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Instability-induced dynamics of dark solitons
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Nonlinear theory describing the instability-induced dynamics of dark solitons in the generalized nonlinear
Schralinger equation is presented. Equations for the evolution of an unstable dark soliton, including its
transformation into a stable soliton, are derived using a multiscale asymptotic technique valid near the soliton
instability threshold. Results of the asymptotic theory are applied to analyze dark solitons in physically
important models of optical nonlinearities, includingmpeting saturable andtransiting nonlinearities. It is
shown that in all these models dark solitanay become unstahland two generalbounded and unboundgd
scenarios of the instability development are investigated analytically. Results of direct numerical simulations of
the generalized nonlinear Schlinger equation are also presented, which confirm predictions of the analytical
approach and display main features of the instability-induced dynamics of dark solitons beyond the applica-
bility limits of the multiscale asymptotic theor{/S1063-651X96)09707-3

PACS numbses): 03.40.Kf, 42.60.Jf, 42.65.Jx

[. INTRODUCTION less units, these models can be reduced to the generalized
NLS (GNLS) equation
Dark solitons are observed as localized intensity dips on a 5
continuous-wave(cw) background, which are usually ac- 2i£+ﬂ—F(|\If|2)‘P=O )
companied by a nontrivial phase chari@é For a cubic(or at o oax? '
Kerr-type nonlinearity, temporal dark solitonshave been
predicted to exist in the normal dispersion regime of opticawhereW(x,t) is a slowly varying envelope of electric field
fibers and they have been already observed experimentallgndt andx have different meanings depending on the con-
These solitons are described by the integrablenig non-  text of the physical problem under consideration. For ex-
linear Schidinger (NLS) equation[2,3]. Similarly, spatial ample, for the stationary beam propagation_in a dielec’;ric
dark solitonscan propagate in nonlinear planar waveguidesvaveguidet andx stand for two spatial coordinates, longi-
as stationary variations of the beam profile that do not diffudinal and transverse ones. Below, for simplicity, we call
fract because diffraction is balanced by a defocusing nonlinth€Se variables “time” and “coordinate,” respectively.
earity. These self-trapped waves have been suggested as peﬁ_Funct_lon F(1) is plrop.ortlonal to the '|ntenS|ty—eren(_jen_t
fect self-induced optical waveguides to guide or steer anothe ?ngg 'g thiahrefractlve_ w;dex_tofzarzyogtlcgl mét?”ili V\;E'Ch IS
(probe beam, thus manipulating light with lightee, e.g., efined by the wave intensity=|¥|* For F(1) €

[4]). Recent experimental observations of spatial dark solimodel (1) becomes integrablg2] and it supports conven-

. . .~ tional NLS dark solitons corresponding to a defocusing Kerr
tons[4—8] and demonstration of their successful application P 9 9

. S X ) medium.
for data coding and transmission in optical fibf9$empha- The generalized NLS equatidf) has been considered in
size the importance of optical dark solitons for all-optical

. alt . o ‘“'many papers for analyzing the beam self-focusing and prop-
proc.eed'mg, switching, signal transmission, and other opticalties of spatial bright and dark solitoteee, e.g., Ref§10—
applications. 20] to cite a few. All types of non-Kerr nonlinearities that
Optlca| dark solitons are of both fundamental and technOappear in the prob'ems of nonlinear optics can be divided,
logical importance if they are stable under propagation. Fogenerally speaking, intthree general classe$) competing
temporal solitons, such stability has been proved in theéonlinearities e.g., focusingdefocusing cubic and defocus-
framework of the cubic NLS equation, which is valid only ing (focusing quintic nonlinearity[11—14,17 (ii) saturable
for a weak(Kerr) nonlinearity. For spatial solitons, much nonlinearities [15-19, and (iii) transiting nonlinearities
higher powers are usually required, so that real optical maf11,12.
terials demonstrate essentially non-Kerr behavior of the non- Usually, the nonlinear refractive index of an optical ma-
linear refractive index for increasing light intensity. Typi- terial deviates from the lineaiKerr) dependence for larger
cally, the nonlinear refractive index deviates from Kerr and,light intensities. Nonideality of the nonlinear optical re-
in particular, it saturates at higher intensities. Thereforesponse is known for semiconducierg., Al,Ga; _,As, CdS,
models with a more general form of the intensity-dependenand CdS_,Se,) waveguides and semiconductor-doped
refractive index must be employed to analyze dark solitonglasses(see, e.g.[21]). A larger deviation from the Kerr
and their stability in sucimon-Kerr materials In dimension-  nonlinearity is observed for nonlinear polymers. For ex-
ample, recently the measurements of a large nonresonant
nonlinearity in single-crystgb-toluene sulfonate at 1600 nm
*Permanent address: Department of Mathematics, Monash Un[22] revealed a variation of the nonlinear refractive index
versity, Clayton, Victoria 3168, Australia. with the input intensity, which can be modeled bympet-
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ing, cubic-quintic nonlinearityAn ,(1)=n,l +ngl2. This lution) regimes of the instability-induced dynamics of dark
model describes a competition between self-focusingsolitons in the GNLS equation. Our analytical results are
(n,>0), at smaller intensities, and self-defocusingrather general; they do not depend crucially on a particular
(n3<0), at larger intensities. choice of the nonlinear functioR(1). The only assumption
Models withsaturable nonlinearitiegre the most typical for the asymptotic technique to be applied is a “slow” dy-
ones in nonlinear optics. For high power levels saturation ohamics of the perturbed dark soliton; this assumption is al-
nonlinearity has been measured in many materials and convays valid near the threshold of the soliton instability. How-
sequently the maximum refractive index change has beeeaver, in contrast to bright solitons of the GNLS equation, for
reported(see, e.g.[23]). We do not linger on the physical dark solitons this situation is rather typical because for any
mechanizms behind the saturation but merely note that ype of the nonlinear functiof (1) dark solitons are always
exists in many nonlinear media being usually described bytable in the small-amplitude limit being described by an
phenomenological models introduced more than 25 yearsffective Korteweg—de VriegkdV) equation(see, e.g., Ref.
ago(see, e.g., Ref24]). The effective GNLS equation with [1]). Therefore, if such an instability region exists, it occurs
saturable nonlinearity is also the basic mdde] to describe  only for dark solitons of larger amplitudes and there exists at
the recently discovered +1)-dimensional photovoltaic dark |east one critical value of the soliton velocity separating
splitons in photovoltaic—photorefract_ive materials  asgtaple and unstable stationary waves.
LiNbO; [8]. Unlike the phenomenological models usually Investigating the instability of dark solitons of the GNLS

uﬁe? to ltd(_escribl_? satltjrr]ation Sf lnf(_)n(ljne_arity, for ‘h? C‘F’.‘fs.e Oéquation(l), we follow the ideas of a multiscale asymptotic
photovaliaic solitons this model tinds Its rigorous justitica- technique recently developed by us in R&0] for unstable

tion (see, e.g., Ref§18,19). : : : :
Finally, bistable solitongntroduced by Kaplah11] usu- bright solltpns However, we would I|k_e to emphas!ze that
. ; ; . the dynamics of an unstable dark solitdiifers drastically
ally require a special dependence of the intensity-dependent

refractive index on light intensity, which should vary from froTJhedct;rre;]pond|ng (;I)lgn_arr]]wtlcs I(')tf b”%gt sol|tqnts,. I
one kind of the Kerr nonlinearity, for small intensities, to hdeed, forthe case ol bright solitons there exist generally

another kind with a different value af,, for larger intensi- three scenarioof t.h.e i”Stabi'ity'i”dvce,d soliton dynamics,
ties. This type of nonlinearity is known to support bistable"@mely, the transition to and oscillations around a stable
dark solitons[12] as well. Unfortunately, examples of non- State, soliton decay into dispersive-diffractive waves, and
linear optical materials with such dependences are notoliton collapse, i.e., unlimited growth of the soliton ampli-
known yet, but the bistable solitons possess attractive progude. As shown in Ref.20], all these scenarios can be pre-
erties useful for their possible futuristic applications in all- dicted by an asymptotic approach that derietiabatic
optical logic and switching devices. equationsfor the soliton parameters resembling Newton’s
The stability of bright solitons of the GNLS equati¢h)  equations for an effective particle inanservativesystem
has been extensively investigated for many years and thmoving under the action of an external potential force.
criterion for the soliton stability, as well as different sce- For the case of dark solitons, as we demonstrate here, the
narios of the instability-induced dynamics of bright solitons,instability development is accompanied by radiation. This
has been found and analyzed analytically and numericallyadiation escapes the unstable dark soliton and propagates
(for a review see, e.g., Ref25]). Recently, we have pre- along the cw background inducing “an effective dissipa-
sented an asymptotic analytical approg2h] to this prob-  tion” to a dark soliton. As a result, an effective asymptotic
lem that not Only.deSCI‘ibeS, in a SQlf-COﬂSiStent manner, th@quation governing the deve|opment Of the dark Sonton in-
long-term dynamics of unstable solitons but also reveals alstapility corresponds to the equation for an effective particle
ternative scenarios of the evolution of unstable bright SO”'moving under the action of a nonlinedissipativeforce. The
tons of the GNLS equation. . role of radiation is very important and can be understood
In contras_t to bright solitons, the ger_leral stability crlterlonthrough the following simple physics. Indeed, when an un-
for dark solitons of the GNLS equatioff) has not been stable dark soliton evolves into a stable soliton, this should

“”de.r.StOOd unt!I recently.ev_en in the framework of thg ImearIead to a change of the phase difference across the dark soli-
stability analysis, and this issue created a lot of misunder:

standing in the past. For example, we notice unsuccessflﬁ?gi 'tr_her:ar:‘otre, such a process is fal\évays ;cc_:om&anle?.tby
efforts to apply the known criterion for bright solitons to the radiation that removes an excess of phase during the soliton

case of dark solitons using, by a similarity, the so-calledansition, first locally, around the soliton core, but then
propagating this phase difference to infinities.

soliton complementary powefsee, e.g., Refs[12,17)). _ - )
However, the recent analysis of instability of dark solitons The paper is organized as follows. In Sec. Il we discuss
and its application to a speci@olvablé model of a satu- Properties of dark solitons of the GNLS equatith) and
rable medium displayed a natural way to analyze such insta2resent a summary of the multiscale asymptotic analysis that
bility by means of the variational principle for dark solitons describes the instability-induced dynamics of a dark soliton
based on the renormalized soliton momen{&8. near the instability threshold defined by the critical value of
In the present paper we investigate the problem of instathe soliton velocity. Details of the asymptotic analysis are
bility of dark solitons of the GNLS equatiofl) in details  given in Appendixes A—-C. General features of equations of
and develop an analytical approach combining it with nu-the asymptotic theory are discussed in Sec. Ill, where some
merical simulations. The multiscale asymptotic method weanalytical solutions are also found and analyzed. Using these
employ here allows us to describe bditear (initial expo-  analytical solutions as well as direct numerical simulations,
nential growth of instability and nonlinear (long-term evo-  in Secs. IV-VI we consider three typical, physically impor-
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tant examples of the GNLS equation and describe characteuse this representation of the dark soliton solutions in some
istic scenarios of the instability-induced evolution of dark numerical simulations of Eq2) described in Secs. IV-VI

solitons. Finally, Sec. VII concludes the paper. below.
As follows from Eq.(5), the solution for a dark soliton is
II. ASYMPTOTIC APPROACH defined by two parameters and . Under the action of
TO SOLITON INSTABILITIES perturbations growing due to the soliton instability, the ve-

locity v becomes a varying quantity that can be used to char-

acterize the dark soliton as an effective particle. On the other
Dark solitons exist on a cw background wave of a con-hand, in spite of the fixed boundary conditions at infinities,

stant amplitudel ,(t) = Jge' @R ‘whereQ=—iF(q) and  somelocal variationsof the background intensity in the

R is an arbitrary constant. The cw background is modulationvicinity of the soliton are still possible and these variations

ally stable provided=’(q)>0 [27]. In this stable case, we appear as radiative waves or additional shallow dark solitons

are looking for solutions of Eq.(1) in the form €scaping the unstable dark soliton.

W (x,t)=y(x,t)e™ and consider the corresponding equa- [N order to describe the instability-induced dynamics of a

A. Stationary soliton solutions

tion for the auxiliary functiony, dark soliton in the GNLS equatiof2), we introduce the
important integral characteristics calculated for the soliton
ay Py 5 solution (3). Following [28,29, we use the following invari-
2i EJF WJF[F(Q)_FG’M )1¢=0. 2 ants: complementary powd, renormalized momenturR,

and renormalized Hamiltoniad, and calculate them for the
Now, the dark solitony, is defined as a localized traveling- stationary soliton solutiof3) (we denote these values by the

wave solution of Eq(2), indicess),
YO =0(£)e"?, 3 1 L[+
_ Ns<u,q>=5f (|9~ a)dé= 5[ (P2-)dé,
where é=x—ut and tworeal functions®=®(&;v,q) and - -
0=0(&;v,q) depend on two parameters, the soliton velocity @)

v and the intensity of the cw background. These functions

satisfy the ordinary differential equations it di dyg q
i g | Ps(v,Q)Z—f (,/,;d_S_,/,Sd_S 1-7dé
40 2) § & |4
——v(1— i) (4 2_ )2
dé ®2) Fe(P—q)
£ _— f o, ®
a2 2 -
—— +v? ®— — | +[F(q)—F(P?)]d=0.
gz TV’ @ g3 FF@-F@hle=0. () L ([ o
, - _ Hs<v,q>:§f iz +f [F(1)—F(q)]dI{dé
Here we considenonzero boundary conditionat both in- - q
finities ® — \/q and é— R+ 1S, asé— + %, whereS has the 1 (re( [ dd)?2 (D2—q)2
meaning of the total phase shift across the dark soliton. In = —f [(d—) +vzT
addition, we classify all localized solutions on a nonvanish- 2) - §

ing background adark solitonsif |(£)|2<q for any £ and o2
bright-like dark solitonsotherwise (see also[14,27). Al- +f [|:(|)—|:(q)]d|]dg_ (9)
though our theory can be applied to all types of localized q
solutions with nonzero asymptotes, we consider here only
the case of conventional dark solitons, which have the miniThe physical meaning of these invariants has been clarified
mum intensity| min lower than the background intens'ﬂy in Ref. [28] Importantly, each of these invariants is con-
The solution(3)—(5) describes a dark soliton with the ve- structed as a difference between the corresponitagidard
locity v, which propagates on théstationary cw back-  integral of motion of the GNLS equatid(®) and a contribu-
ground s, = \/qe'R; the dark soliton modifies locally the in- tion from the cw background; the latter is conserved inde-
tensityq and the phas® of the background. However, we Pendently provided that the boundary conditions at infinities
can also generalize this particular solution and consider thare fixed(see discussions in Re28]). Thus, if a cw back-
dark solitons propagating on the moving cw backgrounddround has “a defect” in the form of a hole described by a
Y= \/aei[kxf(kz’z)”m. In this case, a more general dark dark soliton, the renormalized invariants just correspond to
soliton solution follows from a simple Galilei transformation the hole |t_self excluding the background. A.S fallows from
the analysis presented below, the renormalized momentum
(8) is the most important invariant of a dark solittgee also
Ref.[28]). In addition, we can find the analytical expression
for the total phase shifs of the background wave across the
dark soliton,

Z(X,t):l/,(xl,tl)eik[X’Jr(k/Z)t’]’ (6)

wherex’ =x—kt, t'=t, and functionsys and ¢ satisfy the
same GNLS equatiof®?) in the corresponding variables. Ap-
plying the transformatiori6) at k=v, we can construct the .
(stationary dark soliton solution located at the cw back- S(v q):vJ (1—%>d§. (10)
ground moving with the phase velocity,= —/2. We shall ' d

— o0
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There exist several remarkable relations between the soli-

ton invariants(7)—(10). First, we can find relations for the
variations of the renormalized momentuRy and energy
Hs,

Py dHq
U% v 1D

9Ps + J *+F'(g)N.|=0 12
v E—Ss 79 (9)Ng| =0, (12

where F'(q)=dF/dg. These relations represent a varia-

tional principle for dark solitons already established in Refs.
[28,29 and can be used for characterizing a variation of the

soliton parameters in the so-callediabatic approximation
[28].

Intensity

oot , L .
-40 o X
Coordinate x

40

FIG. 1. Schematic presentation of the instability-induced evolu-

Next, we notice that the renormalized momentum can b"E‘ion of a dark soliton for a bounded scenario, when a transformation

expressed through the complementary poWgand the total

phase shiftS,,
Ps=0S—2vNs. (13

The relation(13), together with Eqs(11) and(12), leads to
two other equations

P S INg
(9— ZNs_qE_ZU o (14
aP dSs  2¢? 6N
—S_g = _SS_ - = (15)
Jq Jov q Jdv

where we have introduced the velocity of linear waves

propagating along the cw background,

c=\/gF’(q).

The soliton velocity is always less than this limiting value,
lv|<c.
Thus, using Egs(11), (14), and(15), we can express the

(16)

three invariants calculated for the stationary soliton solution
(3), i.e., the soliton complementary power, the soliton renor£=X— ZXs(T), X«(T)

of an unstable dark soliton is observed. The initishstablé dark
soliton is shown by a dashed curve and two stébleated after the
splitting) dark solitons and radiation fields emitted during the insta-
bility development are shown by a solid curve. Notations are ex-
plained in the text.

near the instability threshold, which is defined by the equa-
tion &Ps/&U|U:vcr=0 (see[26]), whereuv, is a critical value

for the dark soliton velocity. Furthermore, we suppose that
the amplitude of instability-induced perturbations remains
small for an extended time interval and the localized wave is
close to a dark solitogs with slowly (adiabatically varying
parameters. Therefore, we can introduce a small parameter
€, which characterizes a small perturbation of the unstable
dark soliton, and look for solutiong to Eq.(2) in the form

of the asymptotidmultiscale expansion

J={s(&0,q)+ ey (&0,0;X,T)

+ 2 &v,q; X, T)+0(3)}eRXD - (17)

where

T

-,

v(TH)dT', X=ex, T=¢€t,

malized energy, and the total phase shift, through only one,

the soliton renormalized momentum. Therefore,
instability-induced dynamics of a dark soliton is finally gov-

erned by a unique equation for the only parameter, the sol

ton velocityv.

B. Equation for soliton velocity

We assume that the stationary dark solit@ of the

the

and e<1. Here v(T) (v>0) and R(X,T) describe the
ig,lowly varying soliton velocity and local phase of the back-
ground wave near the soliton, respectivelyandT stand for
“slow” spatial and temporal variables, an¢,(T) is the co-
ordinate of the soliton centéwhere the intensity reaches its
minimum valuel ;) with respect to theX axis (see Fig. 1

Using the asymptotic expansidfh?7) and the form of the

GNLS equation(2) can become unstable with respect to stationary soliton solutiongs(£) given by Egs.(3)—(5), in

small perturbations in a certain region of parameters of théppendix A we present the analysis of the first-order pertur-
function F(1) and for certain values of the soliton velocity bation correctiony;. This correction can be found as a so-
v. Our main purpose is to describe analytically the evolutionlution of a linear inhomogeneous equatisee Eq.(Al) in

of an unstable dark soliton deriving from the GNLS equationAppendix A. It follows from this analysis that the function
(2) a simplified ordinary differential equation for the slowly ; varies along two characteristic scalesépfwhich can be
varying soliton velocity and determining the radiation fieldstreated as thénner interval with respect to the core of the
generated during the soliton evolution. Such a reduction carolitary wave(see Fig. 1 whené~0O(1) andX— X4(T) and

be done in the framework of the perturbation theory for soli-the  outer interval, for which ¢—=*~ and
tons [30] if a change of the soliton parameters is slow in X—X(T)~0(1). Asymptotic expansions for each interval
time. It is obvious that soliton instability develops slowly should be analyzed separately.
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Generally speaking, solutions to the linear inhomogeneous 2c[dNg\? g [0Ss)\?

equations may diverge exponentially along the inner interval Ms(v,q)= E( 7 ) + 27(%) (20
asé— o (see, e.g., discussion of the asymptotic technique in

Ref.[20]). Such divergences usually break down the asympz 4

totic expansion procedure. However, in the vicinity of the

instability threshold, where@Ps/dv~O(€), the first-order 1 2cv [ INg)2 N, 39S,
correctiony, can be shown to be free of exponentially di- Ks(v,9)= —5——= —(—) —-—
verging termgsee Appendix A Therefore, we can find this (c°=v9l q \ v dv v
correction in an implicit forn{see Eq(A3) in Appendix A v [0S\ 2

and then proceed with the analysis of the second-order ap- 27(%) (21

proximation where a bounded solution for the second-order
pertu_rbanon correctiony, should be fc_)und. !n th'.s way, the_ Equations(19)—(21) present one of the main results of our
function ¢, does not have exponentially diverging terms if asymptotic analysis

the velocity of the perturbed dark soliton satisfies a certain On the other hand, similar calculations show that the

|d|ffej*r9]ntfl equ&tlogsolvab|l|ty ctogdmor;.[see fE&.(lQ) be-t. equation for the Hamiltoniajsee Eqs(B8) and(B9) in Ap-
ow]. In Appendix b we present gerivation of this equa.'c.mspendix B] leads to the other differential equation fofT),
from the balance equations for two conserved quantities,

namely, renormalized momentum and Hamiltonian of the dov
GNLS equatlo_n(Z). It can b_e sh(_)wn that the asy_mptotlc ﬁ[_HS(U!Q)_UMS(Urq)ﬁ
approach that involves invariants is completely equivalent to €

a direct multiscale analysis. Next we proceed to the analysis ) ) ] ]
of the instability-induced evolution of the field in the outer WhereéHs is the soliton renormalized energy defined by Eq.
interval of the asymptotic expansions. As follows from Eq.(g) and
(A5) of Appendix A, the first-order correctio#; grows pro-

= LS(U !q)

dv)2
T (22

portionally to ¢ as é— *+ . Therefore, this perturbation is L(v,q)=— ¢ 2_<:2(‘9_|\|S)2+ va_NS ES

still secular, but this secular growth is power law instead of s (c*=v9)| q | dv v
exponential. It is knowr(see, e.g.[31]) that such algebra- 2

ically divergent terms of multiscale asymptotic expansions 9(@) (23)
corresponds to radiation emitted by the soliton. Therefore, in 2\ dv

the region where the localized wave vanishes, we seek solu-

tions to the GNLS equatiof®) in the asymptotic form We note that Eq9.19) and(22) areself-consistenbecause it

is easy to verify that 4(v,q) = —Mq(v,q) —vKs(v,q). Be-
¢p§=Iimgﬂimzp:CIDI(X,T)exp[i@i(X,T)], (18) sides, we can immediately see that the variational principle
for dark solitons(see discussions in R€i28]), which is ex-

where pressed in the adiabatizeroth-order approximation by Eq.
(11), is still valid when a dark soliton evolves under the
| |2=(®5)2=q+eU™(X,T)+O(€?), action of the instability-induced perturbations. Indeed, it fol-
lows from Eqgs.(19) and(22) that the first-order variations of
0 =05 (X,T)+0(e). the renormalized momentudP and HamiltoniandH of a

perturbed dark soliton are related by the equation
This asymptotic expansion is analyzed in Appendix C, where

we show that the radiation field$* outside the soliton re- voP+6H=0. (24
gion are presented by a superposition of two linear waves ) o
propagating with the velocitiesc, i.e., UT=U*(XTc However, neither momentum nor Hamiltonian of the per-

(see Fig. 1 A profile of the radiation fields generated by the turbed dark soliton is a conserved quantity and this leads to
perturbed dark soliton can be found explicifsee Eqs(25) ~ an essentially dissipative character of the instability-induced
and (26) below] by matching the asymptotic seriék?) and dynamics of unstable dark solitons. Such a dissipative dy-
(18) by a formal extensioré=X—X(T). namics of the dark soliton instability is explained by genera-
Now we present the main asymptotic equations of thdion of the radiation fields propagating away from the per-
multiscale perturbative approach in an explicit form. Usingturbed dark soliton to the right and to the left. The profile of
the results given by Eqg14), (15), (A11), (A12), (C5), and the radiation fields is given by the boundary conditi@¥)
(C6), we rewrite the equation for the renormalized momen-€stimated at the soliton positiof=X(T). Using the previ-
tum P [see Eqs(B6) and (B7) in Appendix B] as a differ-  ©OUS analysis, we can rewrit€4) in the explicit form
ential equation for the soliton velocigy(T),

d
U*=2.(0,0) g7 atX=Xy(T), (29

dv\?
=Ky(v,) ﬁ) .9

d 1P M dv
3712 Ps(v. A+ My(v,9) 55
where
wherePg is the renormalized momentum calculated for the

dark soliton according to Eq8) and the coefficients are
defined as

C(CIU)(C w2 dv (26)

Ny q@
[ (v.q)=— .3 SS)
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Finally, we show that the perturbed dark soliton and twoderivative dPs/dv vanishes. The resul30) confirms the
radiation fields represent a complete system because the togneral criterion of the dark soliton instability discussed in
momentum and energy are conserved quantities. Indeed, IBef.[26] and proves that dark solitons become unstable pro-
us introduce the total momentum of the wave field accordingided aPs/au|U:v0<0 [we notice that the coefficient

to the expression M4(vg,q) is always positive; see the definition in EQ0)].
X(T) oo Inside the instability r_egion there exists a real positive ei_gen-
f s p;(X+CT)dX+j p;(X—CT)dX+, value \ that determines the growth rate of exponentially
—o Xg(T) growing perturbations. Although a mathematically rigorous
27 proof of the general linear stability theorem for dark solitons
. ) is still an open problem, the linear analysis implies thkt
where P is the renormalized momentum of the perturbedgark solitons with negative slope of the renormalized mo-
dark soliton given by Eq(B7) in Appendix B andp.; are the  mentum R(v) defined by Eq. (8) are unstala2]. Note that
renormalized momentum densities calculated for the radiathis criterion isdifferentfrom that for bright solitons of the
tion fields. The leading order of these densities can be foungsnL S equation, which become unstable if the derivative of
by substituting Eq(18) into Eq.(B2) defined in Appendix B,  the soliton poweiNg on the soliton propagation constagit
. (or frequency is negative, i.e.dNg/dB8<0 (see, e.g.[25)).
—_u* ‘96)_5: - (E (U*)2 (28) Now we analyze the general conditions when the instabil-
X q ' ity of dark solitons can occur. First consider the small-
amplitude limit, whenv|—c. In this case, as follows from
where we have used the res(@3) from Appendix C. Using  Egs. (27) and (28), the renormalized momentum of the

Pit=P+e€

=+
o0

p

Egs.(25 and(26), we can rewrite Eq(19) in the form small-amplitude wave fields is asymptotically given by
1dP c(c— c(c+ C(+=
e (e=v) )2 _olery) u-)? pr=x | (U®)2dx. (3D
€ aq X=X(T) a X=X(T) qJ-=

(29

Using the analytical approach discussed in REf.(see also
By virtue of Eq.(29) we prove that the derivative d?,,,,  APPendix Q, we can reduce the GNLS equati(®) to a pair

defined by Eq(27), with respect toT is identically equal to of uncoupled KdVv _equations desc_ribing long-wave small-
zero. Similarly, we can show that the total Hamiltonian of amplitude perturbations of the continuous-wave background

the perturbed dark soliton and two radiation fields is also 45¢€ EGs(C?)]. The soliton solutions to these equations have
conserved quantity. This means that the equation for the solfn® Well-known form of the KdV solitons,

ton velocity and the radiation fields giecomplete descrip- 12€x2 2
tion of the instability-induced evolution of a dark soliton Us=-— sech K()(; CTi—r) , (32
near the instability threshold. 2c

The asymptotic equatior(49) or (22) cannot be generally
integrated. Nevertheless, they describe a rather simple sc
nario of the dark soliton instability and related evolution of
the radiation field$25). The general features of this dynam- . L . i
ics are analyzed in Sec. lll, whereas Secs. IV-VI are devoteHﬁat this approximation fails for—0 when the quadratic

to applications of our general approach to some particulaftf'h(?nllnear term in th_g Kotlx equat|onhs vanishes. H(:wevler, In
types of the GNLS equatiof?) that are important in the IS paper we consider the case when @.;uppor S only
theory of optical dark solitons. conventional dark solitons, which are described by the func-

tions U; <0 for any X. The corresponding KdV equations
(C7) derived in this case always have a positive coefficient
V.

A. Criterion of linear instability It is known that in the framework of the KdV equation

. . . o . solitons are always stable. This result can be verified directly
First we consider a linear approximation of the asymptotic

equation(19) substitutings =vo+v,6"", wherev, is the with the _help of_ Eq.(31) by e;/all_Jatmg the slopes of_ the
o : . - renormalized soliton momenf~ with respect to the soliton
initial velocity of the unperturbed dark soliton and is its

H — _ 2,2 4
small deviation caused by an initial perturbation. Neglectingvelocnyv =*le-ew/2e+0(eT)],

}Q/_herex determines the soliton amplitude. These expressions
present the so-called small-amplitude approximation to the
stationary soliton solutions of the GNLS equati@). Note

Ill. ANALYSIS OF ASYMPTOTIC EQUATIONS

nonlinear terms in Eq(19), we find the eigenvalug, 1 (9P+> 57602k
—| — —
1 [P, f( N T
M Moo | G0 (30
s(o. Vo=, Therefore, the important conclusion is the following: Small-

amplitude(shallow) dark solitons of the GNLS equatidi)
The result(30) can be treated as the first-order approxima-are always stableand the instability can occur either for in-
tion to the eigenvalue of the linear stability problem, whichtermediate values of the soliton velocityor in the limit of
is valid only provided thawPs/dv|,-, ~OC(e). This im-  plack soliton corresponding to— 0. The former case is not
plies that the value of the velocity of the unperturbed dark generic and depends strongly on the type of nonlinearity in-
soliton should be chosen near the critical valyewhere the  volved (see, as an example, the case of transiting nonlinear-
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dark soliton always has a zero intensityvat 0, so that the

Q" renormalized momentur®¢(v) is not defined ab =0 ap-

3 proachingm for v—0— or — for v—0+, as shown in

< Fig. 2(a@). In this case, the black soliton corresponds to the
g phase jumps and instability occurs when the function
b= P<(v) displays a negative slogeee Fig. 2a), dashed curve

§ The other, qualitatively different, case is presented in Fig.
3 2(b) and corresponds to the situation when a black soliton,
g i.e., a soliton atv=0, does not reach the zero minimum
S , : , intensity. This is possible, for example, when nonlinearity is
© 10 -05 0.0 0.5 1.0 self-focusing for small intensitieésee Sec. IY. Then the

. Soliton Velocity v/¢ black soliton with nonzero minimum intensity has no phase
& ' T " jump across the localized region and therefétg0)=0.

S This kind of “phase transition” corresponds to a sudden
S structural change of the soliton renormalized momentum, as
5 shown in Fig. 2b); and the appearence of the negative slope
z indicating unstable solitons.
X

(=]

é | ? B. Nonlinear regime: Analytical solutions
= -1.0 =05 0.0 0.5 1.0 Now we analyze the asymptotic equatioii®) and (25)

Soliton Velocity v/c that describe the nonlinear dynamics of an unstable dark soli-

ton and radiation fields emitted. It is clear that due to the
FIG. 2. Schematic presentation of the renormalized momentunfiactor 1k in Eq. (19) our asymptotic approach is valid only
Ps(v) of the dark soliton for two distinct case&) the minimum  in a small-velocity region near the critical velug,. There-
intensity always vanishes whan—0 and(b) the minimum inten-  fore, we apply a small-amplitudéout still nonlineay ap-
sity may become finite foW— 0. In both cases the negative slope proximation substitutingy =vo+€V(T), in order to inte-

indicates unstable dark solitons. grate Eq.(19) and reduce it to the form
ity discussed in Sec. VI belowIn the latter case, some 2
S dv 1(0P 1( %Py
general results can be obtained independently of the type of M(v0,0) ==+ —| — e V2=0.
nonlinearity supporting dark solitor{see also two examples dT el dv 2\ dv =0,

in Secs. IV and V below (34
Therefore, we analyze now the limit of small velocities
v—0 and calculate again the slop®/dJv defined by Eq.
(14). BecauseNg,S;s are always negative for conventional This equation resembles the motion equation of an effective
dark solitongdsee Eqs(7) and(10) provided thatb?<q and particle of masdM¢ and velocityV under the action of a
v>0] we note that the slop&Ps/Jdv can become negatiie  nonlinear dissipative force. Therefore, the instability-induced
the limit v —0 only if dynamics of a dark soliton may demonstrate two types of
scenarios, bounded and unbounded ones.
IS
i

The result(33) gives the necessary condition for instability ~ 1he type of the instability scenario depends on a sign of

of dark solitons to occur. For many models, the total phasén€ initial perturbation and the particular form of the depen-
shift S, is a monotonic function rising from the limiting denceP4(v). We consider the case when dark solitons of

value — 7 atv—0 (“black” soliton) to zero a — ¢ (small- smaller ve'locity are Iinggrly unstable, whi!e §mal|—amp!itude
amplitude or “gray” solitong. For example, this situation is solitons with the velocities .close to the I|m|t|ng velocity
typical for the Kerr and power-law nonlinearify~1P as ~ are stable. 'I;herefozre, for this type of the functiéhgv) the
well as for the generalized Kerr model with the nonlinearderivative @“Ps/dv?)[, -, in Eq.(34) is positive[we recall
function F(1)=1+ 12, B>0 (see[17]). For these models thatP,<0 for v>0 see Eq(8)]. Then, as follows from Eq.
the slopedS,/dv is always positive and instabilities of dark (34), any perturbation with the positive change of the veloc-
solitons are not observed. However, for other models théty, i.e., V(0)=V,>0, leads to a bounded scenario of the
instability of dark solitons does take place and it is observedlark soliton instability when such a perturbation increases
for small velocities when the change of the soliton phaséhe soliton velocityy and decreases its amplitude, which is
becomes nonmonotonic. proportional to §— I in) >’ (see Fig. 1 This process corre-

In general, the instability for small velocities correspondssponds to a transformation of an unstable dark soliton into a
to two distinct types of dependences of the renormalized mostable soliton of larger velocity. Such a transformation is
mentumP, vs v [see Figs. @) and Zb)]. In the first case, a described by a simple bounded solution of E34),

<0. (33)
v=0

<2N
q S

v=0 1. Soliton evolution: Bounded scenario
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VoVs dark soliton solutions to the GNLS equati®) in the small-
V= V—Vge N1V, (35  amplitude approximatior{i.e., the KdV soliton; see Eq.
Fro 0 (32)]. Moreover, the evolution of the radiation field given by
where \ is defined by Eq.(30) (A\>0), V, is the initial  Ed. (38) was shown in Appendix C to obey asymptotically

deviation of the velocity of the unstable dark soliton, andthe KdV equationgC7) with positive value of the coefficient
V;, defined as v. It is well known (see, e.g., Ref.[33]) that the

sech-type initial pulse in the KdV equatiofC7) can gen-

2(dPg 9Py erate solitons only if the pulse amplitude is negative. In the
Vi== 2l 5, 702 ) (36)  opposite case, i.e., when the input amplitude of the localized
v=vg v=vg pulse is positive, the initial profil€38) transforms into linear

_ ) ) dispersive waveR33], which, in our problem, asymptotically
is the change of the velocity corresponding to a stable SO“disperse on the cw backgrouhet g.

ton. This result is valid only if the renormalized momentum Amplitudes of the radiation fieldé38) are proportional to
of the perturbed dark soliton is a conserved quantity durinqhe coefficientst.. (vg,q), which are defined by Eq(26).

the Soliton.transformation_ However, it follows from Sec. ot 5 evaluate the signs of these coefficients in the limiting
Il B that this quantity does not conserve beyond the quag,qe, .0, In this limit, we find from Eqs(26) and (14)
dratic approximation and its variation is descnbedt

asymptotically by Eq(19). Using the approximate solution

(35), we can estimate the differenddP between the value of 1

the renormalized momentuRy for the final stable dark soli- {+=+2Ns(v0=0,9)+O(vo).

ton and that for the initia{unstable soliton P,. This differ-

ence can be calculated directly from E49) as However, the soliton complimentary powdl(v,q) is al-

ways nhegative and therefore, in the linig— 0, the coeffi-
cient £, is positive while the coefficient{_ is negative
Moreover, we can show that the sign of the coefficiént
(37) remains unchanged throughout the instability region so that
the counterpropagating radiation field, described by the func-
where the coefficien is defined in Eq(21). We note that tion U™, should always generate an additiortahallow
this coefficient can have, in generaln arbitrary signand  dark soliton as a result of the transformation of the primary
therefore transitions from unstable to stable dark solitons caHnstable dark soliton. On the other hand, the radiation field,
lead to either an increase or decrease of the value of the@escribed by the functiob ™, decays into dispersive waves
soliton renormalized momentum. As a matter of fact, theif {.(v,q)>0 or it can also produce an additional dark
sign of the momentum change is determined by a balancgoliton provided that . (v,,q)<0.
between the radiation field ¥ propagating in the same di-  Using Eqs(31) and(38), we can calculate the pais" of
rection as the perturbed dark soliton and the flg¢ld propa-  the renormalized momentum of the perturbed dark soliton
gating to the opposite directiofsee Fig. 1 Indeed, as fol- that are taken by the radiation fields generated due to the
lows from Eq.(29), the copropagating wave)* always development of the soliton instability. The result is
leads to an increase of the renormalized momentum of the 3EA(AV)2(CT o)
perturbed dark soliton, while the counterpropagating radia- pt= ;E o
tion waveU ™ always leads to a decrease of the momentum. 6q
As will be shown for the particular cases discussed in Sec
IV and V, both these phenomena can actually take place f
different types of GNLS equation.

2 e\V?
dT=——"Ky(vo,),

+oo dv
AP=ef7 Ke(v,0)| 77

{2 (v0,9). (39)

Stis easy to verify that the conservation of the total momen-
%Yum leads to the balanckP+ P* + P~ =0. Thus we arrive
at the conclusion that near the instability threshold the per-
turbation, which initiallydecreaseshe amplitude of the dark
soliton, inducesa splitting of the unstable dark solitonto

As we have shown in Sec. Il B, a change of the renormal{at least twg counterpropagatingstable solitons of larger
ized momentum of the perturbed dark soliton is caused byelocities and linear dispersive wavésr, in exceptional
radiation fields, which are asymptotically described by Eqcases, an additional solitprin front of the dark soliton,
(25 at the soliton positiorX=X4(T). Using the analytical Fig. 1. The relation between these three components defines
solution (35) defined througout th& axis, we can find ex- the general character of the instability-induced soliton dy-
plicitly the profile of the radiation fields in the weakly non- namics.
linear (quadratig approximation when Eq.34) is still valid

2. Structure of radiation

andX(T) is given approximately bXs=v,T+O(e). This 3. Soliton evolution: Unbounded scenario
allows us to find the exact results for the radiation fields Finally, we discuss the other type of initial perturbations,
U*—eU™, where namely, that which increases the amplitude of the unstable

dark soliton. In this case, the instability scenario us-
boundedin the framework of both the asymptotic equations
(19) and(34) because these equations predict that the soliton
velocity changes its sign in a finite time. This implies that a
Radiation fields(38) coincide, with an accuracy of the am- decrease of the minimum soliton intensiky;, cannot be
plitude factor, with the sechtype profile of the stationary suppressed by nonlinearity even in the vicinity of the insta-

L AV _
U*:Tg’i(vo,q)secﬁ (XFcT)|. (39

Z(CI Uo)
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bility threshold, and this leads to an essential transformation

of the unstable dark soliton. The initial stage of this evolu- 1.0 ;

tion corresponds to a decrease of the minimum intensity (a) e(B)

I min UNtil it reaches a value corresponding to a black soliton _; 0.5p ]

(at v=0), while the subsequent evolution depends on the § V() ]

global behavior of the nonlinear functidi(l) in the particu- 2 00 %

lar case of the GNLS equatid®). We investigate this phe- S [

nomenon numerically in Secs. IV and V for some particular § -0.5F ]

models. In addition, in Sec. VI we consider a very special ;

type of dark soliton instability when both limiting cases of -1.0L . . . . .

the dark soliton solutionsu(—0 andv—c) correspond to 68 1.0 12 14 16 18 20

stable solitons, whereas there exists a narrow region of the Parameter §

soliton velocitiesy for which dark solitons become unstable. &’ 0.0 1.0

For such a special model, the unbounded scenario of the dark & {0.9 f

soliton evolution is not observed. We believe that the ex- £ 1 £

amples of the dark soliton instabilities discussed below dis- § 0.8 8

play the most characteristic types of the instability-induced ﬁ -0.1 ﬁ

dynamics of dark solitons. B 1072

: 06
IV. COMPETING NONLINEARITIES g { =
& -0.2 i . . 0.5
In the case of competing nonlinearities, e.g., focusing plus 0.0 0.1 0.2 0.3 0.4 0.5

defocusing, the dark soliton solutions to Ef) display fea- Soliton Velocity v

tures different from those for dark solitons of the conven- _ ) _ N
tional NLS equation. Due to self-focusing at smaller intensi- FIG- 3. (8 Regions of existencdv|<c(8) and instability
ties of the cw background, the minimum amplitude of a darkl?|<vc{B) of the dark soliton(41) and(42) and (b) renormalized
soliton is nonzero even at=0 for some values of the pa- mementumPy(v) for the dark soliton(41) and (42) at f=1.2.
rameters. As a result, the total phase sBiftv) and there- Th:jthdglshei and dso:ld blf?mhes Corrf.Sp?no_lr;O ltjr?smbﬁ’ €
fore the renormalized momentuRy(v) tend to zero in both and sta ef>v) dark soli ons, respectively. The thin Sold curve
limits v—0 andv—sc. This explains the appearance of a depicts the change of the minimum soliton intensijfy, . Arrows 1

. ) . and 2 correspond to the evolution of the unstable soliton presented
negative slope of the renormalized momentéyv) for . - -

A ) > in Figs. 4 and 5, respectively.

small v and, correspondingly, leads to instability of dark
solitons. For instance, this phenomenon is observed for th@ghere, for simplicity, we takgj=1 anda=2. The soliton

GNLS equation(2) with two competing power-law nonlin-  amplitudek is defined by the soliton velocity through the
earities that have been considered in the theory of brightg|ationk?+ v2=p—-1.

solitons(see, e.g., Ref.20] and references thergin First, we analyze the parameter region where the dark
5 soliton (41) and (42) can exist. The conditiok®>0 yields
F(D)=—al”+ 1. (40 |y|<c(B)=VB—1; see Fig. &). Then we use the instabil-

ity criterion defined above and calculate the slope of the
If @ andg are both positive, the first term gives self-focusing function P¢(v) to find the instability region: a dark soliton
[note the minus in front oF (1) in Eq. (2)] and may prevent becomes unstable fatP,(v)/dv<0. We have checked that
the existence of a black soliton with zero minimum intensity.the negative slope oP4(v) appears only for ¥ 3<1.5,
Foro=1 the GNLS equatiori2) with nonlinearity(40) cor-  where the dark soliton ai=0 has a nonzero amplitude at
responds to the focusing cubic and defocusing quintic nonthe minimum®2(0)=(3—2)/B. The functionP4(v) for
linearity and can describe a deviation from the Kerr mediumthe particular cas@=1.2 is shown in Fig. &). Thus, for
of an optical materia(see also the IntroductionRemark- 1< g<1.5 dark solitons in the cubic-quintic model become
ably, the model2) and (40) at c=1 possesses an explicit ynstable for smaller velocities<Ojv|<v(3) and stable for
solution for dark soliton. Therefore, although the genefallargervelocities)cr(ﬂ)<|u|<c(ﬁ). The instability region is
analysis of the competing nonlinearities is qualitatively cor-shown in Fig. 3a) as a dashed domain. As follows from this
rect for any value ofr, below we restrict ourselves by the figure, the dark solitort41) and (42) becomes unstable in a
casec=1 when the results can be obtained in an analytiqelatively small parameter domain and the critical value

form. . . ~ vg(B) does not exceed 0.145.
The exact solution for a dark soliton of the cubic-quintic  To study the evolution of an unstable dark soliton, we
nonlinearity can be found in the form perform numerical simulations of Eq2) using, for better
, visualization, the equivalent solution for(atationary dark
2k soliton on a moving cw backgrouridee Eq.(6) at k=uv].

We apply a small perturbation to change the amplitude of the
dark soliton(41) and (42) adding a symmetric disturbance

4 F with small factore,
_p_ _ 2_ " o2 _
3# 1)’ PTNVET A 42 Yper £) ={D (&) + [ 1—D?(£)]}e'¥),

T a+ bcosh 2ké)’

a:
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FIG. 4. Bounded scenario: Splitting of the unstable dark soliton
(41) and(42) for B=1.2,v7=0.02, ande= +0.005. Shown ar¢a)
intensity profiles at=0 (solid curve andt=100 (dashed curje  gp, (41) and (42 into two kinks for B=1.2, v,=0.02, and
and the corresponding) contour plot andc) propagation dynam- . _ 005, Shown aréa) intensity profiles at=0 (solid curve
ICS. andt=100 (dashed cunjeand the correspondingp) contour plot

and(c) propagation dynamics. The thin solid curve(@ presents,
which does not change the soliton phase. The initial velocityfor a comparison, the exact kink soluti¢#3).
vy of the unstable soliton is chosen in the unstable region, , ) . ) -
while the amplitudee is taken to be both positive and nega- PUshed deeper into the instability regifsee curve 2 in Fig.
tive in the interval 0.000& |e|<0.02. The numerical simu- 3(b)]. The corresponding simulations are presented in Figs.
lations reveal two completely different scenarios of the dy-S(a)_S(C)’ where we observe the formation of two kinks

. : . . dashed curvgspropagating in the opposite directions. We
namics Of unstablg dark solitons depending on the sign of th all this scenario of the soliton instabilitycollapse of dark
perturbation amplitude.

The first, bounded Scenario is observed &0 when solitons” by an analogy with the well-known effect for

_— ) AR ) ) bright solitons of certain types of GNLS equati@h.
initially the soliton velocity is slightly increased. Effectively, Thus we can see that the dark solitons evolve asymmetri-

this corresponds to a “push” of the unstable soliton towardca)ly, depending on the type of initial perturbation. To char-
the stable branch dPy(v) in Fig. 3(b) (curve 1 that exists  acterize the soliton evolution, in Fig. 6 we show the change
for larger values ofv. An example of such simulations is of the minimum soliton intensity ,;, for both scenariofsee
shown in Figs. 48)-4(c), where we clearly observe the soli- Fig. 3b)]. In the case of splitting{>0), the initial expo-
ton splitting, in accordance with the predictions of the ananential growth of the perturbation amplitudepper solid
lytic theory for a bounded scenario. curve saturates at approximately 45 and the unstable dark
The second, unbounded scenario of the soliton instabilitysoliton splits into two stable solitons of smaller amplitudes
takes place foe<<0. In this case, the unstable dark soliton is (see curves 1 and 2 in Fig),6vhich move after the splitting

FIG. 5. Unbounded scenario: Collapse of the unstable dark soli-
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FIG. 6. Change of the minimum soliton intensity,;, for two = -0.05¢ ! ]
scenarios of the soliton instability presented in Figs. 4 and 5: split- E !

ting (upper solid, 1, and dashed, 2, curvesid decay into kinks T;: _o.10f ' h
(collapse (lower solid curvé. The dotted line displays the critical 5 U '
intensity | .., which corresponds to the instability threshole v, nqc:’ i |
and it is defined in Fig. ®&). -0.15L \

0.00 0.05 0.10 0.15 0.20
Initial Soliton Velocity v,
into opposite directions, as shown in Figgbyand 4c).
When the initial soliton velocity is selected far from the  FIG. 7. (8 Analytical results for the velocities; and [v,| of
threshold valuey,, more than one secondary soliton is gen-two leading dark solitons created after the splitting vs the initial
erated. In the case of decay into kinks<(0), the exponen- velocity v of the unstable dark soliton. The dotted lines present the
tial growth of the initial perturbation allows the minimum Ii_mit valuesv=v an_dv:c. (b) Renormal_ized_momgnta of the
intensity to reach zerésee Fig. 6; lower solid curyeThen flr_lz_il (Iarges} dark _sollton P; and the radla_mon flel_disP*\ vs the
the region of zero intensity starts to spread out while thénltla| §0I|t0n veIoutyvo, caIcuIaFgc! analyticallysolid curveisapd
background intensity increases outside the localized wavBumerically (open circles The initial value of the renormalized
[see Fig. &)]. Finally, this process results in the formation momentu:Po(_u) Is shown by a dashed curve and only its unstable
of a new background of a special intensify=1.25, instead °'2"cNvo=veris displayed.
of the initial valueq=1.0, and in the steady-state propaga-
tion of two kinks. Such a kink is described by the exact
solutions to the GNLS equatiori$) and (40) at =1, Additionally, we calculate the contributions to the renor-
malized momentum from the final stable dark solifon the
W, — A gioct 43) small-amplitude dark solito®~, and the perturbations of
k Ji+e 8 ' the continuous-wave backgrounB®™=P,—P;—P~ and
present them in Fig.(B). The dashed curve depicts the mo-
whereq.=3a/4B, A= aq., andw.=B8q%. The kink(43)  mentum of the unstable dark solitof,, while the open
connects two modulationally stable cw backgrounds, thesircles show the numerical data for the momentRpof the
background of the intensity., and the zero-intensity back- (final) stable soliton. We note that the instability of the dark
ground. For a comparison between the kinks generated dusmlitons in the case of competing nonlinearities always leads
to the instability and the exact kink solution of the cubic-to a decrease of the soliton renormalized momentum,
quintic model, we show the solutioi$3) in Fig. 5@ by thin ~ P;<P,). We have checked that this result is in agreement
solid curves, which are in excellent agreement with numeriwith the asymptotic prediction given by E7) because for
cal results(thick dashed curves the nonlinearity(40) the coefficientK(v,) is negative. On
For the case of splitting of the unstable dark soliton, thethe other hand, the coefficiert, (vo) is negative for the
velocitiesv; and |v,| of the generated stable dark solitons values ofv, close tov.,. This fact implies that the radiation
can be evaluated analytically by means of the asymptotidield emitted in front of the perturbed dark soliton can lead to
theory. Indeed, the value; can be approximated as theformation of an additional stable dark solitoMoreover,
vi=vo+ €V; [see Eq(36)], while the valuev, is expressed for smaller values of the velocity,, the coefficient/, be-
through the effective KdV soliton amplitudex, comes positive and the radiation field described by the func-
lv,|=c—€?k?2c. To find the soliton parametet we use tion U decays into dispersive waves. In any case, the part
the assumption that the momentu [see Eq.(39)] emit-  of the renormalized momentu* that corresponds to ra-
ted by the perturbed dark soliton into the opposite directiordiation always remains small compared to the momentum
corresponds to a novel dark soliton. In this case, the balande™ [see Fig. T)]. This fact explains a decrease of the soli-
equationP~ =19 3«3/ (qv?) defines the required value of ton renormalized momentum due to the dark soliton instabil-
the parametek. These results are presented in Figg)7/as ity and also provides a clear observation of the splitting of
functions of the initial soliton velocity. the unstable dark solitons.
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FIG. 9. Dynamics of an unstable black soliton in the mo@sl
and(44) at p=2 anda=12. Shown arda) the renormalized mo-
mentumP4(v) and transitions corresponding to a transformation of
an unstable “black” soliton into a stable “gray” solitor(p) the

p=2. The dashed curve depicts the region where a dark soliton hag'ange of the minimum soliton intensiky;,, and(c) the change of

the total phase shift larger than Shown argb) the renormalized
momentumP4(v) and(c) the total phase shifés(v) calculated for
dark solitons at two values of the saturation parameten==6
(curves 1 and a=12 (curves 2. The critical velocityv, corre-
sponds to the instability threshold.

V. SATURABLE NONLINEARITY

In this section we consider the GNLS equati@ with
the generalized saturable nonlineaifityl) of the form

F()=1 (44)

~ (1+ahP’

where the parameter has the meaning of a ratio of the
maximum intensityl . to the saturation intensitc,,, i.e.,
a=l./! sax @and the parametep is the saturation index.
This type of nonlinearity in the GNLS equati@®) is used to

the soliton position.

analytic solution, but essentially the same dynamics of the
dark soliton instabilities is observed as in the mo@land
(44) for other values op.

First, in Fig. 8 we present the regions of existence
v<c(a) and instabilityv <v(a) of the dark solitons in the
model(2) and(44) at p=2 andq=1. Because of a symme-
try, only positive values of the soliton velocityare consid-
ered. The dashed line in Fig(a88 depicts the region of the
parameter plane where the dark solitons have the total phase
shift larger thanr. The typical dependences of the renormal-
ized momentunP¢(v) and the total phase shifi(v) are
shown fora=6 and 12 in Figs. &) and &c), respectively. It
is clearly seen that the appearance of a large phase shift of
the large-amplitude dark solitons serves as a pilot of their
instability. However, among the dark solitons with the phase

analyze the effect of saturation of the nonlinear refractiveshift larger thans there exist both stable solitons, realized

index at larger intensitieésee also the Introductignin the
casep=1 the nonlinearity44) appears also in the theory of
photovoltaic bright and dark solitorfsee Refs[18,19). On
the other hand, the modé®2) and(44) at p=2 is known to

for larger velocities, and unstable solitons, realized for
smaller velocitiegsee Fig. &)].

Using the results of our asymptotic theory described in
Sec. Ill B, we calculate the coefficienks(vy) and ¢+ (vg)

exhibit soliton solutions in the form of bright and dark soli- employing the exact solutions to the GNLS equaii@nwith
tons[16]. With the help of these exact solutions, it has beenthe saturable nonlineariti44) at p=2. We find that the co-
recently revealed that dark solitons supported by the satwefficient K (v,) is always positiveand therefore the dark
rable nonlinearity may have the total phase shift larger tharsoliton instability due to a nonlinearity saturation should lead

the limiting value 7 realized at the black soliton at=0

to an increase of the renormalized momentum according to

[17]. However, later the instability of dark solitons has beenEg. (37). On the other hand, the coefficietit (v,) is posi-

pointed out exactly for the same mod@b], but the relation
between these two phenomena, i.e., larger-thaseliton

tive, i.e., the radiation in front of the perturbed dark soliton
cannot lead to the creation of additional dark solitons, so that

phase and instability, has not been established. Here we readiation always disperses. Moreover, our estimates show

strict our analysis to the simplest cgse 2, which allows an

that this radiation should be dominant compared to the radia-



54 INSTABILITY-INDUCED DYNAMICS OF DARK SOLITONS 2027

a7 o
E’ £ = L=
§§ AQRO
o @
8 o
-0.06 -0.03 0.00 0.03 0.06 e"%
Soliton Velocity v e AQQ
\‘E 0.15
>
g 0.10 _AQ0
L
£ 0.05 1000 "
< \
= 0.00 800 ]
= 600 1
10 L
2 o N
§ -10 = 400r b
: % 200F ]
3 40 L (7)
x -50 0L .
0 250 T'SOO 750 1000 —100 -50 100
ime ¢ Coordinate z
1000} I ' // ﬂ
—~ [ - //%/
[ - . /// //// ﬂ
800 F . Z°E 7 /
g EP /’{f”/f///////////// -
= s00[- ] /\ng = //f; // -
400} 1 =0
2oo:— (d) ] “’% ASO 200
o : ' 20 (g) S e
-100  -50 0 50 100 I\ 0 gese ®
Coordinate x AT Co®

FIG. 10. Dynamics of an unstable gray solitan, € 0.04) in the mode(2) and(44) at p=2 anda=12. Shown ar€a) the renormalized
momentumP(v) and transitions corresponding to two types of the instability development, the chatigeted minimum soliton intensity
and(c) the relative soliton position for both scenarigd) and(f) contour plots, ande) and(g) propagation dynamics corresponding to the
bounded and unbounded scenarios, respectively.

tion moving in the opposite direction. soliton velocity is actually small for the nonlinearit}4) at
Next, we consider numerically the development of thep=2, so that we show the change of the minimum soliton
dark soliton instability in the saturable model described byintensity [see Fig. )] and the soliton positioisee Fig.
Egs. (3) and (44) at p=2. We find that the instability- 9(c)], which clearly indicate an initial, exponential growth of
induced soliton dynamics in this model displays features thathe perturbations upon the unstable black soliton and then its
are different from those mentioned in Sec. IV for the case oftabilization at the level that corresponds to a stable gray
competing nonlinearities. As an initial condition, we con- soliton.
sider two cases, a black soliton witi=0 and a gray soliton The development of the instability of a gray soliton oc-
on a stationary background. A small perturbation to an uncurs basically in the same manner; see Figga+10g).
stable dark soliton is applied in the way already discussed fofhe different feature is asymmetric transitions for the posi-
the case of competing nonlineariti€Sec. V). tive (e>0) and negative €<0) initial perturbations/see
Figures 9a)—9(c) correspond to the case of an initially curves 1 and 2 in Fig. 18)]. An unstable gray soliton with
unstable black soliton. Being pushed to either side by a smalin initially increased minimum amplitude,;, [curve 1 in
perturbation, the unstable black soliton transforms into &igs. 1Qb) and 1@c)] slowly transforms into a stable soliton
stable gray soliton that corresponds to a positive slope of thef larger velocity. The radiation emitted in front of and be-
function P4(v) as shown in Fig. @. The change of the hind the unstable soliton is very small, but still can be seen in
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Figs. 1dd) and 1Qe), which display the contour plot and the
propagation dynamics. On the other hand, the instability de-
velopment of the gray soliton with an initially decreased
minimum amplitude/curve 2 in Figs. 1) and 1Qc)] oc-
curs in two stages. At the first stage, the soliton changes
almost adiabatically until its minimum amplitude reaches the
zero value corresponding to a black solifmee Fig. 1(b)].

The second stage is caused by the instability of the black
soliton, the soliton undergoes a transition to the nearest _ . ‘ .
stable gray soliton, which moves in the directimppositethe 04 06 08 1.0 1.2
direction of the initial gray solitofisee Fig. 1(c)]. The con- Soliton Velocity v
tour plot presented in Fig. 10 and the propagation dynam- y "
ics shown in Fig. 1@®) reveal that the radiation propagating
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in the opposite direction transforms to a dark soliton of a é e f
very small amplitude, according to the analytical theory. g ' §
However, the generation of dispersive wave packets in front 3 106 2
of the perturbed dark soliton dominates. £ -10 -

We note that the renormalized momentum of the per- € 043
turbed dark soliton is greatly increased during this process. g _1st . : i 0.2
Such an increase of renormalized momentum of the dark * 0.8 0.9 1.0 1.1
soliton due to the instability development is related to a Soliton Velocity v

strong radiation in front of the dark soliton, which is in

agreement with predictions of the asymptotic theory. This FIG. 11. (a) Renormalized momenturRy(v) for dark solitons
radiation is dominant compared to the other, soliton part okupported by the transiting nonlinear@b) for «=0.5, y= 10, and
the radiation field and this fact makes the dark soliton split-different values of the parametky: 0.5, 0.6, and 0.7, shown next
ting into two counterpropagating stable dark solitons difficultto the curves(b) Stable(thin solid and unstablédashed branches

to investigate numericallysee also Fig. 3 in Ref26]). of the soliton remormalized momenturRy(v) for the case
a=0.5, y=10, andl ,=0.6. Thick solid curve displays a change of

the minimum soliton intensity,,, vs soliton velocityv.
VI. TRANSITING NONLINEARITY

In this section we consider one more example of theasymptotic analysis we presented in Secs. Il and Ill above,
model of optical solitons described by the GNLS equationthe soliton complementary power does not determine the sta-
(2). It has been extensively discussed in connection with théility of dark solitons. Thus the analysis of bistable dark
phenomenon of the soliton bistabilif1,12. Soliton bista-  solitons should be based on the soliton renormalized momen-
bility can occur when unstable solitons are found for inter-tum.
medite values of the soliton parametee., the propagation First, we calculate numerically the renormalized momen-
constant for bright solitons or velocity for dark solitored-  tum Pg(v) for dark solitons of the modeR) with the tran-
lowing transitions between tw@r more types of solitons siting nonlinearity(45) at «=0.5, y=10, and varyingl,.
belonging to stable branches. One of the typical exampleSome typical results are displayed in Fig.(@1 where we
displaying this kind of phenomenon is the so-caltemhsit-  can observe the appearence of a rather narrow region of the

ing nonlinearity which can be taken in the forpd2] values of the soliton velocitgfor somel y), where the soliton
renormalized momenturR4(v) displaysthree branchesn-
F(l)=21{1+ atanh y(1?—I S)]}. (45) dicating a possibility of bistable dark solitons at a fixed value

of the momentum.

The function(45) is a special case of the nonlinearity, which  In Fig. 11(b) we present an enlarged part of the depen-
describes a smooth transition from one linear dependence félencePs(v) atlo=0.6 that displays stabl¢hin solid curve
small intensitiesl <14, when F(I)=2[1— atanh(3)]l, to and unstablgthin dashed curyebranches. The instability
the other linear dependence for large intensities,, when  region[v)<v<v(?), where, atly=0.6, v{’~0.955 and
F(1)~2(1+a)l. Parametersy, |, in Eq. (45) characterize v{@~1.014 is rather narrow and satisfies the criterion
the amplitude and threshold intensity of the nonlinearitydPg(v)/dv<<0. It is obvious that the unstable branch corre-
transition, whiley ¥ determines the characteristic width of sponds togray solitonsof intermediate values of the mini-
the transition region. mum intensitiesl ,,;, shown also in Fig. 1®). Using the
The particular form(45) of the transiting nonlinearity has results of our asymptotic analysis, we expect that the evolu-
been introduced by Enns and Muldei2] as a continuous tion of unstable dark solitons would result in a transition
approximation of the steplike model of the transiting nonlin- (switching from the unstable solution to one of the stable
earity introduced earlier by Kaplan in the theory of bistablesolutions with a greater or smaller value of the minimum
bright solitong 11]. In particular, Enns and Muld¢i2] have intensitiesl ;.
shown that the dependence of the complementary power Numerical simulations of the instability-induced dynam-
Ng(v) on the velocity of a dark soliton displaythree ics of dark solitons in the moddR) and (45 have been
branchesand used this fact to introduce and characterizeperformed for a dark soliton with the intial velocity
bistability of dark solitons. However, as follows from the vy=0.96[see Figs. 1&)—12c)]. The dynamics displays in-
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instability, both linear and nonlinear regimes of the

£ 0.60 instability-induced dynamics of dark solitons can be ana-
N lyzed by the asymptotic multiscale expansion technique.
g 0551 This analytical approach gives us an effective tool of reduc-
=

2 o050f ing the primary GNLS equation to asymptotic equations for
- the soliton parameters describing the evolution of the soliton
s 045 velocity during the development of thiexponentially grow-

w ing) linear instability and the subsequent nonlinear dynam-
>§ 21 (b) 1 ics. Unlike the corresponding problem for bright solitons,
;é 0 0 radiation is shown to be very important in the instability-
K induced evolution of dark solitons and the development of
o -2r the soliton instability is always accompanied by radiation,
“é ol 2] the effect being described by the same order of the asymp-
2 totic expansion. In particular, radiation fields may subse-

ar guently generate addition@hallow dark solitons, so that

£ o0 our analytical results can also describe a splitting of an un-
= stable dark soliton into stable dark solitons and radiation.

£ _os Considering several examples of optical nonlinearities, we
g have demonstrated the most characteristic features of the
® _1of instability-induced (bounded and unboundedcenarios of

s the evolution of an unstable dark soltion. For example, in the
g 15 . . . case of the cubic-quintic nonlinearity, we have revealed

&‘C:’ 0.90 095 1.00 1.05 1.10 “collapse of dark solitons” when an unstable dark soliton

Soliton Velocity v transforms into two diverging kinks. We believe that the ana-
lytical approach we have developed here and the basic types
FIG. 12. Dynamics of the unstable dark soliton in the ma@g!l of i_nstability_ scenarios we analyzed for particular models _of
with the transiting nonlinearity(45) for «a=0.5, y=10, and OPtical nonlinearities are rather general to be useful for in-
1,=0.6. Soliton initial velocityv,=0.96. Shown aréa) the evolu-  Vestigating instabilities of dark solitons in other nonlinear
tion of the minimum soliton intensity,,;, and(b) the change of the Models.
relative position of a soliton on a moving background, for both the ~ Note added in proofAfter submitting our manuscript for
unperturbed solitoricurves 0 and two types of the bounded sce- publication we became aware of several papers devoted to
nario for the evolution of a perturbed dark solitmurves 1 and2  the analysis of linear instability of the so-called “bubbles”
Transitions from the unstable branch to the stable branghes 2) [V. G. Makhankov,Soliton PhenomenologiKluwer, Dor-
are shown in(c) by arrows on the plot of the renormalized momen- drecht, 1998 pp. 270-272 in the GNLS equation with
tum. cubic-quintic nonlinearity which are, in fact, dark solitons
with nonzero minimum intensity and no phase jump. More
deed two types of transitionswitching of a dark soliton detailed analytical and numerical results for this case, includ-
from the unstable branch to one of the stalpierked as 1 or ing the criterion of the dark-soliton instability and collapse-
2) branches of the stationary solutions. The first type of solilike scenario, are presented in the recent paper by I. Barash-
ton switching describes a transition to a stable dark solitorenkov and E. Panova, Physicadd, 114 (1993.
with larger value of the minimum intensitly,,,, and larger
velocity v [see curves 1 in Figs. 1&-12c)]. The renormal-
ized momentum of the unstable dark soliton increases as a
result of this transition, as shown in Fig. (82 The second Here we analyze the structure of the first-order perturba-
type of soliton switching describes a transition to anothetion correctiony, induced by the slow evolution of an un-
stable dark soliton, with a smaller value of the minimumstable dark soliton. Substituting the asymptotic multiscale
intensity | i, and smaller velocity [see curves 2 in Figs. expansion(17) into the GNLS equatior{2), we obtain the
12(a)-12c)]. In the latter case, the radiation in front of the linear problem for the functiony,
dark soliton is negligible and, as a result, a change of the
renormalized momentum of the unstable dark soliton is 2
small, as shown in Fig. 12). Both types of soliton transi- | EM_ZiU%‘F[F(q)_qu 1274 —F' (||
tions are described by the bounded scenario for the evolution bodé dé s ! s
of the soliton velocity.

APPENDIX A: FIRST-ORDER CORRECTION

dv 9y IR
X[WEYT +1gelPun]= =20 g5 —=+2-— s
VIlI. CONCLUSION

IR difg
We have presented, for the first time to our knowledge, a —2i IX d_g (A1)

self-consistent analytical approach that describes the nonlin-
ear regime of the evolution of unstable dark solitons in the
framework of the generalized nonlinear Satirmer equa- First, we multiply this equation byly%/d¢, integrate by
tion. We have shown that, near the threshold of the solitoparts with respect t&, and combine it with the complex
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conjugated equation. As a result, we obtain a restriction on IR 2

the parameter of the soliton velocity, vQ~ 5= EW. (AB)
dv 9P 2
———==0(e), (A2) _1sd &
dT ov vd 290 dT_ q w. (A7)

which gives the condition that the functiof is not expo-  The systen{A6) and (A7) is not closed because the param-
nentially diverging ag— * . (We have assumed here that etersd andw should be expressed through the velocity of the
the functiondys/d¢ tends to zero exponentially rapidly at perturbed dark soliton. To close the system, we use the bal-

superposition of four eigenfunctions of the linear operatofrom the GNLS equatiort2),

L and the corresponding forced solution due to the nonzero

right-hand side of EqA1). However, two eigenfunctions of an kK
the linear operatoL lead to a trivial renormalization of the ot ox’
soliton parameters and R, while the third one is exponen-

tially diverging. Therefore, to obtaia localized solutiorfor ~ where
1 we take into account only ormeontrivial eigenfunction of

the linear operatot and then rewrite the solution to Eg.

(A1) at the inner interval, wheré~O(1) andX— X4(T), in

the form

(A8)

iy IP*

_l 2 k_i( *
r1—§(|i//| —q), =2\ T ox

w) - (A9

Then we rewrite Eq(A8) with new variablest, X, and T
dov ~ _ IRs\ ds and integrate it with respect t6. As a result, in the first-
lﬂl:d—-l-lﬂl(f;v,Q)'*‘leflﬂs— Qst 7% 70 order approximation the power balance equati®8) re-

J .
v duces to the relation

q IRs)\ i
+ —Z(UQS— —) - (A3) v o L O 2

¢ JT ) g E(llfsoolﬁwL llf§xl//1m)|fw+z '//;“a_g_wswa_g »

where we used the notations
_ INg dv (A10)
QsEQ|x=xs, Rs= R|x=xs, v dT’

Q(X,T) being the amplitude of the localized eigenfunction. Where the symbok| 7 stands for a differencez(" —Z").
The functionys, cannot be written in an explicit form. How- Eduation(A10) closes the systerfA6) and (A7) and allows

ever, it follows from Eq.(A1) that the real and imaginary US t0 express the parameterandw through the first-order
parts of this function have symmetries opposite those of th@erivative of the soliton velocity as

real and imaginary parts of the functigh. As a result, the 2
L~ S 1 c“ dNg v dSg|[dv
function ¢, does not produce any contribution in the results d=— —F— | = —+5—|| 3= (A11)
; (c?=v?)|q dv 2 v |\ dT)’
of the subsequent analysis.
Now we consider the asymptotic values of the functions 1 N q
s and ¢, at infinities, which we denote as w= — UEJF a ﬁs °v (A12)
(c>—v?) | " ov 2 gv |\dT/
Ya=limg c.ps=Jqe= 125,y =lim, ...
. APPENDIX B: DERIVATION
To calculate the valueg,, explicitly, we rewrite Eq.(Al) OF ASYMPTOTIC EQUATIONS
for é— + o,
¢ Here we analyze the equations for the momentum and
d2ys, dyi, _ energy, which follow from the GNLS equatig®), and de-
a2 —2iv dE —2C e Sy ] rive the asymptotic equations governing the instability-

induced evolution of the soliton velocity(T). The balance

JR 14Sqdv\ equations for the GNLS equatidi2) can be written in the
= (ﬁ 5 ﬁ) Vs s (A4)  form
d dJo Jh 9
where S, and c are given by(10) and (16). Equation(A4) P_ —, —= _g,
has a simple solution at ox’  dt X

(B1)

wherep andh are the densities of the renormalized momen-

W =i(Q=d)Ept + H(w=W) (A5) tum and Hamiltonian and and g are the corresponding
1= B ¥ 2gsin(sy42)’ generalized flows. They are given by the expressions
whered(T), w(T), andW(X,T) are the parameters that sat- p= _( * 5_‘#_(/]%) -3 (B2)
isfy two constraints 2\ 7 ax X ly?)”
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1oy |? 1 g2 where
=5 % +§f [F()—F(q)]dl, (B3)
X q 5H__vq( _aRs)<aP5_ )+ +aRs)
_ LPY Py g\ 1|ay|? AT T
L~ L P oP. )
x| =+ 2N,
ov
1 (1w 1 2ol 12
—5| - FdI+ (g4~ a), (B4)
q

APPENDIX C: RADIATION FIELDS

4

i (oy* Py oy YT\ i
= (WW_W =2 | T Z2lF@=F(4*)] , _
Here we present a more detailed analysis of the asymp-
I (9(//) totic expansion(18) valid outside the soliton region. To do

x| ¢ -y —. (B5)  so, we substitute this expansion into the GNLS equat®n
X 2 and derive a relation between the components of the radia-

Now we express the balance equatigBd)—(B5) with tion fields,
new variablesé, X, and T and then integrate them with q 90;
respect te€. As a result, in the second-order approximation, Ur=——= (Cy

the equation for the momentum leads to an ordinary differ-
ential equation where two functions®; (X,T) obey the standard scalar

L R\ o wave equations
car 2V 24| vQs Sy F2(qdmow) 705 505 0 c2
IRs 12 S axz Y (C2)
X\ Qst x| B6
> X ) (B9 The general solution to either of the wave equati@@® can

o , . be presented as a superposition of two counterpropagating
Here the dgrlvatl\{elldT is evaluated in the reference frame \yaves moving with the finite speed Since the dark soliton
of the moving soliton propagates with the velocity, which is less than the limit-
d ing speedc of linear waves|v|<c, the radiation field in
— = front of the dark soliton is presented by the wave propagat-
dT X=X(T) ing to the right, while the radiaton behind the dark soliton
moves to the left (see Fig. L In other words,

andP is the renormalized momentum of the perturbed dark® ; =@, (X=cT) and the relationgC1) can be rewritten as
soliton

J d
9T TUax

. 999
+ o U7 =+— . (CS)
P=J p d&é=Py(v,q)+ €dP, (B7) c JX
These relations are valid everywhere on the a«iacluding
where the soliton regiorX— X¢(T). On the other hand, in Appen-
dix A we have found the asymptotic valugs,, for the first-
Sp— ﬂ(v _f?_Rs)<f9Ps_ )—(Q +9_Rs) order correctiony; as é— = [see Eq.(A5)]. Therefore,
c? s JT )\ 9q ST oaX using the expansiond7) and(18) and the matching condi-
tion e£=X—X4(T), we can evaluate the valuds™ and
" &—PS+2NS>. IOE19X for é— 2 andX—X(T),
Jdv
. PICH IR
On the other hand, the balance equation for Hamiltonian Um=Wstw, —om—Qst —o-*d, (C4

leads to the second differential equation
whereWSEW|X:XS. Then, using the relatio(€3) and(A6),
+2(qud—c?w) we express the functior@ andRg through the derivative of
the velocityv (T) of the perturbed dark soliton

1dH_2 g IR
e gt AvwmadieQsm o3

| o+ IR B8 IRs
Qst —x |- (B8) vQs— ﬁ=cd, (C5)
H is the renormalized Hamiltonian of the GNLS equation IRy ¢
calculated for the perturbed dark soliton Qs+ X aw. (Co)
+ oo . . .
H:f h dé=Hy(v,q)+ €dH, (B9) Finally, we note that, by extending the asymptotic expan-
— S sion (18) into higher orders, we can also describe nonlinear
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and dispersive effects for the evolution of the radiationalso [1,27]) that the long-term evolution of the radiation
fields. However, in order to take both effects in the samdields U=(X,7) obeys two uncoupled KdV equations
order of the asymptotic expansion, we have to reorder the

multiscale expansion according to the transformation JuU* JuU*  3u*
F8c———vU" —+ —5=0, (C7)
U*—eU™(XFcT,7), o XX
wherer= €. Then, straightforward calculations revésée  wherev=2[3F’(q)+qF"(q)].
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