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a b s t r a c t

Excited states are stationary localized solutions of the Gross–Pitaevskii equation with a
harmonic potential and a repulsive nonlinear term that have zeros on a real axis. The
existence and the asymptotic properties of excited states are considered in the semi-
classical (Thomas–Fermi) limit. Using the method of Lyapunov–Schmidt reductions and
the known properties of the ground state in the Thomas–Fermi limit, we show that the
excited states can be approximated by a product of dark solitons (localized waves of the
defocusing nonlinear Schrödinger equation with nonzero boundary conditions) and the
ground state. The dark solitons are centered at the equilibrium points where a balance
between the actions of the harmonic potential and the tail-to-tail interaction potential is
achieved.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The defocusing nonlinear Schrödinger equation is derived in the mean-field approximation to model Bose–Einstein
condensates with repulsive interatomic interactions between atoms. This equation is referred to in this context as the
Gross–Pitaevskii equation [1]. When the Bose–Einstein condensate is trapped by a magnetic field, the Gross–Pitaevskii
equation has a harmonic potential. In the strongly nonlinear limit, referred to as the Thomas–Fermi limit [2,3], the
Bose–Einstein condensate is a nearly compact cloud, which may contain localized dips of the atomic density. The nearly
compact cloud is modeled by the ground state of the Gross–Pitaevskii equation, whereas the localized dips are modeled
by the excited states. Asymptotic properties of the stationary excited states in the Thomas–Fermi limit are analyzed in this
article.
The Gross–Pitaevskii equation with a harmonic potential and a repulsive nonlinear term can be rewritten in the form

iεut + ε2uxx + (1− x2 − |u|2)u = 0, (1)

where ε > 0 is a small parameter to model the Thomas–Fermi asymptotic regime. Let ηε be the real positive solution of the
stationary equation

ε2η′′ε (x)+ (1− x
2
− η2ε(x))ηε(x) = 0, x ∈ R. (2)

Themain results of Ignat andMillot [4,5] and Gallo and Pelinovsky [6] state that, for any sufficiently small ε > 0, there exists
a unique smooth positive solution ηε ∈ C∞(R) that decays to zero as |x| → ∞ faster than any exponential function. The
ground state converges pointwise as ε→ 0 to the compact Thomas–Fermi cloud

η0(x) := lim
ε→0

ηε(x) =
{
(1− x2)1/2, for |x| < 1,

0, for |x| > 1. (3)
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The ground state and the convergence of ηε to η0 are characterized by the following properties.

P1 0 < ηε(x) 6 1 for any x ∈ R.
P2 For any small ε > 0 and any compact subset K ⊂ (−1, 1), there is CK > 0 such that

‖ηε − η0‖C1(K) 6 CKε2. (4)

P3 For any small ε > 0, there is C > 0 such that

‖ηε − η0‖L∞ 6 Cε1/3, ‖η′ε‖L∞ 6 Cε−1/3. (5)

P4 There is C > 0 such that ηε(x) > Cε1/3 for any |x| 6 1+ ε2/3.

Properties [P1] and [P2] follow from Proposition 2.1 in [4]. Properties [P3] and [P4] follow from Theorem 1 in [6]. To clarify
the proof of bound (5), we represent the ground state ηε(x) in the equivalent form

ηε(x) = ε1/3νε(y), y =
1− x2

ε2/3
, (6)

where νε(y) solves

4(1− ε2/3y)ν ′′ε (y)− 2ε
2/3ν ′ε(y)+ yνε(y)− ν

3
ε (y) = 0, y ∈ (−∞, ε−2/3).

Let ν0(y) be the unique solution of the Painlevé-II equation

4ν ′′0 (y)+ yν0(y)− ν
3
0 (y) = 0, y ∈ R,

such that ν0(y) = y1/2 + O(y−1) as y→∞ and ν0(y) decays to zero as y→ −∞ faster than any exponential function. By
Theorem 1 in [6], νε is a C∞ function on (−∞, ε−2/3], which is expanded into the asymptotic series for any fixed N > 0:

νε(y) =
N∑
n=0

ε2n/3νn(y)+ ε2(N+1)/3RN,ε(y), (7)

where {νn}Nn=1 are uniquely defined ε-independent C
∞ functions on R and RN,ε(y) is the remainder term on (−∞, ε−2/3].

It was proved in [6] that UN,ε(z) = RN,ε(ε−2/3 − ε2/3z2) is uniformly bounded for small ε > 0 in H2(R)-norm. If we denote
uN,ε(x) = UN,ε(ε−2/3x) = RN,ε(y), then the above arguments show that there is CN > 0 such that

‖uN,ε‖L∞ 6 CN , ‖u′N,ε‖L∞ 6 CNε−2/3.

For any fixed N > 0, it follows from the above bounds that the remainder term ε(2N+1)/3uN,ε(x) is smaller in C1(R)-norm
than the leading-order term u0(x) = ν0(ε

−2/3
− ε−2/3x2). The error estimate (5) follows from (6), (7), and the fact that

supy∈R+ |ν0(y)− y1/2| <∞.
We shall consider excited states of the Gross–Pitaevskii equation (1), which are real non-positive solutions of the

stationary equation

ε2u′′ε (x)+ (1− x
2
− u2ε(x))uε(x) = 0, x ∈ R. (8)

We classify the excited states by the numberm of zeros of uε(x) on R. A unique solution withm zeros exists near ε = εm for
ε < εm by the local bifurcation theory [7], where εm is computed from the linear theory as εm = 1

1+2m , m ∈ N. Because of
the symmetry of the harmonic potential, them-th excited state is even on R for evenm ∈ N and odd on R for oddm ∈ N.
This paper continues the previous research on the ground state in the Thomas–Fermi limit that was developed by Gallo

and Pelinovsky in [8,6]. We focus now on the existence and asymptotic properties of the excited states as ε → 0. Using
the method of Lyapunov–Schmidt reductions, we show that the m-th excited state is approximated by a product of m
dark solitons (localized waves of the defocusing nonlinear Schrödinger equation with nonzero boundary conditions) and
the ground state ηε . The dark solitons are centered at the equilibrium points where a balance between the actions of the
harmonic potential and the tail-to-tail interaction potential is achieved.
Note that this paper gives a rigorous justification of the variational approximations found by Coles et al. in [9], where the

m-th excited statewas approximated by a variational ansatz in the form of a product ofm dark solitonswith time-dependent
parameters and the ground state. Time-evolution equations for the parameters of the variational ansatz were found from
the Euler–Lagrange equations. The critical points of these equations give approximations of the equilibrium positions of the
dark solitons relative to the center of the harmonic potential and to each other, whereas the linearization around the critical
points gives the frequencies of oscillations of dark solitons near such equilibriumpositions. Variational approximationswere
found in [9] to be in excellent agreement with numerical solutions of the stationary equation (8).
This article is organized as follows. The first excited state centered at x = 0 is considered in Section 2. Although the

existence of this solution can be established from the calculus of variations, we develop the fixed-point iteration scheme
to study this solution as ε → 0. The second excited state is approximated in Section 3. We will work with the method
of Lyapunov–Schmidt reductions to find the equilibrium position of two dark solitons as ε → 0. Section 4 discusses the
existence results for the generalm-th excited state withm > 2.
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Before we proceed with main results, we present some notation. If A and B are two quantities depending on a parameter
ε in a set E , the notation A(ε) = O(B(ε)) as ε→ 0 indicates that A(ε)/B(ε) remains bounded as ε→ 0. If A(x, ε) depends
on x ∈ R and ε ∈ E , the notation A(·, ε) = OL∞(B(ε)) as ε→ 0 indicates that ‖A(·, ε)‖L∞/B(ε) remains bounded as ε→ 0.
Different constants are denoted with the same symbol C if they can be chosen independently of the small parameter ε.

2. First excited state

The first excited state is an odd solution of the stationary equation (8) such that

uε(0) = 0, uε(x) > 0 for all x > 0, and lim
x→∞

uε(x) = 0. (9)

Variational theory can be used to prove the existence of this solution, similarly to the analysis of Ignat andMillot in [5]. Since
we are interested in asymptotic properties of the first excited state as ε→ 0, wewill obtain both existence and convergence
results from the fixed-point arguments. Our main result is the following theorem.

Theorem 1. For sufficiently small ε > 0, there exists a unique solution uε ∈ C∞(R) with properties (9) and there is C > 0 such
that ∥∥∥∥uε − ηε tanh( ·

√
2ε

)∥∥∥∥
L∞

6 Cε2/3. (10)

In particular, the solution converges pointwise as ε→ 0 to

u0(x) := lim
ε→0
uε(x) = η0(x)sign(x), x ∈ R.

Remark 1. Function vε(x) = tanh
(
x
√
2ε

)
is termed as the dark soliton. It is a solution of the second-order equation

ε2v′′ε (x)+ (1− v
2
ε (x))vε(x) = 0, x ∈ R,

which arises in the context of the defocusing nonlinear Schrödinger equation.

The proof of Theorem 1 consists of six steps.

Step 1: Decomposition. Let us substitute uε(x) = ηε(x) tanh
(
x
√
2ε

)
+ wε(x) in the stationary equation (8) and obtain an

equivalent problem forwε written in the operator form

Lεwε = Hε + Nε(wε), (11)

where

Lε := −ε2∂2x + x
2
− 1+ 3η2ε(x) tanh

2
(
x
√
2ε

)
,

Hε(x) := ηε(x)
(
η2ε(x)− 1

)
sech2

(
x
√
2ε

)
tanh

(
x
√
2ε

)
+
√
2εη′ε(x) sech

2
(
x
√
2ε

)
,

and

Nε(wε)(x) = −3ηε(x) tanh
(
x
√
2ε

)
w2ε (x)− w

3
ε (x).

Let x =
√
2εz, where z ∈ R is a new variable, and denote

η̂ε(z) := ηε(
√
2εz), ŵε(z) := wε(

√
2εz), Ĥε(z) := Hε(

√
2εz), N̂ε(ŵε)(z) := Nε(wε)(

√
2εz).

Step 2: Linear estimates. In new variables, operator Lε becomes

L̂ε = −
1
2
∂2z + 2ε

2z2 − 1+ 3η̂2ε(z) tanh
2(z) = L̂0 + Ûε(z),

where

L̂0 := −
1
2
∂2z + 2− 3 sech

2(z)

and

Ûε(z) := 2ε2z2 + 3(η̂2ε(z)− 1) tanh
2(z).
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Fig. 1. Potentials of operators Lε (solid line) and L0 (dots) for the first excited state.

Operator L̂0 is well known in the linearization of the defocusing nonlinear Schrödinger equation at the dark soliton. The
spectrum of L̂0 in L2(R) consists of two eigenvalues at 0 and 32 with eigenfunctions sech

2(z) and tanh(z) sech(z) and the
continuous spectrum on [2,∞). For any f̂ ∈ L2odd(R), there exists a unique L̂

−1
0 f̂ ∈ H

2
odd(R) such that

∃C > 0 : ∀f̂ ∈ L2odd(R) : ‖L̂
−1
0 f̂ ‖H2 6 C‖f̂ ‖L2 . (12)

Let us consider functions that decay to zero as |z| → ∞ with a fixed exponential decay rate α > 0. Let L∞α (R) be the
exponentially weighted space with the supremum norm

‖ŵε‖L∞α := ‖e
α|·|ŵε‖L∞ .

The unique solution L̂−10 f̂ for any f̂ ∈ L
2
odd(R) is expressed explicitly by the integral formula

L̂−10 f̂ (z) = −2 sech
2(z)

∫ z

0
cosh4(z ′)

(∫ z′

−∞

f̂ (z ′′) sech2(z ′′)dz ′′
)
dz ′.

For any fixed α > 0, it follows from the integral representation that the solution L̂−10 f̂ decays exponentially with the same
rate as f̂ , so

∃C > 0 : ∀f̂ ∈ L2odd(R) ∩ L
∞

α (R) : ‖L̂
−1
0 f̂ ‖L∞α 6 C‖f̂ ‖L∞α . (13)

Fig. 1 shows the confining potential Vε(x) = x2−1+3η2ε(x) tanh
2(z) of operator Lε = −ε2∂2x +Vε(x) (solid line) and the

bounded potential V0(x) = −1+ 3 tanh2(z) of operator L0 = −ε2∂2x + V0(x) (dots) versus x. The confining potential Vε(x)
has two wells near x = ±1 and a deeper central well near x = 0. The two wells near x = ±1 are absent in the potential
V0(x).
Because of the confining potential, the spectrum of L̂ε is purely discrete (Theorem 10.7 in [10]). It contains small

eigenvalues that correspond to eigenfunctions localized in the central well near z = 0 and in the two smaller wells near
z = ± 1

√
2ε
.

We note that a similar operator at the ground state ηε

L̃ε = −ε2∂2x + x
2
− 1+ 3η2ε(x)

was studied by Gallo and Pelinovsky [6], where it was shown that Ṽε(x) = x2 − 1 + 3η2ε(x) > 0 for all x ∈ R. By property
(P4), Ṽε(x) is bounded away from zero near x = ±1 by the constant of the order of O(ε2/3). As a consequence, the purely
discrete spectrum of L̃ε in L2odd(R) includes small positive eigenvalues of the orderO(ε

2/3)with the eigenfunctions localized
in the two wells near x = ±1 (see Theorem 2 in [6]).
Thanks to the proximity of tanh2(z) to 1 near z = ± 1

√
2ε
with an exponential accuracy in ε, the potential Vε(x) is similar

to Ṽε(x) near x = ±1 and satisfies, for any fixed x0 > 0,

∃C > 0 : Vε(x) > Cε2/3, |x| > x0.
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On the other hand, for any fixed z0 > 0, property (P2) implies that

∃C > 0 : sup
|z|6z0
|Ûε(z)| 6 Cε2.

Thanks to the positivity of Vε(x) near x = ±1 and the proximity of the central well near x = 0 in the potentials Vε(x) and
V0(x), quantum tunneling theory [10] implies that the simple zero eigenvalue of L̂0 persists as a small eigenvalue of L̂ε . This
eigenvalue of L̂ε corresponds to an even eigenfunction. The other eigenvalue of L̂0 corresponding to an odd eigenfunction is
bounded away from zero.
All other eigenvalues of L̂ε are small positive, of size O(ε2/3). As a result, operator L̂ε is still invertible on L2odd(R) but

bound (12) is now replaced by

∃C > 0 : ∀f̂ ∈ L2odd(R) : ‖L̂
−1
ε f̂ ‖H2 6 Cε−2/3‖f̂ ‖L2 . (14)

Note that the function L̂−1ε f̂ ∈ H
2
odd(R) has peaks near points z = ±

1
√
2ε
and z = 0.

Step 3: Bounds on the inhomogeneous and nonlinear terms. By symmetries, we note that

Ĥε ∈ L2odd(R) and N̂ε(ŵε) : H2odd(R) 7→ L2odd(R).

We will show that, for small ε > 0 and fixed α ∈ (0, 2), there is C > 0 such that

‖Ĥε‖L2∩L∞α 6 Cε2/3. (15)

Using the triangle inequality, we obtain

‖Ĥε‖L2 6 ‖ηε‖L∞‖(1− η̂2ε) sech
2(·)‖L2 +

√
2ε‖η′ε‖L∞‖ sech

2(·)‖L2 .

By properties (P1) and (P2), for small ε > 0 and fixed α ∈ (0, 2), the first term is estimated by

‖(1− η̂2ε) sech
2(·)‖L2 6 ‖(1− η̂2ε) sech

2(·)‖L2(|z|6ε−1/3) + ‖(1− η̂
2
ε) sech

2(·)‖L2(|z|>ε−1/3)

6 ‖1− η2ε‖L∞(|x|<√2ε2/3)‖ sech
2(·)‖L2 + α

−1/2e−αε
−1/3
‖ sech2(·)‖L∞α

6 Cε4/3.

By property (P3), the second term is estimated by Cε2/3. As a result, for any small ε > 0 there is C > 0 such that
‖Ĥε‖L2 6 Cε2/3. By similar arguments, Ĥε ∈ L∞α (R) for any α ∈ (0, 2), and there is C > 0 such that ‖Ĥε‖L∞α 6 Cε2/3.
To deal with the nonlinear terms, we recall that H2(R) is a Banach algebra with respect to multiplication in the sense

that

∀û, v̂ ∈ H2(R) : ‖ûv̂‖H2 6 ‖û‖H2‖v̂‖H2 .

For any ŵε ∈ H2(R), we have

‖N̂ε(ŵε)‖L2 6 3‖ηε‖L∞‖ŵ2ε‖H2 + ‖ŵ
3
ε‖H2 6 3‖ŵε‖2H2 + ‖ŵε‖

3
H2 . (16)

Similarly, L∞α (R) is a Banach algebra with respect to multiplication for any α > 0.

Step 4: Normal-form transformations. Because we are going to lose ε2/3 as a result of bound (14), we need to perform
transformations of solution ŵε , usually referred to as the normal-form transformations. We need two normal-form
transformations to ensure that the resulting operator of a fixed-point equation is a contraction.
Let

ŵε = ŵ1 + ŵ2 + ϕ̂ε, ŵ1 = L̂−10 Ĥε, ŵ2 = −3L̂−10 η̂ε tanh(z)ŵ
2
1.

The remainder term ϕ̂ε solves the new problem

Lεϕ̂ε = Hε +Nε(ϕ̂ε), (17)

where the new linear operator is

Lε := L̂ε +∆Ûε(z), ∆Ûε(z) := 6η̂ε tanh(z)(ŵ1 + ŵ2)+ 3(ŵ1 + ŵ2)2,

the new source term is

Hε := −Ûε(ŵ1 + ŵ2)− 3η̂ε tanh(z)(2ŵ1ŵ2 + ŵ22)− (ŵ1 + ŵ2)
3,

and the new nonlinear function is

Nε(ϕ̂ε) := −3η̂ε tanh(z)ϕ̂2ε − 3(ŵ1 + ŵ2)ϕ̂
2
ε − ϕ̂

3
ε .
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Thanks to bounds (12), (13), and (15), we have ŵ1, ŵ2 ∈ H2odd(R) ∩ L
∞
α (R) for fixed α ∈ (0, 2) and

∃C > 0 : ‖ŵ1‖H2∩L∞α 6 Cε2/3, ‖ŵ2‖H2∩L∞α 6 Cε4/3. (18)
As a result, for any small ε > 0, there is C > 0 such that

‖η̂ε tanh(z)(2ŵ1ŵ2 + ŵ22)‖L2 6 Cε2, ‖(ŵ1 + ŵ2)3‖L2 6 Cε2.

Let us now estimate the term Ûε(ŵ1 + ŵ2) in L2(R). By properties (P1) and (P2), for small ε > 0 and fixed α ∈ (0, 2), there
are constants C(α), C̃(α) > 0 such that

‖Ûεŵj‖L2 6 2ε2‖z2ŵj‖L2 + 3‖(η̂
2
ε − 1)ŵj‖L2

6 ε2C(α)‖ŵj‖L∞α + 3‖(1− η̂
2
ε)ŵj‖L2(|z|6ε−1/3) + 3‖(1− η̂

2
ε)ŵj‖L2(|z|>ε−1/3)

6 ε2C(α)‖ŵj‖L∞α + 3‖1− η
2
ε‖L∞(|x|<

√
2ε2/3)‖ŵj‖L2 + 3α

−1/2e−αε
−1/3
‖ŵj‖L∞α

6 C̃(α)ε4/3‖ŵj‖L2∩L∞α , j = 1, 2.
In view of bound (18), for any small ε > 0, there is C > 0 such that

‖Ûε(ŵ1 + ŵ2)‖L2 6 Cε2. (19)
Combining all together, we have established thatHε ∈ L2odd(R) and, for any small ε > 0, there is C > 0 such that

‖Hε‖L2 6 Cε2. (20)
For the nonlinear term, we still have Nε(ϕ̂ε) : H2odd(R) 7→ L2odd(R). Thanks to bound (18), for any ϕ̂ε ∈ Bδ(H

2
odd) in the

ball of radius δ > 0, for any small ε > 0, there is C(δ) > 0 such that

‖Nε(ϕ̂ε)‖L2 6 C(δ)‖ϕ̂ε‖2H2 . (21)

Similarly, we obtain thatNε is Lipschitz continuous in the ball Bδ(H2odd) and, for any small ε > 0, there is C(δ) > 0 such that

∀ϕ̂ε, ϕ̂ε ∈ Bδ(H2odd) : ‖Nε(ϕ̂ε)−Nε(ϕ̂ε)‖L2 6 C(δ)
(
‖ϕ̂ε‖H2 + ‖ϕ̂ε‖H2

)
‖ϕ̂ε − ϕ̂‖H2 . (22)

Step 5: Fixed-point arguments. Thanks to bound (18) and Sobolev embedding of H2(R) to L∞(R), |∆Ûε(z)| is as small as
O(ε2/3) in the central well near z = 0 and is exponentially small in ε in the two wells near z = ± 1

√
2ε
. As a result, small

positive eigenvalues of L̂ε of size O(ε2/3) persist in the spectrum of Lε and have the same size, so bound (14) extends to
operatorLε in the form

∃C > 0 : ∀f̂ ∈ L2odd(R) : ‖L
−1
ε f̂ ‖H2 6 Cε−2/3‖f̂ ‖L2 . (23)

Let us rewrite Eq. (17) as the fixed-point problem

ϕ̂ε ∈ H2odd(R) : ϕ̂ε = L−1ε Hε +L−1ε Nε(ϕ̂ε). (24)

The map ϕ̂ε 7→ L−1ε Nε(ϕ̂ε) is Lipschitz continuous in the neighborhood of 0 ∈ H2odd(R). Thanks to bounds (21) and (23),
the map is a contraction in the ball Bδ(H2odd) if δ � ε2/3. On the other hand, thanks to bounds (20) and (23), the source term
L−1ε Hε is as small as O(ε4/3) in L2-norm. By Banach’s Fixed-Point Theorem, in the ball Bδ(H2odd) with δ ∼ ε

4/3, there exists
a unique ϕ̂ε ∈ H2odd(R) of the fixed-point problem (24) such that

∃C > 0 : ‖ϕ̂ε‖H2 6 Cε4/3.
By Sobolev’s embedding of H2(R) to C1(R), for any small ε > 0 there is C > 0 such that

‖wε‖L∞ = ‖ŵε‖L∞ 6 C‖ŵ1 + ŵ2 + ϕ̂ε‖H2 6 Cε2/3,
which completes the proof of bound (10).
Step 6: properties (9). Solution ŵε constructed in Step (5) is an odd continuously differentiable function of z onR vanishing
at infinity, so uε(0) = 0 and limx→∞ uε(x) = 0. By bootstrapping arguments for the stationary equation (8), we have
uε ∈ C∞(R). It remains to prove that uε(x) is positive for all x ∈ R+.
Recall that ηε(x) > 0 for all x ∈ R. By property (P4) and bound (10), there is C > 0 such that uε(x) > Cε1/3 for

all x ∈ [1,
√
1+ ε2/3]. We shall prove that uε(x) > 0 for all x >

√
1+ ε2/3. Assume by contradiction that there is

x0 >
√
1+ ε2/3 such that uε(x0) = 0 and u′ε(x0) < 0. (If u

′
ε(x0) = 0, then uε(x) = 0 is the only solution of the second-order

equation (8).) The continuity of uε(x) implies that uε(x) < 0 for every x ∈ (x0, x̃0) for some x̃0 > x0. Using the differential
equation (8), we obtain

u′′ε (x) =
1
ε2
(x2 − 1+ u2ε(x))uε(x) < 0, x ∈ (x0, x̃0).

Then, u′ε(x) 6 u′ε(x0) < 0, so uε(x) is a negative, decreasing function of x for all x > x0 with x̃0 = ∞. This fact is a
contradiction with the decay of uε(x) to zero as x→∞. Therefore, uε(x) > 0 for all x ∈ R+.
Combining the results in Steps (5) and (6), we conclude that uε(x) is the first excited state of the stationary equation (8)

that satisfies properties (9).
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3. Second excited state

The second excited state is an even solution of the stationary equation (8) such that

uε(x) > 0 for all |x| > x0, uε(x) < 0 for all |x| < x0, and lim
x→∞

uε(x) = 0. (25)

Here x0 > 0 determines a location of two symmetric zeros of uε(x) at x = ±x0. The second excited state is approximated
as ε → 0 by a product of two copies of dark solitons (Remark 1) placed at x = ±a with a ≈ x0 as ε → 0. Our analysis is
based on themethod of Lyapunov–Schmidt reductions, which gives the existence and convergence properties for the second
excited state, as well as an analytical expansion of a for small ε.

Theorem 2. For sufficiently small ε > 0, there exists a unique solution uε ∈ C∞(R) with properties (25), and there exist a > 0
and C > 0 such that∥∥∥∥uε − ηε tanh( · − a√2ε

)
tanh

(
· + a
√
2ε

)∥∥∥∥
L∞

6 Cε2/3 (26)

and

a = −
ε
√
2

(
log(ε)+

1
2
log | log(ε)| −

3
2
log(2)+ o(1)

)
as ε→ 0. (27)

Remark 2. Since a→ 0 as ε→ 0 while ηε(x) ≈ 1 near x = 0, we have

x0 = a+ O(ε5/3) as ε→ 0.

Remark 3. Exactly the same asymptotic expansion (27) has been obtained with the use of the averaged Lagrangian
approximation and has been confirmed numerically [9].

The proof of Theorem 2 follows the same steps as the proof of Theorem 1 with an additional step on the
Lyapunov–Schmidt bifurcation equation.
Step 1: Decomposition. Let a ∈ (0, 1) and substitute

uε(x) = ηε(x) tanh
(
x− a
√
2ε

)
tanh

(
x+ a
√
2ε

)
+ wε(x)

in the stationary equation (8). The equivalent problem forwε takes the operator form

Lεwε = Hε + Nε(wε), (28)

where

Lε := −ε2∂2x + x
2
− 1+ 3η2ε(x) tanh

2(z+) tanh2(z−),

Hε := ηε(x)(η2ε(x)− 1) tanh(z+) tanh(z−)
(
sech2(z+)+ sech2(z−)

)
+ ηε(x) sech2(z+) sech2(z−)

(
1− η2ε(x) tanh(z+) tanh(z−)

)
+
√
2εη′ε(x)

(
tanh(z+) sech2(z−)+ tanh(z−) sech2(z+)

)
,

and

Nε(wε) = −3ηε(x) tanh(z+) tanh(z−)w2ε (x)− w
3
ε (x),

with the following notation:

z± = z ± ζ , z =
x
√
2ε
, ζ =

a
√
2ε
.

We again denote the functions in z by hats. We shall assume a priori that{
∃β ∈ (0, 1) : a 6

√
2βε2/3,

∃C > 0 : e−2ζ 6 Cε| log(ε)|1/2.
(29)

Note that bounds (29) imply that a→ 0 and ζ →∞ as ε→ 0.
Step 2: Linear estimates. In new variables, operator Lε becomes

L̂ε = −
1
2
∂2z + 2ε

2z2 − 1+ 3η̂2ε(z) tanh
2(z + ζ ) tanh2(z − ζ ) ≡ L̂0(ζ )+ Ûε(z, ζ ),
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Fig. 2. Potential of operator Lε (solid line) and L0 (dots) for the second excited state.

where

L̂0(ζ ) = −
1
2
∂2z + 2− 3 sech

2(z + ζ )− 3 sech2(z − ζ )

and

Ûε(z, ζ ) = 2ε2z2 + 3(η̂2ε(z)− 1) tanh
2(z + ζ ) tanh2(z − ζ )+ 3 sech2(z + ζ ) sech2(z − ζ ).

Operator L̂0(ζ ) has now two eigenvalues in the neighborhood of 0 for large ζ because of the double-well potential
centered at z = ±ζ . If ζ is large, geometric splitting theory [11] implies that the eigenfunctions ψ̂±0 (z) of operator L̂0(ζ )
corresponding to the two smallest eigenvalues are given asymptotically by

ψ̂±0 (z) =
ψ̂0(z − ζ )± ψ̂0(z + ζ )

√
2

+ OL∞(e−2ζ ) as ζ →∞, (30)

where ψ̂0(z) =
√
3
2 sech

2(z) is the L2-normalized eigenfunction of L̂0 = − 12∂
2
z + 2− 3 sech

2(z) for the zero eigenvalue.
Note that ψ̂+0 (z) is even and ψ̂

−

0 (z) is odd on R. For the second excited state, we are looking for an even solution ŵε(z).
Since a is not specified yet, we add the condition 〈ψ̂+0 , ŵε〉 = 0 and define a constrained subspace of H

2
even(R) by

X0 = {ŵε ∈ H2even(R) : 〈ψ̂
+

0 , ŵε〉 = 0}.

Let P0 be an orthogonal projection operator to the complement of ψ̂+0 in L
2
even(R). Since eigenfunction ψ̂

−

0 is odd and the
rest of spectrum of L̂0(ζ ) is bounded from zero, for any f̂ ∈ L2even(R), there exists a unique P0L̂

−1
0 (ζ )P0 f̂ ∈ H

2
even(R) such that

∃C > 0 : ∀f̂ ∈ L2even(R) : ‖P0L̂
−1
0 (ζ )P0 f̂ ‖H2 6 C‖f̂ ‖L2 . (31)

Let us consider functions that decay to zero as |z − ζ |, |z + ζ | → ∞ with a fixed exponential decay rate α > 0. Let
L∞α,ζ (R) be the exponentially weighted space with the supremum norm

‖ŵε‖L∞α,ζ := supz∈R+
eα(|z−ζ |)|ŵε(z)| + sup

z∈R−
eα(|z+ζ |)|ŵε(z)|.

For fixed α > 0 and ζ > 0, the unique solution P0L̂−10 (ζ )P0 f̂ decays exponentially with the same rate as f̂ so that

∃C > 0 : ∀f̂ ∈ L2even(R) ∩ L
∞

α (R) : ‖P0L̂
−1
0 (ζ )P0 f̂ ‖L∞α,ζ 6 C‖f̂ ‖L∞α,ζ . (32)

Fig. 2 shows the potential Vε(x) = x2− 1+ 3η2ε(x) tanh
2(z+ ζ ) tanh2(z− ζ ) of operator Lε = −ε2∂2x +Vε(x) (solid line)

and the potential V0(x) = 2− 3 sech2(z+ ζ )− 3 sech2(z− ζ ) of operator L0 = −ε2∂2x +V0(x) (dots) versus x. The bounded
potential V0(x) has two wells near x = ±a, whereas the confining potential Vε(x) has four wells near x = ±a and x = ±1.
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Again, the spectrum of operator L̂ε with a confining potential is purely discrete. The two wells of the confining potential
Vε(x) near x = ±1 are O(ε2/3)-close to zero but still positive thanks to property (P4) and the fact that tanh(z ± ζ ) = ±1
with exponential accuracy in ε if (29) is met. Therefore, for any fixed x0 > 0, we have

∃C > 0 : V (x) > Cε2/3, |x| > x0. (33)

On the other hand, by property (P2) for any ζ ∈ (0, ε−2/3), we have

∃C > 0 : sup
|z|6ε−2/3

|Ûε(z, ζ )| 6 C(ε2/3 + e−4ζ ). (34)

Thanks to properties (33) and (34), quantum tunneling theory [10] implies that the two small eigenvalues of L̂0 persist as
two small eigenvalues of L̂ε with two eigenfunctions ψ̂±ε that satisfy asymptotically

ψ̂±ε (z) = ψ̂
±

0 (z)+ OL∞(ε
2/3) as ε→ 0, (35)

thanks to a priori bound (29) and the exponential smallness of ψ̂±0 (z) in ε near z = ±
1
√
2ε
.

Let Pε be an orthogonal projection operator to the complement of ψ̂+ε in L
2
even(R). Because of the smallO(ε

2/3) eigenvalues
of L̂ε , bound (31) is now replaced by

∃C > 0 : ∀f̂ ∈ L2even(R) : ‖Pε L̂
−1
ε Pε f̂ ‖H2 6 Cε−2/3‖f̂ ‖L2 . (36)

The function Pε L̂−1ε Pε f̂ ∈ H
2
even(R) has peaks in all four wells near points z = ±

1
√
2ε
and z = ±ζ .

Step 3: Bounds on the inhomogeneous and nonlinear terms. From the symmetry of terms in Ĥε and N̂ε(ŵε), we have

N̂ε(ŵε) : H2even(R) 7→ L2even(R) and Ĥε ∈ L2even(R).

Under a priori bound (29), we first show that there is C > 0 such that

‖Ĥε‖L2 6 Cε2/3. (37)

The upper bound for the first term in Ĥε involves estimates of

I1(z) := (1− η̂2ε(z))(sech
2(z + ζ )+ sech2(z − ζ )),

which may create a problem since ζ → ∞ as ε → 0 and η̂ε(z) → 0 as |z| → ∞. By properties (P1) and (P2), for any
α ∈ (0, 2), ζ 6 βε−1/3 for any β ∈ (0, 1), and any small ε > 0, there is constant C > 0 such that

‖I1‖L2 6 ‖I1‖L2(|z|6ε−1/3) + ‖I1‖L2(|z|>ε−1/3)

6 ‖1− η2ε‖L∞(|x|<√2ε2/3)‖ sech
2(z+)+ sech2(z−)‖L2 + α−1/2e−α(ε

−1/3
−ζ )
‖ sech2(z+)+ sech2(z−)‖L∞α,ζ

6 Cε4/3.

Thus, the condition ζ 6 βε−1/3 from a priori bound (29) is sufficient to keep I1 small in L2.
The upper bound for the second term in Ĥε involves the estimate of the overlapping term

I2(z) := sech2(z+) sech2(z−).

Under a priori bound (29), this term is estimated by

‖I2‖L2 6

(∫
R
sech4(z + ζ ) sech4(z − ζ )dz

)1/2
=

(
2
∫
∞

−ζ

sech4(u)sech4(u+ 2ζ )du
)1/2

6 Ce−2ζ 6 Cε| log(ε)|1/2.

The last term in Ĥε is proportional to εη′ε , and is handled with property (P3) to give (37). By similar arguments, Ĥε ∈ L
∞

α,ζ (R)
for any α ∈ (0, 2) and ζ 6 βε−1/3 for any β ∈ (0, 1), and for any small ε > 0 there is C > 0 such that ‖Ĥε‖L∞α,ζ 6 Cε2/3.

The nonlinear terms in N̂ε(ŵε) are handled with the Banach algebra of H2(R), so we obtain

‖N̂ε(ŵε)‖L2 6 3‖ŵε‖2H2 + ‖ŵε‖
3
H2 . (38)

Step 4: Normal-form transformations. Unlike Step (4) in the proof of Theorem 1, we need to perform two normal-form
transformations sequentially because the orthogonal projection operator to the one-dimensional subspace spanned by
an even eigenfunction for the smallest eigenvalue of L̂0 has to be changed to the projection operator associated with an
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eigenfunction of a new linearization operator. For the sake of short notation, we combine both normal-form transformations
and write them together.
Let ŵε = ŵ1 + ŵ2 + ϕ̂ε with

ŵ1 = P0L̂−10 P0Ĥε, ŵ2 = P0L̂−10 P0Ĝε,

where

Ĝε := −3η̂ε tanh(z + ζ ) tanh(z − ζ )ŵ21 + (Pε − P0)Ĥε
and Pε is a new orthogonal projection operator introduced below.
The remainder term ϕ̂ε solves the new problem

Lεϕ̂ε = Hε +Nε(ϕ̂ε)+ Sε, (39)

where the new linear operator is

Lε := L̂ε +∆Ûε(z), ∆Ûε(z) := 6η̂ε tanh(z + ζ ) tanh(z − ζ )(ŵ1 + ŵ2)+ 3(ŵ1 + ŵ2)2,

the new source term is

Hε := −Ûε(ŵ1 + ŵ2)− 3η̂ε tanh(z + ζ ) tanh(z − ζ )(2ŵ1ŵ2 + ŵ22)− (ŵ1 + ŵ2)
3
+ (Pε − P0)Ĝε,

the new nonlinear function is

Nε(ϕ̂ε) := −3η̂ε tanh(z + ζ ) tanh(z − ζ )ϕ̂2ε − 3(ŵ1 + ŵ2)ϕ̂
2
ε − ϕ̂

3
ε ,

and the new one-dimensional projection is

Sε := (I − Pε)(Ĥε + Ĝε).

If ŵ1, ŵ2 ∈ H2(R)∩ L∞α,ζ (R) satisfy bounds (42) below, then∆Ûε(z) is as small asO(ε
2/3) in the two wells near z = ±ζ

and is exponentially small in ε in the two wells near z = ± 1
√
2ε
. Let ψ̃±ε be the eigenfunctions ofLε for the two eigenvalues

continued from the two smallest eigenvalues of L̂0. The proximity of the potential wells and expansion (35) imply that

ψ̃±ε (z) = ψ̂
±

ε (z)+ OL∞(ε
2/3) = ψ̂±0 (z)+ OL∞(ε

2/3) as ε→ 0. (40)

Let Pε be an orthogonal projection operator to the complement of ψ̃+ε in L
2
even(R). Thanks to expansion (40), we have

∃C > 0 : ‖Pε − P0‖L2→L2 6 Cε2/3. (41)

Thanks to bounds (31), (32), (37), and (41), we have ŵ1, ŵ2 ∈ H2even(R) ∩ L
∞

α,ζ (R) for any α ∈ (0, 2) and ζ 6 βε−1/3 for
any β ∈ (0, 1) such that

∃C > 0 : ‖ŵ1‖H2∩L∞α,ζ 6 Cε2/3, ‖ŵ2‖H2∩L∞α,ζ 6 Cε4/3. (42)

As a result, for any small ε > 0, there is C > 0 such that

‖η̂ε tanh(z + ζ ) tanh(z − ζ )(2ŵ1ŵ2 + ŵ22)‖L2 6 Cε2,

‖(ŵ1 + ŵ2)
3
‖L2 6 Cε2,

‖(Pε − P0)Ĝε‖L2 6 Cε2.

Let us now estimate the term Ûεŵj in L2(R) for any j = {1, 2}. By properties (P1) and (P2), for any α ∈ (0, 2) and ζ 6 βε−1/3

for any β ∈ (0, 1), and for any small ε > 0, we have

‖ε2z2ŵj‖L2 6 Cε2ζ 2‖ŵj‖L∞α,ζ 6 Cε4/3‖ŵj‖L∞α,ζ ,

‖(1− η̂2ε)ŵj‖L2 6 ‖(1− η̂2ε)ŵj‖L2(|z|6ε−1/3) + ‖(1− η̂
2
ε)ŵj‖L2(|z|>ε−1/3)

6 ‖1− η2ε‖L∞(|x|<√2ε2/3)‖ŵj‖L2 + α
−1/2e−α(ε

−1/3
−ζ )
‖ŵj‖L∞α,ζ

6 Cε4/3‖ŵj‖L2∩L∞α,ζ ,

‖ sech2(z+) sech2(z−)ŵε‖L2 6 Ce−4ζ‖ŵε‖L2 6 Cε2| log(ε)|‖ŵε‖L2 .

In view of bound (42), for any small ε > 0, there is C > 0 such that

‖Ûε(ŵ1 + ŵ2)‖L2 6 Cε2. (43)

Combining all together, we have established thatHε ∈ L2even(R), and for any small ε > 0, there is C > 0 such that

‖Hε‖L2 6 Cε2. (44)
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For the nonlinear term, we still haveNε(ϕ̂ε) : H2even(R) 7→ L2even(R). Thanks to bound (42), for any ϕ̂ε ∈ Bδ(H
2
even) in the

ball of radius δ > 0 and for any small ε > 0, there is C(δ) > 0 such that

‖Nε(ϕ̂ε)‖L2 6 C(δ)‖ϕ̂ε‖2H2 . (45)

Step 5: Fixed-point arguments. Because ∆Ûε(z) is exponentially small in ε near z = ± 1
√
2ε
, small positive eigenvalues of

L̂ε of the size O(ε2/3) persist in the spectrum of Lε and have the same size. As a result, bound (36) extends to the operator
Lε in the form

∃C > 0 : ∀f̂ ∈ L2even(R) : ‖Pε L̂−1ε Pε f̂ ‖H2 6 Cε−2/3‖f̂ ‖L2 , (46)

where the new projection operator Pε is used. As a result, we rewrite Eq. (39) as the fixed-point problem

ϕ̂ε ∈ H2even(R) : ϕ̂ε = PεL
−1
ε Pε

(
Hε +Nε(ϕ̂ε)+ Sε

)
(47)

subject to the Lyapunov–Schmidt bifurcation equation

Fε := 〈ψ̃
+

ε , (Hε +Nε(ϕ̂ε)+ Sε)〉L2 = 〈ψ̃
+

ε , (Ĥε + Ĝε +Hε +Nε(ϕ̂ε))〉L2 = 0. (48)

Themap ϕ̂ε 7→ PεL
−1
ε PεNε(ϕ̂ε) is Lipschitz continuous in the neighborhood of 0 ∈ H2even(R). Thanks to bounds (45) and

(46), the map is a contraction in the ball Bδ(H2even) if δ � ε2/3. On the other hand, thanks to bounds (44) and (46), the source
term PεL

−1
ε PεHε is as small as O(ε4/3) in L2-norm. Furthermore, PεSε = 0.

By Banach’s Fixed-Point Theorem in the ball Bδ(H2even) with δ ∼ ε4/3, for any (a, ζ ) satisfying a priori bounds (29) and
sufficiently small ε > 0, there exists a unique ϕ̂ε ∈ H2even(R) of the fixed-point problem (47) and C > 0 such that

‖ϕ̂ε‖H2 6 Cε4/3.

By Sobolev’s embedding of H2(R) to C1(R), for any small ε > 0 there is C > 0 such that

‖wε‖L∞ = ‖ŵε‖L∞ 6 C‖ŵ1 + ŵ2 + ϕ̂ε‖H2 6 Cε2/3,

which completes the proof of bound (26) for any (a, ζ ) satisfying a priori bounds (29). It remains to show that bounds (29)
are satisfied by solutions of the Lyapunov–Schmidt bifurcation equation (48).

Step 6: Lyapunov–Schmidt bifurcation equation. To consider solutions of the Lyapunov–Schmidt reduction equation, we
rewrite (48) in the form

Fε ≡ F (1)
ε + F (2)

ε ,

where

F (1)
ε = 〈ψ̂

+

0 , Ĥε〉L2 ,

F (2)
ε =

〈
ψ̃+ε ,

(
Ĝε +Hε +Nε(ϕ̂ε)

)〉
L2
+ 〈ψ̃+ε − ψ̂

+

0 , Ĥε〉L2 .

We will show that there exists a simple root of F (1)
ε in a > 0 which satisfies the asymptotic expansion (27), and that this

root persists with respect to the perturbations in F (2)
ε . If a satisfies the asymptotic expansion (27), then a = O(ε| log(ε)|)

and e−2ζ = O(ε| log(ε)|1/2), so the a priori bounds (29) are satisfied.
For convenience, we recall (30) and write

Rε ≡
2
√
2
√
3

F (1)
ε = 〈sech

2(z+)+ sech2(z−)+ OL∞(e−2ζ ), Ĥε〉L2 . (49)

In what follows, we compute the leading order ofR and write the error of the size OL∞(e−2ζ ) in the end of computations.
From the explicit definition of Ĥε , the leading-order part ofRε is written in the form

R(1)
ε = 〈sech

2(z+)+ sech2(z−), Ĥε〉L2

=

∫
R
ηε(x)(η2ε(x)− 1) tanh(z+) tanh(z−)

(
sech2(z+)+ sech2(z−)

)2
dz

+
√
2ε
∫

R
η′ε(x)

(
tanh(z+) sech2(z−)+ tanh(z−) sech2(z+)

) (
sech2(z+)+ sech2(z−)

)
dz

+

∫
R
ηε(x) sech2(z+) sech2(z−)

(
1− η2ε(x) tanh(z+) tanh(z−)

) (
sech2(z+)+ sech2(z−)

)
dz.
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After the change of variables u = z − ζ = z− = z+ − 2ζ and the use of symmetry on z ∈ R, the first and second terms in
Rε give

I1 + I2 = 2
∫
∞

−ζ

ηε(x)(η2ε(x)− 1) tanh(u) tanh(u+ 2ζ )
(
sech2(u)+ sech2(u+ 2ζ )

)2
du

+ 2
√
2ε
∫
∞

−ζ

η′ε(x)
(
tanh(u) sech2(u+ 2ζ )+ tanh(u+ 2ζ ) sech2(u)

) (
sech2(u)+ sech2(u+ 2ζ )

)
du

=
3
√
2ε
2

∫
∞

−ζ

(1+ η2ε(x))η
′

ε(x) sech
4(u)

(
1+ OL∞(e−2ζ )

)
du,

where x =
√
2ε(u+ ζ ). Thanks to the exponential decay of sech4(u) and property (P3), we have

I1 + I2 =
3
√
2ε
2

∫ ζ

−ζ

(1+ η2ε(x))η
′

ε(x) sech
4(u)

(
1+ OL∞(e−2ζ )

)
du+ O(ε2/3e−4ζ ). (50)

On the other hand, thanks to property (P2) for ζ 6 βε−1/3 for any β ∈ (0, 1), we have

ηε(x) = 1+ OL∞(ε
4/3), η′ε(x) = −x(1+ OL∞(ε

4/3)), ∀x ∈ [0, 2
√
2εζ ].

As a result, we obtain

I1 + I2 = −6ε2
∫ ζ

−ζ

(ζ + u) sech4(u)
(
1+ OL∞(ε

4/3, e−2ζ )
)
du+ O(ε2/3e−4ζ )

= −4
√
2εa

(
1+ O(ε4/3, e−2ζ )

)
+ O(ε2/3e−4ζ ).

Performing similar computations for the third term inRε gives

I3 = 2
∫
∞

−ζ

ηε(x) sech4(u) sech2(u+ 2ζ )
(
1− η2ε(x) tanh(u)

) (
1+ OL∞(e−2ζ )

)
du

= 28e−4ζ
∫ ζ

−ζ

e−8u

(1+ e−2u)5
(
1+ OL∞(ε

4/3, e−2ζ )
)
du+ O(e−6ζ )

= 32e−4ζ
(
1+ O(ε4/3, e−2ζ )

)
+ O(e−6ζ ).

Recalling now (49), we have thus obtained that

Rε = −4
√
2εa

(
1+ O(ε2/3, e−2ζ )

)
+ 32e−2

√
2aε−1 (1+ O(ε4/3, e−2ζ )

)
.

Analyzing similarly the error coming from the other term F (2)
ε in the Lyapunov–Schmidt reduction Eq. (48), we rewrite this

equation in the form

2
√
2
√
3

Fε = −4
√
2εa

(
1+ O(ε2/3, e−2ζ )

)
+ 32e−2

√
2aε−1 (1+ O(ε2/3, e−2ζ )

)
= 0. (51)

Taking a natural logarithm of Fε = 0, we obtain

2
√
2aε−1 + log(a) = − log(ε)+

5
2
log(2)+ O(ε2/3, e−2ζ ).

Let a = − 1
√
2
ε log(ε)U and rewrite the problem for U:

U −
log(U)
2 log(ε)

= 1+
log | log(ε)|
2 log(ε)

−
3 log(2)
2 log(ε)

(
1+ O(ε2/3, e−2ζ )

)
. (52)

The remainder term is continuous with respect to ε for small ε > 0. There exists a root of (52) at U = 1 for ε = 0. By the
Implicit Function Theorem applied to Eq. (52) for small ε > 0, there exists a unique root U(ε) such that U(ε) is continuous
in ε > 0 and limε↓0 U(ε) = 1. To estimate the remainder term, one can further decompose

U = 1+
log | log(ε)|
2 log(ε)

(1+ V )

and rewrite the problem for V :

V −
log

(
1+ log | log(ε)|

2 log(ε) (1+ V )
)

log | log(ε)|
= −

3 log(2)
log | log(ε)|

(
1+ O(ε2/3, e−2ζ )

)
. (53)
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Again, there is a root of (53) at V = 0 for ε = 0. By the Implicit Function Theorem applied to Eq. (53) for small ε > 0, there
exists a unique root V (ε) such that V (ε) is continuous in ε > 0 and limε↓0 V (ε) = 0. As a result, for small ε > 0 there is a
root of the nonlinear equation (51), which admits the asymptotic expansion (27).
Step 7: properties (25). The uniform bound (26) has again the order of O(ε2/3). Using the same analysis as in Step 6 of the
proof of Theorem 1, we prove that uε(x) is strictly positive for any |x| > 1. Therefore, there exist only two zeros of uε(x)
on R, and the two zeros x = ±x0 are located near x = ±a (Remark 2). Additionally, uε ∈ C1(R), and the bootstrapping
arguments give uε ∈ C∞(R). Combining all together, uε(x) constructed above is the second excited state of the stationary
equation (8) that satisfies property (25).

4. Construction of them-th excited state withm > 2

The m-th excited state is constructed similarly to the proof of Theorem 2. The relevant decomposition is a product of m
dark solitons and the ground state in the form

uε(x) = ηε(x)
m∏
j=1

tanh
(
x− aj
√
2ε

)
+ wε(x),

where the parameters {aj}mj=1 are to be found fromm constraints on the fixed-point problem for the remainder termwε(x).
Assuming that all aj are distinct and distributed according to the a priori bounds{

∃β ∈ (0, 1) : aj 6
√
2βε2/3, j ∈ {1, 2, . . . ,m}

∃C > 0 : e−
√
2(aj+1−aj)ε−1 6 Cε2| log(ε)|, j ∈ {1, 2, . . . ,m− 1},

(54)

the relevant potential of the Schrödinger operator

L̂0(a1, . . . , am) = −
1
2
∂2z + 2− 3

m∑
j=1

sech2(z − zj), zj =
aj
√
2ε

has m wells and supports m eigenvalues in the neighborhood of 0. The m constraints follow from m projections to the
corresponding eigenfunctions for the m smallest eigenvalues. Although the computations of these reductions are long and
cumbersome, these computations are expected to recover the same leading order as the Euler–Lagrange equations obtained
by Coles et al. [9],

4
√
2εaj + 32

(
e−
√
2(aj+1−aj)ε−1 − e−

√
2(aj−aj−1)ε−1

)
= 0, j ∈ {1, 2, . . . ,m}, (55)

where only pairwise interactions contribute to the leading order. Asymptotic expansions of solutions of these equations are
constructed in [9] and compared to the numerical approximations form = 2 andm = 3.
Spectral stability of the excited states in the limit ε → 0 is also a physically important and mathematically interesting

problem. Variational and numerical approximations in [9] suggest that the purely discrete spectrum of the spectral stability
problem associated with them-th excited state has a countable set of eigenvalues, which are close to eigenvalues associated
with the ground state, and m additional pairs of eigenvalues. The m additional pairs are related to the Jacobian of the
reductions equation (55): one pair remains bounded as ε→ 0 and (m−1)pairs grow like log(ε) as ε→ 0. Unfortunately, the
rigorous studies of the asymptotic properties of eigenvalues are difficult even for the linearization of the ground state [8].
Therefore, the characterization of asymptotic properties of eigenvalues associated with the excited states will remain an
open problem for further studies.
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