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Nonlinear theory describing the instability-induced dynamics of dark solitons in the generalized nonlinear
Schrödinger equation is presented. Equations for the evolution of an unstable dark soliton, including its
transformation into a stable soliton, are derived using a multiscale asymptotic technique valid near the soliton
instability threshold. Results of the asymptotic theory are applied to analyze dark solitons in physically
important models of optical nonlinearities, includingcompeting, saturable, and transiting nonlinearities. It is
shown that in all these models dark solitonsmay become unstable, and two general~bounded and unbounded!
scenarios of the instability development are investigated analytically. Results of direct numerical simulations of
the generalized nonlinear Schro¨dinger equation are also presented, which confirm predictions of the analytical
approach and display main features of the instability-induced dynamics of dark solitons beyond the applica-
bility limits of the multiscale asymptotic theory.@S1063-651X~96!09707-3#

PACS number~s!: 03.40.Kf, 42.60.Jf, 42.65.Jx

I. INTRODUCTION

Dark solitons are observed as localized intensity dips on a
continuous-wave~cw! background, which are usually ac-
companied by a nontrivial phase change@1#. For a cubic~or
Kerr-type! nonlinearity, temporal dark solitonshave been
predicted to exist in the normal dispersion regime of optical
fibers and they have been already observed experimentally.
These solitons are described by the integrable~cubic! non-
linear Schro¨dinger ~NLS! equation@2,3#. Similarly, spatial
dark solitonscan propagate in nonlinear planar waveguides
as stationary variations of the beam profile that do not dif-
fract because diffraction is balanced by a defocusing nonlin-
earity. These self-trapped waves have been suggested as per-
fect self-induced optical waveguides to guide or steer another
~probe! beam, thus manipulating light with light~see, e.g.,
@4#!. Recent experimental observations of spatial dark soli-
tons@4–8# and demonstration of their successful application
for data coding and transmission in optical fibers@9# empha-
size the importance of optical dark solitons for all-optical
proceeding, switching, signal transmission, and other optical
applications.

Optical dark solitons are of both fundamental and techno-
logical importance if they are stable under propagation. For
temporal solitons, such stability has been proved in the
framework of the cubic NLS equation, which is valid only
for a weak ~Kerr! nonlinearity. For spatial solitons, much
higher powers are usually required, so that real optical ma-
terials demonstrate essentially non-Kerr behavior of the non-
linear refractive index for increasing light intensity. Typi-
cally, the nonlinear refractive index deviates from Kerr and,
in particular, it saturates at higher intensities. Therefore,
models with a more general form of the intensity-dependent
refractive index must be employed to analyze dark solitons
and their stability in suchnon-Kerr materials. In dimension-

less units, these models can be reduced to the generalized
NLS ~GNLS! equation

2i
]C

]t
1

]2C

]x2
2F~ uCu2!C50, ~1!

whereC(x,t) is a slowly varying envelope of electric field
and t andx have different meanings depending on the con-
text of the physical problem under consideration. For ex-
ample, for the stationary beam propagation in a dielectric
waveguide,t andx stand for two spatial coordinates, longi-
tudinal and transverse ones. Below, for simplicity, we call
these variables ‘‘time’’ and ‘‘coordinate,’’ respectively.

FunctionF(I ) is proportional to the intensity-dependent
change in the refractive index of an optical material, which is
defined by the wave intensityI[uCu2. For F(I )5I the
model ~1! becomes integrable@2# and it supports conven-
tional NLS dark solitons corresponding to a defocusing Kerr
medium.

The generalized NLS equation~1! has been considered in
many papers for analyzing the beam self-focusing and prop-
erties of spatial bright and dark solitons~see, e.g., Refs.@10–
20# to cite a few!. All types of non-Kerr nonlinearities that
appear in the problems of nonlinear optics can be divided,
generally speaking, intothree general classes: ~i! competing
nonlinearities, e.g., focusing~defocusing! cubic and defocus-
ing ~focusing! quintic nonlinearity@11–14,17# ~ii ! saturable
nonlinearities @15–19#, and ~iii ! transiting nonlinearities
@11,12#.

Usually, the nonlinear refractive index of an optical ma-
terial deviates from the linear~Kerr! dependence for larger
light intensities. Nonideality of the nonlinear optical re-
sponse is known for semiconductor~e.g., AlxGa12xAs, CdS,
and CdS12xSex) waveguides and semiconductor-doped
glasses~see, e.g.,@21#!. A larger deviation from the Kerr
nonlinearity is observed for nonlinear polymers. For ex-
ample, recently the measurements of a large nonresonant
nonlinearity in single-crystalp-toluene sulfonate at 1600 nm
@22# revealed a variation of the nonlinear refractive index
with the input intensity, which can be modeled bycompet-

*Permanent address: Department of Mathematics, Monash Uni-
versity, Clayton, Victoria 3168, Australia.

PHYSICAL REVIEW E AUGUST 1996VOLUME 54, NUMBER 2

541063-651X/96/54~2!/2015~18!/$10.00 2015 © 1996 The American Physical Society



ing, cubic-quintic nonlinearityDn nl(I )5n2I1n3I
2. This

model describes a competition between self-focusing
(n2.0), at smaller intensities, and self-defocusing
(n3,0), at larger intensities.

Models withsaturable nonlinearitiesare the most typical
ones in nonlinear optics. For high power levels saturation of
nonlinearity has been measured in many materials and con-
sequently the maximum refractive index change has been
reported~see, e.g.,@23#!. We do not linger on the physical
mechanizms behind the saturation but merely note that it
exists in many nonlinear media being usually described by
phenomenological models introduced more than 25 years
ago~see, e.g., Ref.@24#!. The effective GNLS equation with
saturable nonlinearity is also the basic model@18# to describe
the recently discovered~111!-dimensional photovoltaic dark
solitons in photovoltaic-photorefractive materials as
LiNbO3 @8#. Unlike the phenomenological models usually
used to describe saturation of nonlinearity, for the case of
photovoltaic solitons this model finds its rigorous justifica-
tion ~see, e.g., Refs.@18,19#!.

Finally, bistable solitonsintroduced by Kaplan@11# usu-
ally require a special dependence of the intensity-dependent
refractive index on light intensity, which should vary from
one kind of the Kerr nonlinearity, for small intensities, to
another kind with a different value ofn2 , for larger intensi-
ties. This type of nonlinearity is known to support bistable
dark solitons@12# as well. Unfortunately, examples of non-
linear optical materials with such dependences are not
known yet, but the bistable solitons possess attractive prop-
erties useful for their possible futuristic applications in all-
optical logic and switching devices.

The stability of bright solitons of the GNLS equation~1!
has been extensively investigated for many years and the
criterion for the soliton stability, as well as different sce-
narios of the instability-induced dynamics of bright solitons,
has been found and analyzed analytically and numerically
~for a review see, e.g., Ref.@25#!. Recently, we have pre-
sented an asymptotic analytical approach@20# to this prob-
lem that not only describes, in a self-consistent manner, the
long-term dynamics of unstable solitons but also reveals al-
ternative scenarios of the evolution of unstable bright soli-
tons of the GNLS equation.

In contrast to bright solitons, the general stability criterion
for dark solitons of the GNLS equation~1! has not been
understood until recently even in the framework of the linear
stability analysis, and this issue created a lot of misunder-
standing in the past. For example, we notice unsuccessful
efforts to apply the known criterion for bright solitons to the
case of dark solitons using, by a similarity, the so-called
soliton complementary power~see, e.g., Refs.@12,17#!.
However, the recent analysis of instability of dark solitons
and its application to a special~solvable! model of a satu-
rable medium displayed a natural way to analyze such insta-
bility by means of the variational principle for dark solitons
based on the renormalized soliton momentum@26#.

In the present paper we investigate the problem of insta-
bility of dark solitons of the GNLS equation~1! in details
and develop an analytical approach combining it with nu-
merical simulations. The multiscale asymptotic method we
employ here allows us to describe bothlinear ~initial expo-
nential growth of instability! andnonlinear ~long-term evo-

lution! regimes of the instability-induced dynamics of dark
solitons in the GNLS equation. Our analytical results are
rather general; they do not depend crucially on a particular
choice of the nonlinear functionF(I ). The only assumption
for the asymptotic technique to be applied is a ‘‘slow’’ dy-
namics of the perturbed dark soliton; this assumption is al-
ways valid near the threshold of the soliton instability. How-
ever, in contrast to bright solitons of the GNLS equation, for
dark solitons this situation is rather typical because for any
type of the nonlinear functionF(I ) dark solitons are always
stable in the small-amplitude limit being described by an
effective Korteweg–de Vries~KdV! equation~see, e.g., Ref.
@1#!. Therefore, if such an instability region exists, it occurs
only for dark solitons of larger amplitudes and there exists at
least one critical value of the soliton velocity separating
stable and unstable stationary waves.

Investigating the instability of dark solitons of the GNLS
equation~1!, we follow the ideas of a multiscale asymptotic
technique recently developed by us in Ref.@20# for unstable
bright solitons. However, we would like to emphasize that
the dynamics of an unstable dark solitondiffers drastically
from the corresponding dynamics of bright solitons.

Indeed, for the case of bright solitons there exist generally
three scenariosof the instability-induced soliton dynamics,
namely, the transition to and oscillations around a stable
state, soliton decay into dispersive-diffractive waves, and
soliton collapse, i.e., unlimited growth of the soliton ampli-
tude. As shown in Ref.@20#, all these scenarios can be pre-
dicted by an asymptotic approach that derivesadiabatic
equationsfor the soliton parameters resembling Newton’s
equations for an effective particle in aconservativesystem
moving under the action of an external potential force.

For the case of dark solitons, as we demonstrate here, the
instability development is accompanied by radiation. This
radiation escapes the unstable dark soliton and propagates
along the cw background inducing ‘‘an effective dissipa-
tion’’ to a dark soliton. As a result, an effective asymptotic
equation governing the development of the dark soliton in-
stability corresponds to the equation for an effective particle
moving under the action of a nonlineardissipativeforce. The
role of radiation is very important and can be understood
through the following simple physics. Indeed, when an un-
stable dark soliton evolves into a stable soliton, this should
lead to a change of the phase difference across the dark soli-
ton. Therefore, such a process is always accompanied by
radiation that removes an excess of phase during the soliton
transition, first locally, around the soliton core, but then
propagating this phase difference to infinities.

The paper is organized as follows. In Sec. II we discuss
properties of dark solitons of the GNLS equation~1! and
present a summary of the multiscale asymptotic analysis that
describes the instability-induced dynamics of a dark soliton
near the instability threshold defined by the critical value of
the soliton velocity. Details of the asymptotic analysis are
given in Appendixes A–C. General features of equations of
the asymptotic theory are discussed in Sec. III, where some
analytical solutions are also found and analyzed. Using these
analytical solutions as well as direct numerical simulations,
in Secs. IV–VI we consider three typical, physically impor-
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tant examples of the GNLS equation and describe character-
istic scenarios of the instability-induced evolution of dark
solitons. Finally, Sec. VII concludes the paper.

II. ASYMPTOTIC APPROACH
TO SOLITON INSTABILITIES

A. Stationary soliton solutions

Dark solitons exist on a cw background wave of a con-
stant amplitudeCb(t)5Aqei (Vt1R), whereV52 1

2F(q) and
R is an arbitrary constant. The cw background is modulation-
ally stable providedF8(q).0 @27#. In this stable case, we
are looking for solutions of Eq. ~1! in the form
C(x,t)5c(x,t)eiVt and consider the corresponding equa-
tion for the auxiliary functionc,

2i
]c

]t
1

]2c

]x2
1@F~q!2F~ ucu2!#c50. ~2!

Now, the dark solitoncs is defined as a localized traveling-
wave solution of Eq.~2!,

cs~j!5F~j!eiu~j!, ~3!

wherej5x2vt and two real functionsF[F(j;v,q) and
u[u(j;v,q) depend on two parameters, the soliton velocity
v and the intensityq of the cw background. These functions
satisfy the ordinary differential equations

du

dj
5vS 12

q

F2D , ~4!

d2F

dj2
1v2S F2

q2

F3D1@F~q!2F~F2!#F50. ~5!

Here we considernonzero boundary conditionsat both in-
finitiesF→Aq andu→R6 1

2Ss asj→6`, whereSs has the
meaning of the total phase shift across the dark soliton. In
addition, we classify all localized solutions on a nonvanish-
ing background asdark solitonsif ucs(j)u2,q for anyj and
bright-like dark solitonsotherwise ~see also@14,27#!. Al-
though our theory can be applied to all types of localized
solutions with nonzero asymptotes, we consider here only
the case of conventional dark solitons, which have the mini-
mum intensityImin lower than the background intensityq.

The solution~3!–~5! describes a dark soliton with the ve-
locity v, which propagates on the~stationary! cw back-
groundcb5AqeiR; the dark soliton modifies locally the in-
tensityq and the phaseR of the background. However, we
can also generalize this particular solution and consider the
dark solitons propagating on the moving cw background
cb5Aqei @kx2(k2/2)t1R#. In this case, a more general dark
soliton solution follows from a simple Galilei transformation

c̃~x,t !5c~x8,t8!eik@x81~k/2!t8#, ~6!

wherex85x2kt, t85t, and functionsc̃ andc satisfy the
same GNLS equation~2! in the corresponding variables. Ap-
plying the transformation~6! at k5v, we can construct the
~stationary! dark soliton solution located at the cw back-
ground moving with the phase velocityvb52/2. We shall

use this representation of the dark soliton solutions in some
numerical simulations of Eq.~2! described in Secs. IV–VI
below.

As follows from Eq.~5!, the solution for a dark soliton is
defined by two parametersv and q. Under the action of
perturbations growing due to the soliton instability, the ve-
locity v becomes a varying quantity that can be used to char-
acterize the dark soliton as an effective particle. On the other
hand, in spite of the fixed boundary conditions at infinities,
some local variationsof the background intensityq in the
vicinity of the soliton are still possible and these variations
appear as radiative waves or additional shallow dark solitons
escaping the unstable dark soliton.

In order to describe the instability-induced dynamics of a
dark soliton in the GNLS equation~2!, we introduce the
important integral characteristics calculated for the soliton
solution~3!. Following @28,29#, we use the following invari-
ants: complementary powerN, renormalized momentumP,
and renormalized HamiltonianH, and calculate them for the
stationary soliton solution~3! ~we denote these values by the
indicess),

Ns~v,q!5
1

2E2`

1`

~ ucsu22q!dj5
1

2E2`

1`

~F22q!dj,

~7!

Ps~v,q!5
i

2E2`

1`S cs*
dcs

dj
2cs

dcs*

dj D S 12
q

ucsu2
Ddj

52vE
2`

1`~F22q!2

F2 dj, ~8!

Hs~v,q!5
1

2E2`

1` H Udcs

dj U21E
q

ucsu
2

@F~ I !2F~q!#dIJ dj

5
1

2E2`

1` H S dF

dj D 21v2
~F22q!2

F2

1E
q

F2

@F~ I !2F~q!#dIJ dj. ~9!

The physical meaning of these invariants has been clarified
in Ref. @28#. Importantly, each of these invariants is con-
structed as a difference between the corresponding~standard!
integral of motion of the GNLS equation~2! and a contribu-
tion from the cw background; the latter is conserved inde-
pendently provided that the boundary conditions at infinities
are fixed~see discussions in Ref.@28#!. Thus, if a cw back-
ground has ‘‘a defect’’ in the form of a hole described by a
dark soliton, the renormalized invariants just correspond to
the hole itself excluding the background. As follows from
the analysis presented below, the renormalized momentum
~8! is the most important invariant of a dark soliton~see also
Ref. @28#!. In addition, we can find the analytical expression
for the total phase shiftSs of the background wave across the
dark soliton,

Ss~v,q!5vE
2`

1`S 12
q

F2Ddj. ~10!
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There exist several remarkable relations between the soli-
ton invariants~7!–~10!. First, we can find relations for the
variations of the renormalized momentumPs and energy
Hs ,

v
]Ps

]v
1

]Hs

]v
50, ~11!

vS ]Ps

]q
2SsD1S ]Hs

]q
1F8~q!NsD50, ~12!

where F8(q)[dF/dq. These relations represent a varia-
tional principle for dark solitons already established in Refs.
@28,29# and can be used for characterizing a variation of the
soliton parameters in the so-calledadiabatic approximation
@28#.

Next, we notice that the renormalized momentum can be
expressed through the complementary powerNs and the total
phase shiftSs ,

Ps5qSs22vNs . ~13!

The relation~13!, together with Eqs.~11! and ~12!, leads to
two other equations

]Ps

]v
12Ns5q

]Ss
]v

22v
]Ns

]v
, ~14!

]Ps

]q
2Ss5v

]Ss
]v

2
2c2

q

]Ns

]v
, ~15!

where we have introduced the velocity of linear waves
propagating along the cw background,

c5Aq

2
F8~q!. ~16!

The soliton velocityv is always less than this limiting value,
uvu,c.

Thus, using Eqs.~11!, ~14!, and~15!, we can express the
three invariants calculated for the stationary soliton solution
~3!, i.e., the soliton complementary power, the soliton renor-
malized energy, and the total phase shift, through only one,
the soliton renormalized momentum. Therefore, the
instability-induced dynamics of a dark soliton is finally gov-
erned by a unique equation for the only parameter, the soli-
ton velocityv.

B. Equation for soliton velocity

We assume that the stationary dark soliton~3! of the
GNLS equation~2! can become unstable with respect to
small perturbations in a certain region of parameters of the
function F(I ) and for certain values of the soliton velocity
v. Our main purpose is to describe analytically the evolution
of an unstable dark soliton deriving from the GNLS equation
~2! a simplified ordinary differential equation for the slowly
varying soliton velocity and determining the radiation fields
generated during the soliton evolution. Such a reduction can
be done in the framework of the perturbation theory for soli-
tons @30# if a change of the soliton parameters is slow in
time. It is obvious that soliton instability develops slowly

near the instability threshold, which is defined by the equa-
tion ]Ps /]vuv5vcr

50 ~see@26#!, wherevcr is a critical value
for the dark soliton velocity. Furthermore, we suppose that
the amplitude of instability-induced perturbations remains
small for an extended time interval and the localized wave is
close to a dark solitoncs with slowly ~adiabatically! varying
parameters. Therefore, we can introduce a small parameter
e, which characterizes a small perturbation of the unstable
dark soliton, and look for solutionsc to Eq. ~2! in the form
of the asymptotic~multiscale! expansion

c5$cs~j;v,q!1ec1~j;v,q;X,T!

1e2c2~j;v,q;X,T!1O~e3!%eiR~X,T!, ~17!

where

j5x2
1

e
Xs~T!, Xs~T!5E

0

T

v~T8!dT8, X5ex, T5et,

and e!1. Here v(T) (v.0) and R(X,T) describe the
slowly varying soliton velocity and local phase of the back-
ground wave near the soliton, respectively,X andT stand for
‘‘slow’’ spatial and temporal variables, andXs(T) is the co-
ordinate of the soliton center~where the intensity reaches its
minimum valueImin) with respect to theX axis ~see Fig. 1!.

Using the asymptotic expansion~17! and the form of the
stationary soliton solutionscs(j) given by Eqs.~3!–~5!, in
Appendix A we present the analysis of the first-order pertur-
bation correctionc1 . This correction can be found as a so-
lution of a linear inhomogeneous equation@see Eq.~A1! in
Appendix A#. It follows from this analysis that the function
c1 varies along two characteristic scales ofj, which can be
treated as theinner interval with respect to the core of the
solitary wave~see Fig. 1! whenj;O(1) andX→Xs(T) and
the outer interval, for which j→6` and
X2Xs(T);O(1). Asymptotic expansions for each interval
should be analyzed separately.

FIG. 1. Schematic presentation of the instability-induced evolu-
tion of a dark soliton for a bounded scenario, when a transformation
of an unstable dark soliton is observed. The initial~unstable! dark
soliton is shown by a dashed curve and two stable~created after the
splitting! dark solitons and radiation fields emitted during the insta-
bility development are shown by a solid curve. Notations are ex-
plained in the text.
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Generally speaking, solutions to the linear inhomogeneous
equations may diverge exponentially along the inner interval
asj→` ~see, e.g., discussion of the asymptotic technique in
Ref. @20#!. Such divergences usually break down the asymp-
totic expansion procedure. However, in the vicinity of the
instability threshold, where]Ps /]v;O(e), the first-order
correctionc1 can be shown to be free of exponentially di-
verging terms~see Appendix A!. Therefore, we can find this
correction in an implicit form@see Eq.~A3! in Appendix A#
and then proceed with the analysis of the second-order ap-
proximation where a bounded solution for the second-order
perturbation correctionc2 should be found. In this way, the
function c2 does not have exponentially diverging terms if
the velocity of the perturbed dark soliton satisfies a certain
differential equation,solvability condition@see Eq.~19! be-
low#. In Appendix B we present derivation of this equation
from the balance equations for two conserved quantities,
namely, renormalized momentum and Hamiltonian of the
GNLS equation~2!. It can be shown that the asymptotic
approach that involves invariants is completely equivalent to
a direct multiscale analysis. Next we proceed to the analysis
of the instability-induced evolution of the field in the outer
interval of the asymptotic expansions. As follows from Eq.
~A5! of Appendix A, the first-order correctionc1 grows pro-
portionally to j as j→6`. Therefore, this perturbation is
still secular, but this secular growth is power law instead of
exponential. It is known~see, e.g.,@31#! that such algebra-
ically divergent terms of multiscale asymptotic expansions
corresponds to radiation emitted by the soliton. Therefore, in
the region where the localized wave vanishes, we seek solu-
tions to the GNLS equation~2! in the asymptotic form

c`
65 limj→6`c5F6~X,T!exp@ iQ6~X,T!#, ~18!

where

uc`
6u25~F6!25q1eU6~X,T!1O~e2!,

Q65Q0
6~X,T!1O~e!.

This asymptotic expansion is analyzed in Appendix C, where
we show that the radiation fieldsU6 outside the soliton re-
gion are presented by a superposition of two linear waves
propagating with the velocities6c, i.e., U65U6(X7cT)
~see Fig. 1!. A profile of the radiation fields generated by the
perturbed dark soliton can be found explicitly@see Eqs.~25!
and ~26! below# by matching the asymptotic series~17! and
~18! by a formal extensionej5X2Xs(T).

Now we present the main asymptotic equations of the
multiscale perturbative approach in an explicit form. Using
the results given by Eqs.~14!, ~15!, ~A11!, ~A12!, ~C5!, and
~C6!, we rewrite the equation for the renormalized momen-
tum P @see Eqs.~B6! and ~B7! in Appendix B# as a differ-
ential equation for the soliton velocityv(T),

d

dT F1e Ps~v,q!1Ms~v,q!
dv
dTG5Ks~v,q!S dvdTD

2

, ~19!

wherePs is the renormalized momentum calculated for the
dark soliton according to Eq.~8! and the coefficients are
defined as

Ms~v,q!5F2cq S ]Ns

]v D 21 q

2c S ]Ss
]v D 2G ~20!

and

Ks~v,q!5
1

~c22v2! F2cvq S ]Ns

]v D 212c
]Ns

]v
]Ss
]v

1
vq
2c S ]Ss

]v D 2G . ~21!

Equations~19!–~21! present one of the main results of our
asymptotic analysis.

On the other hand, similar calculations show that the
equation for the Hamiltonian@see Eqs.~B8! and~B9! in Ap-
pendix B# leads to the other differential equation forv(T),

d

dT F1e Hs~v,q!2vMs~v,q!
dv
dTG5Ls~v,q!S dvdTD

2

, ~22!

whereHs is the soliton renormalized energy defined by Eq.
~9! and

Ls~v,q!52
c

~c22v2! F2c2q S ]Ns

]v D 212v
]Ns

]v
]Ss
]v

1
q

2 S ]Ss
]v D 2G . ~23!

We note that Eqs.~19! and~22! areself-consistentbecause it
is easy to verify thatLs(v,q)52Ms(v,q) 2vKs(v,q). Be-
sides, we can immediately see that the variational principle
for dark solitons~see discussions in Ref.@28#!, which is ex-
pressed in the adiabatic~zeroth-order! approximation by Eq.
~11!, is still valid when a dark soliton evolves under the
action of the instability-induced perturbations. Indeed, it fol-
lows from Eqs.~19! and~22! that the first-order variations of
the renormalized momentumdP and HamiltoniandH of a
perturbed dark soliton are related by the equation

vdP1dH50. ~24!

However, neither momentum nor Hamiltonian of the per-
turbed dark soliton is a conserved quantity and this leads to
an essentially dissipative character of the instability-induced
dynamics of unstable dark solitons. Such a dissipative dy-
namics of the dark soliton instability is explained by genera-
tion of the radiation fields propagating away from the per-
turbed dark soliton to the right and to the left. The profile of
the radiation fields is given by the boundary condition~C4!
estimated at the soliton positionX5Xs(T). Using the previ-
ous analysis, we can rewrite~C4! in the explicit form

U65z6~v,q!
dv
dT

at X5Xs~T!, ~25!

where

z6~v,q!52
1

c~c7v ! S c ]Ns

]v
6
q

2

]Ss
]v D . ~26!
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Finally, we show that the perturbed dark soliton and two
radiation fields represent a complete system because the total
momentum and energy are conserved quantities. Indeed, let
us introduce the total momentum of the wave field according
to the expression

Ptot5P1eH E
2`

Xs~T!

p`
2~X1cT!dX1E

Xs~T!

1`

p`
1~X2cT!dXJ ,

~27!

where P is the renormalized momentum of the perturbed
dark soliton given by Eq.~B7! in Appendix B andp`

6 are the
renormalized momentum densities calculated for the radia-
tion fields. The leading order of these densities can be found
by substituting Eq.~18! into Eq.~B2! defined in Appendix B,

p`
652U6

]Q0
6

]X
57S cqD ~U6!2, ~28!

where we have used the result~C3! from Appendix C. Using
Eqs.~25! and ~26!, we can rewrite Eq.~19! in the form

1

e

dP

dT
5
c~c2v !

q
~U1!2U

X5Xs~T!

2
c~c1v !

q
~U2!2U

X5Xs~T!

.

~29!

By virtue of Eq. ~29! we prove that the derivative ofPtot ,
defined by Eq.~27!, with respect toT is identically equal to
zero. Similarly, we can show that the total Hamiltonian of
the perturbed dark soliton and two radiation fields is also a
conserved quantity. This means that the equation for the soli-
ton velocity and the radiation fields givea complete descrip-
tion of the instability-induced evolution of a dark soliton
near the instability threshold.

The asymptotic equations~19! or ~22! cannot be generally
integrated. Nevertheless, they describe a rather simple sce-
nario of the dark soliton instability and related evolution of
the radiation fields~25!. The general features of this dynam-
ics are analyzed in Sec. III, whereas Secs. IV–VI are devoted
to applications of our general approach to some particular
types of the GNLS equation~2! that are important in the
theory of optical dark solitons.

III. ANALYSIS OF ASYMPTOTIC EQUATIONS

A. Criterion of linear instability

First we consider a linear approximation of the asymptotic
equation~19! substitutingv5v01v1e

lT, where v0 is the
initial velocity of the unperturbed dark soliton andv1 is its
small deviation caused by an initial perturbation. Neglecting
nonlinear terms in Eq.~19!, we find the eigenvaluel,

l52
1

eMs~v0 ,q! S ]Ps

]v D U
v5v0

. ~30!

The result~30! can be treated as the first-order approxima-
tion to the eigenvalue of the linear stability problem, which
is valid only provided that]Ps /]vuv5v0

;O(e). This im-

plies that the valuev0 of the velocity of the unperturbed dark
soliton should be chosen near the critical valuevcr where the

derivative ]Ps /]v vanishes. The result~30! confirms the
general criterion of the dark soliton instability discussed in
Ref. @26# and proves that dark solitons become unstable pro-
vided ]Ps /]vuv5v0

,0 @we notice that the coefficient

Ms(v0 ,q) is always positive; see the definition in Eq.~20!#.
Inside the instability region there exists a real positive eigen-
value l that determines the growth rate of exponentially
growing perturbations. Although a mathematically rigorous
proof of the general linear stability theorem for dark solitons
is still an open problem, the linear analysis implies thatall
dark solitons with negative slope of the renormalized mo-
mentum Ps(v) defined by Eq. (8) are unstable@32#. Note that
this criterion isdifferent from that for bright solitons of the
GNLS equation, which become unstable if the derivative of
the soliton powerNs on the soliton propagation constantb
~or frequency! is negative, i.e.,dNs /db,0 ~see, e.g.,@25#!.

Now we analyze the general conditions when the instabil-
ity of dark solitons can occur. First consider the small-
amplitude limit, whenuvu→c. In this case, as follows from
Eqs. ~27! and ~28!, the renormalized momentum of the
small-amplitude wave fields is asymptotically given by

P657
ec

q E2`

1`

~U6!2dX. ~31!

Using the analytical approach discussed in Ref.@1# ~see also
Appendix C!, we can reduce the GNLS equation~2! to a pair
of uncoupled KdV equations describing long-wave small-
amplitude perturbations of the continuous-wave background
@see Eqs.~C7!#. The soliton solutions to these equations have
the well-known form of the KdV solitons,

Us
652

12ek2

n
sech2FkSX7cT6

k2

2c
t D G , ~32!

wherek determines the soliton amplitude. These expressions
present the so-called small-amplitude approximation to the
stationary soliton solutions of the GNLS equation~2!. Note
that this approximation fails forn→0 when the quadratic
nonlinear term in the KdV equations vanishes. However, in
this paper we consider the case when Eq.~2! supports only
conventional dark solitons, which are described by the func-
tionsUs

6,0 for anyX. The corresponding KdV equations
~C7! derived in this case always have a positive coefficient
n.

It is known that in the framework of the KdV equation
solitons are always stable. This result can be verified directly
with the help of Eq.~31! by evaluating the slopes of the
renormalized soliton momentaP6 with respect to the soliton
velocity v56@c2e2k2/2c1O(e4)#,

1

e S ]P6

]v D U
v→6c

→
576c2k

qn2
.

Therefore, the important conclusion is the following: Small-
amplitude~shallow! dark solitons of the GNLS equation~2!
arealways stableand the instability can occur either for in-
termediate values of the soliton velocityv or in the limit of
black soliton corresponding tov→0. The former case is not
generic and depends strongly on the type of nonlinearity in-
volved ~see, as an example, the case of transiting nonlinear-
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ity discussed in Sec. VI below!. In the latter case, some
general results can be obtained independently of the type of
nonlinearity supporting dark solitons~see also two examples
in Secs. IV and V below!.

Therefore, we analyze now the limit of small velocities
v→0 and calculate again the slope]Ps /]v defined by Eq.
~14!. BecauseNs ,Ss are always negative for conventional
dark solitons@see Eqs.~7! and~10! provided thatF2,q and
v.0# we note that the slope]Ps /]v can become negativein
the limit v→0 only if

S ]Ss
]v D U

v50

,
2

q
NsU

v50

,0. ~33!

The result~33! gives the necessary condition for instability
of dark solitons to occur. For many models, the total phase
shift Ss is a monotonic function rising from the limiting
value2p at v→0 ~‘‘black’’ soliton ! to zero atv→c ~small-
amplitude or ‘‘gray’’ solitons!. For example, this situation is
typical for the Kerr and power-law nonlinearityF;I p as
well as for the generalized Kerr model with the nonlinear
function F(I )5I1bI 2, b.0 ~see@17#!. For these models
the slope]Ss /]v is always positive and instabilities of dark
solitons are not observed. However, for other models the
instability of dark solitons does take place and it is observed
for small velocities when the change of the soliton phase
becomes nonmonotonic.

In general, the instability for small velocities corresponds
to two distinct types of dependences of the renormalized mo-
mentumPs vs v @see Figs. 2~a! and 2~b!#. In the first case, a

dark soliton always has a zero intensity atv50, so that the
renormalized momentumPs(v) is not defined atv50 ap-
proachingp for v→02 or 2p for v→01, as shown in
Fig. 2~a!. In this case, the black soliton corresponds to the
phase jumpp and instability occurs when the function
Ps(v) displays a negative slope@see Fig. 2~a!, dashed curve#.
The other, qualitatively different, case is presented in Fig.
2~b! and corresponds to the situation when a black soliton,
i.e., a soliton atv50, does not reach the zero minimum
intensity. This is possible, for example, when nonlinearity is
self-focusing for small intensities~see Sec. IV!. Then the
black soliton with nonzero minimum intensity has no phase
jump across the localized region and thereforePs(0)50.
This kind of ‘‘phase transition’’ corresponds to a sudden
structural change of the soliton renormalized momentum, as
shown in Fig. 2~b!; and the appearence of the negative slope
indicating unstable solitons.

B. Nonlinear regime: Analytical solutions

Now we analyze the asymptotic equations~19! and ~25!
that describe the nonlinear dynamics of an unstable dark soli-
ton and radiation fields emitted. It is clear that due to the
factor 1/e in Eq. ~19! our asymptotic approach is valid only
in a small-velocity region near the critical veluevcr . There-
fore, we apply a small-amplitude~but still nonlinear! ap-
proximation substitutingv5v01eV(T), in order to inte-
grate Eq.~19! and reduce it to the form

Ms~v0 ,q!
dV

dT
1
1

e S ]Ps

]v D U
v5v0

V1
1

2 S ]2Ps

]v2 D U
v5v0

V250.

~34!

This equation resembles the motion equation of an effective
particle of massMs and velocityV under the action of a
nonlinear dissipative force. Therefore, the instability-induced
dynamics of a dark soliton may demonstrate two types of
scenarios, bounded and unbounded ones.

1. Soliton evolution: Bounded scenario

The type of the instability scenario depends on a sign of
the initial perturbation and the particular form of the depen-
dencePs(v). We consider the case when dark solitons of
smaller velocity are linearly unstable, while small-amplitude
solitons with the velocities close to the limiting velocityc
are stable. Therefore, for this type of the functionsPs(v) the
derivative (]2Ps /]v

2)uv5v0
in Eq. ~34! is positive@we recall

thatPs,0 for v.0 see Eq.~8!#. Then, as follows from Eq.
~34!, any perturbation with the positive change of the veloc-
ity, i.e., V(0)[V0.0, leads to a bounded scenario of the
dark soliton instability when such a perturbation increases
the soliton velocityv and decreases its amplitude, which is
proportional to (q2Imin)

1/2 ~see Fig. 1!. This process corre-
sponds to a transformation of an unstable dark soliton into a
stable soliton of larger velocity. Such a transformation is
described by a simple bounded solution of Eq.~34!,

FIG. 2. Schematic presentation of the renormalized momentum
Ps(v) of the dark soliton for two distinct cases:~a! the minimum
intensity always vanishes whenV→0 and~b! the minimum inten-
sity may become finite forV→0. In both cases the negative slope
indicates unstable dark solitons.
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V5
V0Vf

~Vf2V0!e
2lT1V0

, ~35!

where l is defined by Eq.~30! (l.0), V0 is the initial
deviation of the velocity of the unstable dark soliton, and
Vf , defined as

Vf52
2

e S ]Ps

]v D U
v5v0

YS ]2Ps

]v2 D U
v5v0

, ~36!

is the change of the velocity corresponding to a stable soli-
ton. This result is valid only if the renormalized momentum
of the perturbed dark soliton is a conserved quantity during
the soliton transformation. However, it follows from Sec.
II B that this quantity does not conserve beyond the qua-
dratic approximation and its variation is described
asymptotically by Eq.~19!. Using the approximate solution
~35!, we can estimate the differenceDP between the value of
the renormalized momentumPf for the final stable dark soli-
ton and that for the initial~unstable! solitonP0 . This differ-
ence can be calculated directly from Eq.~19! as

DP5eE
2`

1`

Ks~v,q!S dvdTD
2

dT5
e3lVf

2

6
Ks~v0 ,q!,

~37!

where the coefficientKs is defined in Eq.~21!. We note that
this coefficient can have, in general,an arbitrary signand
therefore transitions from unstable to stable dark solitons can
lead to either an increase or decrease of the value of the
soliton renormalized momentum. As a matter of fact, the
sign of the momentum change is determined by a balance
between the radiation fieldU1 propagating in the same di-
rection as the perturbed dark soliton and the fieldU2 propa-
gating to the opposite direction~see Fig. 1!. Indeed, as fol-
lows from Eq. ~29!, the copropagating waveU1 always
leads to an increase of the renormalized momentum of the
perturbed dark soliton, while the counterpropagating radia-
tion waveU2 always leads to a decrease of the momentum.
As will be shown for the particular cases discussed in Secs.
IV and V, both these phenomena can actually take place for
different types of GNLS equation.

2. Structure of radiation

As we have shown in Sec. II B, a change of the renormal-
ized momentum of the perturbed dark soliton is caused by
radiation fields, which are asymptotically described by Eq.
~25! at the soliton positionX5Xs(T). Using the analytical
solution ~35! defined througout theT axis, we can find ex-
plicitly the profile of the radiation fields in the weakly non-
linear ~quadratic! approximation when Eq.~34! is still valid
andXs(T) is given approximately byXs5v0T1O(e). This
allows us to find the exact results for the radiation fields
U6→eU6, where

U65
lVf

4
z6~v0 ,q!sech2F l

2~c7v0!
~X7cT!G . ~38!

Radiation fields~38! coincide, with an accuracy of the am-
plitude factor, with the sech2-type profile of the stationary

dark soliton solutions to the GNLS equation~2! in the small-
amplitude approximation@i.e., the KdV soliton; see Eq.
~32!#. Moreover, the evolution of the radiation field given by
Eq. ~38! was shown in Appendix C to obey asymptotically
the KdV equations~C7! with positive value of the coefficient
n. It is well known ~see, e.g., Ref.@33#! that the
sech2-type initial pulse in the KdV equation~C7! can gen-
erate solitons only if the pulse amplitude is negative. In the
opposite case, i.e., when the input amplitude of the localized
pulse is positive, the initial profile~38! transforms into linear
dispersive waves@33#, which, in our problem, asymptotically
disperse on the cw backgroundI5q.

Amplitudes of the radiation fields~38! are proportional to
the coefficientsz6(v0 ,q), which are defined by Eq.~26!.
Let us evaluate the signs of these coefficients in the limiting
casev0→0. In this limit, we find from Eqs.~26! and ~14!
that

z657
1

c2
Ns~v050,q!1O~v0!.

However, the soliton complimentary powerNs(v,q) is al-
ways negative and therefore, in the limitv0→0, the coeffi-
cient z1 is positive, while the coefficientz2 is negative.
Moreover, we can show that the sign of the coefficientz2

remains unchanged throughout the instability region so that
the counterpropagating radiation field, described by the func-
tion U2, should always generate an additional~shallow!
dark soliton as a result of the transformation of the primary
unstable dark soliton. On the other hand, the radiation field,
described by the functionU1, decays into dispersive waves
if z1(v0 ,q).0 or it can also produce an additional dark
soliton provided thatz1(v0 ,q),0.

Using Eqs.~31! and~38!, we can calculate the partsP6 of
the renormalized momentum of the perturbed dark soliton
that are taken by the radiation fields generated due to the
development of the soliton instability. The result is

P657
e3cl~DV!2~c7v0!

6q
z6
2 ~v0 ,q!. ~39!

It is easy to verify that the conservation of the total momen-
tum leads to the balanceDP1P11P250. Thus we arrive
at the conclusion that near the instability threshold the per-
turbation, which initiallydecreasesthe amplitude of the dark
soliton, inducesa splitting of the unstable dark solitoninto
~at least two! counterpropagating~stable! solitons of larger
velocities and linear dispersive waves~or, in exceptional
cases, an additional soliton! in front of the dark soliton,
Fig. 1. The relation between these three components defines
the general character of the instability-induced soliton dy-
namics.

3. Soliton evolution: Unbounded scenario

Finally, we discuss the other type of initial perturbations,
namely, that which increases the amplitude of the unstable
dark soliton. In this case, the instability scenario isun-
boundedin the framework of both the asymptotic equations
~19! and~34! because these equations predict that the soliton
velocity changes its sign in a finite time. This implies that a
decrease of the minimum soliton intensityImin cannot be
suppressed by nonlinearity even in the vicinity of the insta-
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bility threshold, and this leads to an essential transformation
of the unstable dark soliton. The initial stage of this evolu-
tion corresponds to a decrease of the minimum intensity
Imin until it reaches a value corresponding to a black soliton
~at v50!, while the subsequent evolution depends on the
global behavior of the nonlinear functionF(I ) in the particu-
lar case of the GNLS equation~2!. We investigate this phe-
nomenon numerically in Secs. IV and V for some particular
models. In addition, in Sec. VI we consider a very special
type of dark soliton instability when both limiting cases of
the dark soliton solutions (v→0 andv→c) correspond to
stable solitons, whereas there exists a narrow region of the
soliton velocitiesv for which dark solitons become unstable.
For such a special model, the unbounded scenario of the dark
soliton evolution is not observed. We believe that the ex-
amples of the dark soliton instabilities discussed below dis-
play the most characteristic types of the instability-induced
dynamics of dark solitons.

IV. COMPETING NONLINEARITIES

In the case of competing nonlinearities, e.g., focusing plus
defocusing, the dark soliton solutions to Eq.~2! display fea-
tures different from those for dark solitons of the conven-
tional NLS equation. Due to self-focusing at smaller intensi-
ties of the cw background, the minimum amplitude of a dark
soliton is nonzero even atv50 for some values of the pa-
rameters. As a result, the total phase shiftSs(v) and there-
fore the renormalized momentumPs(v) tend to zero in both
limits v→0 and v→c. This explains the appearance of a
negative slope of the renormalized momentumPs(v) for
small v and, correspondingly, leads to instability of dark
solitons. For instance, this phenomenon is observed for the
GNLS equation~2! with two competing power-law nonlin-
earities that have been considered in the theory of bright
solitons~see, e.g., Ref.@20# and references therein!

F~ I !52aI s1bI 2s. ~40!

If a andb are both positive, the first term gives self-focusing
@note the minus in front ofF(I ) in Eq. ~2!# and may prevent
the existence of a black soliton with zero minimum intensity.
For s51 the GNLS equation~2! with nonlinearity~40! cor-
responds to the focusing cubic and defocusing quintic non-
linearity and can describe a deviation from the Kerr medium
of an optical material~see also the Introduction!. Remark-
ably, the model~2! and ~40! at s51 possesses an explicit
solution for dark soliton. Therefore, although the general
analysis of the competing nonlinearities is qualitatively cor-
rect for any value ofs, below we restrict ourselves by the
cases51 when the results can be obtained in an analytic
form.

The exact solution for a dark soliton of the cubic-quintic
nonlinearity can be found in the form

F2~j!512
2k2

a1bcosh~2kj!
, ~41!

a5S 43b21D , b5Aa22
4

3
bk2, ~42!

where, for simplicity, we takeq51 anda52. The soliton
amplitudek is defined by the soliton velocityv through the
relationk21v25b21.

First, we analyze the parameter region where the dark
soliton ~41! and ~42! can exist. The conditionk2.0 yields
uvu,c(b)5Ab21; see Fig. 3~a!. Then we use the instabil-
ity criterion defined above and calculate the slope of the
function Ps(v) to find the instability region: a dark soliton
becomes unstable fordPs(v)/dv,0. We have checked that
the negative slope ofPs(v) appears only for 1,b,1.5,
where the dark soliton atv50 has a nonzero amplitude at
the minimumF2(0)5(322b)/b. The functionPs(v) for
the particular caseb51.2 is shown in Fig. 3~b!. Thus, for
1,b,1.5 dark solitons in the cubic-quintic model become
unstable for smaller velocities 0,uvu,vcr(b) and stable for
larger velocitiesvcr(b),uvu,c(b). The instability region is
shown in Fig. 3~a! as a dashed domain. As follows from this
figure, the dark soliton~41! and ~42! becomes unstable in a
relatively small parameter domain and the critical value
vcr(b) does not exceed 0.145.

To study the evolution of an unstable dark soliton, we
perform numerical simulations of Eq.~2! using, for better
visualization, the equivalent solution for a~stationary! dark
soliton on a moving cw background@see Eq.~6! at k5v#.
We apply a small perturbation to change the amplitude of the
dark soliton~41! and ~42! adding a symmetric disturbance
with small factore,

cpert~j!5$F~j!1e@12F2~j!#%eiu~j!,

FIG. 3. ~a! Regions of existenceuvu,c(b) and instability
uvu,vcr(b) of the dark soliton~41! and ~42! and ~b! renormalized
momentumPs(v) for the dark soliton~41! and ~42! at b51.2.
Thick dashed and solid branches correspond to unstable (v,v cr)
and stable (v.vcr) dark solitons, respectively. The thin solid curve
depicts the change of the minimum soliton intensityImin . Arrows 1
and 2 correspond to the evolution of the unstable soliton presented
in Figs. 4 and 5, respectively.
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which does not change the soliton phase. The initial velocity
v0 of the unstable soliton is chosen in the unstable region,
while the amplitudee is taken to be both positive and nega-
tive in the interval 0.0001,ueu,0.02. The numerical simu-
lations reveal two completely different scenarios of the dy-
namics of unstable dark solitons depending on the sign of the
perturbation amplitudee.

The first, bounded scenario is observed fore.0 when
initially the soliton velocity is slightly increased. Effectively,
this corresponds to a ‘‘push’’ of the unstable soliton toward
the stable branch ofPs(v) in Fig. 3~b! ~curve 1! that exists
for larger values ofv. An example of such simulations is
shown in Figs. 4~a!–4~c!, where we clearly observe the soli-
ton splitting, in accordance with the predictions of the ana-
lytic theory for a bounded scenario.

The second, unbounded scenario of the soliton instability
takes place fore,0. In this case, the unstable dark soliton is

pushed deeper into the instability region@see curve 2 in Fig.
3~b!#. The corresponding simulations are presented in Figs.
5~a!–5~c!, where we observe the formation of two kinks
~dashed curves! propagating in the opposite directions. We
call this scenario of the soliton instability ‘‘collapse of dark
solitons,’’ by an analogy with the well-known effect for
bright solitons of certain types of GNLS equation~1!.

Thus we can see that the dark solitons evolve asymmetri-
cally, depending on the type of initial perturbation. To char-
acterize the soliton evolution, in Fig. 6 we show the change
of the minimum soliton intensityI min for both scenarios@see
Fig. 3~b!#. In the case of splitting (e.0), the initial expo-
nential growth of the perturbation amplitude~upper solid
curve! saturates at approximatelyt545 and the unstable dark
soliton splits into two stable solitons of smaller amplitudes
~see curves 1 and 2 in Fig. 6!, which move after the splitting

FIG. 4. Bounded scenario: Splitting of the unstable dark soliton
~41! and~42! for b51.2, v050.02, ande510.005. Shown are~a!
intensity profiles att50 ~solid curve! and t5100 ~dashed curve!
and the corresponding~b! contour plot and~c! propagation dynam-
ics.

FIG. 5. Unbounded scenario: Collapse of the unstable dark soli-
ton ~41! and ~42! into two kinks for b51.2, v050.02, and
e520.005. Shown are~a! intensity profiles att50 ~solid curve!
and t5100 ~dashed curve! and the corresponding~b! contour plot
and~c! propagation dynamics. The thin solid curve in~a! presents,
for a comparison, the exact kink solution~43!.

2024 54PELINOVSKY, KIVSHAR, AND AFANASJEV



into opposite directions, as shown in Figs. 4~b! and 4~c!.
When the initial soliton velocity is selected far from the
threshold valuevcr , more than one secondary soliton is gen-
erated. In the case of decay into kinks (e,0), the exponen-
tial growth of the initial perturbation allows the minimum
intensity to reach zero~see Fig. 6; lower solid curve!. Then
the region of zero intensity starts to spread out while the
background intensity increases outside the localized wave
@see Fig. 5~c!#. Finally, this process results in the formation
of a new background of a special intensityqc51.25, instead
of the initial valueq51.0, and in the steady-state propaga-
tion of two kinks. Such a kink is described by the exact
solutions to the GNLS equations~1! and ~40! at s51,

Ck5
Aqc

A11e6D
eivct, ~43!

whereqc53a/4b, D25aqc , andvc5
1
6bqc

2 . The kink~43!
connects two modulationally stable cw backgrounds, the
background of the intensityqc , and the zero-intensity back-
ground. For a comparison between the kinks generated due
to the instability and the exact kink solution of the cubic-
quintic model, we show the solutions~43! in Fig. 5~a! by thin
solid curves, which are in excellent agreement with numeri-
cal results~thick dashed curves!.

For the case of splitting of the unstable dark soliton, the
velocitiesv f and uv r u of the generated stable dark solitons
can be evaluated analytically by means of the asymptotic
theory. Indeed, the valuev f can be approximated as
v f5v01eVf @see Eq.~36!#, while the valuev r is expressed
through the effective KdV soliton amplitudek,
uv r u5c2e2k2/2c. To find the soliton parameterk we use
the assumption that the momentumP2 @see Eq.~39!# emit-
ted by the perturbed dark soliton into the opposite direction
corresponds to a novel dark soliton. In this case, the balance
equationP25192ce3k3/(qn2) defines the required value of
the parameterk. These results are presented in Fig. 7~a! as
functions of the initial soliton velocityv0 .

Additionally, we calculate the contributions to the renor-
malized momentum from the final stable dark solitonPf , the
small-amplitude dark solitonP2, and the perturbations of
the continuous-wave backgroundP15P02Pf2P2 and
present them in Fig. 7~b!. The dashed curve depicts the mo-
mentum of the unstable dark solitonsP0 , while the open
circles show the numerical data for the momentumPf of the
~final! stable soliton. We note that the instability of the dark
solitons in the case of competing nonlinearities always leads
to a decrease of the soliton renormalized momentum~i.e.,
Pf,P0). We have checked that this result is in agreement
with the asymptotic prediction given by Eq.~37! because for
the nonlinearity~40! the coefficientKs(v0) is negative. On
the other hand, the coefficientz1(v0) is negative for the
values ofv0 close tovcr . This fact implies that the radiation
field emitted in front of the perturbed dark soliton can lead to
the formation of an additional stable dark soliton. Moreover,
for smaller values of the velocityv0 , the coefficientz1 be-
comes positive and the radiation field described by the func-
tion U1 decays into dispersive waves. In any case, the part
of the renormalized momentumP1 that corresponds to ra-
diation always remains small compared to the momentum
P2 @see Fig. 7~b!#. This fact explains a decrease of the soli-
ton renormalized momentum due to the dark soliton instabil-
ity and also provides a clear observation of the splitting of
the unstable dark solitons.

FIG. 6. Change of the minimum soliton intensityI min for two
scenarios of the soliton instability presented in Figs. 4 and 5: split-
ting ~upper solid, 1, and dashed, 2, curves! and decay into kinks
~collapse! ~lower solid curve!. The dotted line displays the critical
intensity I cr , which corresponds to the instability thresholdv5vcr
and it is defined in Fig. 3~b!.

FIG. 7. ~a! Analytical results for the velocitiesv f and uv r u of
two leading dark solitons created after the splitting vs the initial
velocity v0 of the unstable dark soliton. The dotted lines present the
limit values v5vcr and v5c. ~b! Renormalized momenta of the
final ~largest! dark solitonPf and the radiation fieldsuP6u vs the
initial soliton velocityv0 , calculated analytically~solid curves! and
numerically ~open circles!. The initial value of the renormalized
momentumP0(v) is shown by a dashed curve and only its unstable
branchv0<vcr is displayed.
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V. SATURABLE NONLINEARITY

In this section we consider the GNLS equation~2! with
the generalized saturable nonlinearityF(I ) of the form

F~ I !512
1

~11aI !p
, ~44!

where the parametera has the meaning of a ratio of the
maximum intensityImax to the saturation intensityI sat, i.e.,
a5Imax/I sat, and the parameterp is the saturation index.
This type of nonlinearity in the GNLS equation~2! is used to
analyze the effect of saturation of the nonlinear refractive
index at larger intensities~see also the Introduction!. In the
casep51 the nonlinearity~44! appears also in the theory of
photovoltaic bright and dark solitons~see Refs.@18,19#!. On
the other hand, the model~2! and ~44! at p52 is known to
exhibit soliton solutions in the form of bright and dark soli-
tons@16#. With the help of these exact solutions, it has been
recently revealed that dark solitons supported by the satu-
rable nonlinearity may have the total phase shift larger than
the limiting valuep realized at the black soliton atv50
@17#. However, later the instability of dark solitons has been
pointed out exactly for the same model@26#, but the relation
between these two phenomena, i.e., larger-than-p soliton
phase and instability, has not been established. Here we re-
strict our analysis to the simplest casep52, which allows an

analytic solution, but essentially the same dynamics of the
dark soliton instabilities is observed as in the model~2! and
~44! for other values ofp.

First, in Fig. 8~a! we present the regions of existence
v,c(a) and instabilityv,vcr(a) of the dark solitons in the
model~2! and~44! at p52 andq51. Because of a symme-
try, only positive values of the soliton velocityv are consid-
ered. The dashed line in Fig. 8~a! depicts the region of the
parameter plane where the dark solitons have the total phase
shift larger thanp. The typical dependences of the renormal-
ized momentumPs(v) and the total phase shiftSs(v) are
shown fora56 and 12 in Figs. 8~b! and 8~c!, respectively. It
is clearly seen that the appearance of a large phase shift of
the large-amplitude dark solitons serves as a pilot of their
instability. However, among the dark solitons with the phase
shift larger thanp there exist both stable solitons, realized
for larger velocities, and unstable solitons, realized for
smaller velocities@see Fig. 8~a!#.

Using the results of our asymptotic theory described in
Sec. III B, we calculate the coefficientsKs(v0) and z6(v0)
employing the exact solutions to the GNLS equation~2! with
the saturable nonlinearity~44! at p52. We find that the co-
efficient Ks(v0) is always positiveand therefore the dark
soliton instability due to a nonlinearity saturation should lead
to an increase of the renormalized momentum according to
Eq. ~37!. On the other hand, the coefficientz1(v0) is posi-
tive, i.e., the radiation in front of the perturbed dark soliton
cannot lead to the creation of additional dark solitons, so that
radiation always disperses. Moreover, our estimates show
that this radiation should be dominant compared to the radia-

FIG. 8. ~a! Regions of existencev,c(a) and stability
v,vcr(a) of dark solitons in the saturable model~2! and ~44! at
p52. The dashed curve depicts the region where a dark soliton has
the total phase shift larger thanp. Shown are~b! the renormalized
momentumPs(v) and~c! the total phase shiftSs(v) calculated for
dark solitons at two values of the saturation parametera: a56
~curves 1! and a512 ~curves 2!. The critical velocityvcr corre-
sponds to the instability threshold.

FIG. 9. Dynamics of an unstable black soliton in the model~2!
and ~44! at p52 anda512. Shown are~a! the renormalized mo-
mentumPs(v) and transitions corresponding to a transformation of
an unstable ‘‘black’’ soliton into a stable ‘‘gray’’ soliton,~b! the
change of the minimum soliton intensityImin , and~c! the change of
the soliton position.
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tion moving in the opposite direction.
Next, we consider numerically the development of the

dark soliton instability in the saturable model described by
Eqs. ~3! and ~44! at p52. We find that the instability-
induced soliton dynamics in this model displays features that
are different from those mentioned in Sec. IV for the case of
competing nonlinearities. As an initial condition, we con-
sider two cases, a black soliton withv050 and a gray soliton
on a stationary background. A small perturbation to an un-
stable dark soliton is applied in the way already discussed for
the case of competing nonlinearities~Sec. IV!.

Figures 9~a!–9~c! correspond to the case of an initially
unstable black soliton. Being pushed to either side by a small
perturbation, the unstable black soliton transforms into a
stable gray soliton that corresponds to a positive slope of the
function Ps(v) as shown in Fig. 9~a!. The change of the

soliton velocity is actually small for the nonlinearity~44! at
p52, so that we show the change of the minimum soliton
intensity @see Fig. 9~b!# and the soliton position@see Fig.
9~c!#, which clearly indicate an initial, exponential growth of
the perturbations upon the unstable black soliton and then its
stabilization at the level that corresponds to a stable gray
soliton.

The development of the instability of a gray soliton oc-
curs basically in the same manner; see Figs. 10~a!–10~g!.
The different feature is asymmetric transitions for the posi-
tive (e.0) and negative (e,0) initial perturbations@see
curves 1 and 2 in Fig. 10~a!#. An unstable gray soliton with
an initially increased minimum amplitudeImin @curve 1 in
Figs. 10~b! and 10~c!# slowly transforms into a stable soliton
of larger velocity. The radiation emitted in front of and be-
hind the unstable soliton is very small, but still can be seen in

FIG. 10. Dynamics of an unstable gray soliton (v050.04) in the model~2! and~44! at p52 anda512. Shown are~a! the renormalized
momentumPs(v) and transitions corresponding to two types of the instability development, the change of~b! the minimum soliton intensity
and~c! the relative soliton position for both scenarios,~d! and~f! contour plots, and~e! and~g! propagation dynamics corresponding to the
bounded and unbounded scenarios, respectively.
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Figs. 10~d! and 10~e!, which display the contour plot and the
propagation dynamics. On the other hand, the instability de-
velopment of the gray soliton with an initially decreased
minimum amplitude@curve 2 in Figs. 10~b! and 10~c!# oc-
curs in two stages. At the first stage, the soliton changes
almost adiabatically until its minimum amplitude reaches the
zero value corresponding to a black soliton@see Fig. 10~b!#.
The second stage is caused by the instability of the black
soliton, the soliton undergoes a transition to the nearest
stable gray soliton, which moves in the directionoppositethe
direction of the initial gray soliton@see Fig. 10~c!#. The con-
tour plot presented in Fig. 10~f! and the propagation dynam-
ics shown in Fig. 10~g! reveal that the radiation propagating
in the opposite direction transforms to a dark soliton of a
very small amplitude, according to the analytical theory.
However, the generation of dispersive wave packets in front
of the perturbed dark soliton dominates.

We note that the renormalized momentum of the per-
turbed dark soliton is greatly increased during this process.
Such an increase of renormalized momentum of the dark
soliton due to the instability development is related to a
strong radiation in front of the dark soliton, which is in
agreement with predictions of the asymptotic theory. This
radiation is dominant compared to the other, soliton part of
the radiation field and this fact makes the dark soliton split-
ting into two counterpropagating stable dark solitons difficult
to investigate numerically~see also Fig. 3 in Ref.@26#!.

VI. TRANSITING NONLINEARITY

In this section we consider one more example of the
model of optical solitons described by the GNLS equation
~2!. It has been extensively discussed in connection with the
phenomenon of the soliton bistability@11,12#. Soliton bista-
bility can occur when unstable solitons are found for inter-
medite values of the soliton parameter~i.e., the propagation
constant for bright solitons or velocity for dark solitons! al-
lowing transitions between two~or more! types of solitons
belonging to stable branches. One of the typical examples
displaying this kind of phenomenon is the so-calledtransit-
ing nonlinearity, which can be taken in the form@12#

F~ I !52I $11atanh@g~ I 22I 0
2!#%. ~45!

The function~45! is a special case of the nonlinearity, which
describes a smooth transition from one linear dependence for
small intensitiesI!I 0 , when F(I )52@12atanh(gI0

2)#I, to
the other linear dependence for large intensitiesI@I 0 , when
F(I );2(11a)I . Parametersa,I 0 in Eq. ~45! characterize
the amplitude and threshold intensity of the nonlinearity
transition, whileg21/2 determines the characteristic width of
the transition region.

The particular form~45! of the transiting nonlinearity has
been introduced by Enns and Mulder@12# as a continuous
approximation of the steplike model of the transiting nonlin-
earity introduced earlier by Kaplan in the theory of bistable
bright solitons@11#. In particular, Enns and Mulder@12# have
shown that the dependence of the complementary power
Ns(v) on the velocity of a dark soliton displaysthree
branchesand used this fact to introduce and characterize
bistability of dark solitons. However, as follows from the

asymptotic analysis we presented in Secs. II and III above,
the soliton complementary power does not determine the sta-
bility of dark solitons. Thus the analysis of bistable dark
solitons should be based on the soliton renormalized momen-
tum.

First, we calculate numerically the renormalized momen-
tum Ps(v) for dark solitons of the model~2! with the tran-
siting nonlinearity~45! at a50.5, g510, and varyingI 0 .
Some typical results are displayed in Fig. 11~a!, where we
can observe the appearence of a rather narrow region of the
values of the soliton velocity~for someI 0), where the soliton
renormalized momentumPs(v) displaysthree branchesin-
dicating a possibility of bistable dark solitons at a fixed value
of the momentum.

In Fig. 11~b! we present an enlarged part of the depen-
dencePs(v) at I 050.6 that displays stable~thin solid curve!
and unstable~thin dashed curve! branches. The instability
region @vcr

(1),v,vcr
(2) , where, atI 050.6, vcr

(1)'0.955 and
v cr
(2)'1.014# is rather narrow and satisfies the criterion

]Ps(v)/]v,0. It is obvious that the unstable branch corre-
sponds togray solitonsof intermediate values of the mini-
mum intensitiesImin shown also in Fig. 10~b!. Using the
results of our asymptotic analysis, we expect that the evolu-
tion of unstable dark solitons would result in a transition
~switching! from the unstable solution to one of the stable
solutions with a greater or smaller value of the minimum
intensitiesImin .

Numerical simulations of the instability-induced dynam-
ics of dark solitons in the model~2! and ~45! have been
performed for a dark soliton with the intial velocity
v050.96 @see Figs. 12~a!–12~c!#. The dynamics displays in-

FIG. 11. ~a! Renormalized momentumPs(v) for dark solitons
supported by the transiting nonlinearity~45! for a50.5, g510, and
different values of the parameterI 0: 0.5, 0.6, and 0.7, shown next
to the curves.~b! Stable~thin solid! and unstable~dashed! branches
of the soliton remormalized momentumPs(v) for the case
a50.5, g510, andI 050.6. Thick solid curve displays a change of
the minimum soliton intensityImin vs soliton velocityv.
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deed two types of transitions~switching! of a dark soliton
from the unstable branch to one of the stable~marked as 1 or
2! branches of the stationary solutions. The first type of soli-
ton switching describes a transition to a stable dark soliton
with larger value of the minimum intensityI min and larger
velocity v @see curves 1 in Figs. 12~a!–12~c!#. The renormal-
ized momentum of the unstable dark soliton increases as a
result of this transition, as shown in Fig. 12~a!. The second
type of soliton switching describes a transition to another
stable dark soliton, with a smaller value of the minimum
intensity Imin and smaller velocityv @see curves 2 in Figs.
12~a!–12~c!#. In the latter case, the radiation in front of the
dark soliton is negligible and, as a result, a change of the
renormalized momentum of the unstable dark soliton is
small, as shown in Fig. 12~c!. Both types of soliton transi-
tions are described by the bounded scenario for the evolution
of the soliton velocity.

VII. CONCLUSION

We have presented, for the first time to our knowledge, a
self-consistent analytical approach that describes the nonlin-
ear regime of the evolution of unstable dark solitons in the
framework of the generalized nonlinear Schro¨dinger equa-
tion. We have shown that, near the threshold of the soliton

instability, both linear and nonlinear regimes of the
instability-induced dynamics of dark solitons can be ana-
lyzed by the asymptotic multiscale expansion technique.
This analytical approach gives us an effective tool of reduc-
ing the primary GNLS equation to asymptotic equations for
the soliton parameters describing the evolution of the soliton
velocity during the development of the~exponentially grow-
ing! linear instability and the subsequent nonlinear dynam-
ics. Unlike the corresponding problem for bright solitons,
radiation is shown to be very important in the instability-
induced evolution of dark solitons and the development of
the soliton instability is always accompanied by radiation,
the effect being described by the same order of the asymp-
totic expansion. In particular, radiation fields may subse-
quently generate additional~shallow! dark solitons, so that
our analytical results can also describe a splitting of an un-
stable dark soliton into stable dark solitons and radiation.
Considering several examples of optical nonlinearities, we
have demonstrated the most characteristic features of the
instability-induced~bounded and unbounded! scenarios of
the evolution of an unstable dark soltion. For example, in the
case of the cubic-quintic nonlinearity, we have revealed
‘‘collapse of dark solitons’’ when an unstable dark soliton
transforms into two diverging kinks. We believe that the ana-
lytical approach we have developed here and the basic types
of instability scenarios we analyzed for particular models of
optical nonlinearities are rather general to be useful for in-
vestigating instabilities of dark solitons in other nonlinear
models.

Note added in proof. After submitting our manuscript for
publication we became aware of several papers devoted to
the analysis of linear instability of the so-called ‘‘bubbles’’
@V. G. Makhankov,Soliton Phenomenology~Kluwer, Dor-
drecht, 1990!, pp. 270–272# in the GNLS equation with
cubic-quintic nonlinearity which are, in fact, dark solitons
with nonzero minimum intensity and no phase jump. More
detailed analytical and numerical results for this case, includ-
ing the criterion of the dark-soliton instability and collapse-
like scenario, are presented in the recent paper by I. Barash-
enkov and E. Panova, Physica D69, 114 ~1993!.

APPENDIX A: FIRST-ORDER CORRECTION

Here we analyze the structure of the first-order perturba-
tion correctionc1 induced by the slow evolution of an un-
stable dark soliton. Substituting the asymptotic multiscale
expansion~17! into the GNLS equation~2!, we obtain the
linear problem for the functionc1 ,

Lc1[
d2c1

dj2
22iv

dc1

dj
1@F~q!2F~ ucsu2!#c12F8~ ucsu2!

3@cs
2c1*1ucsu2c1#522i

dv
dT

]cs

]v
12

]R

]T
cs

22i
]R

]X

dcs

dj
. ~A1!

First, we multiply this equation bydcs* /dj, integrate by
parts with respect toj, and combine it with the complex

FIG. 12. Dynamics of the unstable dark soliton in the model~2!
with the transiting nonlinearity~45! for a50.5, g510, and
I 050.6. Soliton initial velocityv050.96. Shown are~a! the evolu-
tion of the minimum soliton intensityImin and~b! the change of the
relative position of a soliton on a moving background, for both the
unperturbed soliton~curves 0! and two types of the bounded sce-
nario for the evolution of a perturbed dark soliton~curves 1 and 2!.
Transitions from the unstable branch to the stable branches~1 or 2!
are shown in~c! by arrows on the plot of the renormalized momen-
tum.
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conjugated equation. As a result, we obtain a restriction on
the parameter of the soliton velocityv,

dv
dT

]Ps

]v
5O~e!, ~A2!

which gives the condition that the functionc1 is not expo-
nentially diverging asj→6`. ~We have assumed here that
the functiondcs /dj tends to zero exponentially rapidly at
infinity.! A general solution of Eq.~A1! can be found as a
superposition of four eigenfunctions of the linear operator
L and the corresponding forced solution due to the nonzero
right-hand side of Eq.~A1!. However, two eigenfunctions of
the linear operatorL lead to a trivial renormalization of the
soliton parametersv andR, while the third one is exponen-
tially diverging. Therefore, to obtaina localized solutionfor
c1 we take into account only onenontrivial eigenfunction of
the linear operatorL and then rewrite the solution to Eq.
~A1! at the inner interval, wherej;O(1) andX→Xs(T), in
the form

c15
dv
dT

c̃1~j;v,q!1 iQsjcs2SQs1
]Rs

]X D ]cs

]v

1
q

c2 S vQs2
]Rs

]T D ]cs

]q
, ~A3!

where we used the notations

Qs[QuX5Xs
, Rs5RuX5Xs

,

Q(X,T) being the amplitude of the localized eigenfunction.
The functionc̃1 cannot be written in an explicit form. How-
ever, it follows from Eq.~A1! that the real and imaginary
parts of this function have symmetries opposite those of the
real and imaginary parts of the functioncs . As a result, the
function c̃1 does not produce any contribution in the results
of the subsequent analysis.

Now we consider the asymptotic values of the functions
cs andc1 at infinities, which we denote as

cs`
6 5 limj→6`cs5Aqe6~ i /2!Ss, c1`

6 5 limj→6`c1 .

To calculate the valuesc1`
6 explicitly, we rewrite Eq.~A1!

for j→6`,

d2c1`
6

dj2
22iv

dc1`
6

dj
22c2@c1`

6 1e6 iSsc1`
6* #

52S ]R

]T
6
1

2

]Ss
]v

dv
dTDcs`

6 , ~A4!

whereSs and c are given by~10! and ~16!. Equation~A4!
has a simple solution

c1`
6 5 i ~Q6d!jcs`

6 1
i ~w6W!

2Aqsin~Ss/2!
, ~A5!

whered(T), w(T), andW(X,T) are the parameters that sat-
isfy two constraints

vQ2
]R

]T
5
c2

q
W, ~A6!

vd2
1

2

]Ss
]v

dv
dT

5
c2

q
w. ~A7!

The system~A6! and ~A7! is not closed because the param-
etersd andw should be expressed through the velocity of the
perturbed dark soliton. To close the system, we use the bal-
ance equation for density of the powern, which follows
from the GNLS equation~2!,

]n

]t
5

]k

]x
, ~A8!

where

n5
1

2
~ ucu22q!, k5

i

4 S c*
]c

]x
2

]c*

]x
c D . ~A9!

Then we rewrite Eq.~A8! with new variablesj, X, andT
and integrate it with respect toj. As a result, in the first-
order approximation the power balance equation~A8! re-
duces to the relation

v
2

~cs`c1`* 1cs*̀ c1`!u2`
1`1

i

4 S cs*̀
]c1`

]j
2cs`

]c1`*

]j DU
2`

1`

5
]Ns

]v
dv
dT

, ~A10!

where the symbolZu2`
1` stands for a difference (Z12Z2).

Equation~A10! closes the system~A6! and~A7! and allows
us to express the parametersd andw through the first-order
derivative of the soliton velocityv as

d52
1

~c22v2! Fc2q ]Ns

]v
1
v
2

]Ss
]v G S dvdTD , ~A11!

w52
1

~c22v2! Fv]Ns

]v
1
q

2

]Ss
]v G S dvdTD . ~A12!

APPENDIX B: DERIVATION
OF ASYMPTOTIC EQUATIONS

Here we analyze the equations for the momentum and
energy, which follow from the GNLS equation~2!, and de-
rive the asymptotic equations governing the instability-
induced evolution of the soliton velocityv(T). The balance
equations for the GNLS equation~2! can be written in the
form

]p

]t
5

]o

]x
,

]h

]t
5

]g

]x
, ~B1!

wherep andh are the densities of the renormalized momen-
tum and Hamiltonian ando and g are the corresponding
generalized flows. They are given by the expressions

p5
i

2 S c*
]c

]x
2c

]c*

]x D S 12
q

ucu2D , ~B2!
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h5
1

2U]c

]x U
2

1
1

2Equcu2
@F~ I !2F~q!#dI, ~B3!

o52
1

4 S c*
]2c

]x2
1c

]2c*

]x2 D S 12
q

ucu2D1
1

2 U ]c

]x U
2

2
1

2Equcu2
F~ I !dI1

1

2
F~ ucu2!~ ucu22q!, ~B4!

g5
i

4 S ]c*

]x

]2c

]x2
2

]c

]x

]2c*

]x2 D1
i

4
@F~q!2F~ ucu2!#

3S c
]c*

]x
2c*

]c

]x D . ~B5!

Now we express the balance equations~B1!–~B5! with
new variablesj, X, and T and then integrate them with
respect toj. As a result, in the second-order approximation,
the equation for the momentum leads to an ordinary differ-
ential equation

1

e

dP

dT
52Sw2

qv
c2

dD S vQs2
]Rs

]T D12~qd2vw!

3SQs1
]Rs

]X D . ~B6!

Here the derivatived/dT is evaluated in the reference frame
of the moving soliton

d

dT
5S ]

]T
1v

]

]XD U
X5Xs~T!

andP is the renormalized momentum of the perturbed dark
soliton

P5E
2`

1`

p dj5Ps~v,q!1edP, ~B7!

where

dP5
q

c2 S vQs2
]Rs

]T D S ]Ps

]q
2SsD2SQs1

]Rs

]X D
3S ]Ps

]v
12NsD .

On the other hand, the balance equation for Hamiltonian
leads to the second differential equation

1

e

dH

dT
52~vw2qd!S vQs2

]Rs

]T D12~qvd2c2w!

3SQs1
]Rs

]X D . ~B8!

H is the renormalized Hamiltonian of the GNLS equation
calculated for the perturbed dark soliton

H5E
2`

1`

h dj5Hs~v,q!1edH, ~B9!

where

dH52
vq
c2 S vQs2

]Rs

]T D S ]Ps

]q
2SsD1vSQs1

]Rs

]X D
3S ]Ps

]v
12NsD .

APPENDIX C: RADIATION FIELDS

Here we present a more detailed analysis of the asymp-
totic expansion~18! valid outside the soliton region. To do
so, we substitute this expansion into the GNLS equation~2!
and derive a relation between the components of the radia-
tion fields,

U652
q

c2
]Q0

6

]T
, ~C1!

where two functionsQ0
6(X,T) obey the standard scalar

wave equations

]2Q0
6

]T2
2c2

]2Q0
6

]X2 50. ~C2!

The general solution to either of the wave equations~C2! can
be presented as a superposition of two counterpropagating
waves moving with the finite speedc. Since the dark soliton
propagates with the velocityv, which is less than the limit-
ing speedc of linear wavesuvu,c, the radiation field in
front of the dark soliton is presented by the wave propagat-
ing to the right, while the radiaton behind the dark soliton
moves to the left ~see Fig. 1!. In other words,
Q0

65Q0
6(X7cT) and the relations~C1! can be rewritten as

U656
q

c

]Q0
6

]X
. ~C3!

These relations are valid everywhere on the axisX including
the soliton regionX→Xs(T). On the other hand, in Appen-
dix A we have found the asymptotic valuesc1`

6 for the first-
order correctionc1 as j→6` @see Eq.~A5!#. Therefore,
using the expansions~17! and ~18! and the matching condi-
tion ej5X2Xs(T), we can evaluate the valuesU6 and
]Q0

6/]X for j→6` andX→Xs(T),

U6→Ws6w,
]Q0

6

]X
→Qs1

]Rs

]X
6d, ~C4!

whereWs[WuX5Xs
. Then, using the relations~C3! and~A6!,

we express the functionsQs andRs through the derivative of
the velocityv(T) of the perturbed dark soliton

vQs2
]Rs

]T
5cd, ~C5!

Qs1
]Rs

]X
5
c

q
w. ~C6!

Finally, we note that, by extending the asymptotic expan-
sion ~18! into higher orders, we can also describe nonlinear

54 2031INSTABILITY-INDUCED DYNAMICS OF DARK SOLITONS



and dispersive effects for the evolution of the radiation
fields. However, in order to take both effects in the same
order of the asymptotic expansion, we have to reorder the
multiscale expansion according to the transformation

U6→eU6~X7cT,t!,

wheret5e3t. Then, straightforward calculations reveal~see

also @1,27#! that the long-term evolution of the radiation
fieldsU6(X,t) obeys two uncoupled KdV equations

78c
]U6

]t
2nU6

]U6

]X
1

]3U6

]X3 50, ~C7!

wheren52@3F8(q)1qF9(q)#.
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