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Abstract

We prove convergence of the Adomian Decomposition Method (ADM) by using the
Cauchy-Kovalevskaya theorem for differential equations with analytic vector fields, and
obtain a new result on the convergence rate of the ADM. Picard’s iterative method
is considered for the same class of equations in comparison with the decomposition
method. We outline some substantial differences between the two methods and show
that the decomposition method converges faster than the Picard method. Several non-
linear differential equations are considered for illustrative purposes and the numerical
approximations of their solutions are obtained using MATLAB. The numerical results
show how the decomposition method is more effective than the standard ODE solvers.
Moreover, we prove convergence of the ADM for the partial differential equations and

apply it to the cubic nonlinear Schrodinger equation with a localized potential.
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Introduction

In the 1980’s, George Adomian (1923-1996) introduced a new powerful method for
solving nonlinear functional equations. Since then, this method has been known as
the Adomian decomposition method (ADM) [3,4]. The technique is based on a de-
composition of a solution of a nonlinear operator equation in a series of functions.
Each term of the series is obtained from a polynomial generated from an expansion
of an analytic function into a power series. The Adomian technique is very simple in
an abstract formulation but the difficulty arises in calculating the polynomials and in

proving the convergence of the series of functions.

Convergence of the Adomian method when applied to some classes of ordinary and
partial differential equations is discussed by many authors. For example, K. Abbaoui
and Y. Cherruault [1,2] proved the convergence of the Adomian method for differential
and operator equations. Lesnic [35] investigated convergence of the ADM when applied
to time-dependent heat, wave and beam equations for both forward and backward time
evolution. He showed that the convergence was faster for forward problems than for
backward problems. Al-Khaled and Allan [7] implemented the Adomian method for
variable-depth shallow water equations with a source term and illustrated the conver-
gence numerically. A comparative study between the ADM and the Sinc-Galerkian
method for solving population growth models was performed by Al-Khaled [6], while
that between the ADM and the Runge Kutta method for solving systems of ordinary



differential equations was performed by Shawagfeh and Kaya [42]. Wazwaz and Khuri
discussed applications of the ADM to a class of Fredholm integral equations that occurs
in acoustics [44]. Wazwaz also compared the ADM and the Taylor series method by
using some particular examples, and showed that the decomposition method produced
reliable results with fewer iterations, whereas the Taylor series method suffered from
computational difficulties [45]. In [46] Wazwaz modified the ADM to accelerate the
convergence of the series solution. The validity of the modified technique was verified
through illustrative examples. Furthermore, in [47] he developed a numerical algo-
rithm to approximate solutions of higher-order boundary-value problems. Application
of Chebyshev polynomials to numerical implementation of the ADM were discussed

by Hosseini [29)].

In [25] Guellal and Cherruault used the Adomian’s technique for solving an el-
liptic boundary value problem with an auxiliary condition. Ndour et al. [38] used
the decomposition method to solve the system of differential equations governing the
interaction model of two species. Comparative study between the Adomian method
and wavelet-Galerkin method for solving integro-differential equations was performed
by El-Sayed and Abdel-Aziz [19]. El-Sayed and Gaber used the Adomian method for
solving partial differential equation of fractal order in a finite domains [18]. Adomian
et al. [5] used the technique to solve mathematical models of the immune response to
a population of bacteria, viruses, antigens or tumor cells that are expressed by systems
of nonlinear differential equations or delay-differential equations. Laffez and Abbaoui
[34] studied a model of thermic exchanges in a drilling well with the decomposition
method. Guellal et al. [26] used the decomposition method for solving differential
systems coming from physics and compared it to the Runge-Kutta method. Sanchez
et al. [41] investigated the weaknesses of the thin-sheet approximation and proposed a
higher-order development allowing to increase the range of convergence and preserve

the nonlinear dependence of the variables. Edwards et al. [17] compared the ADM and



the Runge-Kutta methods for approximate solutions of predator prey model equations.

Jafari and Gejji [32] modified the ADM to solve a system of nonlinear equations.
They obtained a series solution with a faster convergence than the one obtained by the
standard ADM. Luo et al. [36] revised the ADM for cases involving inhomogeneous
boundary conditions, using a suitable transformation. Luo [37] proposed an efficient
modification to the ADM, namely a two-step Adomian Decomposition Method that
facilitated the calculations. Zhang [49] presented a modified ADM to solve a class of
nonlinear singular boundary-value problems, which arise as normal model equations
in nonlinear conservative systems. Zhu et al. [50] presented a new algorithm for cal-
culating Adomian polynomials for nonlinear operators. Gejji and Jafari [21] presented
an iterative method for solving nonlinear functional equations. In addition, the ADM
was used to solve a wide range of physical problems in various engineering fields such
as vibration and wave equation [9] and [15], porous media simulation [39], fluid flow

[8], heat and mass transfer [16].

Thus, we see that the Adomian decomposition method has been used to solve many
functional and differential equations so far. The purpose of this thesis is to study
convergence and stability of this method in application to the initial-value problems
for systems of nonlinear differential equations. We prove convergence of the ADM
by using the Cauchy-Kovalevskaya theorem for differential equations with analytic
vector fields, and obtain a new result on the convergence rate of the ADM. Picard’s
iterative method is considered for the same class of equations in comparison with
the decomposition method. We outline some substantial differences between the two
methods and show that the decomposition method converges faster than the Picard
method. Several nonlinear differential equations are considered for illustrative purposes
and the numerical approximations of their solutions are obtained using MATLAB.
The numerical results show how the decomposition method is more effective than the

standard ODE solvers. Moreover, we prove convergence of the ADM for the partial



differential equations and apply it to the cubic nonlinear Schrodinger equation with

locaized potential.

This thesis is structured as follows: Chapter 1 is devoted to convergence of the
ADM for ordinary differential equations. It consists of five sections. The Adomian
decomposition method is described in Section 1.1. A comparison between the ADM
and the Picard method is demonstrated in Section 1.2. Section 1.3 gives a simple proof
of convergence of the Adomian technique by using the Cauchy-Kovalevskaya theorem.
The rate of convergence of the ADM is studied in Section 1.4. Section 1.5 presents a

counter example to prove that the ADM is not a contraction method.

Chapter 2 is devoted to numerical implementation of the ADM in MATLAB. It
consists of two sections. Section 2.1 formulates numerical algorithms for the ADM and
the Picard method in application to initial-value problems for ODE’s. Two examples
of second-order differential equations are presented in Section 2.2 to illustrate the

accuracy of the ADM.

Chapter 3 extends the convergence analysis and numerical approximations to par-
tial differential equations. It consists of two sections. Section 3.1 gives a proof of
convergence of the ADM for semilinear PDEs associated to an unbounded differen-
tial operator. Section 3.2 presents two numerical examples of solutions of the cubic

nonlinear Schrodinger equation with a localized potential.



Chapter 1

Convergence of the ADM for ODEs

In this chapter, we prove convergence of the ADM for initial-value problems as-

sociated with systems of ordinary differential equations.

1.1 Formalism of the ADM

In reviewing the basic methodology, we consider an abstract system of nonlinear

differential equations:

ay _

= f(ty), yeR, [:RxR R, (1.1)

with initial condition y(0) = yo € R¢. Assume that f is analytic near y = y, and ¢ = 0.
It is equivalent to solve the initial value problem for (1.1) and the Volterra integral

equation
y(t) = yo +/0 f(s,y(s))ds. (1.2)

To set up the Adomian method, consider ¥ in the series form:
o0
y=v%+> Un (1.3)
n=1
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and write the nonlinear function f(¢,y) as the series of functions,

f(t,y) :ZAn (tayoayla---ayn)' (1'4)

n=0
The dependence of A, on ¢t and 1y, may be non-polynomial. Formally, A,, is obtained

by

A= =L too" =0,1,2 1.5
n_ﬁd—gn 7Z€yi _7 n=~u1l,z.. ()
1=0 e=0
where ¢ is a formal parameter. Functions A,, are polynomials in (1, ...., ¥»), which are

referred to as the Adomian polynomials.

In what follows, we shall consider a scalar differential equation and set d = 1. A

generalization for d > 2 is possible but is technically longer.

The first four Adomian polynomials for d = 1 are listed as follows:

AO = f(tayo)
A = uf'(tyo)

1
Ay = y2f'(t,yo)+§y%f"(t, Yo)

1
As = ysf'(t,y0) + iy f"(t, yo)+6yf’f”’(t, %),

where primes denote the partial derivatives with respect to y.

[t was proven by Abbaoui and Cherruault [1,2] that the Adomian polynomials A,

are defined by the explicit formulae:

"1
An = Z Ef(k)(ta yO) ( Z ypl""ypk> ) n Z ]-7
k=1

p1+...+pr=n

or, in an equivalent form, by

k1 kn
_ (k1) NoeYn”
An = Py 2 b

[nk|=n

where |k| = ki + ... + ky, and |nk| = ki + 2k + ... + nk,.

6



Khelifa and Cherruault [33] proved a bound for Adomian polynomials by,

(n + 1)nMn—|—1

Apl <
Al (n+1)!

, (1.5)

where

sup [f® (¢, y0)| < M,
teJ

for a given time interval J C R.

Substitution of (1.3) and (1.4) into (1.2) gives a recursive equation for y, 1 in terms

Of (y07y17 7yn) :
t
yn+1(t):/ Ay (5, 50(5), 01 (5)s s yn(s))ds, 1 =0,1,2, . (1.6)
0

Convergence of series (1.3) obtained by (1.6) is a subject of our studies in this chapter.

1.2 Comparison between the ADM and the Picard
method

The ADM was first compared with the Picard method by Rach [40] and Bellomo
and Sarafyan [12] on a number of examples. Golberg [22] showed that the Adomian
method for linear differential equations was equivalent to the classical method of suc-
cessive approximations (Picard iterations). However, this equivalence does not hold
for nonlinear differential equations. In this section we compare the two methods and

show differences and advantages of the decomposition method.

Recall that Picard’s method introduced by Emile Picard in 1891, is used for the
proof of existence and uniqueness of solutions of a system of differential equations.
The Picard method starts with analysis of Volterra’s integral equation (1.2). Assume

that f(¢,y) satisfies a local Lipschitz condition in a ball around ¢ = 0 and y = yo:

7



where K is Lipshitz constant and |y| is any norm in R?, e.g. the Euclidean norm
1
lyl = (y2 + ... +y2)=.

Let y(© =y, and define a recurrence relation

t
VO =+ [ Sy s n=0,1.2,... (1.7)
0
If ¢, is small enough, the new approximation y™+% (¢) belongs to the same ball |y—yq| <
Jdp for all [t| < ¢y and the map (1.7) is a contraction in the sense that

< Q sup |y(t) —y(t)], (1.8)

[t| <to

Av@mm—ﬂmmmw

1
where () = Kty < 1, so that 5 < e By the Banach fixed point theorem, there
exists a unique solution y(t) in C([—to, to], Bs,(y0)) where By, (yo) is an open ball in
R? centered at y, with radius d,. Recall here that C'([—t, o], RY) with the norm

lyll = sup [y(?)| (1.9)

[t/<to
is a complete metric space. Since the integral of a continuous function is a continu-
ously differintiable function, y(¢) is actually in C'*([—to, 9], Bs,(y)). By the contraction

mapping principle, the error of the approximate solution y™ () is estimated by:

MKnt6L+1

E,=|ly—y™| < ( M =sup sup |f(ty)l.

' )
n+ 1)' [t|<to |ly—yo|<do

In [30], Hosseini and Nasabzadeh claimed that the Adomian iteration method (1.2)

can be formulated as

t
nﬂzm+/f@n@ma (1.10)
0
where
Yo=1o+ > Uk (1.11)
k=1

However, the claim is wrong since
ZAz(tayﬂaylaayz) %f(ta Yn(t))a TLZ L.
=0

8



Moreover, the above iteration formula on Y,,, n € Nis nothing but Picard’s iteration

formula and, therefore, the proof of convergence of the iterative method (1.10) in [30]

repeates the standard proof of convergence of Picard iterations and gives no proof of

convergence of the ADM. Computations of Picard’s iterative algorithm were reported

recently in [48].

Now, we shall understand the relationship between the ADM and the Picard

method using an example of a scalar first order ODE:

dy
29 P
it Y
y(0) =1
where p > 1. This differential equation has the exact solution
1

) = 1
U Ty

Following the Adomian method, we write

y(t) =1+ /Ot yP(s)ds

and compute the Adomian polynomials from f = y? in the form:

Ay = Z/ga

A= pyy

A = @%1%3@%m%1m
plp—1)(p—2)

Ay = yo Py +p(p — Vyb 2yiye + oyl lys

6

Using (1.6), we determine few terms of the Adomian series:

yU(t) = 17

yl(t) = ta

yQ(t) = §t27
2p—1

y3(t) = p( ]Z))' )t37
6p* — Tp + 2

(1.12)

(1.13)



Expanding (1.13) in a power series of ¢, we can see that the Adomian decomposion

recovers the power series solution:
1

1
(1—(p—1)t)eT
p(2p — l)tg N p(6p* — Tp +2)
3! 4!
= Yot+ty1+Y+ys+ys+ ...

y(t) =

'+ O(t%)

= 1+t+§t2+

On the other hand, using Picard iterations,

t
D — 1 ¢ / (y™(s))" ds,
0

we obtain succesive approximations in the form:

y© =1,
y = 14t

I
y(2) _ p +( ) ,

1+p 1+p

t
y® = 1+/ (y(Z))pds.
0

Starting with y(®, Picard approximations mix up powers of ¢t which make 3™ being

different from the n-th partial sum of the power series. For instance, if p = 2, then

y(U) - 1:y07
yV = 14+t=yo+uy,
) ) t3 t3
y@ = 14+t+t tI=wn g

2 1 6 47
B = 14+t+2+8+ "+ 0+ —+ —
y 3" T3 T 9 T 63

o ¢

2, 1
= Yoty tptyt ottt —+ —.
YoT Y1 TY2TYs 3 3 9 63

Since Y., y;(t) is a partial sum of the power series for (1.13), we conclude that

the Adomian method better approximates the exact power series solution compared

10



to the Picard method. In general, since the Adomian method requires analyticity of
f(t,y), which is more restictive than the Lipschitz condition required for the Picard
method, we expect that the ADM converges faster than the Picard method. We will

illustrate this feature in Chapter 2.

1.3 Convergence Analysis

It is clear from (1.5) that A,, are polynomialsin yi, ...., ¥, and thus y,; is obtained
from (1.6) explicitly, if we are able to calculate A,. The first proof of convergence of
the ADM was given by Cherruault [14], who used fixed point theorems for abstract
functional equations. Furthermore, Babolian and Biazar [10] introduced the order
of convergence of the ADM, and Boumenir and Gordon [13] discussed the rate of

convergence of the ADM.

The proof of the convergence for the ADM was discussed by Cherruault [14] (see
also Himoun, Abbaoui, and Cherruault [27,28] for recent results in the context of the

functional equation
y=vyo+ fly), yeH, (1.14)

where H is a Hilbert space and f : H — H. Let S, = y1 + y2 + ..... + yp, and
fo(yo + Sn) =1, Ai. The ADM is equivalent to determining the sequence {S, }nen
defined by

Sn—l—l :fn(y0+sn)a SOZ0

If there exist limits
S=limS,, [f=Ilim f,
n—00 n—00
in a Hilbert space H, then S solves a fixed-point equation S = f(yo + S) in H. The

convergence of the ADM was proved in [14], under the following two conditions:

Ifl<1, [Ifa—fll=en—0 as n— o (1.15)

11



These two conditions are rather restrictive. The first condition implies a constraint
on the nonlinear function (1.14) while, the second condition implies the convergence
of the series Y > A,. It is difficult to satisfy the two conditions for a given nonlinear
function f(y). In the following, we shall prove convergence of the Adomian method in
the context of the ODE systems (1.1) by using the Cauchy-Kovalevskaya theorem. We
only require that the nonlinearity f be analytic in ¢t and y. Let us start by reviewing

the Cauchy-Kovalevskaya theorem for ordinary differential equations.

Theorem 1.3.1. Let f : R x R — R? be a real analytic function in the domain
[—to,to] X Bs,(yo) for some ty > 0 and 6y > 0. Let y(t;y0) be a unique solution for

t € [—to, to] of the initial-value problem

dy
at =Y (1.16)
y(0) = yo

Then y(t; yo) is also a real analytic function of t neart = 0 that is there exists T € (0, )

such that y : [—7,7] = R? is a real analytic function.

Remark 1.3.2. Existence, uniqueness and continuous dependence on t and yo of
y(t;yo) follows from Picard’s method since if f is real analytic, then it is locally Lips-
chitz.

Remark 1.3.3. We shall consider and prove Theorem 1.3.1 for d = 1. Generalization
for d > 2 can be developed with a more complicated formalism, see [43] for further

details on Cauchy-Kovalevskaya theorem.

Proof. By Cauchy estimates for a real analytic function in the domain [ty, to] X By, (%)

[24], there exist a, C' > 0 such that

1+ 1£(0,40)| (1.17)

1
> Fa oo <
k1+ko=k

IN

Yk > 1,k ke > 0 (1.18)

12



By the Cauchy estimates (1.17, 1.18), the Taylor series for f(¢,y) at ¢ =0 and y = y
is bounded by

L+ [f(t, )] i() _ o =9g(p),

k=0 ¢ a=p
where p = [t| + |y — yo| < a. By the Weierstrass M-test, the Taylor series for f

converges for all

[t + |y — ol < a. (1.19)
Therefore, we have
L+ [f(0,50)] < C=g(0)
Lok £(0 < C_Liw©), Vhik>0k>1
Z kI!kZ!‘t yf(7y0)‘ = JZHQ (0), LRz 2 U,k 2L

k1+ko=k

Let us consider a majorant problem for p € R, :

This problem has an explicit solution
p(t) =a— va?—2aCt,

which is an analytic function of ¢ in || < 5%. By comparison principle, if

dy
5 =1ty
?J(O) =%

and 1+ |f(t,y)] < g(|t| + [y(t) — wol), for all [t] + |y(¢) — yo| < a then
[t + |y (t) = vo| < p(t) = a — Va> = 2aCt = Zk,p
Therefore, for all ¢t > 0,

19(:0) — ol < (s Zi,

13



where the Taylor series converges absolutely in |t| < 5%. To prove that y(t;yo) is

analytic function in |¢| < min (a, %), it remains to prove that ‘y(k)(O,yo)‘ < p(0)

for any £ > 1. If this is the case, then the Taylor series for y(¢,yo) has a majorant
convergent series, such that the Taylor series for y(¢,yo) converges, by the Weierstrass
M-Test. To prove that |y*)(0;y)| < p*)(0), we compute the first three derivatives
explicitly from the ODE system:

d’y of ~ofoy _of  of

T oo ey ot oy
d*y O’ f O?f ofof of o f
“d 9 vl Y) vJ
it oz " gy T ot oy +f<3y> i
for example
d*y of of
ae| S ‘a +‘a_ 7

< GO (1+17) < 9(0)g'0) = 2200

d3y 32f 0% f
| < |5] 2 am|v1 [a] 3]+ 1[5
< g"(0) (L+1fD)* + (4'(0))" (1 +|f])
d3
< g*(0)g"(0) + (¢'(0))* 9(0) = d—tf(o)
Generally

y* (03 90) = Prl(f)i=0,y=s0

where P,(f) is a polynomial of f and its partial dervatives up to k* order evaluated

at t =0 and y = yo. Since Py(f) has positive cofficients and by (1.19) we obtain

‘y(k'i'l) (0’ yo)‘ fd |Pk(f)|t:0,y:y0 S Pk(|f|)|t:0:y:y0

< Pe(L+ [ fD)li=oy=y0 < Pr(9)lp=o = p*F0(0),k > 0 (1.20)

where the last identity follows from the ODE % = g(p). Thus, the statement of the

theorem is proved. O

14



We can now state the main result of this chapter.

Theorem 1.3.4. Let f : R x R — R? be a real analytic function in the domain
[—to, to] X Bs,(yo) for some ty > 0 and &y > 0. Let y,(t) be defined by the recurrence
equation (1.6). There exist a 7 € [0,ty] such that the n'™ partial sum of the Ado-
mian series (1.3) converges to the solution y(t;yo) of the Volterra equation (1.2) in
C([-r, 7], R%).

Remark 1.3.5. Similarly to Theorem 1.3.1 we shall prove Theorem 1.5.4 for the

simplest case of d = 1.

Proof. Working with iteration of the Adomian method, we set

Ve (t) = /OtAk(s,yg(s), ..... (), > 0 (1.21)

where
gL o
k= y@f t,y0+m2:15 Y | le=0
For instance, we obtain at £ =0
t
(O < [ 1$.n) ds < g(0)¢ = (O}
0

at k=1
12 2,

IMMSAU%%MMﬂﬁﬁgﬂW@E—Mm

Let the following relation be true at kK = n

1
— )
(0] < —"5"(0)

We shall prove that the same relation is true at £ =n + 1:

Let



where £ > 0 is a formal parameter. Then,

|<ng|ym |<ZHP7 (f: i)LO)

=0 m=n+1

Let m — (n+ 1) = then

S ltl
Y, ()| < plet) — ettt e
0] < plet =S T

p1+l+n(0)‘
Therefore, there exist a C* function Y, (¢) on [—7, 7] such that

Yo(t) = plet) — et Y, (1), Vit € [—7,7]

where 7 is defined by Theorem 1.3.1. The first few estimates of Adomian polynomials

are given by

[Ao| < € =9(0) = p'(0)
/ C / /!
(Al < Ayl < —g(0)t = tg(0)g'(0) = tp"(0)
n C
Aol < 17 el 4 5 152 < ol + S ol
t2 ! 2 " 2 t2 /1
< 5 (9(0)(¢'(0))* +¢"(0)(9(0))*) = 5"(0).
To estimate A,(t) in general case, we use formula
1 d”
An(t) = Hd—g”f(t’ Yo (t))]e=0
and compute
] < o TAwY| <)
" B dem o e=0 d " p=ct=0
"o
< LIR(o(0))] < S 0), (1.2

where the last inequality is obtained in (1.20). Using the iterative formula (1.21), we
finally obtain

7tn+1p(n+1) (0)

|yn+1(t)| S (n+ 1)'

16



Therefore, the Adomian series is majorant by the same power series as the analytic
solution in Theorem 1.3.1 is. By the Weierstrass M-test, the Adomian series converges.
Moreover, as follows from (1.21) the series (1.4) for Adomian polynomials converges
too, so that the Adomian series solves the same Volterra integral equation (1.2) in
C ([-7,7],R). By uniqueness of solutions, the Adomian series is equivalent to the

solution y(t;yo) of the Volterra equation (1.2). O

1.4 Rate of convergence

In this section, a simple method to determine the rate of convergence of the ADM
is introduced. Using this method, we give a bound for the error of the Adomian

decomposition series.

Theorem 1.4.1. Under the same condition as in Theorem 1.3.4, the rate of conver-

gence is exponential in the sense that there exists Cy > 0 such that
E, < Cy (—T> Con>1

for all T < 55, where

b, =

b

Yy — Z Ym
m=0

and (a,C) are defined in Cauchy estimates (1.17)-(1.18).

Proof. By Theorem 1.3.4, we have

tn+lp(n+1) (0)

S vVt € [0, 7],

|yn+1 (t)| S

so that
,/._n-l—lp(n-i-l) (0)

< 7 A7
||?Jn+1|| = (n+ 1)! )

17



where the norm [|-|| in C([—7, 7], R?) is defined by (1.9). Since p(t) is explicitly given
by

p(t) =a—va?—2Cat,
then
(2n = 3)NC™

P (0) = (1.23)

an
By Theorem 1.3.4, the Adomian series y(t) = > °_, Y (t) converges and the error is
defined and estimated by

= = = mp(0 > a(CTY _.
N EDSTEDS T()S 3 ﬁ<7) (27 — 3)1
’ j=n-+1 ’

j=n-+1 j=n+1 j=n-+1

E, =

Let k=j — (n+1), then

207\ e~ (2k +2n — D! 207\ "
E, < — .
”—a< a ) ng+n+1(k+n+1)!< a >

k=0
Since
(2k 4+ 2n — 1! 1
< <1Lvn>1,k>1
P (ktpn+ 1) 22k = ==
we obtain
207\ "
207" & 207\ " a< a >
< —_— =
see(5) LT) -t
k=0 1——
a
for all 7 < %. The theorem is proved with Co = 5= ]

1.5 Is the Adomian iterative method related to a

contraction operator?

We recall that the Picard iterative method (1.7) is related to a contraction operator

provided the time interval [—t, o] is small enough. We shall ask if the Adomian
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iteration formula (1.6) is related to a contraction operator. The question can be

formulated as follows. Let Y,,(t) = > _, ym(t). Is there a constant @@ < 1 such that
Yoi1 — Yol QYo — Yooull, Yn>1, (1.24)

or, equivalently, ||yn+1|] < Q||yn]|?- We will show, however, that the answer is negative
in general. To be more precise, we will construct a counter-example for d = 1, which

shows that no ) < 1 exists in a general case.

In particular, consider the first-order differential equation

dy

2 — 9y — 2

a ~ VY (1.25)
y(0)=1

with exact solution y = 1 + tanh(¢). By the ADM, we write the above initial-value

problem in the integral form:

y(t) =1+ / (2(5) — 4 (5))ds

and compute the Adomian polynomials for f(y) = 2y — y? in the form

Ay = 2yp— yS,

Ar = 2y — 2youn,

Ay = 2y — 2yoy2 — ¥,

As = 2y3 — 2(Yoys + v1v2),

Ay = 2ys—2(Yoys + 11y3) — Y.

Using (1.6), we determine few first terms of the Adomian series

Yo = 1, U1 =1 Yo = U; Ys = 37 Ys = U, y5—15

Therefore, Adomian iterations are not related to a contraction operator since even-

numbered corrections of y, (t) are zero.
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On the other hand, using Picard iterations,
t
W =1 [ (2G) - ) d,
0
we obtain successive approximations in the form:

0 — 7.

?

yV = 141
3
y@ = 14t-— 3
2 7
(3) — 14+t— — 4+ -
Y 315 63
and the successive approximations satisfy
ly™ =y < @[ly™ =y

for some @ < 1 provided that [—t, ] is sufficiently small.

Note again, similarly to Section 1.2 that the Picard method mixes up powers of
the partial sum for the exact solution y(¢) = 1 + tanh(¢), while the Adomian series is
equivalent to the power series in time. Therefore, the ADM is expected to converge
faster than the Picard method. We shall illustrate this point with more examples in

Chapter 2.
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Chapter 2

Numerical implementation of the

ADM for ODEs

In this chapter we describe how to implement the ADM numerically. We also

compare the ADM with the Picard and Runge-Kutta methods using MATLAB.

2.1 Numerical algorithm for the ADM and Picard

method

Consider the following initial-value problem for a system of differential equations:

dy
a - f(ta y) (2.1)
?J(O) = Yo

where y € R?, and f : R x R? — R?. For instance, if # : R — R satisfies the

initial-value problem for the second-order differential equation

" =F(t,x,2"), z(0)=A, 2'(0)=B, (2.2)
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then the vector y € R? with components y; = x, y» = 2’ satisfies the system (2.1) with

Y2 A
f= , Y= (2.3)
F(ta Y1, y2) B

Adomian Decomposition Method (ADM)

To solve equation (2.1) using the Adomian decomposition method numerically we
define elements of the Adomian series by recursive equation (1.6) and apply the trape-

zoidal rule on [0, 7] with grid points at
tm=mh, m=20,1,2,...M,

where h = % Then,

alim) = B0, 0(0), 1o 0) + Al gl i) (20
) DERURTIANATH))

where yy(t) = yo and y,,(0) =0 for n > 1.

After Adomian polynomials A, are computed recursively in the explicit form for
n =0,1,2,.... N, we can use the trapezoidal rule (2.4) on the grid {tm}%zo by in-
crementing n from n = 0 to n = N. Thus, we can define the n'’-partial sum of the

Adomian series on the grid {t,,}"_, by

i=1
forn=1,2,...Nand m=1,2,...., M.
Picard Method (PM)

To solve equation (2.1) using the Picard method numerically we take the recursive

equation (1.7) and apply trapezoidal rule on the same grid in the form:

Y (tn) = yo + g (f(O, y " (0)) + f (tm, y™ (tm)) + i: It y(")(tj))> )

i=1
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where y(©)(t) = yo and y™(0) = y, for all n > 1.
Runge-Kutta Method (RKM)
To solve equation (2.1), using the Runge-Kutta method, we take the standard

Runge-Kutta method of the fourth-order given by

h
Ymtl = Ym + 5 (k1 + 2ko + 2ks + ky) ,

tm+1 = tm + h, (26)

where y,, is a numerical approximation of the solution y(¢; yo) at t = ¢, and

kl - f(tmaym)a
h h
k2 - f<tm+§7ym+§k1> )

h h
k3 - f<tm+§7ym+§k2>a

ky = f(tm+ h,ym + hks3). (2.7)

2.2 Two numerical examples

Two examples of the initial-value problem for second-order differential equations
are considered here. In the first example, we compare the Adomian decomposition
method and the Runge-Kutta method. In the second example, we compare the Ado-
mian decomposition method and the Picard method. The numerical computations are

performed using MATLAB.
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Example 2.1

Let us consider the nonlinear differential equation:

d?y 3
-+ 1] - —
dt? < cosh?(t)

with initial conditions y(0) = 1 and y'(0) = 0. The exact solution for this initial-value

) y(t) + () = 0 (2.8)

problem is Yezqaet(t) = sech(t).

Equation (2.8) is a stationary Gross-Pitaevskii equation that describes, for example,

localization of an atomic gas in trapped Bose-Einstein condensates.
Approximation by the ADM
We first compute the Adomian polynomials for f(y) = y* using generating rule

(1.5). The first four polynomials are

AO = yga

Al = Sygyla
Ay = 3y0yf + 3ZJ§Z/27
As = 3ysyg + 6y21190 + Y-

A general formula is also available:

k k—t

A = Z Z YilYiYk—i—j

i=0 j=0

Integrating twice the differential equation, we obtain the recursive formula for the

ADM in the form:

i) = [ ar [ (1= 5] o)+ o) ol ) s, >0

cosh?(s)
starting with yo = 1. If Y,,(¢) is a partial sum of the Adomian series, the approximation

error of the ADM is defined by

Eqi?DM(T) = ||Yn - yexact” = Ssup |Yn(t) - yexact(t)| .
te[0,7T7
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T Error RK Error AD n =15 | Error AD n = 30

0.5 0.7131 x 10719 | 0.8103 x 1010 0.7128 x 10714

1 | 0.1633 x 107° 0.6215 x 1078 0.8754 x 10713

1.5 | 0.3123 x 107° 0.7588 x 1076 0.5421 x 10~*

2 | 0.4907 x 107° 0.8752 x 10~* 0.2112 x 107?

Table 2.1: Comparison of errors between the ADM and the RKM

The error is evaluated on the discrete set {tm}gzo for a numerical approximation of

Yo (t).
Approximation by the RKM
Let y = 1, y' = x4, and write equation (2.8) in the form
Ty = 1

3
x = [1-— T+ ad
2 < cosh? t> ! !

Runge-Kutta method computes the approximations by using (2.6) and (2.7) for (1, z3).

The approximation error of the Runge-Kutta method is defined by:

ERKM(T) = ||yRK - yexact“a

where ygx is the numerical approximation obtained on the discrete grid {t,,}M_,.

Table 2.1 shows comparison of the errors between the two methods. We find that
the approximation obtained from the Adomian method with n = 15 is less accurate
than the approximation obtained from the Runge-Kutta method for 7" > 0.5. On the
other hand, the Adomian method with n = 30 gives a smaller approximation error
than the Runge-Kutta method for all 7' < 2. Therefore, the ADM is superior to
the Runge-Kutta method for smaller time intervals (for which we proved convergence
of the Adomian series in Chapter 1) but the Runge-Kutta method might be more

accurate for longer time intervals.
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log(E)

Figure 2.1: Comparison of errors between the ADM (solid curve) with n = 30 and the
RKM (dotted curve) for T' = 2

0 -4
=2 -6
@ -4 I -8
3 ;
= -6 - -10
-8 12
-10 : ~14 . . . .
5 10 15 20 25 30 5 10 15 20 25 30
n n

Figure 2.2: Graph of the approximation error of the ADM (dotted curve) versus n and
the approximation error of the RKM (solid curve) for T'=1 (right) and 7" = 2 (left).

Figure 2.1 shows that the error of the RKM increases much slower than the error
of the ADM with a fixed n = 30. If n is fixed, there exists a value of T" = Tj such that
the error of the RKM is smaller than that of the ADM for T > Tj.

This tendency is also seen on Figure 2.2 for T =1 (left) and 7' = 2 (right), where
the errors are plotted versus n. For a given 7', there exists a value of n = ng such that

the error of the ADM is smaller than that of the RKM for n > ny.
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Example 2.2

Let us consider the nonlinear differential equation:

d2
d—tg + e Hy? = 2¢ (2.9)

subject to the initial conditions, y(0) = 3'(0) = 1, which has exact solution y(t) = €.
This example was previously solved by El-Kalla [20]. He introduced a new definition

of the Adomian polynomials:

AO = f(tayO)a
An — f(t, Yn) - f(ta Ynfl)a

R

so that

> Ailtyo, i) = F(1,Ya(D)).

i=0
He used the ODE (2.9) to claim that the Adomian series solution using the new

definition of A, converges faster than the one constructed using the old definition of

A,,. However, the new formula is nothing but the Picard iteration formula since

n t
Yoy = y0+2/ Ai(s,y0(s), --yi(s))ds
i=0 0

= wt | s, Ya(s))ds

Therefore, we can use this example to compare the ADM and the PM as well as to

check the claim of El-Kalla [20].
Approximation by the ADM
Integrating twice the differential equation (2.9), we obtain the integral equation

y(t) = 2¢! —t—1_/dT/ 25,8

Using the same Adomian polynomials for f(y) = 3> as in the previous example, we
define
yo(t) =2e" —t —1
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and compute yg,1(t) for £ > 0 by using

Y (t /dT/ e % A(s)ds, k >

The relative approximation error of the ADM is defined by:

||Yn - yemactH

RAE;PM =
" | | Yezact | |

Approximation by PM

By using the Picard iterative formula (1.7), we have

ym (1) = 2€! —t—l—/ d’/'/ s))*ds, n>0

starting with
yO(t) = 2e! —t — 1 = yo(t).
The relative approximation error of the PM is defined by:

||y(n) - yemactH

RAEPM —
" | | Yezact | |

Table 2.2 (left) demonstrates the relative approximation error of the two methods

for n = 3 where the approximations for Y5 and y® have been computed analytically.

Table 2.2 (right) shows the relative approximation error of the two methods for

n = 7 where the approximations for Y7 and y(”) have been computed numerically.

From the two tables we conclude that the ADM is more accurate than the PM for

all the time intervals.

Figures 2.3 compares relative errors in the ADM and the PM. We note that solution
using the Adomian formula converges faster than the solutions using the Picard method
in contradiction to the claim of [20]. We think that the wrong claim of [20] was made

due to mis-calculation of Adomian polynomials.
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T | RAE{PM RAEPM T | RAEAPM RAEPM
0.5]3.6842x 1074 | 4.1237x 10°* | | 0.5 | 1.7579 x 10~ | 9.021 x 102
1 |1.4792x 1072 | 2.693488 x 1072 | | 1 |2.2614 x 10* | 6.989 x 10!
15| 1.358 x 101 | 3.450 x 10 1.5 | 6.521 x 103 1.9599

2 | 5.786 x 10! 2.1437 2 | 4455 x 10" | 20.4631

Table 2.2: Comparison between ADM and PM using analytical computations at n = 3

(left). Comparison between ADM and PM using numerical computations at n = 7

(right)

log(RAE)

2.5

Figure 2.3: Graph of RAE!'PM (solid curve) and RAETM (dotted curve) using ana-

lytical computations at n = 3 (left) and numerical computations at n = 7 (right).
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Chapter 3

Convergence of the ADM for PDEs

In this chapter we analyze convergence of the ADM for nonlinear partial differen-
tial equations in the form

up = Lu + N(u); (3.1)

where L is an unbounded differential operator from a Banach space X to a Banach
space Y, (X CY), and N(u) is a nonlinear function that maps an element of X to an

element of X.

For example, we can consider a nonlinear Schrédinger equation (NLS) in the form
ity = —ugy + V(2)u + |uf® u; (3.2)

where i = /—1, V(x) is an external potential for z € R, and u = u(x,t) is a complex
valued function. The NLS equation plays an important role in the modeling of several
physical phenomena such as the propagation of optical pulses, waves in fluids and
plasma, self-focusing effects in lasers, and trapping of atomic gas in Bose-Einstein

condensates.

The NLS equation (3.2) is a particular example of the general PDE (3.1) where
L =02, N(u,z) = —i (V(z) + |u|2) u and the Banach spaces are X = H*(R) and
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Y = H*?*(R) for any s > % (assuming that V' € H*). The initial-value problem for
the PDE (3.1) can be set from the initial data
u(z,0) = f(z), VzeR (3.3)

where f(z) € H*(R) for any s > 1.

3.1 Convergence Analysis

Let E(t) be a fundamental solution operator associated with the linear Cauchy

problem

vy = Lo
v(0)=feX
so that v(t) = E(t)f. For symbolic notations, we write F(t) = e''. In what follows,

(3.4)

we shall assume that
IE@®) fllx <Cllfllx (3.5)

For instance if L = 792, then the initial-value problem the linear Schrodinger equation

(3.4) is solved in the Fourier transform form as

o) == [ el V) € R,

where
~ 1

f(€) = N /Reig“"f(x)dx,vg eR

Therefore, E(t) is defined in the Fourier transform form by E(t) = e~%’t. By Parseval’s

identity, E(t) preserves the H°- norm in the sense that

IB@I. = 5 [a+er|EO7| d
R
1 2 2
= 5 [a+er|BO| |F] d
1 NP
= 5. a7
= I,
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so that the assumption (3.5) holds with C' = 1.

By Duhamel’s principle, the initial-value problem (3.1) can be reformulated as an

integral equation )
u@%:E@f+[:E@—$Nw@D@ (3.6)

Remark 3.1.1. If L : X - Y, N : X = X, and |E(t)fl|x < C||f|lx for some
C > 0, then there exists a unique fized-point of the integral equation (3.6) in space
C ([0,T), X) for a sufficiently small T > 0, which corresponds to a unique solution of

the PDE problem (3.1) in space u(t) € C ([0, 7], X)(C* ([0,T],Y).
To set up the Adomian method, define

u(t) = 3 a0 (3.7
where ug(t) = E(t)f and

Uni1(t) = /0 E(t —s)A,(ug(s),....un(s))ds, n >0, (3.8)

where A, is the same Adomian polynomial as in Chapter 1 generated from an analytic

function N (u).

We would like to prove convergence of the Adomian series (3.7) in space X.

Theorem 3.1.2. Let N : X — X be a real analytic function in the ball B,(f) C X for
some radius a > 0. Let L : X — Y satisfy ||E(t)f|lx < C||fllx for some C > 0. Let
ug(t) = E(t)f and uy(t) for n > 1 be defined by the recurrence equation (3.8). There
exist a T > 0 such that the n'™ partial sum of the Adomian series (3.7) converges to

the solution u of the equation (3.6) in C'([0,T], X).

Proof. Assume that N(u) is analytic in v € X. Then, by Cauchy estimates, there

exist @ > 0, and b > 0 such that

bk!
|OEN ()] < — k>0 (3.9)
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The Taylor series for N(u) at u = f

converges for any ||u — f||; < a, and moreover, we obtain that

2. 1 bk!
N[y < Zk——k lu—fli%

< b

= 1k
ba

= o, =90

where p = |lu — f||x < a. It is now clear that ||0N(f)||, < ¢*)(0) for any k > 0.

Working with equation (3.8), we find that ||ug — f||x < (C+1)||fl|x = a, and

IN

t t
Jurlly / |E(t — ) Al ds < C / 1ol ds
Cy(0)t = Ctp(0),

t t
luslly < / |E(t— 5) Ay ds < C / 1Al ds

2

C2 (0)9(0)t = C*(0),

IN

IN

proving by induction that

Cn+1

[un1 (D) x < 1)

tn—l—l (n—|—1) 0 .
PR (0)

Therefore, the Adomian series in X is majorant by the convergent power series for

p(t) = a —va? — 2abCt for any t € [0,T] for T < 3=, in full correspondence with the
proof of Theorem 1.3.4. O
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3.2 Numerical examples

Consider the nonlinear Schrodinger equation in the form

iy = —Ugy — 3(sech(z))?u + |ul* u

u(z,0) = f(x)

(3.10)

We shall consider (3.10) on the interval x € [—L, L] subject to periodic boundary

conditions.

To find wuy, we approximate numerically the solution of equation (3.4). Using
trigonometric approximation [23] on the symmetric interval [—L, L], and periodic con-
tinuation to the interval [0,2L], the function f(z) is interpolated at the discrete grid

{zx}7—y €10,2L], by the trigonometric sum
fo=1 nzl S k=0,1 1
k—ﬁ. 0]6" s =UL...,n—1,
7=0
where n is even, the grid points are given by
2Lk
r,=—— k=0,1,....m—1,
n
and the continuation of f(z) from [—L,0] to [L,2L] is defined by
feL—1) = f(-2), Vaelo,L]
The discrete Fourier transform is defined by
;=Y fren, j=01,.,n—1.
k=0

where ¢y and cz are real, and

_ . n
C_j =Cpnj, J=0,1,.., 5
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The function u(x,t) can be approxmated at any time instances {t,, }}_, on the interval

. n—1
[0,T] by applying the inverse discrete Fourier transform to {e"tmfﬂ2 cj} , where
J=0
%]7 J = 07 17 ) % -1
=9 o) n
T J=3%,enn—1

Example 3.1

Consider the nonlinear Schrddinger equation (3.10) with f(x) = sech(z). The

exact solution of the initial-value problem (3.10) is Uyzeer = €sech(x).

First, we compute the Adomian polynomials for N(u) = |u|” v using the explicit

formula

k k—i
Ak: E E ﬂinuk,i,j.
=0

1=0

Integrating equation (3.10), we obtain the recursive formula for the ADM in the form:

Uns1(x,t) = 32'/0 E(t — s)(sech())*u,(z, s)ds — i/o E(t —s)Au(ug, ..., uy)ds.

for n > 0 and ug = E(t)f, where E(t) = ¢"* and f = sech(x).

To express integrals on [0, T] numerically, we use a discrete grid {t,,}"_, and the

trapezoidal rule similarly to the algorithm in Section 2.1.

Figure 3.1 shows the first two approximations of the ADM. The approximation wug

decays in time, and the approximation uy + u; grows gradually in time.

Figure 3.2 (left) compares absolute errors E,, of the ADM for n =0, 1, ..., 10, where

En(T) = Ssup ( sup |Un - Uexact|> )

te[0,T] \ z€[-L,L]

and U,, = ug+ui+...4+u,. We note that the errors E,, decrease with increasing n for any
fixed t. Figure 3.2 (right) shows the approximation Uj, that remains nearly constant

in amplitude as time ¢ evolves, similarly to the exact solution Ut = eitsech(x).
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t Ej Ejs Eqg
0.2 ] 0.3606 | 0.001 | 0.0002
0.4 | 0.6306 | 0.004 | 0.0007
0.6 | 0.8413 | 0.0148 | 0.0025
0.8 ] 1.0113 | 0.0388 | 0.0065

1 | 1.1501 | 0.0812 | 0.0137

Table 3.1: Comparison of absolute errors between Uy, Us, and Uy

Table 3.1 shows the absolute errors E, (7)) versus T for n = 0,5,10. This table

illustrates that the errors are smaller for smaller values of T" and larger values of n.
Example 3.2

Consider the same nonlinear Schrédinger equation (3.10) but with initial condi-
tion f(x) = sech?(x). In this case, we can’t find the exact solution but we can still

approximate solutions numerically using the same MATLAB code as in Example 3.1.

Figure 3.3 shows the numerical approximations Uy, Us, Uy and Uyy on a grid for
xz € [—10,10] and ¢ € [0,2]. We can see that Uy is decaying in time, Us and Uyq increase
in time, while Uy, is the closest approximation to the actual solution, which describes
a transition of the initial data to the soliton solutions of the NLS equation (3.10) and
periodic oscillations of solitary waves. Increase in amplitudes of the approximations Us
and Uy and visible oscillations in the approximation Usy near the end of computational
interval at ¢ = 2 can be related to the divergence of the Adomian series for large time

instances.
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Figure 3.1: The approximations |ug| (left) and |ug + u4] (right), for =10 < 2 < 10 and
0<t< 1.
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Figure 3.2: Comparison of absolute errors F,, for the ADM with n =0, 1,...,10 (left)
and the surface |Uyg| (right) for =10 <z <10 and 0 < ¢t < 1.
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abs(U,0)

Figure 3.3: The approximations |ug| (top left), |Us| (top right), |Uyg| (bottom left) and

|Uso| (bottom right) for —10 < 2 < 10,0 <t < 2.
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Appendix: Numerical codes

Appendix 1 Example 2.1

clear all

close all

y(1)=0; x(1)=1; h=0.01;

t=0:h:2; k=length(t)-1;

for n=1:k;
mi=y(n);
n1=((-3./(cosh(t(n))) . 2)+1) .*x(n)+(x(n))."3;
m2=y (n)+ni.*h./2;
n2=((-3./(cosh(t(n)+h./2))."2)+1) .*(x(n)+ml.*h./2)+(x(n)+ml.*h./2)."3;
m3=y(n)+n2.*h./2;
n3=((-3./(cosh(t(n)+h./2)).72)+1) .*(x(n)+m2.*h./2)+(x(n)+m2.%*h./2) ."3;
m4=y (n)+n3.*h;
n4=((-3./(cosh(t(n)+h))."2)+1) .*(x(n)+m3.*h)+(x(n)+m3.%*h) . " 3;
x(n+1)=x(n)+h./6.*(m1+2.*m2+2 . *m3+m4) ;
y(n+1)=y(n)+h./6.*(n1+2.*n2+2.%n3+n4) ;

end

Exact = 1./cosh(t);

E=abs (Exact-x) ;
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plot(t,logl0(E), ’k.’)

hold on

clear all

h=0.01; s=0:h:2; d=30;n=length(s);

y=zeros(n,d+1); y(:,1)=1;y(1,(2:d))=0;Y=zeros(n,d+1) ;x=zeros(n,d);
for i=1:d;

for j=1:i-k+1
Z=Z+y (:,k) .*xy(:,3) .xy(:,i-k-j+2);

end

x(:,1)=(((-3./(cosh(s’))."2))+1) .*xy(:,1)+V;

for k1=2:n;

Y(k1,i)=(h/2)*(x(1,i)+2.*sum(x(2:k1-1,1i))+x(k1,1i));

end

for k2=2:n

y(k2,i+1)=(h/2)*(Y(1,1)+2 . *sum(Y(2:k2-1,1))+Y(k2,1));

end

end

Appendix 2 Example 2.2

clear all
y=0:0.1:2.5;

x0=2.*exp(y)-y-1;
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x1 = (1/8.%(569.*xexp(2.*y)-157.xy.*exp(2.*xy)-64.*xexp(3.*y)+16.*y."3
.xexp(2.xy)+48.%y. 2. %exp(2.*y)-48.*y. 2.xexp(y)-288.*y.*exp(y)

-528 . %exp(y)+2.*y. 3+12.%y. 2427 . xy+23)) . *exp(-2.*y) ;

x2=-(1/1658880.* (4729995+816480 . *y. ~4+9732150. *y

+787553280. %y . ~2.%exp(4.*y)+77760.%y. 5+12976492085 . xexp (4. *y)
+1725261120. xexp(2.%*y)-14340188160 . xexp (3. *y)

+3596400 . *y . ~3+8242560 . *y . "2-207042560 . ¥exp (y) -159252480 . xexp (5. ¥y)
+1555277760. ¥y . *exp (2. *y) +111196800. ¥y.~3. *exp (2. *y)

+522547200. %y . "2 . *exp (2. ¥y) ~166717440 . xy.~2.*exp(y) -301854720 . *y . *exp (y)
+2488320.%y. 5. xexp (2. ¥y) -38568960. *y. "3 . *exp(4.*y) +1990656 . ¥y .5 . xexp (4.%y)
~2276812800. y. 2. *exp (3. *y)-8062156800 . *y . *exp (3. *y) +9953280 . ¥y . ~4
.xexp(4.*y)-39813120.*y.74.*xexp(3.*y)
-3870720.*y."4.*xexp(y)-4533619530.*y.*exp(4.*y)+24883200.*y. 4. *exp(2.*y)
-40734720.*y."3.*%exp(y)-477757440.xy. 3. *exp(3.*y))) .xexp(-4.*y);

x3 = 4.252672720%107(-15) *(2.333575263%x10715. xy+

9.170703360%10714 .xy."7.%exp(4.*y)+3.793465961%10718.*y." 3.*(exp(4.*y))
+1.423641876%10°19 . %y . ~2. % (exp(4.*y))

~4.389396480%10°15 .*y."6.* (exp(3.*y))-1.625330811%10°17.%y. 5
.*(exp(5.*y))+1.199731405%10°19
.xy."2.x(exp(6.%y))+3.684701270%10719. xy . * (exp(4.*y))+1.0565504660%10"18
.xy."2.x(exp(2.%y))+1.620304560%10715.xy. 6. *(exp(2.*y))-1.022886144%10"15
4y."5.%(exp(6.*y))+8.062156800%1013. *y. 7. * (exp(6.*y))
+1.102248000%10°14 . *y.~7 . * (exp(2.*y))
+8.381304324%10~14+1.597683724+10~18 . *y . * (exp (2. *y))

+9.788233951%10717 . x (exp (2. *y))+3.240405000%10713.*y."6+1.957319792%x10715. %
y. 3+2.836264942%107156 .xy."2+2.168519850%10714 .xy. 5+8.301220200%10714
ky . "4+42.143260000%10712 . xy."7-1.336100936%10718. *
y."4.%(exp(5.%y))-1.062010196%10.719 .*y .*(exp(3.%y))
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+7.324217510%10717 .*xy."4

.x(exp(4.%y))+2.047087915%10720.* (exp(6.*y))-2.393044347%10720
*(exp(5.xy))-3.611846246%10"17 . % (exp(7.*y))-8.315929843%10"18 . * (exp(3.*y))
~6.928975872%10716. *y. 5. *(exp(3.*y) )+5.643509760%10"14.%y. 6. % (exp(6.*y))
-9.684262748%10°18 .*y. 3 .*(exp(5.*y))-9.029615616%10~15
.xy."6.x(exp(5.%y))-4.597762176%10717.% y. 4 .*(exp(3.*y))-1.946971676%10"18
.xy."3 .x(exp(3.%y))+8.882355283%x10716 .*y. 5.x(exp(4.*y))+1.283898470%10"16
ky."6.%(exp(4.*y))-5.820252641%10°18 .*y. 2.% (exp(3.*y))-1.306444298%10~18
.xy. "3 .x(exp(6.%y))+7.963183022%x10716 .*y. 4.x(exp(2.*y))+4.234632786%10719
*(exp(4.*y))-1.330406486%10720 .*y.*(exp(5.*y))+3.715580413%10"17 .*y."3

% (exp(2.%y))+1.254036735%10°16 .*y."5 .*(exp(2.%y))-4.137011597%10~19
ky.~2.%(exp(5.*y))+1.229226970%10°17 . *
y."4.x(exp(6.xy))-5.323172094+10.~16 .* (exp(y) ) -7.021322262%10. 19
.xy.*x(exp(6.%y))-1.593115776%10. 14 .xy."6.*(exp(y))

-5.449132718%10.~16. *y.~3.*(exp(y))
-1.5567727247%10.716.%y."4.*(exp(y))-2.410582084%10.715.%y. 5. % (exp(y))
~1.087212350%10.~17 . *y.~2.* (exp(y))
-1.172769145%10.717 .y . *x(exp(y))) . *(exp(-6.%y)) ;

x=x0+x1+x2;

xx0=2.*exp(y)-y-1;

xx1=(1/8.%(569.%exp(2.*y)-157 .*y.*exp(2.*y)-64.*exp(3.*y)
+16.*xy."3.xexp(2.*y)+48.xy. 2. %exp(2.*y)-48.xy. 2. *xexp(y)
-288.*y.*exp(y)-528.*exp(y)+2.xy. 3+12.%y."2

+27 . %y+23) ) . ¥exp (2. %y) ;

xx=xx0+xx1+x%x2;

xExact=exp(y) ;

Rel=abs (x-xExact) ./ (xExact)

Re2=abs (xx-xExact) ./ (xExact)
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plot(y,logl0(Rel),’k:’)
hold on

plot(y,loglO(Re2),’r:’)

clear all

close all

h=0.01; s=0:h:2.1; d=8;n=length(s);
y=zeros(n,d+1); y(:,1)=2xexp(s’)-s’-1;
y(1,(2:d+1))=y(1,1);

Y=zeros(n,d+1); x=zeros(n,d);

for i=1:d;
x(:,1)=-(exp(-2%s’)) .x((y(:,1))."3);
for k1=2:n;

Y(k1,i+1)=(h/2) .*(x(1,1)+2*xsum(x(2:k1-1,1i))+x(k1,1));
end
for k2=2:n
y(k2,i+1)=y(k2,1)+(h/2)*(Y(1,i+1)+2. *sum(Y(2:k2-1,1) ) +Y (k2,i+1));
end
end
yExact=exp(s’);
S=y(:,d+1);
El=abs (S-yExact) ;
REAPI=E1./yExact;
clear all
h=0.01; s=0:h:2.1; d=7;n=length(s);
y=zeros(n,d+1); y(:,1)=2xexp(s’)-s’-1;
y(1,(2:d+1))=0; Y=zeros(n,d+1);
Y(1,2:8)=0; Y(:,1)=2%exp(s’)-1;

43



x=zeros(n,d);

for i=1:d;

for j=1:i-k+1
Z=Z+y (:,k) .*xy(:,j) .xy(:,i-k-j+2);
end
V=V+Z;
end
x(:,1)=-(exp(-2%s’)) .*V;
for k1=2:n;
Y(ki1,i+1)=(h/2)*(x(1,1)+2 . *sum(x(2:k1-1,1i))+x(k1,1));
end
for k2=2:n
y(k2,i+1)=(h/2)*(Y(1,i+1)+2. *sum(Y(2:k2-1,i+1))+Y(k2,i+1));
end
end

yExact=exp(s’);

Appendix 3 Example 3.1

clear all

close all

a = 10; N = 400; m=N/2; d=11;

dx = 2*a/N;h=0.005;

t=0:h:1; M=length(t); x = -a : dx :@ a-dx;

j=-m:1:m-1; xi=(pi/a)*j;
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u=zeros (length(t),length(x),d);

g = sech(x);

FF =[g(m+1:N),g(1:m)] ;

C=fft (FF);

c=[C(m+1:N),C(1:m)];

for s=1:M
uhat = exp(-i.*t(s).*(xi)."2 ).*c;
uuhat=[uhat (m+1:N) ,uhat(1:m)];
uu =ifft(uuhat);

u(s,:,1)= [uu(m+1:N),uu(l:m)]1;

end
for mi1=1:M;
for m2=1:N;
V(m2)=3.*i.x(sech(x(m2))) "2*xu(ml,m2,1)-ix(abs(u(ml,m2,1))). 2x(u(ml,m2,1));
end
FF =[V(m+1:N),V(1:m)] ;
C=fft (FF);
S(mi1,:)=[C(m+1:N),C(1:m)];
end

u(l,:,2)=zeros(1,N);
for m3=2:M
for m4=1:m3
Vhat = exp(-i.*(t(m3)-t(m4)).*x(xi)."2 ).* S(m4,:);
VVhat=[Vhat (m+1:N) ,Vhat(1:m)];
VV =ifft(VVhat);
Vi(m4,:)=[VV(m+1:N), VV(i:m)];

end
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u(m3,:,2)=(h/2)*(V1(1, :)+2*xsum(V1(2:m3-1,:))+V1(m3,:));
end
figure(1)
[X,T] = meshgrid(x,t(11:end));
xlabel(’x’); ylabel(’t’); zlabel(’u’);
mesh(T,X,abs(u(11:end,:,1)));
U2=u(:,:,1+ul:,:,2);
figure(2)
mesh(T,X,abs(U2(11:end,:)));
figure (3)
Uex=exp(i*t’)*sech(x);
El=max (abs (Uex’-u(:,:,1)’));
plot(t(21:end),logl0(E1(21:end)));
hold on

E2=max (abs (Uex’-U2’));
plot(t(21:end),logl0(E2(21:end)),’r:’);
hold on

for e=2:d-1;
for mi1=1:M;

for m2=1:N;

for g=1:e-f+1
Z=Z+(conj(u(ml,m2,q))) .*u(ml,m2,f) .*u(ml,m2,e-f-q+2);

end
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W=W+Z;
end
V(m2)=3.*i.*(sech(x(m2)))~2.%u(ml,m2,e)-1i.*W;
end
FF =[V(m+1:N),V(1:m)] ;
C=fft (FF);
S(m1,:)=[C(m+1:N),C(1:m)];

end

for m3=2:M
for m4=1:m3
Vhat = exp(-i.*(t(m3)-t(m4)).*(xi)."2 ).x S(m4,:);
VVhat=[Vhat (m+1:N) ,Vhat (1:m)];
VV =ifft(VVhat);
Vi(m4,:)=[VV(m+1:N), VV(1:m)];
end
u(m3,:,e+1)=(h/2)*(V1(1, :)+2*xsum(V1(2:m3-1, :))+V1i(m3, :));
end

end
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