small negative values gg— —oo, all eigenvalues de-
crease asu grows towards then(A) resonant planes. At
each of those planesN(1) eigenvalues remain continu-
ously decreasing, while or{eninimal) eigenvalue jumps to a
positive domain unless the condition

N
n; (D nen|)[2=0 (20

is satisfied(this condition will be discussed belpwAssum-
ing that the condition(20) is not met, we come to the con-
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FIG. 1. Eigenvaluesy versus p in the problem A(u)v
=y(u)v for N=3: (a) a stable problem with no roots of(u) for
u<0, whenp(U)=n(A)=3; (b) an unstable problem with a
single root ofy(u) for u<0, whenp(U)=3<n(A)=4.

clusion that a root ofy(x) may occur only after a jump of
y(wn) at a resonant plang=u, to a large positive value,
and further decrease of{ 1) asu(> u,) grows. The root of
y(w), if it exists for =<0, produces a legitimate solution
u(x) of the problem(12) under the constraint(5). This

solution (u,u,) would then be associated with an unstable,

eigenvalue\, according to the connection formuld3).

Thus, our main task is to control the behavior of positive

y(u) between the plange=0 and the resonant plangs
={M—n(A) sM—n(A)+1s - - - M1}

At the planeu=0, the problen(12) has a simple solution
for u(x),

(21)

Substituting Eq.(21) into the constraintg5), we find that
A(0)=U, where the matriJ is the Hessian of the energetic
surfaceA ((B) with the elementd) ,,, defined by Eq(7). We
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If n(A)=N, the positive eigenvalueg(x) remain con-
tinuous after passing the corresponding resonant plape at
= u,(<0). Therefore, the sign of these eigenvalues is con-
trolled by the eigenvalues of the Hessian matdxat u
=0. If p(U)=N=n(A), all positive eigenvalues(u) re-
main positive foru,<u<0 and no roots ofy(u) exist for
n<0 [see Fig. 18)]. If p(U)<N=n(A), there existN
—p(U) negative or zero-becoming-negative eigenvalues of
U that correspond tdl— p(U) roots of y(u) for u<0.

If n(A)<N, then N—n(A) eigenvaluesy(x) do not
have jumps at the corresponding resonant planesu, .
They continue to be negative and matchuat 0 with the
N—n(A) negative eigenvalues &f. From this, we come to
the conclusion thap(U) and n(U) satisfy the constraints
(8), i.e., n(U)=N-n(A) or, equivalently,p(U)<n(A).
Furthermore, a furthen(A) (<N) eigenvaluesy(u) may
have roots foru<0 that are completely controlled by the
remainingn(A) eigenvalues o) according to the same cri-
terion as in the case(A)=N. For instance, ifp(U)
<n(A), then n(A)—p(U) negative or zero-becoming-
negative eigenvalues of the matrix correspond ton(A)
—p(U) roots of y(u) at u<0.

If n(A)>N, thenn(A)—N eigenvaluesy(u) jump twice
in the domainu<0 leading to at least(A)—N uncondi-
tional roots foru<0 [see Fig. 1b)]. After the jumps, theN
eigenvaluesy(w) match theN eigenvalues of the matril
and may have additional roots of(x) if p(U)<N. The
total number of roots ofy(u) at <0 is then defined as
[n(A)=N]+[N=p(U)]=n(A)—-p(V).

The analysis above is valid for the nondegenerate case
when the conditiorf20) is never satisfied. However, the sta-
bility and instability resultsi)—(iii ) in Sec. Il are not affected
even if the conditior(20) is satisfied for a particular resonant
plane u=u,(<0). In this case, the eigenfunctian(x) of
the operatorL, satisfies all the constraint®) identically
and, therefore, the eigenvalye= u, is associated with an
unstable eigenvaluk, according to Eq(13). Although the
eigenvaluey;(u) has no jump aj=u, [see Eq(19)] and
is continuous, it is still controlled by the negative eigenval-
ues ofU at u=0. Indeed, in this case, the minimal eigen-
value y;(u) at u<u, remains negative fo>u, and
matches with a negative eigenvalue of the mauixif no
other jumps occur in the domaip=<0). This additional
negative eigenvalug still predicts the instability, according
to the resultiii ).

Finally, we prove the resuliv) in Sec. Il for the instabil-
ity bifurcation of multicomponent solitary waves. Provided
the numbern(A) is fixed, the instability bifurcation may
occur only whemA(0)=U has a zero eigenvalue for a certain
eigenvectorv= X, Let us defineU= Uy, at the marginal
stability curve so that the determinant Gf,,, vanishes. The
instability bifurcations of multicomponent solitons were con-

can now use this construction and prove the main resultsidered in Refd.17,20 but the results do not agree with each
(i)=(iii) in Sec. Il. In the analysis below we assume that theother. Here, we recover the results of H&fZ] and derive the

condition(20) is never met and the root of(x) at <0 is
associated with the unstable eigenvablueof the stability
problem(4).

The roots ofy(u) may appear only to the right of any of
the n(A) resonant planes. There are totatlyA) jumps of
v(w) to positive values gi<0 and, therefore, no more than
n(A) roots of y(u) may exist foru<0.

normal form(9) by an elegant reduction of general algebraic
expressions.

Assumingu=0 for »=v" so thatU;»® =0, we find
the asymptotic solution of Ed4) in the form(21) and

N
_19®(x)
WM=0(X):>\nZ1 Lo t—r—.

9B 22



PRE 62 STABILITY CRITERION FOR MULTICOMPONENT . .. 8673

In this limit, the second variatioA’A of the Lyapunov func-  N-dimensional field[17]. Under the condition thah(A)
tional can be found from Eqg3), (5), (21, and (22) as =N, the particle isstable if in the B space the potential
follows: energy surfac&V(g) is concave up, and it isnstable if the
5 ) potential energy surface is saddle type or concave down. If
6°A=D1\%, (23 n(A)<N, the potential energy surfacd/(B) always has
someN—n(A) negative directions that do not affect the sta-
bility properties of the particle. However, the remaining
@ (x') 2 n(A) (<N) directions of the potential energy surface define
the stability of the particle with the same criterion as above.
9Bn Finally, for the cas&(A)> N, the soliton stability properties
(29 defined by the type of the potential energy surfaé@s) are
not conclusive since the corresponding unstable eigenvalues
coexist with an additional(A) — N unconditionally unstable

where

D= Jloodxz

(k)
o2 (x) ded) (x)

The integral converges under the condition thét is a so-
lution of the equationUy,»¥'=0. On the other hand, the

perturbation(21) shifts the soliton parametg® according to eigenvalues.
the expressionb(x, B) +u,_o(X) = ®(x, B+ ). As a re-
sult, the second variation can be closed as IV. EXAMPLE: TWO COUPLED NLS EQUATIONS
S2A=2[A— Ay B+ M) ]——Dy, (25) In. order to dgmonstrate_ how our general theory can be
applied to a particular physical problem and also to compare
where the stability and instability result&i)—(iii) in Sec. Il with
some earlier known examples, we consider here the impor-
Do=(»0|Up®). (26)  tant case of two incoherently coupled NLS equations in

(1+1) dimension(see, e.g.[23—-25):
The parametei in Eq. (25) is chosen from the condition
that the first variation of\ 4(8+ »¥) vanishes for arbitrary v Py
. This gives the connection formulat=Ay=HB) i azl !

+<|w1|2+ Y|®) =0,

+ 201 (Bt YY) Qen(B). Equating Eq.(23) and Eq.(25),
we recover the result of the bifurcation theory,
‘//2 5
}\2:_%. 27 i—— 97 1>+ y¢1|?) =0, (29
1

wherey is a coupling parameter. The systég9) is a two-
component reduction of the geneNdcomponent syster(l)

rdi=d,=1, y11= y»=1, andy,= y21= y. An explicit
soliton solution can easily be found f@,=8,=8 and vy
>—1 in the form

SinceD;>0 [see Eq(24)], the positive values ok? occur
when the determinant of the matrix is small and negative
(i.e., the matrixU has a zero-becoming-negative e|genvalue
when the soliton parametgd crosses the marginal stability
curve. The explicit formulas of soliton bifurcation theory
provide an alternative and more compact form for the deter- 25
minantsD, andD, compared to those obtained in REZ0]. _ N

The n(;)rmal form(9) follows from Egs.(23) and (25) ©1(x)=D(x) 1+y secti V). (30
when A=A4+E, and the perturbation vectar® is re-
placed by a slowly varying vectar=»(z) (see[17] for de-  This solution describes a two-component solitary wave with
tails). Then, the surfaceé\(8+ v) is extended beyond the the components of equal amplitude. It corresponds to a
second variation limit, and the linear approximation is con-straight line 8,= 8, in the parameter planegs(,3,) of a
verted into the slopex v(z) =dv(z)/dz. The mass constants general two-parameter family of solitary waves of the model

M ,m follow from Eq. (24) in the explicit form (29. When —1<y=<0, such two-parameter solitons may
exist everywhere in the plangs(,B,), while for y>0, the
E P (x") soliton existence domain is restricted by two bifurcation
e EL B2(x) J dx’ @ (x") 9B curvesB,=w-(7y) B, where
. Iy (X JI+8y-1)*?
X f dx’ @ (x) X)) (28) w.(y)= —) . (31)
0 aIBm 2

The normal form(9) resembles the conserved sum of the Approximate analytical expressions can also be obtained
kinetic energy and potential enerd¥/(B,v) of a particle in the vicinity of the bifurcation curve€1), when one of the
moving in anN-dimensional space. We notice that the ki- components of a composite solitary wave becomes small,
netic energy with the “mass” matrix28) is positive definite  while the other one is described by a scalar NLS equation.
and the unperturbed multicomponent solitary wéve., that  Such a case, when one of the component creates an effective
with »=0) is a stationary point ofV(B,v) for any». Thus, waveguide that guides the other component, is known to de-
the stability of multicomponent solitons resembles the stabilscribe the so-called shepherding effect where the large-
ity of a particle located at an equilibrium point of the amplitude component plays the role of a shepherding pulse
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[7]. The composite soliton that describes a shepherding puls'(
1 guiding a small component pulsg, can be found in the
form (see also Ref.25])

D1 =Ry(X) + €?Ry(X) + O(€*), P,=€S;(X)+O(€%).
(32

It exists in the vicinity of the bifurcation curve

Ba=w . (y)B1+ €wy. () B1+0(e), (33

and the main terms of the asymptotic seri8%),(33) are
defined as

Ro= 2B, secliVB1x), S,=B;sech*+(VBX),

and A0
| axsiravmopash -

jﬁwdxsf

The second-order correctid®,(x) is a solution of the dif-
ferential equation

W24+ =

FIG. 2. The instability-induced dynamics of the two-component
soliton (30) for y=—0.5 andB=0.25. The initial solution is taken
as Eq.(30) with the amplitude of thes; component increasdd) or
decreasedb) by 2%.

[— 35+ B1— 61 seci(VB1x) IR, = yRoST. _ -
always has a single negative eigenvalue for—3p8,
From the domain of existence of the two-component soliwhereas the second operator has no negative eigenvalues for

ton, it follows thatw,,(y)>0 for 0<y<1, andw,,(y)  y>1, has a single negative eigenvalue for §< 1, and has
<0 for y>1. At y=1 (the so-called integrable Manakov two negative eigenvalues fer1<y<0. Thus, in total there
caseg, a family of two-parameter composite solitons becomesxist n(A)=3 negative eigenvalues for 1<y<0, n(A)
degenerate: it exists on the |Iﬁ:B2 but, generally, itis =2 negati\/e eigenva|ues f0r<0fy<1, andn(A):l nega-
different from the one-parameter soluti@0). The coupled tjve eigenvalue fory>1.
solitons are known to be ;tgble for the integrable case Applying the stability and instability result@i)—(iii) ob-
=1. Here we apply the stability theory developed above andained and discussed in Secs. Il and Ill, we come to the
prove that the1+1)-dimensional two-parameter solitons, in- conclusion that the soliton solutiof80) with equal ampli-
cluding solitons of equal amplitude80), are stable fory  tudes is linearly stable fory>0, since in this domain

=0, and unstable foy<0. p(U)=n(A)={1,2, and linearly unstable for-1<y<0,
First, we evaluate the indicggU) andn(A) for the ex-  since in this domaip(U)=2<n(A)=3.
plicit solution (30). As follows from Eqgs.(29) and (30), the The soliton stability in the modgR9) for y>0 was also
Hessian matriXJ with the elements7) can be found in the  studied by Berg€23] who considered the case of degenerate
form one-parametric solitary wavg80). Here we have extended
those results to a general case: the same stability and insta-
Q1 dQy 1 Q1 dQy 24 bility results are valid for the two-parameter family of soli-

B B2 JB(1+y) and 9B, 9B JB(1+y)  tons provided that the indicgs(U) andn(A) remain un-
changed for the valuesp(,B,) in the soliton existence

It follows from these results that the Hessian matrix hasdomain. Indeed, applying a perturbation theory for small
p(U)=2 positive eigenvalues for-1<y<1, and p(U) (see[25] for detaily, one can show that(A)=3 for —1
=1 positive eigenvalue fory>1. On the other hand, the <y<0, andn(A)=2 for 0<y<1.

linear matrix operatok ; given below Eq(3) can be diago- To analyze the soliton instability fop<<O, we note that
nalized for linear combinations of the eigenfunctiong  the instability eigenfunctions are symmetric in space and
=u;+Uu, andv,=u;—U, such that therefore this kind of instability is not associated with the
translational motion of the soliton components. Instead, one
[— (9)2(+ B— 63 sech( \/Ex)]z)l:,uvl, possible scenario of the soliton evolution is a transformation

(34)  of the two-component soliton into a one-component one. To
) (3—7v) confirm this expectation, we show in FigaZo the results of
—&X+ﬁ—2ﬁmsecﬁ(\/ﬁx) V2= MU the numerical simulation of a two-component solitary wave
in (29 for y=—0.5. Two cases are considered: when the
Both the operators in Eq§34) are linear Schidinger opera- amplitude of one of the componengsay ;) of the exact
tors with solvable sech-type potentials, and the correspondsolution(30) is either increased or decreased by 2%, whereas
ing eigenvalue spectra are well studied. The first operatothe second componenty§) remains unchanged. In the
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former casdsee Fig. 2a)], the perturbed component oscil- for the shepherding solitof82) hasn(A) =2 negative eigen-

lates slowly, approaching a new stable state of a onevalues for 6<y<1, andn(A)=1 negative eigenvalue for

component soliton whereas the second component decays Vja>1. Thus, we come to the conclusion that the shepherding

a splitting into two diffracting beams. In the latter cdsee  soliton is stable fory>0 sincep(U)=n(A)={1,2.

Fig. 2b)], the dynamics looks opposite, i.e., the component

with the reduced amplitude decays, while the second compo- V. CONCLUSION

nent evolves to a stable one-component soliton. _ N ) )
Finally, we consider the other limiting case that describes We have developed a rigorous stability analysis of multi-

the shepherding effefsee Eqs(32) and(33)]. In this limit, ~ component solitary waves by considering a system of inco-

the element$7) of the Hessian matrixJ can also be calcu- herently coupled NLS equationid) as a particular but im-

lated in explicit analytical form, portant physical example. The method and, correspondingly,
both stability and instability results can be extended to other
9Q, 1 r§ e types of solitary waves, such as multicomponent spatial soli-
— ==t +0(€%), tons (e.g., incoherent solitonsn non-Kerr (e.g., saturab
B VB, @2ist (e.g 0 (e.g le

media, parametric solitary waves in quadrdtc y(?)) opti-
cal media, etc. In all such cases, our stability and instability
results(i)—(iv) in Sec. Il can be readily generalized with a
(?_Ql:&_QZ: M2 +0(e?) "7_QZ: S1 rigorous proof of some of the previously known results of
B2 IB1  way "By way] the asymptotic multiscale expansion theory. However, addi-
tional analysis is required in each of those cases in order to
clarify the conditions when these results completely define
- the stability properties of multicomponent solitary waves. In
RoR,dX. the cases beyond these conditions, oscillatory instabilities
* may occur, and appropriate studies should rely solely on nu-
merical analysis of the corresponding eigenvalue problems
and their linear spectra.

where

slzéfi Sfdx and rzzf

Sinces; >0 for any y, while w,, (y)>0 for 0<y<1 and
w, 4 (y)<0 for y>1, the Hessian matriXJ calculated for
the shepherding solitof82) hasp(U)=2 positive eigenval-
ues for O<y<1, andp(U)=1 positive eigenvalue foty
>1. The authors appreciate collaboration with A. A. Sukho-

On the other hand, the linear matrix operditgrcannot be  rukov and E. A. Ostrovskaya. D.P. thanks C. K. R. T. Jones,
diagonalized for the shepherding solit@2) unlesse=0. In K. Promislow, M. Weinstein, J. Yang, and A. Yew for stimu-
the latter (decoupled case, it has a single negative eigen-lating discussions at different stages of the work. The work
value atu=—3p; and a double degenerate zero eigenvaluewas supported by the Performance and Planning Fund of the
When €#0, the zero eigenvalue shifts to become= Institute of Advanced Studies and by the Australian Photon-
— 2w, (y) B1€2+O(€*). Therefore, the matrix operattr,  ics Cooperative Research Center.
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