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Vibrations and Oscillatory Instabilities of Gap Solitons
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Stability of optical gap solitons is analyzed within a coupled-mode theory. Lower intensity solitons
are shown to always possess a vibration mode responsible for their long-lived oscillations. As the
intensity of the soliton is increased, the vibration mode falls into resonance with two branches of the
long-wavelength radiation producing a cascade of oscillatory instabilities of higher intensity solitons.
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In the late 1970s and early 1980s, the theory of
elementary particles [1] and condensed matter physics (in
particular, the Su-Schrieffer-Heeger polyacetylene model
[2]) stimulated a wide interest in particlelike solutions of
classical spinor field equations. Recently there has been a
remarkable upsurge of the interest; the localized solutions
of spinorlike systems have made a comeback under the
new name ofgap solitons.

Thanks to the gap in the linear spectrum, solitons
in spinorlike systems can propagate without losing their
energy to resonantly excited radiation waves [3,4]. An
example of the gap-soliton bearing system is given by
an optical fiber with periodically varying refractive index
[3]; here the gap is produced by the Bragg reflection
and resonance of the waves along the grating. Another
class of gap solitons arises in two-wave resonant optical
materials with ax �2� susceptibility and diatomic crystal
lattices (see [4] and references therein). Finally, in the
already mentioned polyacetylene model [2], the gap in
the electron spectrum is due to the electron-phonon
interaction and effective period doubling of the lattice.

The aim of this Letter is to analyze thestability of gap
solitons. Previous analytical studies of the spinor soliton
stability faced serious obstacles (cf. [5]), while results of
computer simulations were contradictory (cf. [6,7]). As
a result, no stability or instability criterion is available to
date. The main difficulty of the previous analyses was that
they were all based on a postulate that stable solutions must
render the energy minimum. In the actual fact, however,
the minimality of energy is not necessary for stability in
systems with indefinite metrics [8]. As far asoptical gap
solitons are concerned, they have been commonly deemed
stable following recent computer simulations carried out
for certain particular parameter values [9]. In this Letter
we demonstrate that the gap solitonscan be unstable, elu-
cidate the mechanism of instability, and demarcate the sta-
bility/instability regions on the plane of their parameters.

In nonlinear optics the gap solitons are usually analyzed
within the coupled-mode theory [3] which reduces to a
system of coupled equations for the amplitudes of the
forward- and backward-propagating waves,

i�ut 1 ux� 1 y 1 �jyj2 1 rjuj2�u � 0 ,

i�yt 2 yx� 1 u 1 �juj2 1 rjyj2�y � 0 .
(1)

In the periodic Kerr medium one typically hasr �
1�2 [3]; in other problems of the fiber opticsr may
range up to infinity [10]. In the caser � 0 Eqs. (1)
yield the massive Thirring model of the field theory.
In this case Eqs. (1) are invariant with respect to the
Lorentz transformationsX � �x 2 Vt��

p
1 2 V 2, T �

�t 2 Vx��
p

1 2 V 2, with u and y transforming as com-
ponents of the Lorentz spinor [see Eq. (2) below]. Al-
though in the general case (r fi 0) the Lorentz symmetry
is broken, its artifact is that the soliton solution is still
written in terms of the boosted variablesX andT [9],

u � aW �X�ey�21iw�X�2i cosu T ,

y � 2aW��X�e2y�21iw�X�2i cosu T ,
(2)

wherea22 � 1 1 r cosh�2y�,

w�X� � 2a2r sinh�2y� arctan

(
tanh��sinu�X� tan

u

2

)
,

W �X� �
sinu

cosh��sinu� X 2 iu�2�
.

Here the rapidityy parametrizes the soliton’s velocity:
V � tanhy, and u determines its detuning frequency
within the spectrum gap,V � cosu (0 , u , p). At
the upper edge of the gap (i.e., asu ! 0) and assuming
jV j ø 1, Eq. (2) approaches the small-amplitude non-
linear Schrödinger soliton [3]:W �X� ! usech�u �X 2

i�2��. At the lower edge, i.e., in the limitu ! p, the
gap soliton has a finite amplitude and decays as a power
law: W �X� � i��X 1 i�2�. These two limits are referred
to as the “low intensity” and “high intensity” limits [3].

Linearizing Eq. (1) about the stationary soliton (2) and
choosing the perturbation as

u � �aW�X� 1 z1�X�eilT �ey�21iw�X�2iV T ,

y � �2aW��X� 1 z2�X�eilT �e2y�21iw�X�2iV T ,

u� � �aW��X� 1 z3�X�eilT �ey�22iw�X�1iV T ,

y� � �2aW �X� 1 z4�X�eilT �e2y�22iw�X�1iV T

gives an eigenvalue problem

Ĥ z � lJz, J �

µ
s0 0
0 2s0

∂
, (3)

wherez � �z1, z2, z3, z4�T and the Hermitian operator̂H
is defined by
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Ĥ � i

µ
s3 0
0 2s3

∂
d

dX
1

µ
s1 0
0 s1

∂

1 �jW j2 1 cosu�J2 1 a2

0BBB@
re2yjW j2 2W2 re2yW2 2jW j2

2W�2 re22yjW j2 2jW j2 re22yW�2

re2yW�2 2jW j2 re2y jW j2 2W�2

2jW j2 re22yW2 2W 2 re22y jW j2

1CCCA .

(Here s0, s1, and s3 are the Pauli matrices.) Equa-
tion (3) has four zero eigenvalues arising from symme-
tries of Eqs. (1) and four branches of the continuous
spectrum pertaining to reall. The associated eigen-
functions can be specified by their asymptotic be-
havior as X ! 2`; in particular, the eigenfunctions
associated withl1�k� �

p
1 1 k2 2 cosu and l2�k� �p

1 1 k2 1 cosu satisfy

Z�1��X, k� ! �0, 0, 1, 2r�TeikX , (4)

Z�2��X, k� ! �1, r , 0, 0�T eikX , (5)

respectively. Herer � r�k� �
p

1 1 k2 1 k. The con-
tinuous spectrum solutions describe radiations propagat-
ing on the solitonic background.

In the Thirring case (r � 0) the set of the neutral and
continuum eigenfunctions is complete [11] so that any
additional eigenvalues are absent. However, asr deviates
from zero, new eigenvalues can detach from the edges of
the continuous spectrum. To see whether this is indeed
the case, we expand solutions to (3) over the complete set
of the Thirring eigenfunctions,

z�X� �
2X

i�1

Z `

2`

ai�k�Z�i��X, k�
l 2 li�k�

dk 1 �· · ·� , (6)

where �· · ·� stands for terms which remain bounded as
l approachesl1�0� and l2�0�. Using the orthogonality
relations between the Thirring eigenfunctions [11], Eq. (3)
can be reduced to a system of two integral equations

ai�k� �
�21�ir

4p
p

1 1 k2 r�k�

2X
j�1

Z `

2`

Kij�k, k0�aj�k0�
l 2 lj�k0�

dk0

(7)
�i � 1, 2�, with the kernel

Kij � cosh�2y�
Z 1`

2`

�p�
i 1 q�

i � �pj 1 qj� dX

1 sinh�2y�
Z 1`

2`

�p�
i pj 2 q�

i qj� dX . (8)

Here pm � W�Z
�m�
1 1 WZ

�m�
3 , qm � WZ

�m�
2 1 W�Z

�m�
4

(m � 1, 2), and we have denotedZ
�i��
n � Z

�i��
n �X, k� and

Z
�j�
n � Z

�j�
n �X, k0�. The edges of the continuum branches,

l1�0� and l2�0�, are well separated unlessu � p�2.
Consequently, ifu is not very close top�2 we can get
away with a single-mode approximation and disregard the
nonresonant branch. First, letu ø p�2 and assume that
a new eigenvalue detaches from the edge of the (inner)
branchl1: l � l1�0� 2

1
2k2. Sendingr ! 0 and dis-

regarding the branchl2, we obtain jkj �
1
2rK11�0, 0�.

The Thirring eigenfunctions pertaining tok � 0 sat-
isfy Z

�1�
1 �X, 0� � 2Z

�1��
2 �X, 0� � z

�1�
1 �X� andZ

�1�
3 �X, 0� �

2Z
�1��
4 �X, 0� � z

�1�
2 �X�; this follows from (3)–(5). Using

these symmetries we finally arrive at

jkj � 2
r

2
cosh�2y�

Z 1`

2`

�W �z�1��
1 2 z

�1�
2 � 2 c.c.�2 dX .

(9)

Since the right-hand side in Eq. (9) is positive, we
conclude that a small deviation from the integrable case
r � 0 does indeed bring about a new real eigenvaluel ,

l1�0�. This additional eigenvalue represents a vibration
mode of the gap soliton withu ø p�2.

Next, letp 2 u ø p�2 and assume that an eigenvalue
l � l2�0� 2

1
2k2 detaches from the branchl2 (which is

now the inner branch). The same asymptotic procedure
as above producesjkj � 2

1
2rK22�0, 0�. Making use of

the symmetry relationsZ
�2�
1 �X, 0� � Z

�2��
2 �X, 0� � z

�2�
1 �X�

andZ
�2�
3 �X, 0� � Z

�2��
4 �X, 0� � z

�2�
2 �X�, this becomes

jkj � 2
r

2
cosh�2y�

Z 1`

2`

�W �z�2��
1 1 z

�2�
2 � 1 c.c.�2 dX .

(10)

Since the right-hand side is negative, we have arrived at a
contradiction. Thus the birth of a vibration mode cannot
occur forp 2 u ø p�2.

Finally, the caseu � p�2 has to be analyzed within
the full two-mode system (7); in this caseboth continuous
branches are resonant. We letu � p�2 1 e and look
for a new eigenvalue asl � min�l1�0�, l2�0�	 2

1
2k2.

Assuming Rek . 0 and r ! 0, the system (7) can be
reduced to an algebraic equation fork,p

k2 1 4e �4k 1 2rK22� 2 2rK11k 2 r2D � 0 ,

(11)

where D � K11K22 2 K12K21 and Kij � Kij�0, 0�.
[Here we have assumede . 0; for e , 0 one should
simply transposek and

p
k2 1 4jej in Eq. (11).] To

find the coefficients in (11), we first derive the edge
eigenfunctionsz

�i�
n �X� for u � p�2,

z
�1�
1 �X� � 2i sech�2X� tanh�X 2 ip�4� ;

z
�1�
2 �X� � tanh�2X� tanh�X 1 ip�4� ;

z
�2�
1 �X� � �z�1�

2 ��; z
�2�
2 �X� � 2�z�1�

1 ��. Equation (8) yields

Knn�0, 0� � 2�p 1 �21�n2� cosh�2y�, n � 1, 2 ;

K12�0, 0� � K21�0, 0� � 24 sinh�2y� , (12)
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and the analysis of the roots of Eq. (11) becomes straight-
forward. Whene , ecr � �rD�4K22�2, there are 4 real
roots, k1 , k4 , k2 , 0 , k3. The positive rootk3

corresponds to the above-mentioned vibration mode that
continues fromu � 0 (see Fig. 1). The negative rootk2

becomes positive fore betweenecr and someeosc wherek2

merges withk3. That is, in this narrow region the gap soli-
ton has two vibration modes. Ate � eosc the two modes
resonate,k andl become complex, and the oscillatory in-
stability sets in (curve 1 in Fig. 1).

The numerical analysis of the eigenvalue problem (3)
shows that the above bifurcation pattern persists for finite
r. In Fig. 2(a) we have demarcated the boundary of the
stability domain in the (V, V ) plane forr � 1�2. The
asymptotic approximation for the oscillatory bifurcation
curve,V � cos�eosc�V � 1 p�2�, is also shown for com-
parison (dashed curve). Figure 2(b) is a similar bifurca-
tion and stability chart forr � `.
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e

λ
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θ θ

θ

osc 2

tr
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λ

2
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 0.2

Im
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θ
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π π/0 2

1

θ θ θosc 2 tr

2

3

ρ =0.5, V=0.9

FIG. 1. Numerically found eigenvalues. Dashed lines indicate
the edges of the continuous spectrum. A real eigenvalue
detaches froml1 at u � 0, and another real eigenvalue
detaches froml2 at u � ucr . p�2 (not clearly visible). At
u � uosc the two collide and the oscillatory instability sets in
(curve 1). Another complex doublet (curve 2) emerges from
l1 at u � u2. Finally, one more real eigenvalue detaches from
l2 and moves on the imaginary axis atutr (curve 3).

As we increaseu further on, another pair of complex
eigenvalues detaches from the edge of the continuous
spectrum (curve 2 in Fig. 1). In contrast to the first
bifurcation, this happens near the edge of the outer branch
of the continuous spectrum. There is no intermediate
region with two real discrete eigenvalues—the detaching
eigenvalues are complex at once. The growth rate of
this secondary instability is smaller than that of the pri-
mary one.

Here it is important to emphasize that the oscillatory
instabilities cannot be detected within the variational
approach. One notices that (2) is a stationary point of the
functional L � H 2 VP 2 vN , where the conserved
Hamiltonian, momentum, and energy are given by

H �
1
2

Z `

2`

"
i�uu�

x 1 y�yx� 2 2yu�

2 juyj2 2
r

2
�juj4 1 jyj4� 1 c.c.

#
dx , (13)

P �
i
2

Z `

2`
�uu�

x 1 yy�
x 2 c.c.� dx , (14)

FIG. 2. Stability charts for (a)r � 1�2 and (b)r � `.
Curves 1 and 2 are the lines of the primary and secondary
oscillatory bifurcations, and the line 3 demarcates the onset of
the translational instability.
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and N �
R1`

2`�juj2 1 jyj2� dx, respectively, andv �
V
p

1 2 V 2. The idea of the variational (or energetic)
approach to stability would be to prove that the soliton
minimizes H for the fixed P and N or, equivalently,
that d2L is positive definite. However, writingd2L �
�z, Ĥ z� with Ĥ as in (3), and noting that the continuous
spectrum of the eigenvalue problem̂H z � Ez extends
from minus to plus infinity, one immediately concludes
that the formd2L is bounded neither from above nor from
below.

The integrals of motion are not entirely useless though.
They allow one to detecttranslational bifurcations where
a real eigenvaluel approaches zero and then passes
on to the imaginary axis. According to the multiscale
expansion method [12,13], the zero crossing occurs when

D�v, V � �
≠Ns

≠v

≠Ps

≠V
2

≠Ns

≠V
≠Ps

≠v
� 0 , (15)

where Ps, Ns are the invariantsP, N computed on
the soliton (2):Ps � 4a4V �1 2 V 2�21�2P̃�V , V�, Ns �
4a2Ñ�V�,

P̃ �

√
1 1 r

5 1 V 2

1 2 V 2

!p
1 2 V2 2

4rVÑ�V�
1 2 V 2

,

Ñ �
p

2
2 arcsinV .

The dependenceV � Vtr �V � defined by Eq. (15) can be
found explicitly; we have plotted it in Fig. 2 (solid line 3).
Consistently with conclusions of the multiscale analysis,
the numerical study of Eq. (3) reveals that one more real
eigenvalue detaches from the inner branch of continuous
spectrum, reaches zero exactly atu � utr , and moves on
to the imaginary axis (curve 3 in Fig. 1).

Finally, we make contact with two results available in
literature. First, the stable gap solitons of Ref. [9] were
observed in simulations withr � 1�2 and u � p�2;
these values fall into the stability domain of Fig. 2(a).
The observed soliton oscillations [9,14] are due to the
excitation of the vibration mode. Second, stationary
solutions on finite intervals are known to be unstable
for high incoming intensities and exhibit self-pulsations
and switchings from high- to low-transmissive stationary
states [15,16]. The gap solitons correspond to the asymp-
totic limit of the stationary solutions in which the en-
ergy flow through the system vanishes [3]. Therefore, our
present discussion should correspond to theg ! 0, L !
` limit of the stability analysis of Ref. [16]. However,
our instability results cannot be deduced from the previous
analysis as it was confined to the regionV � 0, V . 0
where the gap soliton is stable.

In conclusion, we have demonstrated that for any
r . 0 the soliton solution of Eq. (1) becomes unstable
as V is decreased beyond a (negative) critical value.
The instability is caused by the resonance between the
soliton’s vibration mode and two branches of the long-
wavelength radiation. This “triple-resonance” mechanism

is different from previously encountered mechanisms of
oscillatory instability (cf. [17]).
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