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Vibrations and Oscillatory I nstabilities of Gap Solitons
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Stability of optical gap solitons is analyzed within a coupled-mode theory. Lower intensity solitons

are shown to always possess a vibration mode responsible for their long-lived oscillations. As the
intensity of the soliton is increased, the vibration mode falls into resonance with two branches of the
long-wavelength radiation producing a cascade of oscillatory instabilities of higher intensity solitons.
[S0031-9007(98)06265-6]
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In the late 1970s and early 1980s, the theory ofin the periodic Kerr medium one typically has =
elementary patrticles [1] and condensed matter physics (ih/2 [3]; in other problems of the fiber optice may
particular, the Su-Schrieffer-Heeger polyacetylene modealange up to infinity [10]. In the casp = 0 Egs. (1)
[2]) stimulated a wide interest in particlelike solutions of yield the massive Thirring model of the field theory.
classical spinor field equations. Recently there has beenla this case Egs. (1) are invariant with respect to the
remarkable upsurge of the interest; the localized solutionsorentz transformationst = (x — V#)/~/1 — V2, T =
of spinorlike systems have made a comeback under thge — Vx)/+/1 — V2, with u and v transforming as com-
new name ofap solitons. ponents of the Lorentz spinor [see Eq. (2) below]. Al-

Thanks to the gap in the linear spectrum, solitonsthough in the general casp #* 0) the Lorentz symmetry
in spinorlike systems can propagate without losing theilis broken, its artifact is that the soliton solution is still
energy to resonantly excited radiation waves [3,4]. Anwritten in terms of the boosted variabl&sandT [9],
example of the gap-soliton bearing system is given by U= aW(X)e?/2rie@X)—icos T
an optical fiber with periodically varying refractive index
[3]; here the gap is produced by the Bragg reflection
and resonance of the waves along the grating. Anothetherea 2 = 1 + p cosh2y),
class of gap solitons arises in two-wave resonant optical , ) 0
materials with ay® susceptibility and diatomic crystal ¢ (X) = 2a”p sinh(2y) arctarjtant(sin6)X] tan—-.
lattices (see [4] and references therein). Finally, in the )
already mentioned polyacetylene model [2], the gap in w(x) = : sing )
the electron spectrum is due to the electron-phonon coshi(sing) X — i0/2]
interaction and effective period doubling of the lattice. ~ Here the rapidityy parametrizes the soliton’s velocity:

The aim of this Letter is to analyze tisw@bility of gap  V = tanhy, and ¢ determines its detuning frequency
solitons. Previous analytical studies of the spinor solitorwithin the spectrum gap{) = cosf (0 < 6 < 7). At
stability faced serious obstacles (cf. [5]), while results ofthe upper edge of the gap (i.e., &s— 0) and assuming
computer simulations were contradictory (cf. [6,7]). As|V| < 1, Eq. (2) approaches the small-amplitude non-
a result, no stability or instability criterion is available to linear Schrédinger soliton [3]W(X) — @sech[0 (X —
date. The main difficulty of the previous analyses was that/2)]. At the lower edge, i.e., in the limi@ — 7, the
they were all based on a postulate that stable solutions mugép soliton has a finite amplitude and decays as a power
render the energy minimum. In the actual fact, howeverlaw: W(X) = i/(X + i/2). These two limits are referred
the minimality of energy is not necessary for stability in to as the “low intensity” and “high intensity” limits [3].
systems with indefinite metrics [8]. As far aptical gap Linearizing Eq. (1) about the stationary soliton (2) and
solitons are concerned, they have been commonly deemethoosing the perturbation as
stable following recent computer simulations carried out u=I[aW(X) + Zl(x)eiAT]e>'/2+i¢(X)*i9T,
for certain particular parameter values [9]. In this Letter . ; v/t io(X)—i
we demonstrate that the gap solitaa® be unstable, elu- v = [—aW'(X) + qa(X)e! T Je /2 e070T,
cidate the mechanism of instability, and demarcate the sta-  4* = [aW*(X) + z3(X)e* Je?/27ie(X)+iQT
bility/instability regions on the plane of their parameters. N ; /i ;

In nonlinear optics the gap solitons are usually analyzed vV~ [__“W(X) + 2a(X)e! M Jem et
within the coupled-mode theory [3] which reduces to agdives an eigenvalue problem

2
v = —aW*(X)efyn*iGO(X)*icoseT (2)

)

system of coupled equations for the amplitudes of the Iz = Az 7= <a’0 0 > 3)
forward- and backward-propagating waves, ’ 0 —o0)’
iy + uy) + v + (lv]* + plul)u =0, (1) Wherez = (21,22, 73, z4)7 and the Hermitian operatdH’
i(v, — vy) +u + (Jul*> + plvP)v =0. is defined by
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(Here oy, o1, and o3 are the Pauli matrices.) Eque{- regarding the branch,, we obtain|x| = %pKu(O, 0).
tion (3) has four zero eigenvalues arising from symme-The Thirring eigenfunctions pertalnlng tla = (0 sat-
tries of Egs. (1) and four branches of the continuous,sfyz (X,0) = “"(X 0) = 21 (X) andZ3 (X 0) =
spectrum pertaining to reak. The associated eigen- _ <1>*(X 0) = zé (X); this follows from (3)=(5). Using
functions can be specified by their asymptotic be-aqe symmetrles we flnaIIy arrive at

havior as X — —«; in particular, the eigenfunctions

associated Withr\l(k) =1 + k? — cosf and A,(k) = k| = —= cosr(2y)f [W(le)* - zél)) —c.cldXx.
V1 + k2 + cosf satisfy 2 = )
(1) N _ T ikX
27X, k) = (0,0,1, —r)"e™, ) Since the right-hand side in Eq. (9) is positive, we
ZAX, k) — (1,r,0,0)7 X, (5) conclude that a small deviation from the integrable case
respectively. Here = r(k) = V1 + k2 + k. The con- = () does indeed bring about a new real eigenvalue

. . . o 1(0). This additional eigenvalue represents a vibration
tinuous spectrum solutions describe radiations propagafnode of the gap soliton with < 7 /2.

ing on the solitonic background. .
P Next, letw — 8 < 7r/2 and assume that an eigenvalue
In the Thirring cased = 0) the set of the neutral and S
g A ) = 1 (0) — %Kz detaches from the branch (which is

continuum eigenfunctions is complete [11] so that an . .
additional eigenvalues are absent. Howevep, aeviates "OW the inner branch).  The same asymptotic procedure

from zero, new eigenvalues can detach from the edges & above producels| = o ~3pK»(0, ?))* Making l(Jz?e of
the continuous spectrum. To see whether this is indeethe symmetry relatlonzl (X 0) (X,0) = z;7(X)

the case, we expand solutions to (3) over the complete sg’hdz3 (X 0) = Zf; (X,0) = 22 (X) this becomes
of the Thirring elgenfunctlons 2
(x) = f wWzOR) g 5 costay) [ W o) + ecPax.

' — Ailk) ’ (10)
where (- - ) stands for terms which remain bounded asSlnce the right-hand side is negative, we have arrived at a

A approachest; (0) and A,(0). Using the orthogonality gggltjr?%;:tlorl. 0T2<us t?ze birth of a vibration mode cannot
relations between the Thirring eigenfunctions [11], Eq. (3) m /e

. ; Finally, the case& = /2 has to be analyzed within
can be reduced to a system of two integral equations the full two-mode system (7); in this cabeth continuous

(k) — _ =D)p ] Kij(k, k)a; (k") branches are resonant. We kt= 7/2 + € and look
’ rk) =

dk’ )
41 + k2 A = Aj(K") for a new eigenvalue aa = min{A;(0), A,(0)} — §K2

7 Assuming Rex > 0 and p — 0, the system (7) can be
() reduced to an algebraic equation for
o VK2 + 4e(4x + 2pKyp) — 2pKyk — p°D =0,
Kij = cost2y) [ (o] + a}) (o + 4 an
+o0 where D = K 1Ky — KipK>; and K,/ KU(O 0)
+ sinr’(zy)f (pip; — g7 q;)dX. (8) [Here we have assumed > 0; for e < 0 one should
simply transposex and +/«% + 4|e| in Eq. (11).] To
Here p, = W Zi'") T WZém), G = WZém) W Zf;m) find the coefﬁments in (11), we first derive the edge

(m = 1,2), and we have denoted)” = 7! (X k) and elgenfunctlonszn \(X) for 0 = 7/2,

(i = 1,2), with the kernel

7z = Z,S )(X k'). The edges of the continuum branches, (1)(X) —isech(2X) tanhX — iw/4);

A1(0) and A,(0), are well separated unless = /2. .

Consequently, if9 is not very close tor/2 we can get V(X) = tanh2x) tank(X + im/4);

away with a single-mode approximation and disregard th§(2)(x) (z (1)) z(z)(X) _ _(Zgl))*. Equation (8) yields

nonresonant branch. First, let< 7 /2 and assume that n o
a new eigenvalue detaches from the edge of the (inner) Kun(0,0) = 2[m + (=1)"2] coshi2y), n=12;

branchA;: A = 1;(0) — %KZ. Sendingp — 0 and dis- K1>(0,0) = K51(0,0) = —4sinh(2y), (12)
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and the analysis of the roots of Eqg. (11) becomes straight- As we increase further on, another pair of complex
forward. Whene < €., = [pD/4K»]*, there are 4 real eigenvalues detaches from the edge of the continuous
roots, k1 < k4 < ko < 0 < k3. The positive rootx; spectrum (curve 2 in Fig. 1). In contrast to the first
corresponds to the above-mentioned vibration mode thdiifurcation, this happens near the edge of the outer branch
continues fromg = 0 (see Fig. 1). The negative rogt  of the continuous spectrum. There is no intermediate
becomes positive far betweere., and some,,. wherex, region with two real discrete eigenvalues—the detaching
merges withk;. Thatis, in this narrow region the gap soli- eigenvalues are complex at once. The growth rate of
ton has two vibration modes. At = e, the two modes this secondary instability is smaller than that of the pri-
resonatex and A become complex, and the oscillatory in- mary one.
stability sets in (curve 1 in Fig. 1). Here it is important to emphasize that the oscillatory
The numerical analysis of the eigenvalue problem (3)nstabilities cannot be detected within the variational
shows that the above bifurcation pattern persists for finitepproach. One notices that (2) is a stationary point of the
p. In Fig. 2(a) we have demarcated the boundary of thdunctional L = H — VP — wN, where the conserved
stability domain in the , V) plane forp = 1/2. The Hamiltonian, momentum, and energy are given by
asymptotic approximation for the oscillatory bifurcation o
curve,Q) = codeq.(V) + /2], is also shown for com- H = l[ |:i(uu§ + v'u,) — 2vu’
parison (dashed curve). Figure 2(b) is a similar bifurca- 2 )

tion and stability chart fop = o. — |uv|* - £(|M|4 + lv|H + ¢ ci|dx (13)
5 .C. ,

2.0——= —— . o0
S~ -7 _ l * *
() P = Ef_m(uux + vv; — c.c)dx, (14)
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FIG. 1. Numerically found eigenvalues. Dashed lines indicate -1.0 -05 0.0
the edges of the continuous spectrum. A real eigenvalue ' ’ '
detaches fromA; at # =0, and another real eigenvalue Q

detaches from\, at § = 6., > 7 /2 (not clearly visible). At

0 = 6. the two collide and the oscillatory instability sets in FIG. 2. Stability charts for (ap = 1/2 and (b)p = .
(curve 1). Another complex doublet (curve 2) emerges fromCurves 1 and 2 are the lines of the primary and secondary
A atd = 6,. Finally, one more real eigenvalue detaches fromoscillatory bifurcations, and the line 3 demarcates the onset of
A, and moves on the imaginary axisét (curve 3). the translational instability.

5119



VOLUME 80, NUMBER 23 PHYSICAL REVIEW LETTERS 8 UNE 1998

and N = ffz(lul2 + |v|?) dx, respectively, andw = is different from previously encountered mechanisms of
Q+/1 — V2. The idea of the variational (or energetic) oscillatory instability (cf. [17]).

approach to stability would be to prove that the soliton We benefited from discussions with Yu.S. Kivshar, T.I.
minimizes H for the fixed P and N or, equivalently, Lakoba, V.A. Osipov, and C.M. de Sterke. This research
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