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The universal power law for the spectrum of one-dimensional breaking Riemann waves is justified for the sim-
ple wave equation. The spectrum of spatial amplitudes at the breaking time 7 = 7, has an asymptotic decay of
k%3, with corresponding energy spectrum decaying as k%3, This spectrum is formed by the singularity of
the form (x — x;) /3 in the wave shape at the breaking time. This result remains valid for arbitrary nonlinear
wave speed. In addition, we demonstrate numerically that the universal power law is observed for long time
in the range of small wavenumbers if small dissipation or dispersion is taken into account in the viscous Burg-

ers or Korteweg—de Vries equations.
DOI: 10.1134/S0021364013170116

1. INTRODUCTION

One-dimensional traveling nonlinear waves in
non-dissipative systems are called Riemann or simple
waves; their dynamics is well studied in various physi-
cal media, e.g., acoustic waves in the compressible flu-
ids and gases [1, 2], surface and internal waves in
oceans [3—7], tidal and tsunami waves in rivers [8, 9],
ion and magnetic sound waves in plasmas [10], elec-
tromagnetic waves in transmission lines [11], and opti-
cal tsunami in fiber optics [12]. In homogeneous and
stationary media, the Riemann waves continuously
deform and transform to the shock waves yielding
breaking in a finite time.

In nonlinear acoustics where the wave intensity is
not very high, the nonlinear deformation of the Rie-
mann wave has been studied in many details since this
stage occurs during many wavelengths [13—16]. Cor-
responding nonlinear evolution equation is a so-called
simple wave equation

u,+ Vuyu, =0, 1)

where u is a wavefunction, and V(u) is a characteristic
local velocity of the various points of the wave shape. If
V'(u) > 0 for all u (that is, if Vis invertible), Eq. (1) can
be written for the local velocity:

V,+VV, =0, 2)

TThe article is published in the original.

which is equivalent to the inviscid Burgers equation

v,+vv, =0, v:i=Wu). A3)
The Cauchy problem for Eq. (3) starts with the initial
condition given by a smooth function that decays to
zero at infinity:

v(x, 0) = F(x), ‘)}‘iian(x) =0, “)

and results in the implicit solution called a simple or
Riemann wave:

vix,t) = Flx—tv(x, 1)]. ®))

We are interested in the asymptotic behavior of these
solutions near the breaking time ¢ = #,. The appearance
of the singularity in the wave shape yields a power law
in the Fourier spectrum of wave turbulence [17]. It was
argued earlier in [ 18] that for simple (Riemann) waves
this singularity is of the form v — v, ~ (x, — x)'/?; this
corresponds to the spectrum of spatial amplitudes
decaying at the breaking time as k%2, with corre-
sponding energy spectrum decaying as k3.

However, we will show that this assumption is in
fact incorrect and the spectrum of spatial amplitudes
decays at the breaking time as k~%3, with correspond-
ing energy spectrum decaying as k%3, because the
simple waves develop singularities of the form v — v, ~
(x — x,)'/3. This analytical result confirms earlier
numerical observations in [19, 20].
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Fig. 1. Deformation of the Riemann wave for the case of
quadratic nonlinearity and initial pulse of Gaussian shape

Fx) = exp(—xz). The wave shape at the moments of time
t=0,0.5, 1.166 is shown as small dashed, long dashed, and
bold lines, respectively.

We note that the wave field in the vicinity of the
breaking time was also reviewed in a number of earlier
works [21—24]. Although the result v — v, ~ (x — x;)"/3
has appeared in these works in different physical con-
texts, the authors of these works did not study the Fou-
rier spectrum of the breaking Riemann wave, which
was studied only recently in numerical works [19, 20].

Let us now illustrate the wave breaking and the
main result with examples. First, it is easy to see that
the wave steepness v, increases on the wave front
where F" is negative:

. - _F©
x 1+tF ()

The breaking time is computed explicitly as

1 _ -1
max,[-F(x)] min[F(x)]

g = x—tv(x, 1). (6)

Iy = (7)
This process is illustrated in Fig. 1 for an initial pulse
of the Gaussian shape F(x) = exp(—x?).The shock is
formed at the point x, = 27'/2 and v, = exp(—1/2) at
the moment of time 7, = 27/2exp(1/2) ~ 1.166. At the
breaking time the wave shape contains singularity on
its front (i.e., its steepness becomes infinite) and the
solution (5) is not valid anymore.

If f(x) = sinx, an analytical solution for the Fourier
spectrum of the simple waves (5) is known. Corre-
sponding spectrum is known as the Bessel—Fubini
spectrum and is given in [14]:

v(x, 1) = Zg-(—:}%-?—’—?——lJn(nt)sin(nx), (8)

where J,, is Bessel function of the first order with inte-
ger n and the breaking time is #, = 1. The amplitude of
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Fig. 2. (Color online) Amplitude spectrum of Riemann
waves for the solution (8) at the breaking time 7, = 1 is

shown by blue crosses. The power rate n~%3isshown as the
red solid line. Wavenumber » (horizontal axis) and the
amplitude spectrum ‘A n‘ (vertical axis) are shown in loga-

rithmical coordinates.

the Fourier spectrum at the breaking time reads
2
4] = 27, )

and is distributed close to the rate of n=*? (see Fig. 2).

We shall now prove that the power rate of the Fou-
rier amplitude spectrum at the time of wave breaking is
k=3 for a simple (Riemann) wave supported by an
arbitrary smooth initial pulse and an arbitrary local
velocity V(u). Moreover, the same rate remains valid in
the range of small wavenumbers if small dissipation or
dispersion is added in the framework of the viscous
Burgers or Korteweg—de Vries equations.

2. POWER LAW OF WAVE BREAKING

Using the method of characteristics, we write the
inviscid Burgers equation (3) as the system of two ordi-
nary differential equations

Dy, L

= av _ ,
dt dt

(10)
therefore, each point on the wave shape moves with

velocity proportional to the magnitude of v. The solu-
tion is now written in the parametric form:

u(t) = F(Q), x(1) = C+1F(C). (11)

Let , be the global minimum of F' (which always
exists since F'is smooth and decays to zero at infinity).
We assume that the minimum is not degenerate,
hence, F"({,) = 0and F"(Ey) > 0. Let £, be the time of
breaking defined by Eq. (7) such that 1 + #,F"({,) = 0.
The wave breaks at the point x, = (, + #,F({,) and v, =
F(C,). Using the decomposition { = {, + m and
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Fig. 3. Solutions of the Burgers equation (16) with v =0.1
and initial data u(x, 0) = Sjsinx in physical space, for dif-
ferent values of time 7 = 10, 20, 30.

expanding the exact solution (11) into Taylor series,
we obtain at the time of breaking:

x=Cy+m+1,F(C,+M)

(12)
= x,+ ét,,F"'(z;b)n3 +0(n*)

and
v(x, 1) = F(Cy+ M)
= v, + F({)n+0(m’).

Solving (12) for a unique small real root of n, we
obtain an explicit relation between u and x at the time
of breaking:

13)

n~@-x)", vov,~(x-x,)". (14)

Therefore, the wave profile changes near the breaking
point at the breaking time as (x — x;)'/3, contrary to the
behavior (x — x,)!'/? suggested in [18]. The behavior

(14) leads to the power spectrum with slope —4/3 as
was established numerically in [19, 20]. The energy
spectrum in this case has a slope of —8/3.

If F(Cy) = 0, then F¥(C,) = 0 since F is smooth
and (, is the point of minimum of F'. If FO((,) # 0 (in
which case F®((,) > 0), then the modification of the
previous analysis shows that the wave profile changes
near the breaking point at the breaking time as (x —
x,)'3, leading to the power spectrum with a slope of
—6/5. We can continue this analysis if {, is a degener-
ate minimum of a higher order.

Note that the above analysis holds for a general
nonlinear evolution equation (1) under the assump-
tion that V'(u) > 0 (that is, when Vis invertible). In this
case, if F'"'(£,) # 0, the wave field u(x, ¢,) of the nonlin-
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Fig. 4. Solutions of the Burgers equation (16) as in Fig. 3
but in Fourier space: the normalized energy spectrum S/.S,

is shown versus wavenumbers k, with axes in logarithmic

coordinates. The universal power law k%3 is shown by
green solid line.

ear evolution equation (1) changes according to the
behavior (14), or explicitly, as
u(x, 1) = V' v, + a(x=x,)"]
(15)
~Uyt L(X—xb)m,
Vi(uy)

where V! is the inverse function to V, u, = V-'(v,),
and a # 0 is a numerical coefficient. Thus, we con-
clude that the above universal behavior extends to a
general nonlinear evolution equation (1) and a general
initial data (4) under some restrictive assumptions that
are physically relevant.

3. SMALL DISSIPATION
AND DISPERSION EFFECTS

The simple wave equation (1) is only valid before
the moment of breaking; the study of the wave field
evolution at the later times is usually conducted by
including effects of dissipation or dispersion. Corre-
sponding terms added to the right hand side of (1) pro-
duce different types of equations such as the viscous
Burgers equation

u,+6uu, = vu,,, v>0 (16)
and the Korteweg—de Vries equation
u,+6uu, +u,, =0. 17)

In both cases, we consider the initial-value problem
starting with initial data u(x, 0) = S;sinx.

Taking into account dissipative and dispersive
effects will inevitably change the wave spectrum for
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Fig. 5. Solutions of the KdV equation (17) with initial data
u(x, 0) = Sysinx in physical space, for different values of
time 7= 10, 20, 30.

large wavenumbers. For instance, it is well-known that
shock waves in the viscous Burgers equation (16) have
spectral density that decays as k2 for large wavenum-
bers [2].

Nevertheless, our numerical simulations of the vis-
cous Burgers equation (16) demonstrate that universal
power k~%73 of the energy spectrum of breaking Rie-
mann waves is clearly visible in the range of small
wavenumbers at least for the evolution times 7 ~ 7, =
25.5, where #, is the breaking time in the inviscid Burg-
ers equation. For longer times, dissipative or dispersive
effects become fully developed and drift the energy
spectrum away from the power k=873,

Figures 3 and 4 illustrate solutions of the viscous
Burgers equation (16) in physical and Fourier space
consequently. The boundary between the spectral
asymptotics of k=3/3 and k=2 can be roughly found from
the balance between the terms 6uu, and vu,, in the vis-
cous Burgers equation. If a is the wave amplitude, then
the boundary is found at k ~ 6a/v. If a decreases, then
the boundary moves towards the low frequency part of
the Fourier spectrum. Note that the fast decay of the
energy spectrum for large wavenumbers on Fig. 4 is
due to numerical effects.

Similar results of numerical simulations for the
Korteweg—de Vries equation (17) are shown in Fig. 5
and 6.

It is clearly visible that although wave breaking is
absent in the KdV equation (17), the universal power
k=873 appear in the energy spectrum for small wave-
numbers for 7 ~ 7, = 25.5.

We also mention results of the numerical simula-
tions of the reduced Ostrovsky equation [25]
y>0,

M, +Mny), = 1M, (18)
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Fig. 6. Solutions of the KdV equation (17) as in Fig. 5 but
in Fourier space: the normalized energy spectrum S/, is
shown versus wavenumbers k, with axes in logarithmic

coordinates. The universal power law k873

green solid line.

is shown by

starting with the same initial data u(x, 0) = Sjsinx. A
similar effect is observed, namely, the universal power
k=83 appear in the energy spectrum for large wave-
numbers regardless of the rotation parameter y and the
initial wave amplitude S,. The universal behavior is
now observed in the range of large wavenumbers
because the dispersion term in the reduced Ostrovsky
equation (18) affects the wave dispersion for small
wavenumbers.

4. SUMMARY

We have justified the universal power law k=3/3 in
the energy spectrum of one-dimensional breaking
Riemann waves in the context of the simple wave
equation (1) with smooth initial data (4). This result
remains valid for arbitrary nonlinear wave speed pro-
vided that the wave speed is an invertible function of
the wave amplitude. In addition, we have demon-
strated that the same power law is observed for long
times in the range of small wavenumbers in the context
of the viscous Burgers equations (16) and Korteweg—
de Vries equations (17). This universal power law also
occurs in other nonlinear evolution equations that
reduce to the simple wave equation in the dissipation-
less and dispersionless limit.
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