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Abstract

A general asymptotic method for analysis of radiative effects to the adiabatic dynamics of envelope-wave solitons is
presented in the form of a modified soliton perturbation technique involving three asymptotic scales. This method is applied
to a generalized NLS equation for description of both the instability-induced soliton dynamics near the instability threshold
and exponentially weak radiative effects. The results are obtained for two particular problems: (i) a new (revised) derivation
of a double-logarithmic scaling law of singularity formation at the critical soliton collapse and (ii) calculation of an inverse
squared logarithmic decay rate of an amplitude of internal low-frequency oscillations excited at the background of a stable
soliton near the instability threshold. © 1998 Published by Elsevier Science B.V.

1. Introduction

Soliton theory has been successfully applied to different physical problems associated with generation, motion,
evolution, and interaction of localized nonlinear wave perturbations called solitons. It has been revealed that soliton
may evolveadiabaticallyunder the action of external or internal perturbation, i.e. their shapes remains the same
during evolution while the underlying parameters are varying in time. This adiabatic dynamics is described by a
regular soliton perturbation theory which enables us to simplify the governing equations and consider problems of
soliton dynamics within the framework of finite-dimensional systems (see [1] for a review of the soliton perturbation
theory and its different applications).

The adiabatic soliton evolution usually leads to generation of radiative waves escaping a soliton and taking away
a part of its energy. This effect is generally very important because it results in modifications of dynamical laws
and long-term predictions for soliton evolution. However, there is no general theory for emission of radiation and,
besides, different types of solitary waves are known to generate different types of radiation during their adiabatic
dynamics. For instance, solitary waves at the surface of a shallow-water fluid (see [2] and references therein) generate
a strong shelf-shaped radiation. If the adiabatic dynamics is driven by a small (adiabaticity) parameterε, then the
radiation field appears at the first order ofε and it affects the soliton dynamics in the order ofε2. In this case, an
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asymptotictwo-scaledexpansion technique provides an adequate description of both the soliton dynamics and the
radiation emission (see [3,4]).

In contrast with the above example, there exists another type of solitary waves, e.g. bright optical solitons in
dielectric waveguides with intensity-dependent refractive index (see [5]), which does not generate a strong radiation
field at the first order of the adiabaticity parameter. Moreover, because of an effective gap in the linear spectrum
(see [4]) the radiation does not appear atanyorder ofε and, in fact, isexponentially smallwith respect toε. 2 In
spite of this smallness, the radiation-induced effects change the long-term adiabatic evolution drastically, e.g. the
scaling laws of blow-up of localized perturbation described by a critical NLS equation become modified due to
the radiative effects by a double-logarithmic factor (see [7–33] for review of the contradictory literature devoted to
this problem). Such exponentially small effects have been predicted in a number of different problems, e.g. for a
low-frequency motion of a sin-Gordon kink oscillation in an external field or for emission of a NLS soliton scattered
by local inhomogeneities (see Section VI in [1] for numerous examples). However, a regular asymptotic method
for problems of this class has not been elaborated yet.

In this paper we develop results of our previous work [34] and present a regular method to analyse the long-term
instability-induced dynamics of envelope-wave solitons. This problem is described by the generalized NLS equation
written in the following form:

iΨt + Ψxx + f (|Ψ |2)Ψ = 0. (1)

HereΨ (x, t) is a complex envelope of a carrier wave,x and t stand for spatial and temporal variables, respec-
tively, and a real functionf (|Ψ |2) corresponds to a merely nonlinear correction to a wave frequency such that
f (0) = 0. This equation describes modulations of a carrier small-amplitude high-frequency wave in a number of
different physical problems and it can exhibit localized solutions known as envelope-wave solitons. For instance, in
nonlinear optics (see [5]) these solitons are referred to as the bright optical solitons and they represent self-guided
stationary beams of an electric field propagating in dielectrical waveguides. Within this context,x andt stand for a
transverse coordinate and a propagation distance, respectively, whilef (|Ψ |2) characterizes nonlinear correction to
the refractive index of the optical material.

In the previous paper [34] we studied adiabatic evolution of weakly unstable solitons in the generalized NLS
equation (1). This evolution was induced by development of internal perturbations at the soliton background which
grew slowly in time near the instability threshold. Then, a straightforward expansion method involvingonly one
asymptotic scaleallowed us to find reduced equations describing different scenarios of the adiabatic soliton evolution
such as long-term oscillations, decay, and collapse. The radiative waves were not taken into account in our previous
paper because they appear beyond all orders of the straightforward asymptotic procedure. In particular, for the
critical collapse problems our method reproduced the same results as those described by self-similar solutions to a
critical NLS equation [8]. These results are only appropriate for description of an initial stage of blow-up (see [32])
while they are known to be invalid at a longer time-scale of the soliton dynamics [15].

In this paper we evaluate exponentially small radiative effects at the longer-term instability-induced dynamics
of envelope-wave solitons within the generalized NLS equation (1). In Section 2 governing asymptotic equations
modified due to the radiative effects are derived with the help of a regular expansion method involvingthree
asymptotic scales. Then, we apply the derived equations to two particular problems of envelope-wave soliton
dynamics. In Section 3 we obtain the scaling laws of the critical collapse and compare our results with numerous

2 It is assumed here that the continuous-wave excitations of an envelope-wave soliton follow adiabatically for the soliton evolution. In
a number of physical problems associated with envelope-wave solitons (see, e.g., [6]) the continuous-wave perturbations are introduced
to satisfy a certain initial condition which may not be consistent with the adiabatic evolution of a soliton. This inconsistence in an initial
condition results in an intermediate soliton emission already at the first order of the perturbation theory [6].
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approaches presented in literature [7–33]. In Section 4 we evaluate the decay rate of internal low-frequency soliton
oscillations which occur to stable solitons near the instability threshold.

2. Derivation of asymptotic equations

2.1. Equations of the soliton scale for adiabatic dynamics

Steady-state envelope-wave soliton is prescribed for the generalized NLS equation (1) by the following substitu-
tion [34]:

Ψ = Φ(x : ω)eiωt ,

whereω is the soliton parameter determined by nonlinear properties of a wave system. Beside this degree of freedom,
the envelope-wave solitons can also propagate along the system with a constant velocity, but this drift motion can be
removed with the help of a Lorentz-transformation (see, e.g., [4]). The real functionΦ(x;ω) is evenandnodeless
in x and satisfies the following differential equation:

Φxx − ωΦ + f (Φ2)Φ = 0, (2)

subject to the zero boundary conditions at infinity. We assume that these soliton solutions exist and are exponentially
localized, i.e.

Φ(x;ω) → A(ω)e−√
ω|x| + o(e−√

ω|x|) as |x| → ∞, (3)

whereA(ω) is a constant amplitude. It is clear that the parameterω must bepositivefor the soliton solutions to
exist.

Now we consider the adiabatic dynamics of envelope-wave solitons under the action of small internal perturbations
supported due to a near-threshold instability. To the end, we introduce a slow timeT = εt through a formal small
parameterε and suppose that the nonlinear wave fieldΨ = Ψ (x, T ) evolves adiabatically at the slow scale. This
implies that the field remains locally close to the steady-state profileΦ(x;ω) but the parameterω changes slowly in
time according to a dependenceω = ω(T ) to be found. Under this (adiabaticity) assumption, we expand solutions
to (1) in a regular asymptotic series,

Ψ = φ(x, T )eiθ(T ), (4)

whereθ = ε−1
∫ T

0 ω(T ′) dT ′ and

φ = Φ(x;ω)+
∞∑
k=1

ε2k−1iφ2k−1(x;ω; T )+
∞∑
k=1

ε2kφ2k(x;ω; T ). (5)

The leading-order termΦ(x;ω) of this regular series is the steady-state soliton but with a varying parameterω

while the next-order correction termsφn(x;ω; T ) represent deviations of the field profile from the self-similar
soliton shape. These correction terms are to be found from linear inhomogeneous equations associated with the
main equation (2). Indeed, substitution of (4) and (5) into (1) shows that the functionsφn satisfy the following linear
equations:

L0φ2k−1 = H2k−1, L1φ2k = H2k. (6)
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HereL0 andL1 are linear associated operators given by

L0 = − ∂2

∂x2
+ ω − f (Φ2), L1 = − ∂2

∂x2
+ ω − f (Φ2)− 2Φ2f ′(Φ2),

while the right-hand side functionsH2k−1 andH2k include corrections of lower orders. To find asymptotic equations
at the leading order, we need explicit formulas only for a few first right-hand side functions,

H1 = dΦ

dT
, H2 = − dφ1

dT
+Φf ′(Φ2)φ2

1, H3 = dφ2

dT
+ φ1f

′(Φ2)(2Φφ2 + φ2
1),

where we have used the following notation for a full time-derivative:

d

dT
= ∂

∂T
+ dω

dT

∂

∂ω
.

The first terms of the regular asymptotic series (5) were found and analysed in our previous paper [34] together
with an asymptotic equation imposed toω = ω(T ). This equation governs the adiabatic soliton dynamics. Here we
reproduce the main results of this analysis in order to proceed to radiation-induced modifications of the asymptotic
technique. The first-order correction termφ1 can be explicitly presented in the form

φ1 = −Φ(x;ω)
x∫

0

dx′

Φ2(x′;ω)

x′∫
0

Φ(x′′;ω) dΦ(x′′;ω)
dT

dx′′, (7)

where the integrand is not singular becauseΦ is nodeless inx. It follows from this equation that the functionφ1

contains two types of diverging terms as|x| → ∞,

φ1 → − 1

4
√
ωA(ω)

dNs(ω)

dT
[e

√
ω|x| + o(e

√
ω|x|)] − 1

8ω

dω

dT
A(ω)[x2e−√

ω|x| + O(|x|e−√
ω|x|)], (8)

whereNs(ω) is the soliton power given by

Ns = 1

2

∞∫
−∞

Φ2(x;ω) dx. (9)

The first term in (8) is strongly (exponentially) diverging inx while the second localized term indicates an appearence
of a quadratically growing complex phase in the exponential representation (4). The latter terms are usually referred
to asvirtual secular divergences.

If one neglects the second type secular divergence, then an asymptotic procedure of removing the exponentially
growing terms produces a certain differential equation for the dependenceω = ω(T ). In the absence of any
external perturbations to (1) this differential equation is non-trivial only in the vicinity of the instability threshold,
where the derivativeN ′

s(ω) = dNs/ dω vanishes (see [34]). Assuming a balanceN ′
s(ω) ∼ O(ε2), we remove

the exponentially growing term of the functionφ1 (8) to the order of O(ε3), where this term is in balance with
an exponentially diverging component of the functionφ3. The latter component is responsible for inertial effects
to the adiabatic dynamics of envelope-wave solitons. Taking this into account, we find the following asymptotic
representation for the regular asymptotic series (5) at infinity:

φ = u(x, T )exp

(
− iε

8ω

dω

dT
x2

)
, (10)
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whereu(x, T ) approaches the following limiting expressions as|x| → ∞:

u → A(ω)e−√
ω|x| − iε

4
√
ωA(ω)

dN0

dT
e
√
ω|x|. (11)

In this representation we have kept only the leading-order terms for the quadratic complex phase as well as for
the exponentially localized and exponentially diverging terms. HereN0 stands for a localized wave field power to
exhibit the following asymptotic expansion found in [34],

N0 = Ns(ω)+ ε2

[
Ms(ω)

d2ω

dT 2
+ 1

2

dMs(ω)

dω

(
dω

dT

)2
]

+ O(ε4), (12)

where the coefficientMs(ω) is given by

Ms =
∞∫

−∞


 1

Φ(x;ω)

x∫
0

Φ(x′;ω)∂Φ(x
′;ω)

∂ω
dx′




2

dx. (13)

In the previous paper [34] we analyse the asymptotic Eq. (12) in the approximation,N0 = const, when there is no
exponentially growing term in (11). However, this approximation corresponds to neglection of radiation generated
due to the adiabatic soliton dynamics. The radiative effects are displayed in the representation (10) in the form of
a quadratically growing complex phase of the wave functionψ (see (4) and (10)). This quadratic phase is usually
referred to as a “chirp” which is responsible for the radiation field “frozen” to an adiabatically varying soliton. The
quadratic phase appears from virtual secular divergences of each correction termφn after summation of the regular
asymptotic series (5). Therefore, this actual secular divergence is beyond all orders of the regular expansion (5) and
represents exponentially weak radiative effects. In the present analysis we extend (5) in the region outside the soliton
core and find a modified expansion according to the limiting representation (10) and (11). This modification allows
us to find an asymptotic equation describing variations of the integral powerN0 induced due to radiative effects.

2.2. Equations of the quadratic phase scale for radiative effects

The nonlinear term in the generalized NLS Eq. (1) is negligible outside the soliton core and, hence, the radiation-
induced problems are solely linear. Furthermore, the substitution (10) reduces (1) to a simple equation,

uxx − ωu+ 1

4
ε2Bx2u+ iε

[
uT − 1

4ω

dω

dT
(u+ 2xux)

]
= 0, (14)

whereB(T ) is defined throughω(T ) according to the formula,

B = 1

2ω

d2ω

dT 2
− 3

4ω2

(
dω

dT

)2

. (15)

It is clear that solution to (14) are still quasi-adiabatic, i.e. they depend on the evolution timeT only through the two
varying parametersω andB, while the time-derivative termuT is a small perturbation. In this case, an asymptotic
representation for quasi-adiabatic solutions of (14) can be thought in the form,

u = U(x;ω, ε2B)+
∞∑
n=1

εnun(x;ω, ε2B; T ), (16)

where the leading-order termU satisfies the parabolic cylinder equation,

Uxx − ωU + 1
4ε

2Bx2U = 0, (17)
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subject to the boundary conditions (11) taken in the asymptotic limit|x| → 0. Solutions to the parabolic cylinder
equation essentially depend on a sign ofB. If B ≤ 0, then the functionU has only exponentially decaying or growing
solutions with respect tox. In this case, the exponentially growing term in (11) produces a global divergence for
solutions of (17) in the limit|x| → ∞. Therefore, this term is to be removed by the equation imposed on evolution
of N0, i.e.

dN0

dT
= 0 if B(T ) ≤ 0. (18)

This means that the radiation is not excited during the time intervals whenB(T ) ≤ 0. On the other hand, for
B(T ) > 0 the parabolic cylinder equation (17) contains the turning points located at

|x| = Xp = 2
√
ω

ε
√
B
.

Outside the turning points, where|x| > Xp, solutions to (17) have oscillatory behaviour which indicates excitation
of radiative waves escaping a soliton core. Thus, the regular asymptotic expansion (5) is applicable only within an
inner soliton interval, where|x| � Xp. Otherwise, for|x| ≥ Xp small-amplitude radiative waves are generated
through a quadratic potential and they should be described separately at anouterradiation interval. Anintermediate
quadratic phase interval for|x| ∼ Xp serves as a “buffer” between the inner and outer scales and is responsible both
for generation of radiative waves and for derivation of governing equations of soliton dynamics. The main problem
arising at this intermediate interval is to relate the two exponentially growing and decaying fields from inner side
of the turning points (see (11)) to the incoming and outcoming waves from outside (see (25) below).

The aforementioned problem is typical in quantum mechanics and can be easily solved in a quasi-classic approx-
imation valid when potentials are slowly varying in space (see, e.g., [35]). As an alternative way, we simplify here
intermediate calculations and use exact solutions to the parabolic cylinder equation. As is well-known (see, e.g.,
[36]) a general solution to (17) can be expressed through the Weber functions,

U = α1W(γ, ν)+ α2W(γ,−ν), (19)

where

γ = ω

ε
√
B
, ν = √

εB1/4x,

andα1, α2 are some coefficients. We find these coefficients by matching the asymptotic values of (19) in the limit
|ν| � 2

√
γ with the boundary values for the regular series (11). To do this, we use the asymptotic formulas [36]

W(γ,±ν) → 1

(4γ − ν2)1/4
exp


∓1

2

ν∫
0

√
4γ − ν2 dν


 as|ν| � 2

√
γ . (20)

The matching conditions with the boundary values (11) lead to the following expressions forα1 andα2:

α1

(4γ )1/4
= A(ω),

α2

(4γ )1/4
= − iε

4
√
ωA(ω)

dN0

dT
. (21)

Next, we use the asymptotic values for the Weber functions in the limit|ν| � 2
√
γ [36] and find the following

expression for the functionU extending far from the turning points as|ν| � 2
√
γ :

U → α1
√

2k

(ν2 − 4γ )1/4
cos


π

4
+ 1

2

ν∫
2
√
γ

√
ν2 − 4γ dν


+ α2

√
2k−1

(ν2 − 4γ )1/4
sin


π

4
+ 1

2

ν∫
2
√
γ

√
ν2 − 4γ dν


, (22)
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where

κ =
√

1 + e2πγ − eπγ ≈ 1
2e−πγ ,

the last simplification is applied in the asymptotic limitε → 0 andγ → ∞. Expression (22) indicates generation
of a radiation field outside the quadratic phase interval. The radiation field is presented by a superposition of two
waves propagating outside the turning points with the complex phase factor,± ∫

p dν, where the quasi-momentum
p is given byp = 1

2

√
ν2 − 4γ . The positive sign in the phase factor corresponds to an outcoming wave escaping

the quadratic potential to infinity while the negative sign corresponds to an incoming wave running from infinity to
the quadratic potential (see [35]). It is clear from physical motivations that the latter wave should be eliminated by
a radiation conditionso that soliton dynamics might generate only waves escaping the soliton core. To eliminate
the incoming wave, we define the coefficientsα1 andα2 to be related as follows,

iα1 = 2α2eπγ . (23)

Together with (21), this relation leads to the differential equation imposed to the dependenceω = ω(T ),

dN0

dT
= −1

ε
2
√
ωA2(ω) exp

[
− πω

ε
√
B

]
if B(T ) > 0, (24)

whereN0 andB are given by (12) and (15) respectively. The asymptotic equations (18) and (24) describe long-term
instability-induced dynamics of an envelope-wave soliton within the multi-scale reduction of the generalized NLS
equation (1). It follows from (22) that generation of the radiation fieldu(x, T ) is provided with the following
boundary condition as|x| → ∞:

u → A

(
4ω

ε
√
B

)1/4 e−πω/2ε√B

ν1/2+iω/ε
√
B

exp

(
i

4
ε
√
Bx2 + iϕ

)
, (25)

where

ϕ = π

4
− ω

2ε
√
B

+ ω

2ε
√
B

log

(
ω

ε
√
B

)
.

The radiation field evolves at the outer radiation interval non-adiabatically according to a linear NLS equation,
iΨ∞t +Ψ∞xx = 0, whereΨ∞ is a profile of the radiation field. The boundary conditions for the radiation fieldΨ∞
atx → 0 follow from the limiting representations (4), (10), and (25). We would like to point out that the amplitude
of generated waves is exponentially small in terms of the adiabaticity parameterε (see formula (25))). Here we
do not consider evolution of radiative waves dealing with a description of envelope-wave soliton dynamics. Some
explicit solutions for evolution of radiative waves were recently constructed in paper [23–25].

3. Application to critical collapse

3.1. Results

Here we apply the general asymptotic equations (18) and (24) to the problem of singularity formation in a critical
NLS equation which has the following dimensionless form:

iΨt + Ψxx + 3|Ψ |4Ψ = 0. (26)



308 D. Pelinovsky / Physica D 119 (1998) 301–313

The critical NLS equation follows from (1) forf (|Ψ |2) = 3|Ψ |4. The soliton solutionΦ(x;ω) (see (2)) is given
by the explicit formula

Φ = ω1/4sech1/2[2
√
ωx]. (27)

Using (27) and the asymptotic representation (3) we evaluate the constantA(ω) in the formA = √
2ω1/4. The

soliton solutions (27) are well known to be critically unstable (see [34] and references therein) because the soliton
powerNs(ω) [see (9)] does not depend onω and has the formNs(ω) = Ncr = 1

4π . Moreover, small perturbations
to the steady-state solitons (27) blow up in finite time if an initial total powerN0 exceeds the critical valueNcr and
decay to small-amplitude dispersive waves ifN0 is less thanNcr. Evolution of the soliton perturbations occurs to be
adiabatic if the difference betweenN0 andNcr is small and, in this case, the asymptotic method and equations used
in Section 2 are applicable. Thus, it follows from (13) and (27) that the coefficientMs(ω) has the formMs = mω−3,
where

m = 1

16

∞∫
−∞

x2Φ2(x; 1) dx = π3

512
. (28)

To simplify analysis of the asymptotic equations we introduce a conventional transformation of the timeT into τ
and the soliton parameterω(T ) into a(τ) andb(τ) according to the following formulas:

τ = 1

ε

T∫
0

ω(s) ds, a(τ ) = ε

2ω2

dω

dT
, b(τ ) = aτ + a2. (29)

Then, the new variableb(τ) defines a deviation of the integral powerN0 from the critical valueNcr as well as the
parameterB,

b = 1

2m
(N0 −Ncr), B = ε−2ω2b. (30)

These formulas follow from (12), (15) and (29). The blow-up occurs forb > 0, i.e. forN > Ncr, and, in this case,
the asymptotic Eq. (24) reduces with the help of (30) to the single equation,

db

dτ
= − 2

m
exp

(
− π√

b

)
. (31)

In original variables,T andω(T ), the blow-up implies formation of singularities of the soliton parameterω in finite
timeT = T0, i.e.ω(T ) → ∞ asT → T0. The transformation (29) leads, however, that singularities appear in the
limit τ → ∞ when the new amplitudesa andb vanish, i.e.b(τ) → 0 asτ → ∞. Analysing the main equation (31)
in this asymptotic limit (see [17] for details), we find the leading-order behaviour of the amplitudeb(τ) asτ → ∞,

b → π2

log2 τ

[
1 − 6

log logτ

logτ

]
. (32)

In the original variables, this dependence corresponds to the well-known double-log scaling law for the critical
blow-up of envelope-wave solitons,

ω → log | log(T0 − T )|
(T0 − T )

asT → T0. (33)

Finally, we mention that forb < 0, i.e. forN0 < Ncr, a soliton spreads out and decays into small-amplitude
dispersive waves. In this case, the exponentially small radiation is not tunneled through a quadratic-phase potential
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according to the asymptotic equations (18) and (30) and a value ofb remains constant. Therefore, in contrast
with the collapsing soliton, the decaying soliton remains self-similar everywhere and the soliton parameterω has
the following limiting behaviour,ω → T −1 asT → ∞ (see [14,34]). The caseb = 0, i.e.N0 = Ncr, is very
special because the quadratic phase potential vanishes in this case (see (17) forB = 0). In this special case
the asymptotic approach described above reproduces an exact self-similar solution to (26) which describes the
completely radiationless dynamics of envelope-wave solitons (see [34] for discussions).

3.2. Historical remarks

Here we recall a contradictory history of searches of scaling laws for the critical collapse of envelope-wave
solitons which finally lead to discovery of the double-log dependence (33). This brief essay help us compare the
approaches used in literature with the asymptotic method presented in this paper.

In 1970 Talanov [7] was the first who discovered a remarkable transformation of the NLS equation referred to as
the lens transformation. Here we reproduce this transformation only for Eq. (26) in one dimension though it exists
for the critical NLS equation in multi dimensions. The lens transformations for (26) has the form

Ψ = ω1/4u(ξ, τ )exp

[
iτ − i

4
a(τ)ξ2

]
, (34)

whereξ = √
ωx, ω = ω(T ), whileτ anda are the same as in (29). According to (34) the critical NLS equation (26)

transforms to a simple equation with a quadratic phase term,

iuτ + uξξ + 3|u|4u− u+ 1
4b(τ)ξ

2u = 0, (35)

whereb(τ) is given by (29). This transformation immediately leads to the exact self-similar solutions of the critical
NLS equation,u(ξ, τ ) = u(ξ), subject to the conditionb(τ) = const [8]. It is clear that the self-similar solutions
can be reproduced by the above described asymptotic method by neglecting the exponentially small radiation (in
this case, the right-hand side of (31) is negligible). Omitting here a special caseb = 0 which is structurally unstable
(see [8]), the self-similar solutions produce the following scaling law of the singularity formation,ω → (t0 − t)−1

ast → t0. Emission of radiation being not included into this approach, the further numerous papers devoted to this
problem were aimed at modifying the adiabatic scaling law by a radiation-induced factor.

Earlier arguments proposed by Zakharov and Synakh [9] (see also [10,11]) and alternatively by different authors
[12–14] were based either on representation of the radiation field by a constant (“frozen”) flat plateau or by “naive”
versions of asymptotic expansions. The scaling laws predicted by those approaches were subsequently “checked”
by numerical experiments carried out with a lack of numerical accuracy. Two different scaling laws for the critical
collapse were thus predicted, the first in one dimension is given byω → (t0 − t)−4/7 [9–11] while the second is
ω → | log(t0− t)|(t0− t)−1 [12–14]. However, a more accurate numerical analysis of this phenomenon [15] refuted
the validity of these predictions.

It was Fraiman [16] (see also [17]) who first obtained in 1985 reduced asymptotic equations describing both
the evolution of the soliton spikes and radiation field and who was able to predict the correct scaling law (33) by
analysing his equations. The asymptotic method he used (see [17]) was based on a rather tricky separation of soliton
and radiation fields into two independent components and decomposition of the quadratic phase potential in (35)
inside and outside turning points.

At the same time, an independent approach was proposed by Landman et al. [18] and LeMesurier et al. [19]. They
considered the family of self-similar solutions with proper boundary conditions existing in a weakly supercritical
case, i.e. when the dimension of the generalized NLS equation is slightly bigger than the critical value realized at
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the same power of nonlinearity.3 Using a direct asymptotic approach, the authors of [18,19] related the derivativve
of a(τ)with respect toτ with the deviation of the dimension from the critical value. Then, analysis revealed that this
deviation is exponentially small in terms ofa and the equation similar to (31) but with undetermined coefficients was
derived. Although the further development of this idea by means of a rigorous technique of matching asymptotic
expansions (see [20,21]) allowed one to find the constants of proportionality in (31) the method used seems to
be rather limited and physically inconsistent. Indeed, the problem of evolution of a localized self-focusing pulse
implies that variations of the parametera(τ) occurs due to development of internal soliton perturbations at afixed
value of the spatial dimension rather than due to the varying dimension of the governing model.

The aforementioned difficulty did not take place in the approach of Dyachenko et al. [22] which originated from
problems of nuclear physics. These authors analysed the same equation (35) but modified by an imaginary correction
to an “eigenvalue” which was exponentially small in terms ofb. This correction was introduced to find a correct
asymptotic behaviour of the radiation field at infinity. On the other hand, the introduced correction has also modified
the equation for evolution of the parameterb according to (31). Although the authors of [22] missed the correct
coefficient in (31) a more careful analysis (see [21]) reveals that the method used was correct4 .

Nowadays the modified asymptotic law (33) and the main asymptotic equation for the amplitude parameterb

are regarded as to be valid and numerically verified. Nevertheless, some delicate mathematical problems related to
generation of radiation outside the soliton core were considered by Malkin [23] and Berge and Pesme [24,25] who
constructed explicit non-self-similar solutions. Furthermore, extentions of the previous approaches were recently
used to analyse effects of the critical collapse arrest [26–29] and appearence of long-term soliton oscillations [30–
32]. We would like to point out that all the methods mentioned in this historical essay were actually based on the
lens transformation (34) which simplified the critical NLS equation to the form (35) (see also [33]).

In the contrast with those approaches, our method uses adirectasymptotic multi-scale expansion of the generalized
NLS Eq. (1) based on physical motivations coming from consideration of envelope-wave soliton dynamics and
radiative waves. Therefore, our approach is not solely related to the remarkable properties of the critical collapse but
can be extended to many other problems including the long-term internal oscillations of an envelope-wave soliton
(see [34]).

4. Application to internal oscillations

Here we consider an oscillatory dynamics of a stable envelope-wave soliton within the asymptotic method
developed. It has become clear (see [34]) that a stable soliton of the generalized NLS equation (1) may have
a non-trivial localized mode in the linearized spectral problem arising after the substitution,Ψ = [Φ(x;ω) +
χ(x;ω,Ω)eiΩt ]eiωt . The modeχ(x;ω,Ω) described internal oscillations of the soliton shape with the frequency
Ω. The localized mode exists only if the frequencyΩ fits into a gap of the continuous-wave spectrum, i.e.|Ω| <
ω. However, due to nonlinearity, the internal mode generates multiple frequencies which may lead to emission of
radiative waves into the continuous spectrum. This mechanism results in radiation-induced damping of the oscillatory
soliton dynamics. For the case whenΩ is comparable withω, rates for the decay of an oscillation amplitude can be
evaluated by a standard asymptotic multi-scale technique. However, when the frequencyΩ becomes small,Ω � ω,
the multiple frequencies are still arrested in the gap of the continuous-wave spectrum and only exponentially amall
“tunnelling” effects may lead to generation of an effective radiation. This limiting case for the mode frequency fits

3 As a matter of fact, the authors of [18,19] considered only the blow-up in the cubic NLS equation in two dimensions but their results
can be generalized for the critical NLS equation in any dimensions.

4 Instead of the coefficient 2/m in (31) the authors of [22] derived the coefficientNcr/m.
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into the asymptotic analysis presented above. Therefore, we study this limiting case by applying the asymptotic
equations (18) and (24).

For simplification of the analysis the internal soliton oscillations are supposed to have very small amplitudes.
In this linear limit, we introduce a small perturbationω1(T ) to a mean valueω0 of the soliton parameterω(T )
according to the expansion,ω(T ) = ω0 +µω1(T ), whereµ is a small amplitude of the perturbation. Then, subject
to the conditionµ � ε2 the nonlinear terms of the asymptotic expansion (12) are removed into higher orders and
the asymptotic equations (12) and (15) take a simplified form

N0 =Ns(ω0)+m

(
d2ω1

dT 2
+Ω2ω1

)
, (36)

B = 1

2ω0

d2ω1

dT 2
. (37)

Herem = Ms(ω0),Ω is the internal mode frequency which is given asymptotically by the equation,Ω2 =
m−1N ′

s(ω0) valid in the limitΩ � ω, and the derivativeN ′
s(ω) is supposed to be small and positive for a stable

soliton near the instability threshold [34]. Besides, we have renormalized the formal parametersε andµ to be equal
to unity, Using these formulas, we rewrite the dynamical equations (18) and (24) as follows:

dN0

dT
= 0 forω′′

1 ≤ 0, (38)

dN0

dT
= −2

√
ω0A

2(ω0) exp


−

π

√
2ω3

0√
ω′′

1


 for ω′′

1 > 0, (39)

whereω′′
1 = d2ω1/ dT 2. If one neglects the radiative effects, then the adiabatic equation (36) described linear

small-amplitude oscillations of a soliton perturbation according to a simple solution

N0 = Ns(ω0), ω1(T ) = c sin[ΩT + ϕ], (40)

wherec andϕ are oscillation amplitude and phase, respectively. These parameters are arbitrary within the linear
radiationless approximation. Using the solution (40) as the leading-order approximation, we notice that the radiation
is excited according to (38) and (39) only for half-periods of oscillations, whenω′′

1 > 0, i.e. forπ(1 + 2n)− ϕ <

ΩT < 2π(1+ n)− ϕ, wheren is integer. For the other half-periods, whenω′′
1 ≤ 0, the oscillating soliton is locked

by a quadratic-phase potential and the radiative waves are not emitted.
In order to evaluate the exponentially small radiative effects at the long-term soliton oscillations (40) we apply

the method of Van-der-Pol which is well-known for similar problems in oscillation theory (see, e.g., [37]). Thus,
we consider the parametersN0, ω0, c, andϕ to be slowly varying functions at the scale of soliton oscillations and
separate the asymptotic equation (36) into two constant and oscillatory components,

Ns(ω0) = N0 ≡ Ω

2π

∮
N0(T ) dT , (41)

d2ω1

dT 2
+Ω2ω1 = 1

m
[N0(T )−N0]. (42)

Using the Van-der-Pol method [37] we reduce (42) to differential equations describing radiation-induced variations
of the oscillation amplitude and phase,

dc

dT
= 1

2πm

∮
[N0(T )−N0] cos[ΩT + ϕ] dT , (43)
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dϕ

dT
= − 1

2πmc

∮
[N0(T )−N0] sin[ΩT + ϕ] dT . (44)

It can be easily shown from (44) that the leading-order approximation does not induce variations of the oscillation
frequency and we can putϕ = 0. On the other hand, using (38), (39), and (43) we find a single equation for the
amplitude variations:

dc

dT
=

√
ω0A

2(ω0)

πmΩ2

2π∫
π

sinθ exp


−

π

√
2ω3

0

Ω
√
c
√− sinθ


 dθ. (45)

The leading-order term of the integral in (45) can be evaluated in the asymptotic limitc → 0 by means of the
Laplace method. As a result of these calculations, we obtain an explicit equation forc(T ),

dc

dT
= −βc1/4 exp

(
− α√

c

)
, (46)

where

α =
π

√
2ω3

0

Ω
, β = 2A2(ω0)

πmΩ3/2(2ω0)1/4
.

This differential equation enables us to evaluate the asymptotic behaviour of the oscillation amplitude decaying due
to exponentially small radiative losses. This decay is described by the following asymptotic expression asT → ∞:

c → α2

log2 T

[
1 − 5

log log T

log T

]
. (47)

Besides the predictions of the long-term oscillatory dynamics, we also study the radiation-induced changes of
the soliton parameterω0. To do this, we average the differential equation (39) and then simplify it as above in the
asymptotic limitc → 0. This procedure leads to the following calculation:

dN0

dT
= −

√
ω0A

2(ω0)

π

2π∫
π

exp


−

π

√
2ω3

0

Ω
√
c
√− sinθ


 dθ

≈ −mΩ2βc1/4 exp

[
− α√

c

]
= mΩ2 dc

dT
. (48)

Therefore, the total shift of the averaged integral powerN0 and related shift of the mean value of the soliton
parameterω0 (see (41)) can be estimated through an initial value for the oscillation amplitudec(0) as

∆N0 = −mΩ2c(0), (49)

∆ω0 = ∆N0

N ′
s(ω)

= −c(0). (50)

Thus, emission of radiation leads to decrease of the soliton parameterω0. This effect may result in a complete
decay of an envelope-wave soliton if the final value ofω0 becomes less than the critical value for an onset of
soliton instability. This case is relevant for dependencesNs(ω) concaved upward at the critical point (see [4]). Thus,
excitation of internal oscillatory dynamics of envelope-wave solitons may lead to their disappearence and decay
into small-amplitude spreading wave packets.
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Finally, we mention that it is possible to generalize the analysis described above for internal oscillations of
strong amplitudes. The corresponding approaches were recently developed by Malkin [30] and Fibich [31] for the
problem of collapse arrest and formation of a multi-focusing oscillating soliton. Furthermore, other scenarios of the
instability-induced dynamics of envelope-wave solitons such as the non-critical collapse and decay (see [34]) can
also be analysed by asymptotic methods described in the present paper.
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