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Evolution of weakly nonlinear and slowly varying Rossby waves in planetary atmospheres and oceans

is considered within the quasi-geostrophic equation on unbounded domains. When the mean flow

profile has a jump in the ambient potential vorticity, localized eigenmodes are trapped by the mean

flow with a non-resonant speed of propagation. We discuss amplitude equations for these modes.

Whereas the linear problem is suggestive of a two-dimensional Zakharov-Kuznetsov equation, we

found that the dynamics of Rossby waves are effectively linear and confined to zonal waveguides of the

mean flow. This eliminates even the ubiquitous Korteweg-de Vries equations as the underlying model

for spatially localized coherent structures in these geophysical flows. Published by AIP Publishing.

https://doi.org/10.1063/1.5052191

I. INTRODUCTION

Planetary atmospheres and oceans are strongly turbulent

media. However, highly ordered coherent structures arise in

a process of self-organization and dominate the dynamics

on slow temporal and large spatial scales. Rapidly rotating

geophysical flows with small variations in stratification com-

pared to the background stratification are well described by

the quasi-geostrophic equation

Dq

Dt
= 0, (1)

where q = ∇2ψ + βy − Fψ is the shallow-water potential vor-

ticity, D/Dt = ∂t + u∂x + v∂y denotes the material derivative,

ψ is the stream function for the horizontal velocities given by

(u, v) = (−ψy,ψx), f = f 0 + βy describes the ambient rotation of

the planet at latitude y, and F = 1/L2
R

is defined in terms of the

Rossby radius of deformation LR =

√

gH̄/f0 with earth’s grav-

itational acceleration g and typical height H̄.1–3 This equation

was first derived by Charney4 and independently by Obukhov.5

In the context of low-frequency drift waves in magnetized

plasmas, the quasi-geostrophic equation (1) is known as the

Hasegawa–Mima equation.6 In the presence of an ambient

meridional mean flow U that depends on latitude y, we employ

the decomposition

ψ = −
∫ y

0

U(y)dy + ψ̃

and q = q(0) + q(1) with

q(0)
= βy + F

∫ y

0

U(y)dy − U ′, q(1)
= ∇2ψ̃ − Fψ̃,
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after which the quasi-geostrophic equation (1) is expressed

as

(

∂

∂t
+ U

∂

∂x

)

(

∇2ψ̃ − Fψ̃
)

+ (β + FU − U ′′)
∂ψ̃

∂x

+ J
(

ψ̃,∇2ψ̃
)

= 0, (2)

where J(a, b) = axby − aybx is the Jacobian encapsulating the

nonlinearity coming from the material derivative and the term

β + FU − U ′′ ≡ q
(0)
y represents the leading order potential

vorticity gradient.

The main purpose of this work is to discuss the underly-

ing evolution equations for the stream function ψ̃(x, y) on long

spatial and slow temporal scales in a weakly nonlinear anal-

ysis. Such equations typically support solitary Rossby waves

and are found in numerous contexts ranging from engineer-

ing,7 tidal flows,8 topographic forcing9 to rotating vortices.10

In the above context of geophysical waves, one-dimensional

solitary Rossby waves were discussed in Refs. 11 and 12

where the Korteweg-de Vries (KdV) equation and the modified

KdV equation were formally derived to describe the persis-

tence of the Great Red Spot in the Jovian atmosphere. The

associated linear problem was stated in these works without

much analysis. The works of Refs. 11 and 12 spawned a huge

activity in deriving KdV equations13–20 and the (bidirectional)

Boussinesq equation21,22 in the geophysical context to describe

and identify mechanisms for atmospheric blocking, cycloge-

nesis and the meandering of oceanic streams. Most of these

works considered laterally bounded domains allowing for one-

dimensional propagation in the zonal direction of large-scale

solitary waves.

In the present consideration, we investigate the possibil-

ity of solitary Rossby waves in the unbounded domain and

whether one can derive two-dimensional extensions of the

KdV models such as the Zakharov-Kuznetsov (ZK) equation23

which supports stable lump solitary waves. We establish a
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number of rigorous results on the characterization of eigenval-

ues of the associated Rayleigh–Kuo spectral problem, which

allow us to characterize localization in the meridional direc-

tion. In particular, we prove under some natural conditions that

no localized eigenmodes with speeds below the wave contin-

uum exist for a smooth flow U. If the potential vorticity of

the mean flow has a jump, however, we show that localized

eigenmodes do exist and are trapped by the jump of the mean

flow.

A formal derivation of amplitude equations, however,

reveals that nonlinear solitary wave equations are not possible

in the geophysical situation, neither one- nor two-dimensional.

Rather, the dynamics of small large-scale localized perturba-

tions are governed by linear dispersion and wave propagation

is confined to zonal wave guides prescribed by the linear

localized eigenmodes of the associated Rayleigh-Kuo prob-

lem. We corroborate this prediction of the asymptotic anal-

ysis by direct numerical simulation of the quasi-geostrophic

equation (2).

The paper is organized as follows. In Sec. II, we develop

the linear theory for the quasi-geostrophic equation (2). In

Sec. III, we present the formal multiple scale analysis demon-

strating the impossibility of non-linear solitary waves in

unbounded domains. Section IV presents numerical simula-

tions of localized initial conditions, which disperse away in

the time evolution. Section V concludes with a discussion.

II. LINEAR THEORY

Before we consider the weakly nonlinear and slowly vary-

ing approximation in Sec. III, it is necessary to discuss some

properties of the linearized version of the quasi-geostrophic

equation (2) with a non-constant mean flow in terms of normal

mode analysis.1,3 Linearization of Eq. (2) yields
(

∂

∂t
+ U

∂

∂x

)

(∇2ψ̃ − Fψ̃) + (β + FU − U ′′)
∂ψ̃

∂x
= 0, (3)

where U depends on y only. Separating variables with the nor-

mal mode ψ̃(x, y, t) = eik(x−ct)φ(y), where k ∈ R is the zonal

wave number, c is the phase speed, and φ is the meridional

profile, we obtain the Rayleigh–Kuo spectral problem

(U − c)(φ′′ − (F + k2)φ) + (β + FU − U ′′)φ = 0, (4)

where c is the spectral parameter and φ is an eigenfunction to

be found.

If U(y) = Ū is a constant mean flow, the spectral problem

(4) admits only the continuous spectrum located at

c = Ū −
β + FŪ

F + k2 + ℓ2
, (5)

where ℓ ∈ R is the meridional wave number for the Fourier

mode φ(y) = eiℓy. Expanding (5) in the long-wave limit as

c = −
β

F
+
β + FŪ

F2
(k2 + ℓ2) + O((k2 + ℓ2)2), (6)

we obtain the phase speed of the linearized ZK equation23 for

the two-dimensional perturbations on the constant background

Ū. However, it is impossible to justify the quadratic nonlinear-

ity of the ZK equation if we start with the quasi-geostrophic

equation (2) for the constant mean flow U = Ū because the lim-

iting Fourier mode φ = 1 corresponds to ℓ = 0. This prompts us

to look at the y-dependent mean flow U such that U(y)→ Ū

as |y| → ∞ and to seek a localized eigenfunction φ such that

φ(y)→ 0 as |y|→∞ for an eigenvalue c outside the continuous

spectrum [−β/F, Ū], where we assume that β, F, and Ū are all

positive. To avoid resonances and critical layers, we assume

U(y) + β/F > 0 for all y.

In particular, we are looking at the eigenvalues c located

below the continuous spectrum, that is, c < −β/F. Although

the dispersion relation (6) suggests that the ZK equation may

be the appropriate two-dimensional nonlinear wave model for

localized perturbations of the y-dependent mean flow U, we

will show in Sec. III that this is not the case. To preempt our

results, we will show that the amplitude equation contains nei-

ther the quadratic nonlinearity nor the meridional component

of the dispersion.

In order to formulate rigorous results of the linear the-

ory, we place the Rayleigh–Kuo spectral problem (4) in a

functional-analytic setting. Because we consider x-dependent

perturbations in the long-wave limit, we set k = 0 and rewrite

the limiting spectral problem in the form

L(c)φ = 0, (7)

where

L(c) ≔ (U − c)(∂2
y − F) + β + FU − U ′′.

If U, U ′′ ∈ L∞(R), then for every c ∈ R, L(c) : H2(R)

⊂ L2(R) 7→ L2(R) is an unbounded non-selfadjoint opera-

tor with bounded coefficients. Since F > 0, the self-adjoint

Helmholtz operator (F − ∂2
y ) : H2(R) ⊂ L2(R) 7→ L2(R)

is invertible. Hence, introducing ϕ ≔ (F − ∂2
y )φ, the lim-

iting spectral problem (7) can be formulated as a standard

eigenvalue problem

Mϕ = cϕ (8)

with M ≔ U − (β + FU − U ′′)(F − ∂2
y )−1,

where M : L2(R) 7→ L2(R) is a bounded non-selfadjoint

operator. The adjoint eigenvalue problem

M
∗θ = cθ (9)

with M
∗
≔ U − (F − ∂2

y )−1(β + FU − U ′′)

coincides with the adjoint spectral problem

L
∗(c)θ = 0, (10)

if (U − c)θ ∈ H2(R), where L
∗(c) : H2(R) ⊂ L2(R) 7→ L2(R)

is the adjoint operator to L(c) given by

L
∗(c) ≔ (∂2

y − F)(U − c) + β + FU − U ′′.

The condition (U − c)θ ∈ H2(R) is satisfied for any θ ∈
L2(R) satisfying (9) because if θ ∈ L2(R), then (F − ∂2

y )−1

(β + FU − U ′′)θ ∈ H2(R), which implies due to the spectral

problem M
∗θ = cθ that (U − c)θ ∈ H2(R). Hence, the eigen-

function θ of the adjoint problems for the bounded operator

M
∗ and for the unbounded operator L

∗(c) in (9) and (10),

respectively, coincide.

The following result is concerned with the Fredholm

theory for a simple isolated eigenvalue.
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Lemma 1. Assume U, U ′′ ∈ L∞(R) and let c0 ∈ R be

a simple isolated eigenvalue of the spectral problem (8) with

the eigenfunction ϕ0 ∈ L2(R). Then, c0 is also the simple

isolated eigenvalue of the adjoint spectral problem (9) with

the eigenfunction θ0 ∈ L2(R) and the inner product 〈θ0, ϕ0〉L2

is nonzero.

Proof. The result follows by Fredholm theory for

bounded operators since the reformulation of the spectral prob-

lem (7) into the form (8) involves the bounded operator M.

◽

Remark 1. For each eigenfunction ϕ0 ∈ L2(R) of the

spectral problem (8), one can define the eigenfunction of the

spectral problem (7) by φ0 ≔ (F − ∂2
y )−1ϕ0 ∈ H2(R) and

rewrite the inner product in the form

0 , 〈θ0, ϕ0〉L2 =

〈

θ0, (F − ∂2
y )φ0

〉

L2
. (11)

In what follows, we normalize θ0 from the condition that the

inner product (11) is one.

The following result states that no eigenvalues c generally

exist below −β/F if U is smooth.

Lemma 2. Assume that U is a smooth bounded function

of y and that U(y) + β/F > 0 for every y ∈ R. Then, the

spectral problem (7) admits no eigenvalues c with c < −β/F.

Proof. Let c = −β/F + γ and rewrite the spectral problem

(7) in the equivalent form

−(U − c)φ′′ + U ′′φ = γFφ.

We are looking for eigenvalues γ < 0 with eigenfunction

φ ∈ H2(R). By using the quotient rule, the spectral problem

can be rewritten in the form

− d

dy
(U − c)2 d

dy

φ

U − c
= γFφ,

thanks to the fact that U(y) − c > 0 for every y ∈ R under

the assumptions of the lemma. Assume that φ ∈ H2(R) is an

eigenfunction for an eigenvalue γ < 0. The existence of this

eigenfunction contradicts the Green’s first identity

γF

∫
R

φ2

U − c
dy =

∫
R

(U − c)2

[
d

dy

φ

U − c

]2

dy,

where the right-hand side is positive; hence γ ≥ 0. ◽

The following result also eliminates the possibility of

eigenvalues for convex U.

Lemma 3. Assume that U, U ′′ ∈ L∞(R) with U(y) + β/F

> 0 and U ′′(y) ≥ 0 for every y ∈ R. Then, the spectral problem

(7) admits no eigenvalues c with c < −β/F.

Proof. Under assumptions of the lemma, we rewrite the

spectral problem (7) in another equivalent form as

−φ′′ = cF + β − U ′′

U − c
φ.

It follows again from the Green’s first identity that∫
R

(φ′)2dy =

∫
R

cF + β − U ′′

U − c
φ2dy,

where the left-hand side is positive, whereas the right-hand

side is negative and well-defined under the assumptions of the

lemma. The contradiction excludes eigenvalues with c<−β/F.

◽

Because of the negative results in Lemmas 2 and 3, we

have to consider piecewise smooth mean flows U. In partic-

ular, we consider examples of symmetric localized jets on a

constant mean flow of the form

U(y) = Ū
[

1 − a exp(−b|y|)
]

, y ∈ R, (12)

with positive parameters Ū, a, and b, and asymmetric localized

jets of the form

U(y) =


Ū−
[

1 − a− exp(b−y)
]

, y < 0,

Ū+

[

1 − a+ exp(−b+y)
]

, y > 0,
(13)

where Ū±, a±, and b± are positive parameters. To assure

the continuity of U and U ′′ at y = 0 for (13), we require

Ū−(1 − a−) = Ū+(1 − a+) and b− = b+

√
a−U−/a+U+.

Both the symmetric and asymmetric flows (12) and (13)

exhibit a discontinuity of their first derivative at y = 0,

which causes the leading order potential vorticity gradient in

q
(0)
y = β + FU − U ′′ to have a δ-function singularity. It is

standard to consider the linear problem for the regions y < 0

and y > 0 separately and to treat y = 0 as a boundary; see

Refs. 24 (Chap. 9.3.3) and 1 (Chap. 9.2). After removal of the

δ-function singularity, U ′′ is continuous across the point y = 0.

For such mean flows with a jump in the ambient potential vor-

ticity at y = 0, the conditions of Lemmas 2 and 3 are not satisfied

and eigenvalues c of the spectral problem (7) below the wave

continuum may exist with c < −β/F.

FIG. 1. Symmetric mean flow profile U in (12) with

Ū = 5, a = 0.7, and b = 0.8 for β = 1 and F = 1 (left)

and the associated localized eigenfunction φ0 (right) for

the smallest eigenvalue c0 ≈ −1.73.
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FIG. 2. Asymmetric mean flow profile U in (13) with

Ū− = 2, a− = 0.3, b− = 0.4 and Ū+ = 7, a+ = 0.8,

b+ = 0.13 for β = 1 and F = 1 (left) and the associated

localized eigenfunction φ0 (right) for the smallest eigen-

value c0 ≈ −1.03.

An example for a symmetric mean flow of the form (12)

with Ū = 5, a = 0.7, and b = 0.8 is shown in the left panel of

Fig. 1. There exists a simple isolated eigenvalue c0 ≈ −1.73

for β = 1 and F = 1 with the eigenfunction φ0 shown in the

right panel. The left panel of Fig. 2 presents an example for an

asymmetric mean flow of the form (13) with Ū− = 2, a− = 0.3,

b− = 0.4, and a+ = 0.8, implying Ū+ = 7 and b+ = 0.13.

The simple isolated eigenvalue is located at c0 ≈ −1.03 for

β = 1 and F = 1 with the eigenfunction φ0 shown in the right

panel.

III. DERIVATION OF SOLITARY ROSSBY
WAVE EQUATIONS

Here we derive an evolution equation describing the

dynamics of localized pulses with amplitude A(X, Y, T ) on

long spatial scales X, Y and a slow time scale T in the weakly

nonlinear and slowly varying reduction of the barotropic equa-

tion (2) in an unbounded domain. We show in Sec. III A that

the classical KdV and ZK equations cannot be derived and the

dynamics of the amplitude A are governed by the linear wave

equation

AT = λ AXXX , (14)

where λ is a numerical constant. We then show in Sec. III B

that the dynamics remain linear according to (14) even when

including higher-order cubic nonlinear terms.

A. KdV and ZK equations

In addition to the fast meridional variable y over which

the mean flow U changes, we introduce the long spatial and

slow temporal scales

X = ǫ(x − c0t), Y = ǫy, T = ǫ3t, (15)

where the limiting speed c0 coincides with a simple isolated

eigenvalue of the spectral problem (7). Derivative terms in the

quasi-geostrophic potential vorticity equation (2) are expanded

as follows:

∂t + U∂x = ǫ(U − c0)∂X + ǫ3∂T ,

∇2
= ∂2

y + 2ǫ∂y∂Y + ǫ2(∂2
X + ∂2

Y ),

and

J(a, b) = ǫ(aXby − aybX ) + ǫ2(aXbY − aY bX ).

We seek an asymptotic solution of the form

ψ̃ = ǫ2ψ(2) + ǫ3ψ(3) + ǫ4ψ(4) + · · · , (16)

with the leading-order perturbation stream function

ψ(2)
= A(ǫ(x − c0t), ǫy, ǫ3t) φ0(y), (17)

where φ0 ∈H2(R) is the eigenfunction of the spectral prob-

lem (7) for a simple isolated eigenvalue c0 such that L(c0)φ0

= 0. For the asymptotic expansion (16) to be a solution of

the quasi-geostrophic potential vorticity equation (2), each

term in the asymptotic expansion (16) must decay to zero

as |y| → ∞. By substituting (16) into (2) and using the

expansions in terms of slow variables (15), we obtain a

sequence of equations at orders of O(ǫk) with k ≥ 3. The

choice of ψ(2) in (17) satisfies the equation at O(ǫ3). At

the next order, O(ǫ4), we obtain the linear inhomogeneous

equation

L(c0)∂Xψ
(3)
= −2(U − c0)AXYφ

′
0, (18)

which can be solved explicitly to yield

ψ(3)
= −yφ0(y)AY (X, Y , T ). (19)

At the order O(ǫ5), we obtain the linear inhomogeneous

equation

L(c0)∂Xψ
(4)
= ∂T A(F − ∂2

y )φ0 + 2(U − c0)(yφ0)′AXYY

− (AXXX + AXYY )(U − c0)φ0

−AAX (φ0φ
′′′
0 − φ

′
0φ
′′
0 ). (20)

Let θ0 ∈ L2(R) be the eigenvector of the adjoint problem (10)

for the same eigenvalue c0 such that (U − c0)θ0 ∈ H2(R). By

Lemma 1, if c0 is a simple eigenvalue, then 〈θ0, (F − ∂2
y )φ0〉 is

nonzero and we normalize θ0 such that 〈θ0, (F − ∂2
y )φ0〉 = 1.

By Fredholm theory, there exists a solution ψ(4) to the linear

inhomogeneous equation (20) decaying to zero as |y|→ ∞ if

and only if the right-hand side of this equation is orthogonal

to θ0 in L2(R). This solvability condition yields the evolution

equation for the amplitude A(X, Y, T ) which is given by the

following ZK equation

AT = µAAX + λAXXX + ζAXYY , (21)

with the numerical coefficients given by the following inner

products:

µ =
〈

θ0, (φ0φ
′′′
0 − φ

′
0φ
′′
0 )

〉

, (22)

λ = 〈θ0, (U − c0)φ0〉, (23)

ζ =
〈

θ0, (U − c0)(φ0 − 2(yφ0)′)
〉

. (24)
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FIG. 3. Log-log plot of |µ| for increasing resolution with number of spatial

grid points N for the asymmetric mean flow depicted in Fig. 2. The slope is

estimated as −0.5 from linear regression.

We now show that ζ = 0, so that the ZK equation cannot be

derived as a two-dimensional extension to the KdV equation.

By using L(c0)(yφ0) = 2(U − c0)φ′
0
, we write (24) in the form

ζ = −
〈

θ0, (U − c0)(φ0 + 2yφ′0)
〉

= −〈θ0, (U − c0)φ0〉 − 〈yθ0,L(c0)(yφ0)〉.

Using L
⋆(c0)(yθ0) = 2∂y((U − c0)θ0), we obtain after partial

integration that ζ = −ζ implying ζ = 0.

We next show that µ = 0 which precludes the role of the

KdV equation to describe localized large scale perturbations.

For symmetric mean flow profiles U, the linear problems (7)

and (10) support even eigenfunctions φ0 and θ0. This implies

that the integrand in (22) is odd so that µ = 0 for symmet-

ric flow profiles. For asymmetric mean flow profiles, we only

have numerical evidence for µ = 0. In Fig. 3, we plot |µ|

versus the number of spatial grid points N and show that

µ→ 0 as N →∞ for an asymmetric flow profile on Fig. 2 with

|µ| ∼ 1/
√

N .

Hence the dynamics of the amplitude A(X, Y, T ) are

entirely linear with zonal dispersion only and are described

by the linear dispersive wave equation (14) with λ given by

(23). For the mean flow depicted in Fig. 1, we obtain λ ≈−4.69.

For the asymmetric mean flow depicted in Fig. 2, we obtain

λ = −4.16.

B. Modified KdV and ZK equations

Since µ = 0 in the classical ZK equation (21), we should

redefine the scaling of the asymptotic expansion (16) and

derive a modified ZK equation with cubic nonlinear terms,

analogously to Ref. 12 for the case of the KdV and modified

KdV equations. We consider the same scaling (15) of the slow

variables and redefine the asymptotic expansion in the form

ψ̃ = ǫψ(1) + ǫ2ψ(2) + ǫ3ψ(3) + · · · , (25)

with the leading-order perturbation stream function

ψ(1)
= A(ǫ(x − c0t), ǫy, ǫ3t) φ0(y), (26)

where (c0, φ0) is the same as in (17) and the corrections of the

asymptotic expansion (25) are still supposed to decay to zero as

|y|→∞. By substituting (25) into the quasi-geostrophic poten-

tial vorticity equation (2) and using the expansions in terms of

the slow variables (15), we obtain a sequence of equations at

orders of O(ǫk) with k ≥ 2. The choice of ψ(1) in (26) satisfies

the equation at O(ǫ2). At the next order, O(ǫ3), we obtain the

linear inhomogeneous equation

L(c0)∂Xψ
(2)
= −2(U − c0)AXYφ

′
0 − AAX (φ0φ

′′′
0 − φ

′
0φ
′′
0 ).

(27)

The explicit solution in (19) would satisfy (27) if only the first

term in the right-hand side were present. However, we are not

able to find an explicit solution for the full linear equation (27).

Therefore, we represent the solution formally as

ψ(2)
= −yφ0(y)AY (X , Y , T ) − 1

2
φ2(y)A2(X , Y , T ), (28)

where φ2 is a solution of the inhomogeneous equation

L(c0)φ2 = φ0φ
′′′
0 − φ

′
0φ
′′
0 . (29)

A solution φ2 ∈ H2(R) to this equation exists according to

the Fredholm theory thanks to the constraint µ = 0. To make

the solution unique, we introduce the orthogonality condition

〈φ0, φ2〉 = 0 on the correction φ2.

At the order O(ǫ4), we obtain the linear inhomogeneous

equation

L(c0)∂Xψ
(3)
= ∂T A(F − ∂2

y )φ0 + 2(U − c0)(yφ0)′AXYY

− (AXXX + AXYY )(U − c0)φ0

+ ∂X (AAY )
[
2(U − c0)φ′2 + y

(

φ0φ
′′′
0 − φ

′
0φ
′′
0

)]

+
1

2
A2AX

[
φ0φ

′′′
2 + 2φ′′′0 φ2 − 2φ′0φ

′′
2 − φ

′′
0 φ
′
2

]
.

(30)

As in Sec. III A, the solvability condition forψ(3) in (30) yields

the evolution equation for the amplitude A(X, Y, T ) which is

given by the following modified ZK equation:

AT = κ(AAY )X + νA2AX + λAXXX + ζAXYY , (31)

where λ and ζ are the same as in (23) and (24) and κ and ν are

defined by

κ = −
〈

θ0,
[
2(U − c0)φ′2 + y

(

φ0φ
′′′
0 − φ

′
0φ
′′
0

)]〉
, (32)

ν = −
1

2

〈

θ0,
[
φ0φ

′′′
2 + 2φ′′′0 φ2 − 2φ′0φ

′′
2 − φ

′′
0 φ
′
2

]〉
. (33)

As we now show, κ = ν = 0, and hence the amplitude

equation is given again by the linear dispersive wave equation

(14) (recall from Sec. III A that ζ = 0). It is readily seen that

κ = 0 since it follows from (29) that

κ = −2
〈

θ0, (U − c0)φ′2
〉

−
〈

L
⋆(c0)(yθ0), φ2

〉

= −2
〈

θ0, (U − c0)φ′2
〉

− 2
〈

∂y((U − c0)θ0), φ2

〉

= 0.

We show next that ν = 0 as well. Recall that since φ′′′
0

is

discontinuous at y = 0 so is φ′′
2

, and hence φ′′′
2

involves a

δ-function singularity. We therefore perform partial integration

to allow for a computationally feasible expression of ν which

requires splitting the integration over the regions with y < 0

and y > 0. We obtain
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FIG. 4. Log-log plot of ν, numerically calculated from

(34), for increasing resolution with number of spatial grid

points N. Left: symmetric mean flow depicted in Fig. 1.

Right: Asymmetric mean flow depicted in Fig. 2. The

slope is estimated as −0.97 from linear regression in both

cases.

FIG. 5. Stream function ψ̃(x, y, t = 200) for the localized

initial condition (35) with A0 = 0.11 and w = 0.1, for the

symmetric mean flow depicted in Fig. 1. Left: surface plot

of the stream function. Right: meridional cross-section at

y = 0.

FIG. 6. Stream function ψ̃(x, y, t = 400) for the local-

ized initial condition (35) with A0 = 0.11 and w = 0.1,

for the asymmetric mean flow depicted in Fig. 2. Left:

surface plot of the stream function. Right: Meridional

cross-section at y = 0.

ν = −1

2

〈

θ0,
[
2φ′′′0 φ2 − 2φ′0φ

′′
2 − φ

′′
0 φ
′
2

]〉
+

1

2

〈

θ ′0, φ0φ
′′
2

〉

+
1

2

〈

θ0, φ′0φ
′′
2

〉

−
1

2

[
θ0φ0φ

′′
2

]0+ǫ

0−ǫ
(34)

for ǫ → 0. We were not able to show analytically that ν = 0

but performed careful numerical experiments for several mean

flow configurations confirming ν = 0. In Fig. 4, we show ν

versus the number of spatial grid points N, suggesting the

convergence ν→ 0 as N →∞ with ν ∼ 1/N.

IV. NUMERICAL SIMULATION OF THE
QUASI-GEOSTROPHIC EQUATIONS

Here we numerically integrate the quasi-geostrophic

potential vorticity equation (2) for localized initial conditions

of the form

ψ̃(x, y, t = 0) = A0 sech2(wx)φ0(y), (35)

where φ0 is given as the normalized eigenfunction of the linear

problem (7) corresponding to the isolated eigenvalue c0. We

shall use the symmetric mean flow profile (12) with parameters

as in Fig. 1 as well as the asymmetric mean flow profile (13)

with parameters as in Fig. 2. We choose A0 = 0.11 and w = 0.1

for both mean flow profiles.

Numerical integration is based on a finite-difference

scheme where the evolution problem is split into firstly deter-

mining ψ̃ by solving the Helmholtz problem (∇2 − F)ψ̃ = q

for given potential vorticity q in spectral space and then, in

a second step, advecting the potential vorticity in time using

a second-order leapfrog scheme.25 The discretization of the

nonlinearity is performed with the Arakawa scheme26 which

conserves energy and enstrophy. We choose periodic boundary

conditions on a large domain to mimic an unbounded domain.

We choose a time step of ∆t = 0.01 and a spatial discretization

of∆x = 0.3 with a square domain of length L = 900 throughout.

As before, we choose β = F = 1.

Figures 5 and 6 show snapshots of the stream function ψ̃

and its cross-section at the latitude of the discontinuity in the

mean flow y = 0. It is clearly seen that the initially localized

perturbation (35) linearly disperses along the zonal direction

centered at y = 0. We have tested this behavior for several

initial conditions as well as for several mean flow profiles and

observed similar results.

V. DISCUSSION

We have shown with a combination of rigorous analytical

calculations and careful computational simulations that the

dynamics of small localized large-scale perturbations in the
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quasi-geostrophic potential vorticity equation on unbounded

domains are entirely linear. Moreover, we have shown that

the dispersion is confined to the zonal direction and does not

spread meridionally. This renders the typical weakly nonlin-

ear wave equations such as the KdV and ZK equations and

their higher-order modification obsolete in describing coher-

ent structures such as atmospheric blocking events, long lived

eddies in the ocean or coherent structures in the Jovian atmo-

sphere such as the Great Red Spot. We remark, though, that

the KdV and modified KdV equations can still be derived in

meridionally bounded channels.12,19,20 Since the size of these

meridionally bounded channels is small compared to the typ-

ical long wave length scale of the solitary wave, the ZK or

the modified ZK equations, although suggested by the linear

dispersion relation (6) in the long-wave limit, are excluded as

valid two-dimensional nonlinear wave models for large-scale

slow localized structures. This also applies to long waves in the

equatorial wave guide (see Ref. 27 and references therein); the

equatorial wave guide has a meridional extent of the order of

the equatorial Rossby radius of deformation. Since long waves

(and solitary Rossby waves, in particular) are typically of scale

larger than the equatorial Rossby radius of deformation, two

dimensional solitary Rossby waves cannot be supported within

the equatorial wave guide. It is an interesting question to study

whether two-dimensional solitary Rossby waves are possible

with a single latitudinal boundary, modelling, for example, the

Antarctic circumpolar current.

We considered here the situation of the quasi-geostrophic

equations on a β-plane in meridionally unconfined domain. In

the β-plane approximation, the sinusoidal dependency of the

Coriolis parameter, which denotes the locally vertical compo-

nent of the angular momentum of the planet under considera-

tion, is replaced by its linear approximation while the geometry

is assumed to be fully planar; in particular, curvature effects

in the momentum equations are neglected. This can be justi-

fied for quasi-geostrophic dynamics for small Rossby numbers

and meridional extents smaller than the radius of the planet;

see Ref. 28 for a discussion on the validity of the β-plane

approximation. Hence our results pertain to realistic geophys-

ical situations with a limited meridional extent. In particular,

our set-up includes localized long waves in the midlatitudes

of planet Earth with meridional extent of a few Rossby radii

of deformation such as oceanic eddies with a typical size of

50 km and atmospheric synoptic systems with a typical size

of 500 km.
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