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The universal power law for the spectrum of one-dimensional breaking Riemann waves is justified for the

simple wave equation. The spectrum of spatial amplitudes at the breaking time t = tb has an asymptotic decay

of k−4/3, with corresponding energy spectrum decaying as k−8/3. This spectrum is formed by the singularity of

the form (x− xb)
1/3 in the wave shape at the breaking time. This result remains valid for arbitrary nonlinear

wave speed. In addition, we demonstrate numerically that the universal power law is observed for long time

in the range of small wave numbers if small dissipation or dispersion is accounted in the viscous Burgers or

Korteweg–de Vries equations.

DOI: 10.7868/S0370274X1316011X

I. Introduction. One-dimensional traveling nonlin-

ear waves in dispersiveless systems are called Riemann

or simple waves; their dynamics is well studied in vari-

ous physical media, e.g. acoustic waves in the compress-

ible fluids and gases [1, 2], surface and internal waves

in oceans [3–7], tidal and tsunami waves in rivers [8, 9],

ion- and magneto-sound waves in plasmas [10], electro-

magnetic waves in transmission lines [11], and optical

tsunami in fiber optics [12]. In homogeneous and sta-

tionary media, the Riemann waves continuously deform

and transform to the shock waves yielding breaking in

a finite time.

In nonlinear acoustics where the wave intensity is

not very high, the nonlinear deformation of the Riemann

wave has been studied in many details since this stage

occurs during many wavelengths [13, 14, 15, 16]. Cor-

responding nonlinear evolution equation is a so-called

simple wave equation

ut + V (u)ux = 0, (1)

where u is a wave function, and V (u) is a characteristic

local velocity of the various points of the wave shape. If

V ′(u) > 0 for all u (that is, if V is invertible), equation

(1) can be written for the local velocity:

Vt + V Vx = 0, (2)

which is equivalent to the inviscid Burgers equation

vt + vvx = 0, v := V (u). (3)

The Cauchy problem for Eq. (3) starts with the initial

condition given by a smooth function that decays to zero

at infinity:

v(x, 0) = F (x), lim
|x|→∞

F (x) = 0, (4)

and results in the implicit solution called a simple or

Riemann wave:

v(x, t) = F [x− tv(x, t)] . (5)

We are interested in the asymptotic behavior of these

solutions near the breaking time t = tb. The appearance

of the singularity in the wave shape yields a power law in

the Fourier spectrum of wave turbulence [17]. It was ar-

gued earlier in [18] that for simple (Riemann) waves this

singularity is of the form v−vb ∼ (xb−x)1/2; this corre-

sponds to the spectrum of spatial amplitudes decaying

at the breaking time as k−3/2, with corresponding en-

ergy spectrum decaying as k−3.

However, we will show that this assumption is in fact

incorrect and the spectrum of spatial amplitudes decays

at the breaking time as k−4/3, with corresponding en-

ergy spectrum decaying as k−8/3, because the simple

waves develop singularities of the form v − vb ∼ (x −

− xb)
1/3. This analytical result confirms earlier numer-

ical observations in Ref. [19, 20].

We note that the wave field in the vicinity of the

breaking time was also reviewed in a number of earlier
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works [21–24]. Although the result v − vb ∼ (x− xb)
1/3

has appeared in these works in different physical con-

texts, the authors of these works did not study the

Fourier spectrum of the breaking Riemann wave, which

was studied only recently in numerical works [19, 20].

Let us now illustrate the wave breaking and the main

result with examples. First, it is easy to see that the

wave steepness vx increases on the wave front where F ′

is negative:

vx =
F ′(ζ)

1 + tF ′(ζ)
, ζ = x− tv(x, t). (6)

The breaking time is computed explicitly as

tb =
1

maxx[−F ′(x)]
=

−1

minx[F ′(x)]
. (7)

This process is illustrated at Fig. 1 for an initial pulse

Fig. 1. Deformation of the Riemann wave for the case of

quadratic nonlinearity and initial pulse of Gaussian shape

F (x) = exp (−x2). The wave shape at the moments of time

t = 0, 0.5, 1.166 is shown as small dashed, long dashed and

bold lines correspondingly

of the Gaussian shape F (x) = exp (−x2). The shock is

formed at the point xb = 2−1/2 and vb = exp (−1/2)

at the moment of time tb = 2−1/2 exp (1/2) ≈ 1.166. At

the breaking time the wave shape contains singularity

on its front (i.e. its steepness becomes infinite) and the

solution (5) is not valid anymore.

If f(x) = sinx, an analytical solution for the Fourier

spectrum of the simple waves (5) is known. Correspond-

ing spectrum is known as the Bessel–Fubini spectrum

and is given in Ref. [14]:

v(x, t) =

∞
∑

n=1

2(−1)n−1

nt
Jn(nt) sin (nx), (8)

where Jn is Bessel function of the first order with inte-

ger n and the breaking time is tb = 1. The amplitude of

the Fourier spectrum at the breaking time reads

|An| =
2

n
Jn(n) (9)

and is distributed close to the rate of n−4/3 (see Fig. 2).

Fig. 2. (Color online) Amplitude spectrum of Riemann

waves for the solution (8) at the breaking time tb = 1

is shown by blue crosses. The power rate n−4/3 is shown

as the red solid line. Wave number n (horizontal axes) and

the amplitude spectrum |An| (vertical axes) are shown in

logarithmical coordinates

We shall now prove that the power rate of the Fourier

amplitude spectrum at the time of wave breaking is

k−4/3 for a simple (Riemann) wave supported by an

arbitrary smooth initial pulse and an arbitrary local ve-

locity V (u). Moreover, the same rate remains valid in

the range of small wave numbers if small dissipation

or dispersion is added in the framework of the viscous

Burgers or Korteweg–de Vries equations.

II. Power law of wave breaking. Using the

method of characteristics, we write the inviscid Burgers

equation (3) as the system of two ordinary differential

equations
dx

dt
= v(x, t),

dv

dt
= 0, (10)

therefore, each point on the wave shape moves with ve-

locity proportional to the magnitude of v. The solution

is now written in the parametric form:

u(t) = F (ζ), x(t) = ζ + tF (ζ). (11)

Let ζb be the global minimum of F ′ (which always

exists since F is smooth and decays to zero at infin-

ity). We assume that the minimum is not degenerate,

hence, F ′′(ζb) = 0 and F ′′′(ζb) > 0. Let tb be the time of
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breaking defined by Eq. (7) such that 1 + tbF
′(ζb) = 0.

The wave breaks at the point xb = ζb + tbF (ζb) and

vb = F (ζb). Using the decomposition ζ = ζb + η and

expanding the exact solution (11) into Taylor series, we

obtain at the time of breaking:

x = ζb + η + tbF (ζb + η) =

= xb +
1

6
tbF

′′′(ζb)η
3 +O(η4) (12)

and

v(x, tb) = F (ζb + η) =

= vb + F ′(ζb)η +O(η2). (13)

Solving (12) for a unique small real root of η, we

obtain an explicit relation between u and x at the time

of breaking:

η ∼ (x− xb)
1/3, v − vb ∼ (x − xb)

1/3. (14)

Therefore, the wave profile changes near the breaking

point at the breaking time as (x − xb)
1/3, contrary to

the behavior (x−xb)
1/2 suggested in [18]. The behavior

(14) leads to the power spectrum with slope −4/3 as

it was established numerically in [19, 20]. The energy

spectrum in this case has the slope −8/3.

If F ′′′(ζb) = 0, then F (4)(ζb) = 0 since F is smooth

and ζb is the point of minimum of F ′. If F (5)(ζb) 6= 0

(in which case F (5)(ζb) > 0), then the modification

of the previous analysis shows that the wave profile

changes near the breaking point at the breaking time as

(x − xb)
1/5, leading to the power spectrum with slope

−6/5. We can continue this analysis if ζb is a degenerate

minimum of a higher order.

Note that the above analysis holds for a general

nonlinear evolution Eq. (1) under the assumption that

V ′(u) > 0 (that is, when V is invertible). In this case, if

F ′′′(ζb) 6= 0, the wave field u(x, tb) of the nonlinear evo-

lution Eq. (1) changes according to the behavior (14),

or explicitly, as

u(x, tb) ≈ V −1
[

vb + α(x − xb)
1/3

]

≈

≈ ub +
α

V ′(ub)
(x− xb)

1/3, (15)

where V −1 is the inverse function to V , ub = V −1(vb),

and α 6= 0 is a numerical coefficient. Thus, we conclude

that the above universal behavior extends to a general

nonlinear evolution Eq. (1) and a general initial data (4)

under some restrictive assumptions that are physically

relevant.

III. Small dissipation and dispersion effects.

The simple wave Eq. (1) is only valid before the mo-

ment of breaking; the study of the wave field evolution

at the later times is usually conducted by including ef-

fects of dissipation or dispersion. Corresponding terms

added to the right hand side of (1) produce different

types of equations such as the viscous Burgers equation

ut + 6uux = νuxx, ν > 0 (16)

and the Korteweg–de Vries equation

ut + 6uux + uxxx = 0. (17)

In both cases, we consider the initial-value problem

starting with initial data u(x, 0) = S0 sinx.

Taking into account dissipative and dispersive effects

will inevitably change the wave spectrum for large wave

numbers. For instance, it is well-known that shock waves

in the viscous Burgers Eq. (16) have spectral density

that decays as k−2 for large wave numbers [2].

Nevertheless, our numerical simulations of the vis-

cous Burgers Eq. (16) demonstrate that universal power

k−8/3 of the energy spectrum of breaking Riemann

waves is clearly visible in the range of small wave num-

bers at least for the evolution times t ∼ tb ≈ 25.5, where

tb is the breaking time in the inviscid Burgers equation.

For longer times, dissipative or dispersive effects become

fully developed and drift the energy spectrum away from

the power k−8/3.

Figures 3 and 4 illustrate solutions of the viscous

Burgers Eq. (16) in physical and Fourier space con-

Fig. 3. Solutions of the Burgers Eq. (16) with ν = 0.1 and

initial data u(x, 0) = S0 sin x in physical space, for differ-

ent values of time t = 10, 20, 30

sequently. The boundary between the spectral asymp-

totics of k−8/3 and k−2 can be roughly found from the

balance between the terms 6uux and νuxx in the vis-

cous Burgers equation. If a is the wave amplitude, then

the boundary is found at k ∼ 6a/ν. If a decreases, then

the boundary moves towards the low frequency part of
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Fig. 4. Solutions of the Burgers Eq. (16) as in Fig. 3 but

in Fourier space: the normalized energy spectrum S/S0 is

shown versus wave numbers k, with axes in logarithmic

coordinates. The universal power law k−8/3 is shown by

green solid line

the Fourier spectrum. Note that the fast decay of the

energy spectrum for large wave numbers on Fig. 4 is due

to numerical effects.

Similar results of numerical simulations for the

Korteweg–de Vries Eq. (17) are shown in Fig. 5 and 6.

Fig. 5. Solutions of the KdV Eq. (17) with initial data

u(x, 0) = S0 sin x in physical space, for different values

of time t = 10, 20, 30

It is clearly visible that although wave breaking is ab-

sent in the KdV Eq. (17), the universal power k−8/3 ap-

pear in the energy spectrum for small wave numbers for

t ∼ tb ≈ 25.5.

Fig. 6. Solutions of the KdV Eq. (17) as in Fig. 5 but in

Fourier space: the normalized energy spectrum S/S0 is

shown versus wave numbers k, with axes in logarithmic

coordinates. The universal power law k−8/3 is shown by

green solid line

We also mention results of the numerical simulations

of the reduced Ostrovsky equation [25]

(ηt + ηηx)x = γη, γ > 0, (18)

starting with the same initial data u(x, 0) = S0 sinx. A

similar effect is observed, namely, the universal power

k−8/3 appear in the energy spectrum for large wave

numbers regardless of the rotation parameter γ and the

initial wave amplitude S0. The universal behavior is now

observed in the range of large wave numbers because

the dispersion term in the reduced Ostrovsky Eq. (18)

affects the wave dispersion for small wave numbers.

IV. Summary. We have justified the universal

power law k−8/3 in the energy spectrum of one-

dimensional breaking Riemann waves in the context of

the simple wave Eq. (1) with smooth initial data (4).

This result remains valid for arbitrary nonlinear wave

speed provided that the wave speed is an invertible

function of the wave amplitude. In addition, we have

demonstrated that the same power law is observed for

long times in the range of small wave numbers in the

context of the viscous Burgers (16) and Korteweg–de

Vries (17) equations. These universal power law also oc-

curs in other nonlinear evolution equations that reduce

to the simple wave equation in the dissipationless and

dispersionless limit.
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