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JUSTIFICATION OF THE LOG–KdV EQUATION IN GRANULAR
CHAINS: THE CASE OF PRECOMPRESSION∗

ERIC DUMAS† AND DMITRY PELINOVSKY‡

Abstract. For traveling waves with nonzero boundary conditions, we justify the logarithmic
Korteweg–de Vries equation as the leading approximation of the Fermi–Pasta–Ulam lattice with
Hertzian nonlinear potential in the limit of small anharmonicity. We prove control of the approxi-
mation error for the traveling wave solutions satisfying differential advance-delay equations, as well
as control of the approximation error for time-dependent solutions to the lattice equations on long
but finite time intervals. We also show nonlinear metastability of the traveling waves on long but
finite time intervals.
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1. Introduction. Solitary waves in anharmonic granular chains with Hertzian
interaction forces are modeled by the Fermi–Pasta–Ulam (FPU) lattices with non-
smooth nonlinear potentials [21]. We write the FPU lattice in the form

(1.1) ün = V ′
α(un+1)− 2V ′

α(un) + V ′
α(un−1), n ∈ Z,

where (un)n∈Z is a function of the time t ∈ R, with values in RZ, and the dot denotes
the time derivative. The coordinate un corresponds to the relative displacement
between locations of two adjacent particles. The Hertzian nonlinear potential Vα ∈
C2(R) is given by

(1.2) Vα(u) =
1

1 + α
|u|1+αH(−u), α > 1,

where H(u) is the standard Heaviside function. Recently, the FPU lattice (1.1)–
(1.2) was formally reduced to the logarithmic Korteweg–de Vries (log–KdV) equation
in the limit of small anharmonicity of the Hertzian interaction forces (that is, for
α = 1+ε2 with ε → 0) [5, 13]. Using the asymptotic correspondence un(t) ≈ −v(x, τ),
x = ε(n− t), and τ = ε3t, we obtain the log–KdV equation in the form

(1.3) 2vτ +
1

12
vxxx + (v log |v|)x = 0, (x, τ) ∈ R× R.

Here and in what follows, we denote partial derivatives by subscripts. Note that in
the derivation of (1.3), v is assumed to be positive (otherwise, the Heaviside function
should appear in the nonlinear term). Experimental evidence for validity of the limit
α → 1 in the context of granular chains with hollow particles can be found in [22].
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The log–KdV equation (1.3) has a two-parameter family of Gaussian traveling
waves

(1.4) v(x, τ) = e2bvG(x− bτ − a), a, b ∈ R,

where vG is a symmetric standing wave given by

(1.5) vG(x) :=
√
ee−3x2

, x ∈ R.

Global solutions to the log–KdV equation (1.3) in the energy space

(1.6) X :=
{
v ∈ H1(R) : v2 log |v| ∈ L1(R)

}
were constructed in [4]. In addition, spectral and linearized stability of Gaussian
traveling waves were proved in [4] with analysis of the linearized evolution problem.
Unfortunately, technical difficulties exist to proving nonlinear orbital stability of Gaus-
sian traveling waves, as well as to constructing solutions in spaces of higher regularity
[4]. The technical difficulties are caused by the necessity to control the logarithmic
nonlinearity near v = 0, where it is not differentiable.

This paper addresses a different problem, namely, the rigorous justification of the
log–KdV equation (1.3) in the context of the FPU lattice (1.1)–(1.2). Numerical ap-
proximations of time-dependent solutions to the FPU lattice in [13] suggest that the
Gaussian traveling waves represent well the stable solitary waves in granular chains,
which are known to propagate robustly in physical experiments [28]. Therefore, it
becomes relevant to control the approximation error between the corresponding solu-
tions to the FPU lattice (1.1)–(1.2) and the log–KdV equation (1.3).

In a similar context to FPU lattices with sufficiently smooth nonlinear potential
V , small-amplitude solutions are described by the celebrated KdV equation. In a
series of papers, Friesecke and Pego [7, 8, 9, 10] justified the KdV approximation
for traveling waves and proved the nonlinear stability of small-amplitude solitary
waves in generic FPU chains from analysis of the orbital and asymptotic stability of
KdV solitons. Later these results were extended to the proof of asymptotic stability
of several solitary waves in the FPU lattices by Mizumachi [19, 20], Hoffmann and
Wayne [14], and Benes, Hoffman, and Wayne [3]. Independently, validity of the KdV
equation for time-dependent solutions on the time scale of O(ε−3) was obtained by
Schneider and Wayne [27] and Bambusi and Ponno [2]. Recently, these results were
generalized for polyatomic FPU lattices in [12]. Because of the lack of smoothness of
the potential Vα in (1.1)–(1.2), and therefore also of the nonlinearity in the log–KdV
equation (1.3) near the origin, none of the previous results can be applied to the FPU
lattice (1.1)–(1.2).

As a first step towards the ultimate goal of justification of the log–KdV equation
(1.3), we shall here consider solutions with nonzero (positive) boundary conditions
at infinity. In other words, we shall consider solutions bounded from below by some
positive constant and satisfying the boundary conditions v(x, t) → v0 > 0 as |x| → ∞
for all t ∈ R. In the context of the anharmonic granular chains (1.1)–(1.2), these
boundary conditions correspond to the constant precompression force applied to the
granular chains.

The precompression technique is well known both numerically and experimentally
for regularization of responses of granular chains [21]. Typically, small-amplitude per-
turbations of the constant precompressed state are handled through Taylor expansion
of the nonlinearity, thanks to the smoothness of the nonlinear potential V (u) or the
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logarithmic nonlinearity near any point v0 > 0. In comparison to this standard tech-
nique, we avoid Taylor series expansion and consider large-amplitude solutions to the
FPU lattice (1.1)–(1.2) with α = 1 + ε2 in the limit ε → 0. In this way, we confirm
the validity of the log–KdV equation (1.3) with nonzero boundary conditions for the
existence and stability of large–amplitude traveling waves.

Note that the nonlinear function p(v) = v log |v| in the log–KdV equation (1.3)
satisfies for any v � v0 > 0 the general assumption p′′(v) > 0 and p′′′(v) � 0 required
by the orbital stability theory for large-amplitude traveling waves of the generalized
KdV equation (see Theorem 1 in [15]). Consequently, traveling waves of arbitrary
amplitudes with the boundary conditions v → v0 as x → ±∞ are orbitally stable with
respect to the time evolution of the log–KdV equation (1.3) in the classical sense [1].

We report three main results in our work. First, we study traveling wave solutions
to (1.1)–(1.2) with α = 1+ ε2, under the form un(t) = −v0(1+w(n− ct)) with speed

c = (vε
2

0 (1 + λε2))1/2 for any λ > 1. We provide a rigorous approximation of such
traveling waves, in the limit ε → 0, by means of traveling solutions to the log–KdV
equation (1.3).

Next, we show that a simple energy argument gives nonlinear metastability of
the previously constructed (large-amplitude) traveling wave solutions to the FPU
lattice equations (1.1)–(1.2) with α = 1 + ε2 on the time scale O(ε−3), where the
approximation of the log–KdV equation (1.3) is formally applicable. The energy
argument we develop here does not use the spectral information on the linearized
log–KdV equation and holds for time-dependent perturbations, which may violate
the scaling of space and time variables resulting in the log–KdV equation (1.3). It
only uses the precise justification result for the traveling waves of the FPU lattice.

Finally, we control the error in the approximation of time-dependent solutions to
the FPU lattice by solutions to the log–KdV equation up to the time scale O(ε−3) by
extending the same energy argument used for control of the nonlinear metastability
of traveling waves.

Although our results are analogous to the outcomes of the corresponding works
[7] and [27], a different analytical technique is adopted to obtain the justification and
stability results. The technique is thought to be applicable to a much larger class
of FPU models which result in the generalized KdV equation with possibly large-
amplitude traveling waves. We also point out that the methods of neither [7] nor
[27] cannot be immediately applied to the justification of the log–KdV equation (1.3)
because they require the smallness of the traveling wave amplitude.

In more detail, we use the method of decomposition of solutions in the Fourier
space, which was originally developed in [24] and used in [6, 16, 25] (see also Chapter 2
in [23]) for the justification of asymptotic reductions of solitary waves in the nonlinear
Schrödinger equation with a periodic potential. This technique is an alternative to
the method of Friesecke and Pego [7] that relies on approximations of roots of the
dispersion relations and on an appropriate version of a fixed-point theorem. We also
use fixed-point arguments but in a more classical way.

While the strategy adopted in [8, 9, 10] gives nonlinear stability results for FPU
traveling waves globally in time, it applies only to the small-amplitude traveling waves.
It also relies on the spectral information of the linearized KdV equation, modulation
equations along the two-dimensional manifold of the traveling waves, and careful
analysis of linearized advance-delay equations, all of which may not be available when
dealing with the log–KdV equation (1.3).

The plan of the paper is as follows. Section 2 presents the main results. Sec-
tion 3 is devoted to the justification of the log–KdV approximation for the traveling
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waves of the FPU lattice. Section 4 is devoted to the nonlinear metastability of the
traveling waves in the FPU lattice on the time scale O(ε−3). Section 5 describes the
justification of the log–KdV equation for the time-dependent solutions to the FPU
lattice. Section 6 discusses these results in the context of general FPU lattices.

2. Main results. Substituting the traveling wave ansatz un(t) = u(z) with
z = n − ct for a positive speed c > 0 into the FPU lattice (1.1)–(1.2), we obtain the
differential advance-delay equation

(2.1) c2u′′(z) = −Δ|u|αH(−u)(z), z ∈ R,

where α > 1, and Δ is the discrete Laplacian operator on the infinite line,

Δf(z) := f(z + 1)− 2f(z) + f(z − 1).

Since the limit α → 1 is considered, we set α := 1 + ε2 for a small positive ε. Here
and in the sequel, we shall drop the dependence of the functions (such as u) upon
ε for simplicity, and only mention this dependence in the main statements. With a
precompression level v0 > 0, we set

(2.2) u(z) = −v0(1 + w(z)) and c2 = vε
2

0 (1 + μ),

where μ > −1 is an arbitrary parameter and w(z) is assumed to decay to zero at
infinity and to be bounded in the interval

(2.3) −1 < C− � w(z) � C+ < ∞ for every z ∈ R,

where C± are ε-independent and C+ does not have to be smaller than one (that is,
‖w‖L∞ may exceed one). Under the a priori bound (2.3), we rewrite the existence
problem in the form

(2.4) (1 + μ)w′′(z) = ΔṼ ′
ε (w)(z), z ∈ R.

Here the potential

Ṽε(w) :=
1

2 + ε2

[
(1 + w)2+ε2 − 1

]
− w, w > −1,

is C2(−1,∞), positive near w = 0, and Ṽε(w)/w
2 increases strictly with w for all

w ∈ (0,∞). For such potentials, Theorem 1 of Friesecke and Wattice [11] applies (as
it was also noted in [18]). By this theorem, which is proved by a variational method
based on the concentration compactness principle, there exists a nontrivial positive
solution w ∈ H1(R) of the differential advance-delay equation (2.4) for some values
of the parameter μ satisfying the constraint 1 + μ > Ṽ ′′

ε (0) = 1 + ε2 (that is, for
μ > ε2). Moreover, recent work [29] suggests that these traveling waves are smooth
and exponentially localized.

To obtain the formal limit to the stationary log–KdV equation, we set the vari-
ables x = εz and W (x) = w(z), use the Taylor expansions

(2.5) Δw(z) = ε2W ′′(x) +
1

12
ε4W ′′′′(x) +O(ε6W (6)(x)),

and

Ṽ ′
ε (w) = (1 + w)1+ε2 − 1

= w + ε2(1 + w) log(1 + w) +O(ε4(1 + w) log2(1 + w)),(2.6)
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and finally integrate (2.4) with μ = ε2λ twice in x subject to the zero boundary
conditions for W and its derivatives. Truncating at the leading order O(ε4), we
obtain the stationary log–KdV equation

(2.7) λW (x) =
1

12
W ′′(x) + (1 +W ) log(1 +W ), x ∈ R.

By Proposition 3.2 below, there exists a unique positive and even solution Wstat ∈
H∞(R) to the stationary log–KdV equation (2.7) with λ > 1. We are now ready to
formulate the main result on the rigorous justification of this formal approximation.

Theorem 1. Set μ := ε2λ with fixed ε-independent parameter λ > 1. There exist
positive constants ε0 and C0 such that for every ε ∈ (0, ε0), there exists a unique even
solution wstat,ε to the differential advance-delay equation (2.4) in L2(R)∩L∞(R) such
that

(2.8) sup
z∈R

|wstat,ε(z)−Wstat(εz)| � C0ε
1/6,

where Wstat is the unique positive and even solution to the stationary log–KdV equa-
tion (2.7). Moreover, wstat,ε ∈ H∞(R) and for every k ∈ N, there is a positive
ε-independent constant Ck such that

(2.9) sup
z∈R

|∂k
zwstat,ε(z)− εk∂k

xWstat(εz)| � Ckε
k+1/6.

Remark 2.1. It follows from analysis of the roots of the dispersion relation as-
sociated with the differential advance-delay equation (2.4) that wstat,ε decays to zero
exponentially at infinity (see section 5 in [7]).

Remark 2.2. While the result of Theorem 1 does not exclude the sign-indefinite
solution wstat,ε, the negative parts are as small as O(ε1/6) in the L∞ norm, because
Wstat is positive. Nevertheless, based on the results of the variational theory in [11],
we anticipate that wstat,ε is also positive.

Using the scaling transformation

un(t) = −v0 (1 + wn(t
′)) , t′ = v

ε2/2
0 t,

we can write the FPU lattice in the (formally) equivalent form of the first-order system

(2.10)

{
ẇn = pn+1 − pn,

ṗn = Ṽ ′
ε (wn)− Ṽ ′

ε (wn−1),
n ∈ Z.

Any (w, p) ∈ C1(R, l2(Z)) solution to the first-order system (2.10), with wn > −1 for
all n ∈ Z, provides a C2(R, l2(Z)) solution u to the scalar second-order equation (1.1).
The FPU lattice equations (2.10) admit the conserved energy

(2.11) H :=
1

2

∑
n∈Z

p2n +
∑
n∈Z

Ṽε(wn).

Note that the dot in (2.10) applies with respect to the new variable t′. In what follows,
we will use the same notation t for the independent time variable of the FPU system
(2.10) for convenience.

Since shift operators are bounded in l2(Z), it is easy to show the local (in time)
well-posedness of the Cauchy problem associated with the FPU system (2.10) in l2(Z).
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Furthermore, the energy conservation (2.11) and the embedding of l2(Z) in l∞(Z)
ensure global existence of the solutions, at least for small initial data. For large initial
data, any solution to (2.10) provides a solution to (1.1) as long as all components of
u remain strictly negative, that is, as long as

(2.12) −1 < C− � wn(t) � C+ < ∞ for every n ∈ N,

where C± are ε and t-independent constants. It may be hard to control this condition
during evolution for general initial data, but our study addresses time-dependent
solutions near the traveling wave of Theorem 1, which definitely satisfies the bounds
(2.12); see Remark 2.2. Let us emphasize once again that the traveling waves and the
solutions we consider are not small-amplitude solutions to the FPU lattice (2.10).

We define a reference traveling wave (wtrav, ptrav) ∈ C1(R, l2(Z)) solution to the
FPU lattice (2.10) by

(2.13) (wtrav)n(t) = wstat(n− ct), (ptrav)n(t) = pstat(n− ct),

where c2 = 1+ ε2λ is the squared wave speed, wstat is given by Theorem 1, and pstat
is found from the advance equation −cw′

stat(z) = pstat(z + 1)− pstat(z). We now ask
if the traveling wave given by (2.13) is stable in the time evolution of the FPU lattice
(2.10) with small ε at least on the time scale of O(ε−3), when the approximation of
the log–KdV equation is applicable.

The following theorem gives the affirmative answer to the question of the nonlinear
metastability of the FPU traveling waves and specifies the precise conditions, in which
the nonlinear metastability of the traveling wave is understood. In particular, this
result ensures existence of the time-dependent solution (w, p) to the FPU lattice (2.10)
up to O(ε−3) times.

Theorem 2. As in Theorem 1, set μ := ε2λ with fixed ε-independent parameter
λ > 1. For every τ0 > 0, there exist positive constants ε0, δ0, and C0 such that, for
all ε ∈ (0, ε0), when initial data (wini,ε, pini,ε) ∈ l2(R) satisfy

(2.14) δ := ‖wini,ε − wtrav,ε(0)‖l2 + ‖pini,ε − ptrav,ε(0)‖l2 � δ0,

then the unique solution (wε, pε) to the FPU lattice equations (2.10) with initial data
(wini,ε, pini,ε) belongs to C1([−τ0ε

−3, τ0ε
−3], l2(Z)) and satisfies

(2.15) ‖wε(t)− wtrav,ε(t)‖l2 + ‖pε(t)− ptrav,ε(t)‖l2 � C0δ, t ∈ [−τ0ε
−3, τ0ε

−3
]
.

Remark 2.3. According to [15], the solitary wave W of the stationary log–KdV
equation (2.7) is orbitally stable in the time evolution of the log–KdV equation

(2.16) 2Wτ +
1

12
Wξξξ + (g(W ))ξ = 0, g(W ) := (1 +W ) log(1 +W ),

where τ = ε3t and ξ = ε(n − t) are scaled variables of the FPU lattice (2.10). From
Theorem 2 and this orbital stability result, one can expect that the time-dependent
version of the log–KdV equation (2.16) is a valid approximation of the time-dependent
solutions to the FPU lattice (2.10) modulated on the spatial scale O(ε−1) up to the
time scale of O(ε−3).

Remark 2.4. Compared to the log–KdV equation (2.16), Theorem 2 also gives
metastability of the FPU traveling waves with respect to modulations on any other
spatial scale, nevertheless, up to the time scale of O(ε−3).
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Finally, we justify the approximation of time-dependent solutions to the FPU
lattice (2.10) by the log–KdV equation (2.16). Technically, when a solution W to
(2.16) is given, we define

(2.17) Pε := −W +
ε

2
Wξ − ε2

8
Wξξ − ε2

2
g(W ) +

ε3

48
Wξξξ +

ε3

4
(g(W ))ξ,

so that (W,Pε) solves the first equation in (2.10) up to O(ε4) terms. The following
theorem controls the approximation error up to O(ε−3) times.

Theorem 3. Let W ∈ C([−τ0, τ1], H
s(R)) be a solution to the log–KdV equation

(2.16) for some integer s � 6 and some τ0, τ1 � 0. Assume that there exists rW > −1
such that W � rW . Then there exist positive constants ε0 and C0 such that, for all
ε ∈ (0, ε0), when initial data (wini,ε, pini,ε) ∈ l2(R) are given such that

(2.18) ‖wini,ε −W (ε·, 0)‖l2 + ‖pini,ε − Pε(ε·, 0)‖l2 � ε3/2

with Pε given by (2.17), the unique solution (wε, pε) to the FPU lattice equations (2.10)
with initial data (wini,ε, pini,ε) belongs to C1([−τ0ε

−3, τ1ε
−3], l2(Z)) and satisfies

(2.19)
‖wε(t)−W (ε(· − t), ε3t)‖l2 + ‖pε(t)− Pε(ε(· − t), ε3t)‖l2 � C0ε

3/2,

t ∈ [−τ0ε
−3, τ1ε

−3
]
.

Remark 2.5. The Cauchy problem associated with the log–KdV equation (1.3)
is not understood in full generality: global solutions in some subspace of H1 are con-
structed in [4], but the question of propagation of regularity remains open. However,
the classical approach (see, for example, Kato [17]) allows us to construct short-time
solutions with Hs regularity, s > 3/2, given initial data satisfying a lower bound as in
the assumption of Theorem 3, namely, W � rW > −1 (in the neighborhood of which
the nonlinearity g is smooth).

Remark 2.6. Using higher-order asymptotic expansions and εK+3/2-close initial
data, the approximation in (2.19) could be improved to be O(εK+3/2) for any K ∈ N;
see Remark 5.1 below.

Remark 2.7. Even if the traveling wave solution W = Wstat(ξ−λτ/2) to the log–
KdV equation (2.16) is used in bounds (2.18) and (2.19), where Wstat is a solution
to the stationary log–KdV equation (2.7), the results of Theorems 1 and 3 do not
recover the result of Theorem 2, because the small parameter δ in Theorem 2 does
not depend on the small parameter ε.

3. Justification analysis for traveling waves. Adopting the Fourier trans-
form on L2(R) functions

ŵ(k) = F(w)(k) :=

∫ ∞

−∞
w(z)e−ikzdz,

with the inverse Fourier transform

w(z) = F−1(ŵ)(z) :=
1

2π

∫ ∞

−∞
ŵ(k)eikzdk,

we can rewrite the existence problem (2.4) as the fixed-point equation

(3.1) w(z) =
1

1 + μ

∫ 1

−1

Λ(y)Ṽ ′
ε (w(z − y))dy, z ∈ R,
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where Λ(z) = (1 − |z|)+ is the hat function, or in the equivalent Fourier form

(3.2) ŵ(k) =
1

1 + μ
Λ̂(k)F(Ṽ ′

ε (w))(k), k ∈ R,

where Λ̂(k) := 4
k2 sin

2
(
k
2

)
. This section presents the proof of Theorem 1, after several

auxiliary results have been obtained.

3.1. Nonzero solutions to the fixed-point equation (3.1). We shall first
investigate if nonzero solutions to the fixed-point equation (3.1) exist for μ = O(ε2).
Therefore, we set μ := ε2λ with an ε-independent parameter λ. The following propo-
sition shows that, when λ > 1 is fixed and R > 0 is small enough, there is no solution
to the fixed-point equation (3.1) with the L2 ∩ L∞ norm less than R other than the
trivial (zero) solution.

Proposition 3.1. Set μ := ε2λ. For every R > 0, there exists λR > 1 such that
for all λ > λR and all ε ∈ (0, 1) the only solution to the fixed-point equation (3.1) in

(3.3) BR := {w ∈ L2(R) ∩ L∞(R) : ‖w‖L2∩L∞ � R, w � 0}
is the trivial zero solution. Furthermore, λR may be chosen so that λR −→

R→0
1.

Proof. We write

Ṽ ′
ε (w) = (1 + w)1+ε2 − 11+ε2 = (1 + ε2)

∫ w

0

(1 + x)ε
2

dx.

Let Aλ,ε(w) denote the right-hand side of the fixed-point equation (3.1) with μ = ε2λ.

Since ‖Λ‖L1 = 1 and ‖Λ‖L2 =
√
2√
3
< 1, we apply Young’s inequality and obtain

‖Aλ,ε(w)‖L2∩L∞ � 1

1 + ε2λ
‖Λ‖L1∩L2‖Ṽ ′

ε (w)‖L2

� 1 + ε2

1 + ε2λ
(1 + ‖w‖L∞)ε

2‖w‖L2 .

Consider the ball of positive functions in L2(R) ∩ L∞(R) centered at zero with the
radius R > 0, denoted by BR, and defined by (3.3). If R is fixed, there exists an
ε-independent constant CR such that

(1 + ‖w‖L∞)ε
2 � 1 + CRε

2 log(1 +R) for every ε ∈ (0, 1).

Furthermore, CR may be chosen so that CR −→
R→0

1.

For λ � λR := 1 + 2CR log(1 + R) and ε ∈ (0, 1), we have Aλ,ε : BR → BR.
Moreover, using similar bounds

‖Aλ,ε(w1)−Aλ,ε(w2)‖L2 � 1

1 + ε2λ
‖Λ‖L1‖Ṽ ′

ε (w1)− Ṽ ′
ε (w2)‖L2

� 1 + ε2

1 + ε2λ
(1 + max{‖w1‖L∞ , ‖w2‖L∞})ε2‖w1 − w2‖L2

� 1 + ε2

1 + ε2λ
(1 + CRε

2 log(1 +R))‖w1 − w2‖L2,

we have the desired contraction property for the operator Aλ,ε : BR → BR if λ > λR.
Since Aλ,ε(0) = 0, the contraction principle guarantees that the trivial solution w = 0
is the only fixed point of Aλ,ε in the set BR.
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Next we set μ := ε2λ with λ ∈ (1,∞) being fixed and ε-independent. Proposi-
tion 3.1 does not rule out the existence of nonzero solutions in BR to the fixed-point
equation (3.1) for sufficiently large R. In what follows, we will consider the nonzero
solutions to the fixed-point equation (3.1), which are close to large-amplitude traveling
waves given by the stationary log–KdV equation (2.7).

Let us now recapture the formal limit to the stationary log–KdV equation (2.7).
Using the Taylor series expansion as k → 0,

(3.4) Λ̂(k) =
4

k2
sin2

(
k

2

)
= 1− 1

12
k2 +O(k4),

and the power series (2.6) for Ṽ ′
ε (w), we truncate the fixed-point equation (3.2) with

μ = ε2λ at the leading-order terms as follows:

(3.5) ε2λŵlead(k) = − 1

12
k2ŵlead(k) + ε2F((1 + wlead) log(1 + wlead))(k).

Using the inverse Fourier transform and setting the variables x = εz and W (x) =
wlead(z), we then recover the stationary log–KdV equation (2.7).

3.2. Solitary waves for the stationary log–KdV equation. A standard
construction of solutions to the stationary log–KdV equation (2.7) is based on a
dynamical system approach and gives the following result.

Proposition 3.2. For any λ > 1, there exists a unique (up to the spatial trans-
lation) solution Wstat to the stationary log–KdV equation (2.7) in H1(R), such that
Wstat(x) > 0 for all x ∈ R. Moreover, Wstat ∈ H∞(R), W ′

stat vanishes only at one
point on R, and

(3.6) Wstat(x) � Cλe
−κλ|x|, x ∈ R,

for some λ-dependent positive constants Cλ and κλ.
Proof. Integrating the second-order differential equation (2.7), we obtain the

energy

E(W ) :=
1

24

(
dW

dx

)2

+
1

2
(1 +W )2 log(1 +W )− 1

4
(1 +W )2 − 1

2
λW 2 = E0,

which is constant in x. Since any solution in H1(R) should decay to zero at infinity,
we set E0 = − 1

4 . Because E(W ) → ∞ as W → ∞, the turning point W0 > 0 such
that E(W0) = E0 exists if E(W ) is concave near W = 0. This is ensured by the
condition λ > 1.

Further analysis of the nonlinear potential shows that if λ > 1, there is a unique
turning point W0 and a unique homoclinic orbit in the right-half of the phase plane
(W,W ′) that connects the saddle point (0, 0) for E0 = − 1

4 . For this homoclinic
orbit, W ′ vanishes at exactly one point x0, where W (x0) = W0. By the theory of
stable and unstable manifolds, the homoclinic orbit for the nondegenerate saddle point
decays exponentially fast at infinity with the precise decay rate κλ :=

√
12(λ− 1).

Furthermore, bootstrapping arguments for the differential equation (2.7) yieldWstat ∈
H∞(R) because W 	→ log(1 +W ) is C∞ on (0,∞).

Remark 3.1. By the translational symmetry, we can always shift Wstat so that
x0 = 0, in which case, W ′

stat(0) = 0 and Wstat is even.
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Linearizing the nonlinear differential equation (2.7) at the solitary wave Wstat, we
obtain the Schrödinger operator with a bounded and decaying potential

(3.7) Lλ := − 1

12

∂2

∂x2
+ λ− 1− log(1 +Wstat) : H

2(R) → L2(R).

Although the exact location of the spectrum of Lλ is unknown, several facts follow
from the Sturm theory (see Chapter 5.5 in [30] for a review of the Sturm theory).

Proposition 3.3. For any λ > 1, the spectrum of Lλ in L2(R) includes one
negative eigenvalue λ−1 and the zero eigenvalue λ0 = 0 with the eigenfunction W0 =
W ′

stat. The rest of the spectrum of Lλ lies in (0,∞) and is bounded away from zero
by a positive number. Consequently, the linear operator Lλ is invertible with bounded
inverse on the subspace of functions in L2(R) orthogonal to W0.

Proof. Since Lλ is self-adjoint, it has a real spectrum. The zero eigenvalue is
due to the possible translation of the solitary wave Wstat in space: LλW

′
stat = 0.

Since W ′
stat has exactly one zero, there exists exactly one negative eigenvalue λ−1.

The continuous spectrum of Lλ is bounded from below by the positive number λ− 1,
thanks to the fact that the potential log(1 +Wstat) of the Schrödinger operator Lλ is
bounded and exponentially decaying at infinity. By Sturm’s theory, there may exist
a finite number of positive eigenvalues between 0 and λ− 1.

For iterations of the fixed-point equation (3.1), it is more convenient to work with
the operator

(3.8) Sλ :=

(
− 1

12

∂2

∂x2
+ λ− 1

)−1

log(1 +Wstat) : L
2(R) → H2(R).

The following result is an equivalent reformulation of Proposition 3.3.
Proposition 3.4. For any λ > 1, the spectrum of Sλ in L2(R) lies in (0,∞) and

includes one simple eigenvalue μ−1 bigger than 1, a simple eigenvalue μ0 = 1 with
the eigenfunction W0 = W ′

stat, and the rest of the spectrum of Sλ is located in the
interval (0, 1) bounded away from μ0 = 1. Consequently, the linear operator I − Sλ

is invertible with bounded inverse on the subspace of functions in L2(R) orthogonal to
W0.

Proof. The operator Sλ is conjugated via the positive operator
(− 1

12∂
2
x + λ− 1

)1/2
to a self-adjoint operator in L2(R). Hence the spectrum of Sλ is real. Moreover, since
log(1 +Wstat(x)) > 0 for all x ∈ R, the spectrum of Sλ is positive.

By Sylvester’s inertia law (see Chapter 4.1.2 in [23]), operators Lλ and I − Sλ

have the same number of negative eigenvalues and the same multiplicity of the zero
eigenvalue. By Proposition 3.3, Lλ has one simple negative eigenvalue and a simple
zero eigenvalue. Equivalently, Sλ has one simple eigenvalue μ−1 > 1 with an eigen-
function W−1 and a simple eigenvalue μ0 = 1 with an eigenfunction W0. Moreover,
the eigenfunction of Sλ for μ0 = 1 is the same as that of Lλ for λ0 = 0, that is,
W0 = W ′

stat.
Because the positive spectrum of Lλ is bounded away from zero, the rest of

the spectrum of Sλ is located in the interval (0, 1) and bounded away from μ0 = 1.
Consequently, ‖Sλ‖X⊥

0 →L2 < 1, whereX0 := span{W−1,W0}, and, by von Neumann’s

theorem, I − Sλ is invertible with bounded inverse on the subspace X⊥
0 ⊂ L2(R).

Furthermore, since μ−1 > 1, it is also invertible on the subspace of functions in L2(R)
orthogonal to W0.

Remark 3.2. It follows from the criterion given by Pego [26] that Sλ is actually
a compact operator in L2(R). However, we do not need to use this fact here nor to
construct the spectrum of Sλ explicitly.
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3.3. Strategy to prove Theorem 1. Let us divide the infinite line for the
Fourier variable k into two sets Ip := [−εp, εp] and Jp := R\Ip, where a positive ε-
independent parameter p is to be defined later. Let χS be the characteristic function
of the set S ⊂ R. Then, we decompose the solution in the Fourier form into two parts:

(3.9) ŵ(k) = û(k) + v̂(k), where û(k) := χIp(k)ŵ(k), v̂(k) := χJp(k)ŵ(k).

The original problem (3.2) with μ = ε2λ is now written as a system of two equations

(3.10) v̂(k) =
1

1 + ε2λ
χJp(k)Λ̂(k)F(Ṽ ′

ε (u+ v))(k), k ∈ Jp

and

(3.11) û(k) =
1

1 + ε2λ
χIp(k)Λ̂(k)F(Ṽ ′

ε (u+ v))(k), k ∈ Ip.

Here we set λ > 1 to be ε-independent. For R > 0 and r ∈ (−1, 0), we define

(3.12) BR,r :=

{
u ∈ L2(R) ∩ L∞(R) : r � inf

R

u, sup
R

u � R

}

to consider functions which may have small negative and large positive values.
First, we show that for any u ∈ BR,r and for any small ε, there exists a unique

solution v to the first equation (3.10) in L2(R) ∩ L∞(R) such that

(3.13) ‖v‖L2∩L∞ � CR,rε
2−2p‖u‖L2,

where the positive constant CR,r is independent of ε and ‖u‖L2. We use the con-
traction principle for (3.10) which holds if p < 1. Let us denote the solution by
v∗(u).

Second, we show that, when v∗(u) is substituted into (3.11), there exists a unique
solution u to (3.11) in BR,r near the solution wlead = Wstat(ε·) to the stationary
log–KdV equation in the Fourier form (3.5):

(3.14) ‖u−Wstat(ε·)‖L2∩L∞ � CR,r,λ max{ε4p−2, ε2−2p}‖Wstat(ε·)‖L2 ,

where the positive constant CR,r,λ is independent of ε. We use a fixed-point argument
for (3.11). Note that no contraction principle can be applied directly either to the full
equation (3.2) or to the reduced equation (3.11) because even if the fixed point exists,
the nonlinear operator on the right-hand side is not a contraction operator in the
neighborhood of the fixed point. In particular, this fact is justified by the appearance
of eigenvalue μ−1 > 1 in Proposition 3.4. Therefore, we have to regroup the left-hand
and right-hand side terms of (3.11) before applying fixed-point arguments.

Note that ‖Wstat(ε·)‖L2 = O(ε−1/2) as ε → 0, therefore, both corrections u−Wstat

and v are small in L∞ norm if

(3.15) 2− 2p− 1

2
> 0 and 4p− 2− 1

2
> 0,

that is, for p ∈ (58 ,
6
8 ). The optimal (smallest) bound occurs at p = 2/3 and corre-

sponds to the power 1/6 in the bound (2.8). Thanks to the positivity of Wstat, we
have r = O(ε1/6) as ε → 0. At the same time, R = O(1) depends on λ > 1 and can
be as large as necessary (but ε-independent).

We now follow the scheme above and prove bounds (3.13) and (3.14). As explained
above, these bounds yield the first part of Theorem 1.
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3.4. Proof of the bound (3.13). The following lemma yields the bound (3.13).
Lemma 3.1. For R > 0 and r ∈ (−1, 0), let u belong to the set BR,r defined

in (3.12). For any λ > 1, p ∈ (0, 1), and sufficiently small ε, there exists a unique
solution to (3.10) in L2(R) ∩ L∞(R) such that

(3.16) ‖v‖L2∩L∞ � CR,rε
2−2p‖u‖L2,

where the positive constant CR,r is independent of ε and ‖u‖L2. Moreover, the map
BR,r � u 	→ v ∈ L2(R) ∩ L∞(R) is C1.

Proof. We write Ṽ ′
ε (w) = w +Nε(w), where

Nε(w) = (1 + w)1+ε2 − 1− w = log(1 + w)

∫ ε2

0

(1 + w)1+xdx

and

Nε(w1)−Nε(w2) = ε2
∫ w1

w2

(1 + x)ε
2

dx+

∫ w1

w2

log(1 + x)

(∫ ε2

0

(1 + x)ydy

)
dx.

The function f(w) := log(1+w)/w is strictly decreasing for w > −1 with f(0) = 1.
As a result, for every r ∈ (−1, 0), there is a positive constant Cr such that

|Nε(w)| � ε2Cr(1 + |w|)1+ε2 |w|, w � r

and

|Nε(w1)−Nε(w2)| � ε2Cr (1 + max{|w1|, |w2|})1+ε2 |w1 − w2|, w1, w2 � r.

Note that Cr may be chosen so that Cr −→
r→0

1.

Therefore, we rewrite (3.10) in the equivalent form

(3.17) v̂(k) = Âλ,ε(û, v̂) :=
1

1 + ε2λ
Λ̂Jp(k) (v̂(k) + F(Nε(u + v))(k)) , k ∈ Jp,

where Λ̂Jp(k) := χJp(k)Λ̂(k). Because |k| � εp for k ∈ Jp, we note from (3.4) that
there exists an ε-independent positive constant C such that

‖Λ̂Jp‖L∞ � 1− Cε2p.

Let Aλ,ε(u, v) := F−1(Âλ,ε(û, v̂)) and consider Aλ,ε(u, ·) for a given u ∈ BR,r as a
bounded operator from L2(R) ∩ L∞(R) to itself. By Plancherel’s theorem, we obtain

‖Aλ,ε(u, v)‖L2 =
1√
2π

‖Âλ,ε(û, v̂)‖L2

� ‖Λ̂Jp‖L∞ (‖v‖L2 + ‖Nε(u+ v)‖L2)

� (1 − Cε2p)
(
‖v‖L2 + ε2Cr(1 + ‖u+ v‖L∞)1+ε2‖u+ v‖L2

)
.

By the Cauchy–Schwarz inequality, we also have

‖Aλ,ε(u, v)‖L∞ � 1

2π
‖Âλ,ε(û, v̂)‖L1

� ‖Λ‖L2 (‖v‖L2 + ‖Nε(u+ v)‖L2)

�
√
2√
3

(
‖v‖L2 + ε2Cr(1 + ‖u+ v‖L∞)1+ε2‖u+ v‖L2

)
.
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Let u ∈ BR,r be defined by (3.12), where R > 0 and r ∈ (−1, 0) are fixed
independently from ε. Recall that if p < 1, then ε2p � ε2 as ε → 0. Also note that

‖Aλ,ε(u, 0)‖L2∩L∞ � CR,rε
2‖u‖L2,

where the positive constant CR,r is independent of ε and ‖u‖L2. Then, for every
u in BR,r, λ > 1 and δ > 0, for sufficiently small ε > 0 (say, ε2(1−p) � Cδ for a
small u-dependent constant C), the operator Aλ,ε(u, ·) maps the ball of functions v
in L2(R)∩L∞(R) centered at zero with the radius δ to itself. Moreover, the operator
Aλ,ε(u, ·) is a contraction in this ball, using similar bounds,

‖Aλ,ε(u, v1)−Aλ,ε(u, v2)‖L2∩L∞

� ‖Λ̂Jp‖L∞∩L2 (‖v1 − v2‖L2 + ‖Nε(u+ v1)−Nε(u+ v2)‖L2)

� (1− Cε2p)(1 + ε2Cr(1 +R+ δ)1+ε2)‖v1 − v2‖L2.

Again, the contraction is ensured by the fact that ε2p � ε2 as ε → 0. Note that the
Lipschitz constant is bounded from above by 1− Cε2p independently from R.

By the contraction mapping principle, for every given u in BR,r, λ > 1, p < 1,
and sufficiently small ε > 0, there exists a unique fixed point of the operator equation
v = Aλ,ε(u, v) in L2(R)∩L∞(R) satisfying the bound (3.16), where ε2p is lost because
of the proximity of the Lipschitz constant to unity. Differentiability of the mapping
BR,r � u 	→ v ∈ L2(R) ∩ L∞(R) also follows from the contraction mapping princi-
ple, since the nonlinear operator Aλ,ε(u, v) is differentiable with respect to both u
and v.

3.5. Proof of the bound (3.14). The following lemma yields the bound (3.14).
Lemma 3.2. For any fixed λ > 1 and p ∈ (

5
8 ,

6
8

)
, let v ∈ L2(R) ∩ L∞(R)

be uniquely expressed in terms of u ∈ BR,r for some R > 0 and r ∈ (−1, 0) by
Lemma 3.1, where BR,r is defined by (3.12). For sufficiently small ε, there exists a
unique solution to (3.11) in BR,r such that

(3.18) ‖u−Wstat(ε·)‖L2∩L∞ � CR,r,λ max{ε4p−2, ε2−2p}‖Wstat(ε·)‖L2 ,

where Wstat is the unique positive and even solution to the stationary log–KdV equa-
tion (2.7) and the positive constant CR,r,λ is independent of ε.

Proof. By the Taylor expansion (3.4), we can represent Λ̂(k) for any k ∈ Ip as

Λ̂(k) =
1 + Λ̂Rem(k)

1 + 1
12k

2
, |k| � εp,

where the remainder term satisfies the bound

‖χIpΛ̂Rem‖L∞ � CΛε
4p

for a positive ε-independent constant CΛ. We now write

Ṽ ′
ε (w) = w + ε2(1 + w) log(1 + w) +Mε(w),

where

Mε(w) = (1 + w)1+ε2 − 1− w − ε2(1 + w) log(1 + w)

= log2(1 + w)

∫ ε2

0

(∫ x

0

(1 + w)1+ydy

)
dx.
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Recall that the function f(w) := log(1 + w)/w is strictly decreasing for w > −1 with
f(0) = 1. Therefore, for any r ∈ (−1, 0), there is a positive constant Cr such that

|Mε(w)| � 1

2
ε4Cr(1 + |w|)1+ε2w2, w � r,

and

|Mε(w1)−Mε(w2)| � ε4Cr (1 + max{|w1|, |w2|})1+ε2 max{|w1|, |w2|}|w1 − w2|,
w1, w2 � r.

Note again that Cr may be chosen so that Cr −→
r→0

1.

Equation (3.11) can be rewritten in the equivalent form

(3.19)

(
λ+

k2

12ε2

)
û(k)− χIp(k)F((1 + u+ v) log(1 + u+ v))(k) = Ĥε(û, v̂)(k),

where

Ĥε(û, v̂)(k) := −λk2

12
û(k) + ε−2χIp(k)F(Mε(u + v))(k)

+ ε−2χIp(k)Λ̂Rem(k)F(Ṽ ′
ε (u+ v))(k).

It follows from the above estimates that for sufficiently small ε, the right-hand side of
(3.19) satisfies the estimate

1√
2π

‖Ĥε(û, v̂)‖L2 � λε2p

12
‖u‖L2 +

1

2
ε2Cr(1 + ‖u+ v‖L∞)1+ε2‖u+ v‖L∞‖u+ v‖L2

+CΛε
4p−2(1 + ε2Cr(1 + ‖u+ v‖L∞)1+ε2)‖u+ v‖L2 .

Recall that if p < 1, then ε4p−2 � ε2p � ε2 as ε → 0. Let v = v∗(u), where
v∗(u) ∈ L2(R) ∩ L∞(R) is uniquely expressed in terms of u ∈ L2(R) ∩ L∞(R) by
Lemma 3.1. Then, we obtain

1√
2π

‖Ĥε(û, v̂
∗(û))‖L2 � CR,rε

4p−2
(
1 + ε2−2p‖u‖L2

)1+ε2 ‖u‖L2,(3.20)

where the positive constant CR,r is independent of ε and ‖u‖L2. Since Ip is compact,
we also have

1

2π
‖Ĥε(û, v̂

∗(û))‖L1 � εp/2√
2π

‖Ĥε(û, v̂
∗(û))‖L2 .(3.21)

Let us define the set

BR,r,C :=
{
u ∈ BR,r : ‖u‖L2 � Cε−1/2

}
for some ε-independent constant C > ‖Wstat‖L2 . If p belongs to the bounds (3.15)
and u belongs to BR,r,C , then the term ε2−2p‖u‖L2 is bounded by a small constant
as ε → 0. For convenience, we will simply omit this term in the upper bounds. In
what follows, we use a fixed-point argument in BR,r,C , which ensures that u satisfies
(3.18).
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Let Hε(u, v) := F−1Ĥε(û, v̂). From (3.20) and (3.21) for u ∈ BR,r,C , we have

(3.22) ‖Hε(u, v
∗(u))‖L2∩L∞ � CR,rε

4p−2‖u‖L2.

Since the mapping u 	→ v is differentiable and all nonlinear functions in Hε(u, v)
are differentiable with respect to both u and v, the remainder term Hε(u, v

∗(u)) is
differentiable with respect to u in L2(R) ∩ L∞(R).

Next, we study the left-hand side of (3.19). We write it as F̂ε(û)+Ĝε(û, v̂), where

F̂ε(û)(k) :=

(
λ+

k2

12ε2

)
û(k)− χIp(k)F((1 + u) log(1 + u))(k)

and

Ĝε(û, v̂)(k) := −χIp(k)F((1 + u+ v) log(1 + u+ v)− (1 + u) log(1 + u))(k).

Since the function f(w) := (1 + w) log(1 + w) is differentiable for any w > −1 with
f ′(w) = 1 + log(1 + w), we have the bound

1√
2π

‖Ĝε(û, v̂)‖L2 � ‖(1 + u+ v) log(1 + u+ v)− (1 + u) log(1 + u)‖L2

� (1 + Cr‖ log(1 + u+ v)‖L∞)‖v‖L2

� (1 + Cr‖u+ v‖L∞)‖v‖L2 .

Using the bound (3.16) from Lemma 3.1 and a similar bound for ‖Ĝε(û, v̂)‖L1 , we
hence have for u ∈ BR,r,C ,

1√
2π

‖Ĝε(û, v̂
∗(û))‖L2∩L1 � CR,rε

2−2p‖u‖L2.(3.23)

Let Gε(u, v) := F−1Ĝε(û, v̂). From (3.23), we have

(3.24) ‖Gε(u, v
∗(u))‖L2∩L∞ � CR,rε

2−2p‖u‖L2.

Again, Gε(u, v
∗(u)) is differentiable with respect to u in L2(R) ∩ L∞(R).

It remains to study the leading-order part F̂ε(û), where we apply arguments based
on the implicit function theorem. Let us define Fε(u) := F−1(F̂ε(û)). For any ε > 0,
the nonlinear operator Fε(u) is a bounded operator from a subset of L2(R) ∩ L∞(R)
to L2(R) ∩ L∞(R) thanks to the bounds

1√
2π

‖F̂ε(û)‖L2 �
(
λ+

1

12ε2(1−p)
+ Cr(1 + ‖u‖L∞)

)
‖u‖L2

and a similar bound for ‖F̂ε(û)‖L1 . The map u 	→ Fε(u) is C
∞ thanks to the smooth-

ness of the function u 	→ log(1 + u) on (−1,∞).
Consider the solitary wave solution Wstat to the stationary log–KdV equation

(2.7) from Proposition 3.2, and let wlead = Wstat(ε·) be the corresponding solution
to the same equation written in the Fourier form (3.5). We have the relationship
between the Fourier transforms of wlead and Wstat:

(3.25) ŵlead(k) =

∫ ∞

−∞
Wstat(εz) e

−ikzdz =
1

ε
Ŵstat

(
k

ε

)
.



4090 ERIC DUMAS AND DMITRY PELINOVSKY

We further define an approximation of wlead by truncating the Fourier transform ŵlead

on Ip, that is,

(3.26)

wapp(z) := F−1(χIpŵlead)(z) =
1

2π

∫
Ip

ŵlead(k)e
ikzdk

=
1

2π

∫ εp−1

−εp−1

Ŵstat(κ)e
iκεzdκ.

Since Wstat ∈ H∞(R) by Proposition 3.2, Sobolev’s embedding implies that Wstat ∈
C∞(R), which then implies that Ŵstat decays faster than any power at infinity. It
follows from (3.26) for p < 1 that the integration interval extends to the entire line
as ε → 0. As a result, for any s > 0, we have an ε-independent positive constant Cs

such that for all sufficiently small ε > 0,

(3.27) ‖wapp − wlead‖L2∩L∞ � Csε
s.

The nonlinear operator Fε(u) evaluated at u = wapp is given in the Fourier form by

F [Fε(wapp)](k)

= χIp(k)F((1 + wapp) log(1 + wapp))(k)− χIp(k)F((1 + wlead) log(1 + wlead))(k).

Consequently, thanks to the smoothness of the map u 	→ Fε(u) in L2(R)∩L∞(R) and
the bound (3.27), we obtain

(3.28) ‖Fε(wapp)‖L2∩L∞ � Csε
s

for any s > 0 and sufficiently small ε.
We rewrite equation (3.19) as the implicit equation

(3.29) fε(u) = hε(u, v),

where

fε(u) := F−1χIp

(
λ− 1 +

k2

12ε2

)−1 (
F̂ε(û)− F̂ε(ŵapp)

)
,

hε(u, v) := F−1χIp

(
λ− 1 +

k2

12ε2

)−1 (
Ĥε(û, v̂)− Ĝε(û, v̂)− F̂ε(ŵapp)

)
.

Since λ > 1, we infer from the bounds (3.22), (3.24), and (3.28) that for u ∈ BR,r,C ,

(3.30) ‖hε(u, v
∗(u))‖L2∩L∞ � CR,r,λ max{ε4p−2, ε2−2p}‖u‖L2,

where the positive constant CR,r,λ is independent of ε and ‖u‖L2. Therefore, the
right-hand side of (3.29) is small in L2(R) ∩ L∞(R) norm, if p satisfies the bounds
(3.15) and u belongs to BR,r,C . The left-hand side of (3.29) is zero at u = wapp.

Let us now consider the linearized operator ∂ufε(wapp). In the Fourier form, the
linearized operator acting on U is given by

F [∂ufε(wapp)U ](k) := Û(k)− χIp(k)

(
λ− 1 +

k2

12ε2

)−1

F(log(1 + wapp)U)(k).

Note that wapp(z) is an even function of z if Wstat(x) is an even function of x because

Ŵstat(k) is an even function of k and the truncation in the Fourier domain is taken
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symmetrically around k = 0. Also note that the fixed-point problem (3.2) preserves
the parity property in the space of even functions. Therefore, we can consider u or
U := u− wapp in the space of even functions.

Recall the unbounded Schrödinger operator Lλ given by (3.7) and the bounded
operator Sλ given by (3.8). Let us now define the bounded operator Sλ,p in the Fourier
form by

[Ŝλ,pÛ ](k) := χIp(k)

(
λ− 1 +

k2

12ε2

)−1

F(log(1 + wlead)U)(k),

where we recall the correspondence between the Fourier transforms in x and z vari-
ables; see (3.25). Therefore, we obtain the bound

1

2π
‖(Ŝλ − Ŝλ,p)Û‖2L2 =

1

2π

∫
Jp

1

(λ− 1 + k2

12ε2 )
2
|F(log(1 + wlead)U)(k)|2 dk

� (12ε2−2p)2‖ log(1 + wlead)U‖2L2 ,

which yields, thanks to the positivity of wlead,

‖(Sλ − Sλ,p)U‖L2 � 12ε2−2p‖wlead‖L∞‖U‖L2.(3.31)

By Proposition 3.4, the linear operator I − Sλ is invertible with bounded inverse
on the subspace of even functions in L2(R). Thanks to the bound (3.31), the linear
operator I − Sλ,p is also invertible with bounded inverse on the subspace of even
functions in L2(R). Finally, thanks to the bound (3.27), the linearized operator
∂ufε(wapp) is also invertible with bounded inverse on the subspace of even functions
in L2(R). In other words, there is a positive ε-independent constant Cλ such that for
any sufficiently small ε and any even function h in L2(R), we have

‖ [∂ufε(wapp)]
−1

h‖L2 � Cλ‖h‖L2.

Since Ip is compact, we then have

(3.32) ‖ [∂ufε(wapp)]
−1 h‖L2∩L∞ � Cλ‖h‖L2.

Writing u = wapp +U , we can now apply the standard implicit function theorem
to obtain a unique solution U to the implicit equation (3.29) in L2(R) ∩L∞(R) close
to the zero solution for small ε > 0. In view of the bounds (3.30) and (3.32), the
solution satisfies the bound

‖U‖L2∩L∞ � CR,r,λ max{ε4p−2, ε2−2p}‖wapp(ε·)‖L2 ,

where the positive constant CR,r,λ is ε-independent. This bound yields (3.18) thanks
to the proximity between wlead = Wstat(ε·) and wapp given by the bound (3.27).

3.6. Proof of the bound (2.9). By bootstrapping arguments, applied to the
differential advance-delay equation (2.4), a solution in L2(R) belongs to H∞(R) be-
cause Ṽ ′

ε is smooth on (−1,∞). Here we prove the bound (2.9) for k = 1. The proof
extends to every k ∈ N by similar arguments and by induction.

To control the derivative of the solution w = u + v of the fixed-point equation
(3.1) in the L2(R)∩L∞(R) norm, we multiply the two equations (3.10) and (3.11) by
k. After multiplication by k, (3.17) for k ∈ Jp is rewritten in the form

(3.33) kv̂(k) =
1

1 + ε2λ
Λ̂Jp(k) (kv̂(k) + kF(Nε(u+ v))(k)) , k ∈ Jp.
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We repeat the estimates in the proof of Lemma 3.1, after commutation of the Fourier
transform and of the multiplication operator by k, which becomes the derivative
operator with respect to z applied to the nonlinear function Nε(w). The nonlinearity
w 	→ Nε(w) is smooth since w � r > −1.

Let B′
R,r be the set

(3.34) B′
R,r := {u ∈ BR,r : ∂zu ∈ L2(R) ∩ L∞(R), ‖∂zu‖L∞ � R}.

By the same technique as in the proof of Lemma 3.1, we obtain from (3.33) for
sufficiently small ε that for any fixed λ > 1, p ∈ (0, 1), R > 0, r ∈ (−1, 0), and any
u ∈ B′

R,r, the unique solution to (3.17) satisfies, in addition to the bound (3.16),

(3.35) ‖∂zv‖L2∩L∞ � CR,rε
2−2p‖∂zu‖L2,

where the positive constant CR,r is independent of ε and ‖u‖H1 .
We then proceed with analysis of (3.19), which we also multiply by k. From the

same arguments as in the proof of Lemma 3.2, we obtain, in addition to the bounds
(3.22) and (3.24),

(3.36) ‖∂zHε(u, v
∗(u))‖L2∩L∞ � CR,rε

4p−2‖∂zu‖L2

and

(3.37) ‖∂zGε(u, v
∗(u))‖L2∩L∞ � CR,rε

2−2p‖∂zu‖L2,

where v∗(u) is obtained from (3.17) to satisfy the bounds (3.16) and (3.35). Applying
now the derivative with respect to z to the implicit equation (3.29), we obtain

(3.38) ∂zfε(u) = ∂zhε(u, v),

where the right-hand side satisfies the bound

(3.39) ‖∂zhε(u, v
∗(u))‖L2∩L∞ � CR,r,λ max{ε4p−2, ε2−2p}‖∂zu‖L2.

The derivative of the linearized operator ∂ufε(wapp) applied to U is, by the product
rule,

∂z (∂ufε(wapp)U) = ∂ufε(wapp)∂zU + (∂z∂ufε(wapp))U,

where the second term is bounded as

(3.40) ‖ (∂z∂ufε(wapp))U‖L2 � CR,r,λ‖∂zwapp‖L∞‖U‖L2.

Using the bounds (3.32), (3.39), and (3.40), we obtain from (3.38) for sufficiently
small ε that for any fixed λ > 1, the unique solution to (3.29) satisfies, in addition to
the bound (3.18),

(3.41) ‖∂zu− ∂zwapp‖L2∩L∞ � CR,r,λ max{ε4p−2, ε2−2p}‖∂zwapp‖L2,

where the positive constant CR,r,λ is independent of ε. Thanks to the proximity of
derivatives of wlead = Wstat(ε·) and wapp, the bound (3.41) yields (2.9) for k = 1,

since the error bound is optimal for p = 2
3 and

‖∂zWstat(ε·)‖L2 � Cε1−1/2,

where the positive constant C is independent of ε.
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4. Stability of FPU traveling waves near the log–KdV limit. This section
presents the proof of Theorem 2.

Let (wtrav, ptrav) ∈ C1(R, l2(Z)) denote the traveling wave solution to the FPU
lattice (2.10) with the squared speed c2 = 1 + ε2λ. The amplitudes (wstat, pstat) of
the traveling wave (2.13) are solutions to the system of advance equations

(4.1)

{ −cw′
stat(z) = pstat(z + 1)− pstat(z),

−cp′stat(z) = Ṽ ′
ε (wstat(n− ct))− Ṽ ′

ε (wstat(n− 1− ct)),
z ∈ R.

Properties of wstat are described by Theorem 1 for sufficiently small ε.
For any fixed c, we decompose

w(t) = wtrav(t) +W(t), p(t) = ptrav(t) + P(t),

and rewrite the system of FPU lattice equations (2.10) in the perturbed form⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ẇn = Pn+1 − Pn,

Ṗn = Ṽ ′′
ε (wstat(n− ct))Wn − Ṽ ′′

ε (wstat(n− 1− ct))Wn−1

+
1

2
Ṽ ′′′
ε (wstat(n− ct))W2

n − 1

2
Ṽ ′′′
ε (wstat(n− 1− ct))W2

n−1 +Rn(W),

(4.2)

where the remainder term R is cubic in W thanks to the smoothness of Ṽε on (−1,∞).
It is assumed in the perturbed form (4.2) that the solution w remains within the a
priori bounds (2.12), which happens if Wn is sufficiently small for every n ∈ Z.

Let Bρ denote the ball in l2(Z) centered at zero with radius ρ > 0. Thanks to
the embedding of l2(Z) into l∞(Z), for any ρ > 0 small enough, there is a positive
constant Cρ such that the remainder term satisfies the bound

(4.3) ‖R(W)‖l2 � Cρ sup
z∈R

|Ṽ ′′′′
ε (wstat(z))| ‖W‖3l2 , W ∈ Bρ.

In what follows, such a number ρ is fixed, and Cρ denotes a positive constant that
depends only on ρ. Similarly to (4.2), we expand the energy (2.11) near the traveling
wave

H = H0 +H1 +H2 +HR,(4.4)

where

H0 =
1

2

∑
n∈Z

p2stat(n− ct) +
∑
n∈Z

Ṽε(wstat(n− ct)),

H1 =
∑
n∈Z

pstat(n− ct)Pn +
∑
n∈Z

Ṽ ′
ε (wstat(n− ct))Wn,

H2 =
1

2

∑
n∈Z

P2
n +

1

2

∑
n∈Z

Ṽ ′′
ε (wstat(n− ct))W2

n,

and the remainder term HR satisfies the bound

(4.5) |HR| � Cρ sup
z∈R

|Ṽ ′′′
ε (wstat(z))| ‖W‖3l2 .



4094 ERIC DUMAS AND DMITRY PELINOVSKY

From the time conservation of H , it follows that H0 is independent of t. This can
be checked by explicit differentiation, using the system (4.1),

dH0

dt
=
∑
n∈Z

pstat(n− ct)
[
−cp′stat(n− ct) + Ṽ ′

ε (wstat(n− 1− ct))− Ṽ ′
ε (wstat(n− ct))

]
= 0.

On the other hand, H1 is no longer constant. Using (4.1) and (4.2), we obtain

dH1

dt
=
∑
n∈Z

[
pstat(n− ct)Ṗn + Ṽ ′′

ε (wstat(n− ct))(pstat(n+ 1− ct)

− pstat(n− ct))Wn

]
=

c

2

∑
n∈Z

w′
stat(n− ct)Ṽ ′′′

ε (wstat(n− ct))W2
n + SR,(4.6)

where the remainder term satisfies the bound

(4.7) |SR| � Cρ sup
z∈R

|Ṽ ′′′′
ε (wstat(z))w

′
stat(z)| ‖W‖3l2 ,

which follows from the bound (4.3).
We shall now recall that

Ṽ ′′
ε (w) = (1 + ε2)(1 + w)ε

2

, Ṽ ′′′
ε (w) = ε2(1 + ε2)(1 + w)ε

2−1,

and so on. Since the negative part of wstat is as small as O(ε1/6) (see Remark 2.2),
H2 is a convex quadratic form with the lower bound

(4.8) H2 � 1

2
‖P‖2l2 +

1

2
‖W‖2l2 .

Using the bound (2.9) for k = 1, bounds (4.7) and (4.8), we can estimate the
balance equation (4.6) as follows:∣∣∣∣dH1

dt

∣∣∣∣ � Cρε
3(1 + ρ)‖W‖2l2 � 2Cρε

3(1 + ρ)H2

as long as ‖W‖l2 � ρ, where the positive constant Cρ is independent of ε. As a result,
we obtain the lower bound

H1(t)−H1(0) � −2Cρε
3(1 + ρ)

∫ |t|

0

H2(t
′)dt′.(4.9)

Now, using the energy expansion (4.4) as well as the bounds (4.5) and (4.9), we can
write

(4.10) H −H0 −H1(0) � −2Cρε
3(1 + ρ)

∫ |t|

0

H2(t
′)dt′ +H2(t)(1− Cρε

2ρ).

By Gronwall’s inequality, we obtain

(4.11) H2(t) �
H −H0 −H1(0)

1− Cρε2ρ
eC̃ρε

3|t|,
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where C̃ρ is another positive ε-independent constant. Since H − H0 − H1(0) is t-
independent, we can express it at t = 0 by

(4.12) H −H0 −H1(0) = H2(0) +HR(0) � ˜̃C2
ρδ

2,

where ˜̃C2
ρ is yet another positive ε-independent constant and the initial bound (2.14)

is used. When τ0 > 0 is given, the bounds (4.8), (4.11), and (4.12) imply the stability
bound (2.15) with

C0 > 2 ˜̃Cρe
1
2 C̃ρτ0

for ε ∈ (0, ε0) and τ ∈ [−τ0, τ0], with sufficiently small constants ε0 > 0 and δ0 ∈ (0, 1).
Possibly decreasing δ0, so that δ0 and C0δ0 become less than ρ, Theorem 2 is proved.

5. Justification analysis for time-dependent solutions. This section pre-
sents the proof of Theorem 3. In fact, it is a modification of the arguments in the
proof of Theorem 2. The arguments follow quite closely to the method described
by Schneider and Wayne [27], where the interaction of counterpropagating waves has
also been included. We add this section for completeness, as well as for comparison
with stability theory of traveling waves in FPU lattices as described by KdV-type
equations.

From the assumptions of Theorem 3, we know there exist constants rW and RW

such that

(5.1) −1 < rW � W (ξ, τ) � RW , ξ ∈ R, τ ∈ [−τ0, τ1].

For ε0 > 0 small enough, for all ε ∈ (0, ε0), initial data (wini,ε, pini,ε) satisfying the
bound (2.18) are such that all the terms in the sequence wini,ε are greater than some
r > −1 independent of ε. Thus there exists a solution (w, p) ∈ C1([−T0, T1], l

2(Z)) to
the FPU lattice equations (2.10), at least for small times T0, T1 > 0. We show that,
with ε0 small enough, we can ensure T0 � τ0ε

−3 and T1 � τ1ε
−3, together with the

approximation (2.19).
Let us use the decomposition

(5.2) wn(t) = W (ε(n− t), ε3t) +Wn(t), pn(t) = Pε(ε(n− t), ε3t) +Pn(t), n ∈ Z,

where W (ξ, τ) is the considered smooth solution to the log–KdV equation (2.16) (and
thus W is ε-independent), whereas the ε-dependent function Pε(ξ, τ) is found from
the truncation of the first equation of the system (2.10) rewritten as

(5.3) Pε(ξ + ε, τ)− Pε(ξ, τ) = −ε∂ξW (ξ, τ) + ε3∂τW (ξ, τ).

We look for an approximate solution Pε to this equation, under the form

(5.4) Pε := P (0) + εP (1) + ε2P (2) + ε3P (3),

with functions P (j) decaying to zero as ξ goes to infinity. Plug this ansatz into (5.3)
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and collect together the powers of ε:

O(ε) : ∂ξP
(0) = −∂ξW, satisfied when P (0) = −W ;

O(ε2) : ∂ξP
(1) +

1

2
∂2
ξP

(0) = 0, satisfied when P (1) =
1

2
∂ξW ;

O(ε3) : ∂ξP
(2) +

1

2
∂2
ξP

(1) +
1

6
∂3
ξP

(0) = − 1

24
∂3
ξW − 1

2
∂ξg(W ),

satisfied when P (2) = −1

8
∂2
ξW − 1

2
g(W );

O(ε4) : ∂ξP
(3) +

1

2
∂2
ξP

(2) +
1

6
∂3
ξP

(1) +
1

24
∂4
ξP

(0) = 0,

satisfied when P (3) =
1

48
∂3
ξW +

1

4
∂ξg(W ),

where g(w) := (1 + w) log(1 + w). Note that (5.3) is satisfied by the expansion (5.4)
only approximately up to the terms of formal order O(ε5).

Recall from the proof of Theorem 1 that we can write the nonlinear potential in
the perturbed form

Ṽ ′
ε (w) = w + ε2g(w) +Mε(w),

where

Mε(w) = log2(1 + w)

∫ ε2

0

(∫ x

0

(1 + w)1+ydy

)
dx.

Substituting the decompositions (5.2) and (5.4) into the FPU lattice equations (2.10),
we obtain the evolution problem for the error terms⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ẇn(t) = Pn+1(t)− Pn(t) + Res(1)n (t),

Ṗn(t) = Wn(t)−Wn−1(t)

+ ε2g′(W (ε(n− t), ε3t))Wn(t)− ε2g′(W (ε(n− 1− t), ε3t))Wn−1(t)

+Rn(W,W)(t) + Res(2)n (t),

(5.5)

where

Rn(W,W)

:= ε2
(
g(W (ε(n− ·), ε3·) +Wn)− g(W (ε(n− ·), ε3·))− g′(W (ε(n− ·), ε3·))Wn

)
− ε2

(
g(W (ε(n− 1− ·), ε3·) +Wn−1)− g(W (ε(n− 1− ·), ε3·))
− g′(W (ε(n− 1− ·), ε3·))Wn−1

)
+Mε(W (ε(n− ·), ε3·) +Wn)−Mε(W (ε(n− 1− ·), ε3·) +Wn−1)

and

Res(1)n (t) := ε∂ξW (ε(n− t), ε3t)− ε3∂τW (ε(n− t), ε3t)

+ Pε(ε(n+ 1− t), ε3t)− Pε(ε(n− t), ε3t),

Res(2)n (t) := ε∂ξPε(ε(n− t), ε3t)− ε3∂τPε(ε(n− t), ε3t)

+W (ε(n− t), ε3t)−W (ε(n− 1− t), ε3t)

+ ε2g(W (ε(n− t), ε3t))− ε2g(W (ε(n− 1− t), ε3t)).
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Lemma 5.2 below deals with estimating the nonlinear and residual terms of the
system (5.5). Its proof relies on the following lemma, which is an improvement of
Lemma 3.9 from [27].

Lemma 5.1. There exists C > 0 such that for all X ∈ H1(R) and ε ∈ (0, 1],

‖x‖l2 � Cε−1/2‖X‖H1 ,

where xn := X(εn), n ∈ Z.
Proof. We first prove the above inequality when X is in the Schwartz class.

Denote xn := X(εn), and let x̂ : R → C be the 2π-periodic C∞ function defined by

x̂(θ) :=
∑
n∈Z

xne
−inθ,

so that

xn =
1

2π

∫ π

−π

x̂(θ) einθdθ, n ∈ Z.

On the other hand, by the inverse Fourier transform applied to X , we have

xn =
1

2π

∫ ∞

−∞
X̂(k) eikεndk

=
1

2πε

∫ ∞

−∞
X̂
(p
ε

)
eipndp

=
1

2πε

∑
m∈Z

∫ (2m+1)π

(2m−1)π

X̂
(p
ε

)
eipndp

=
1

2πε

∑
m∈Z

∫ π

−π

X̂

(
θ + 2πm

ε

)
einθdθ.

Due to the decay of X̂, summation and integration can be interchanged. Then,
the 2π-periodic C∞ function θ 	→ 1

ε

∑
m∈Z

X̂( θ+2πm
ε ) has the same (inverse) Fourier

coefficients as x̂, so that they coincide:

x̂(θ) =
1

ε

∑
m∈Z

X̂

(
θ + 2πm

ε

)
, θ ∈ R.

Now, using Parseval’s equality, we estimate the l2 norm of x,

‖x‖2l2 =
1

2πε2

∫ π

−π

∣∣∣∣∣
∑
m∈Z

X̂

(
θ + 2πm

ε

)∣∣∣∣∣
2

dθ

� 1

2πε2

∫ π

−π

∑
m1,m2∈Z

∣∣∣∣X̂
(
θ + 2πm1

ε

)∣∣∣∣
∣∣∣∣X̂
(
θ + 2πm2

ε

)∣∣∣∣dθ
� 1

2πε2

∑
m1,m2∈Z

∫ π

−π

∣∣∣∣X̂
(
θ + 2πm1

ε

)∣∣∣∣
∣∣∣∣X̂
(
θ + 2πm2

ε

)∣∣∣∣dθ.
Inserting the weights (1+π2m2

1/ε
2)−1(1+π2m2

2/ε
2)−1 and using the Cauchy–Schwarz
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inequality, we get

∫ π

−π

∣∣∣∣X̂
(
θ + 2πm1

ε

)∣∣∣∣
∣∣∣∣X̂
(
θ + 2πm2

ε

)∣∣∣∣dθ
� 1

1 + π2m2
1/ε

2

1

1 + π2m2
2/ε

2

×
(
1

2

∫ π

−π

(
1 +

π2m2
1

ε2

)2 ∣∣∣∣X̂
(
θ + 2πm1

ε

)∣∣∣∣
2

dθ

+
1

2

∫ π

−π

(
1 +

π2m2
2

ε2

)2 ∣∣∣∣X̂
(
θ + 2πm2

ε

)∣∣∣∣
2

dθ

)
.

Summing with respect to m1 and m2, the two terms in the right-hand side above
result in the same quantity, so that

‖x‖2l2 � 1

2πε2

(∑
m1∈Z

1

1 + π2m2
1/ε

2

)(∑
m2∈Z

(
1 +

π2m2
2

ε2

)∫ π

−π

∣∣∣∣X̂
(
θ + 2πm2

ε

)∣∣∣∣
2

dθ

)
.

For ε ∈ (0, 1], the first term in the product takes values between 1 and∑
m∈Z

(1 + π2m2)−1 < ∞. The second term can be compared with the H1 norm
of X :

‖X‖2H1 =
1

2π

∫ ∞

−∞
(1 + k2)

∣∣∣X̂(k)
∣∣∣2 dk

=
1

2πε

∑
m∈Z

∫ π

−π

(
1 +

(θ + 2πm)2

ε2

) ∣∣∣∣X̂
(
θ + 2πm

ε

)∣∣∣∣
2

dθ.

For any m ∈ Z, θ ∈ [−π, π], we have (θ + 2πm)2 � π2m2, so that the factor
(1 + (θ + 2πm)2/ε2) is bounded from below by (1 + π2m2/ε2). This gives the de-
sired inequality with

C :=
∑
m∈Z

1

(1 + π2m2)1/2
.

When X belongs to H1(R), we can consider a sequence {X(k)}k∈N of functions in the
Schwartz class converging to X in H1. For each ε ∈ (0, 1] and n ∈ Z, X(k)(εn) tends
to X(εn) as k tends to infinity, and Fatou’s lemma concludes the proof.

Lemma 5.2. Let W ∈ C([−τ0, τ1], H
s(R)) be a solution to the log–KdV equation

(2.16), for an integer s � 6 and τ0, τ1 � 0. Assume that there exists rW > −1
such that W � rW . Then, there exists a positive constant CW such that for all
t ∈ [−τ0ε

−3, τ1ε
−3] and ε ∈ (0, 1],

(5.6) ‖Res(1)(t)‖l2 + ‖Res(2)(t)‖l2 � CW ε9/2.

Furthermore, for ε0 ∈ (0, 1] and for all ε ∈ (0, ε0], let Wε ∈ C([−τ0ε
−3, τ1ε

−3], l2(Z))
be such that, for some r > −1 and R > 0 independent of ε,

(5.7) −1 < r � W (ε(n− t), ε3t) +Wε
n(t) � R < ∞, n ∈ Z, t ∈ [−τ0ε

−3, τ1ε
−3].
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Then, there exists a positive constant Cr,R,W such that, for all ε ∈ (0, ε0], we have

(5.8)
‖R(W,Wε)(t)‖l2 � Cr,R,W (ε2‖Wε(t)‖2l2 + ε4‖Wε(t)‖l2 + ε9/2),

t ∈ [−τ0ε
−3, τ1ε

−3].

In addition, the constant Cr,R,W may be kept with the same value when ε0 is de-
creased.

Proof. To obtain the part of estimate (5.6) concerning Res(1)(t), we use the
definition (5.4) of Pε, the expressions of the P

(j)’s as linear combinations of derivatives
of W and g(W ), and Taylor expansions. The coefficients of ε0, . . . , ε4 vanish, due to
the fact that W is a solution to the log–KdV equation (2.16). As a consequence,

Res(1)(t) is then expressed as a sum of integrals of the form

ε5
∫ 1

0

(1− r)k∂5
ξW (ε(n− t+ r), ε3t)dr and ε5

∫ 1

0

(1− r)l∂2
ξg(W )(ε(n− t+ r), ε3t)dr

with 0 � k � 4 and 0 � l � 1. The associated l2 norm is then easily estimated
in terms of ‖W‖H6 , thanks to Lemma 5.1. The proof of the rest of estimate (5.6)

concerning Res(2)(t) follows the same lines.
To prove the bound (5.8), we recall that for all r > −1, there exists Cr > 0 such

that for all w1, w2 � r and ε > 0,

|Mε(w1)−Mε(w2)| � ε4Cr (1 + max{|w1|, |w2|})1+ε2 max{|w1|, |w2|}|w1 − w2|.(5.9)

Then, using again Taylor expansions, we get

‖R(W,W)(t)‖l2
� C

(
ε2‖g′′(W (ε(· − t), ε3t))‖L∞‖W‖2l2 + ε4‖W (ε(· − t), ε3t)‖L∞‖W‖l2
+ ε5‖(∂ξW (ε(· − t), ε3t))n∈Z‖l2

)
,

which yields the bound (5.8).
Thanks to Lemma 5.2, we complete the proof of Theorem 3 using energy esti-

mates. When ε0 > 0 is given, we consider for each ε ∈ (0, ε0) initial data (wini,ε, pini,ε)
satisfying the bound (2.18). Fixing

r :=
rW − 1

2
∈ (−1, rW ) and R := 2RW > RW ,

with ε0 small enough, we can define for each ε ∈ (0, ε0) a local-in-time solution (w, p)
to the FPU lattice equations (2.10), decomposed according to (5.2), and then set

T �
0 (ε) := sup

{
T0 ∈ (0, τ0ε

−3] : r � W (ε(n− t), ε3t) +Wn(t) � R,

n ∈ Z, t ∈ [−T0, 0]
}

and

T �
1 (ε) := sup

{
T1 ∈ (0, τ1ε

−3] : r � W (ε(n− t), ε3t) +Wn(t) � R,

n ∈ Z, t ∈ [0, T1]
}
.

We shall prove that for ε0 small enough, we have T �
0 (ε) = τ0ε

−3 and T �
1 (ε) = τ1ε

−3.
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Let us define the energy-type quantity

(5.10) E(t) := 1

2

∑
n∈Z

[P2
n(t) +W2

n(t) + ε2g′(W (ε(n− t), ε3t))W2
n(t)

]
.

With ε0 < min(1, ‖2g′‖−1/2
L∞(rW ,RW )), from the bounds (5.1), we get, for ε ∈ (0, ε0),

‖P(t)‖2l2 + ‖W(t)‖2l2 � 4E(t), t ∈ (−T �
0 , T

�
1 ).

Taking the derivative of E with respect to time t, we obtain

dE
dt

(t) =
∑
n∈Z

[
Pn(t)Rn(W,W)(t) + Pn(t)Res

(2)
n (t)

+Wn(t)[1 + ε2g′(W (ε(n− t), ε3t))]Res(1)n (t)

+
ε2

2
g′′(W (ε(n− t), ε3t))W2

n(t)(−ε∂ξ + ε3∂τ )W (ε(n− t), ε3t)
]
.

Then, using Lemma 5.2 and the Cauchy–Schwarz inequality, we estimate∣∣∣∣dEdt
∣∣∣∣ � ‖P‖l2‖R(W,W)‖l2 + ‖P‖l2‖Res(2)‖l2 + 3

2
‖W‖l2

∥∥∥Res(1)∥∥∥
l2
+ ε3CW ‖W(t)‖2l2

� CW E1/2
(
ε9/2 + ε3E1/2 + ε2E

)
with a new constant CW . Choosing Q = E1/2, we rewrite the energy balance equation
in the form ∣∣∣∣dQdt

∣∣∣∣ � CW

(
ε9/2 + ε3Q+ ε2Q2

)
.

By Gronwall’s inequality, we obtain

Q(t) � (Q(0) + CW ε9/2|t|) eε3CW |t|, t ∈ (−T �
0 , T

�
1 ).

Now, the bound (2.18) ensures that ‖(W ,P)‖L2 is O(ε3/2) at t = 0, so that from the
definition (5.10) of E , Q(0) is also O(ε3/2), for ε0 small enough. Thus, we get

(5.11) Q(t) � CW (1 + max(τ0, τ1)) ε
3/2eCW max(τ0,τ1), t ∈ (−T �

0 , T
�
1 ).

Finally, choosing ε0 so that the right-hand side in (5.11) is so small that

−1 + rW
2

� Wn(t) � RW

shows that for all ε ∈ (0, ε0), T
�
0 (ε) = τ0ε

−3 and T �
1 (ε) = τ1ε

−3. Theorem 3 is proved.
Remark 5.1. Using instead of (5.2) an asymptotic expansion

wn(t) = W (ε(n− t), ε3t) +

K∑
k=1

εkW (k)(ε(n− t), ε3t) +Wn(t),

pn(t) =
K+3∑
k=0

εkP (k)(ε(n− t), ε3t) + Pn(t),
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at any order K ∈ N, together with expansion of Ṽ ′
ε (w) in powers of ε2, we could

improve the approximation (2.19), replacing C0ε
3/2 by CKεK+3/2, for anyK ∈ N. The

approximation time remains O(ε−3) in such an improved approximation. Here the
correction terms {W (k)}Kk=1 satisfy a sequence of linearized log–KdV equations with
source terms, whereas the correction terms {P (k)}K+3

k=0 are found from the expansion
of (5.3) in powers of ε.

6. Discussion. The comparison of the two results given by Theorems 2 and 3
raises a serious concern on the validity of the KdV-type approximation for the stability
theory of the traveling waves in the FPU lattices. On one hand, Theorem 2 yields
nonlinear stability of the FPU traveling waves up to the time scale of O(ε−3) at which
the traveling waves are proved to satisfy the specific scaling leading to the KdV-type
approximation. On the other hand, Theorem 3 shows that the nonlinear stability of
the FPU traveling waves may depend on the orbital stability of the traveling waves
in the KdV-type equations. It happens for the log–KdV equation (2.16) that the
positive traveling waves are orbitally stable for all amplitudes [15]. However, it does
not have to be the case for all KdV-type equations.

For instance, if we consider the FPU lattice (2.10) with the nonlinear potential

Ṽε(w) =
1

2
w2 +

ε2

p+ 1
wp+1 for an integer p � 2,

the results of Theorems 2 and 3 hold true but the generalized KdV equation takes
the form

(6.1) 2Wτ +
1

12
Wξξξ + (W p)ξ = 0.

The generalized KdV equation (6.1) is known to have orbitally stable traveling waves
for p = 2, 3, 4 and orbitally unstable traveling waves for p � 5 [1]. Thus, it may first
appear that the results of Theorems 2 and 3 are in contradiction.

No contradiction arises as a matter of fact. The energy methods used in the
proof of Theorems 2 and 3 give the upper bounds on the approximation errors (2.15)
and (2.19) to be exponentially growing at the time scale of ε3t, that is, on the same
time scale of τ . The unstable eigenvalues of the linearized generalized KdV equation
(6.1) at the traveling waves (if they exist) lead to the exponential divergence at the
time scale of τ , which cannot be detected with the approximation results provided by
Theorems 2 and 3.

Therefore, within the approximation results of Theorems 2 and 3, we are still left
wondering if the traveling waves of the FPU lattice with the nonlinear potential Ṽε

for ε > 0 small enough are nonlinearly stable at the time scale of τ = ε3t. What the
stability result of Theorem 2 rules out is the presence of the unstable eigenvalues of
the size O(εq) for any q < 3 in the linearized operator associated with the FPU lattice
as in [9]. However, unstable eigenvalues of the size O(εq) for q � 3 are still possible.

Note that the result of Theorem 2 does not depend on the nonlinear potential Ṽε

as long as the latter provides the specific scaling leading to the KdV-type approxi-
mation. We did not have to construct the two-dimensional manifold of the traveling
waves or use projections and modulation equations from the theory in [8, 9, 10]. Al-
though the latter theory gives a complete proof of nonlinear orbital stability of FPU
traveling waves of small amplitudes, it relies on the information about the spectral
and asymptotic stabilities of the KdV traveling waves, which is only available in the
case of the integrable KdV equation (6.1) with p = 2 (such information may also be
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available in the case p = 3, since the corresponding so-called “modified KdV” equation
is integrable as well). It is not clear at the present time if any bits of the informa-
tion needed to proceed with the theory in [8, 9, 10] can be obtained for the log–KdV
equation (2.16), although the existing theory in [15] excludes unstable eigenvalues and
guarantees nonlinear orbital stability of the traveling waves in the log–KdV equation.
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