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Abstract 

Evolution of long-wave weakly nonlinear two-dimensional perturbations in parallel boundary-layer type shear flows is 
considered within the model simplified by using the paraxial approximation. The transverse instability of 1D solitons is 
shown to result in formation of 2D collapsing clusters which evolve in a serf-similar manner. The explicit "cri t ical"  
collapse transformation of 2D solitons is found within the framework of the Whitham adiabatic approach. 

1. It is well-known (see, e.g. Ref. [1]) that the 
dynamics of  solitary waves in various physical prob- 
lems being well described within the framework of  
approximate weakly nonlinear models often exhibits 
formation of  amplitude singularities emerging in a 
certain finite time ("col lapse") ,  the more probable 
the higher dimension of  the problem is. In the case 
of  collapse, one may expect formation of  a number 
of  drastic effects depending on the specific physics 
of  the problem. Within the hydrodynamics context, it 
may mean formation of  strongly nonlinear large-am- 
plitude coherent structures from the small-amplitude 
solitary waves unstable with respect to self-focusing 
or wave breaking. The collapse is always character- 

1 On leave from Institute of Applied Physics, Russian Academy 
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ized by very strong energy transfer from large to 
small scales. Therefore, all cases of  collapse in hy- 
drodynamical systems are of  great interest and merit 
special study. The present work is aimed to study the 
specific collapse of  boundary-layer type shear f lows.  

Among the various types of  collapses there is an 
interesting physical and mathematical phenomenon, 
namely the so-called w e a k  or cr i t ica l  co l lapse ,  which 
was discovered at the edge of  the instability domain 
[1]. Physically, this phenomenon manifests itself by 
the existence of  an energy threshold with respect to 
which an initial perturbation evolves in a qualita- 
tively different manner, either decays or collapses. 
Mathematically, the models of  critical collapse have 
a remarkable property: The Hamiltonian of  the sys- 
tem is a homogeneous function under the scaling 
transformation retaining the other integral of  motion 
(momentum or number of  particles). Moreover, it 
was found for the most investigated model of  this 
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phenomenon, namely the 2D nonlinear SchrSdinger 
(NLS) equation [2-4], that such a nontrivial property 
results in the existence of an additional symmetry 
(and corresponding integral of motion) which gener- 
ates an exact solution describing the radiationless 
self-similar collapse of 2D solitary waves with the 
critical (threshold) value of the energy. 

Recently, a new approach to the problem of for- 
mation of "thorn"-type large-amplitude localized 
structures in boundary layers (some experiments were 
discussed in Refs. [5,6]) started to develop. Using an 
asymptotic procedure, Shira [7] derived a model for 
the description of essentially two-dimensional (2D) 
weakly nonlinear long-wave perturbations on the 
background of a boundary-layer type plane-parallel 
shear flow without inflection points. Shortly speak- 
ing, this model is valid for the boundary layers along 
an inviscid boundary, say for free surface flows, 
although there is a possibility of its extension. Within 
the model, the description of the field evolution 
reduces to a single equation for the amplitude A of 
the longitudinal velocity of the fluid. This governing 
equation has the form 

A T + cA x + aAA x + B Q ( A x )  = O, (1) 

where Q(A)  is the Canchy-Hadamard integral trans- 
form given by 

1 ~ A ( X ' ,  Y ' )  dX '  dY' 

Q(A) = ~ f f_= ([(x_x,) 2 + ( r -  y,)213 
and c, a ,  and 13 are parameters expressed through a 
profile of the shear flow. This equation is a strongly 
anisotropic generalization of the Benjamin-Ono (BO) 
equation. The latter was used earlier for the descrip- 
tion of 1D perturbations in boundary-layer type shear 
flows (see Ref. [5] and references therein). The BO 
solitons were found to be unstable with respect to 
transverse perturbations within the framework of 
model (1) [8,9]. On the other hand, the 2D solitons 
solutions were numerically constructed in Ref. [10], 
however their stability has not been investigated, 
Quite recently, D'yachenko and Kuznetsov [8] 
pointed out that model (1) has some properties of the 
critical collapse models and suggested that it might 
display the same scenarios of collapse formation as 
that in the 2D NLS equation. Although their numeri- 
cal simulations seem to confirm the development of 

the initial stage of the collapse, the accurate mathe- 
matical description of this phenomenon, similar to 
that done for the 2D NLS equation [3,4] has not been 
elaborated for model (1). 

In this paper we consider this problem for nearly 
one-dimensional wave perturbations when model (1) 
can be simplified in the framework of the paraxial 
approximation introduced originally by Kadomtsev 
and Petviashvili [11] for waves in isotropic weakly 
dispersive media. For such a simplified analog of Eq. 
(1) we apply the Whitham adiabatic approach [12,13] 
to describe the evolution of the modulated BO soli- 
tons and find an explicit collapse transformation for 
the soliton parameters. 

It is worth noting that the Whitham approach 
usually gives a correct description only for perturba- 
tions sufficiently long compared to the soliton width 
but fails to describe shorter perturbations [14]. The 
main reason for this failure lies in the appearance of 
soliton non-decaying tails which are associated with 
the radiation field escaping the solitary wave (see 
Ref. [15]). However, in our case, the radiation field 
is proved to appear in the higher-order (cubic in the 
amplitude of the perturbations) approximations and, 
therefore, the Whitham equations give a good de- 
scription not only of the linear instability of the BO 
solitons but also of the nonlinear evolution of 1D 
and 2D localized perturbations. We show that the 
nonlinear effects cannot suppress the transverse in- 
stability of the BO solitons and lead to the formation 
of self-similar collapsing structures having the shape 
of 2D solitary waves. Furthermore, we present ap- 
proximate analytical expressions for the family of 
2D soliton solutions of the model and show that the 
collapse transformation of the Whitham equations 
generates slow, power-like instability of 2D solitons 
which results in weak (critical) collapse. 

2. First, we simplify Eq. (1), confining ourselves 
to considering nearly one-dimensional waves, i.e. we 
assume I A r t  I << I A x x  I- This paraxial approxima- 
tion might be justified by the fact that the transverse 
instability of the 1D soliton is confined to the large 
scales only (see Ref. [9] and formula (5) below). 
Then, in the dimensionless form u(x, y, t) = a A ( X  
- c T ,  ~ Y, /3T)/2/3 Eq. (1) reduces to the 2D 
BO equation, 

u t + 2uu x +H(ux~)  q-n(Uyy) = 0 (2) 
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where H(u) is the Hilbert integral transform per- 
formed in the variable x, 

1 ~o u ( x ' ,  y ,  t )  dx' 
n ( u )  = - f - -  - 

"ff J - ~  X r -- X 

The BO solitons of Eq. (2) are given by the function 

2V 
u 0 ( x -  O, V) = (3) 

1 + VZ(x - 0 )  2, 

where O t = V > 0. They were found to be unstable 
with respect to transverse perturbations [8,9]. More- 
over, Eq. (2) possesses an exact discrete-spectrum 
solution to the problem linearized with respect to the 
soliton background, 

u = u  o + (hOxu o -- V2pZOvUo) exp( At + ipy) 

+ O(exp(2At ) ) .  (4) 

Here t is assumed to be negative (and large) and the 
growth rate of the soliton instability h (h  < 0) is 
related to the transverse wave number p ( ] p [  < V) 
according to [9] 

)[2 = V 2 p 2  _ p 4 .  (5)  

It follows from Eq. (4) that the linear unstable 
discrete-spectrum mode is presented by a simple 
adiabatic response of the BO soliton to the modula- 
tion of its parameters in the transverse direction. This 
fact enables us to apply the Whitman adiabatic ap- 
proach [12,13] to extend the linear theory and de- 
scribe the nonlinear evolution of a perturbed BO 
soliton in the framework of model (2). 

We note that Eq. (2) can be rewritten in the 
variational form 

6S=0, s = [ t f f  ~ d x d y L ,  (6) 
"1)~-- co 

where S is the action and L is the Lagrangian, 

L = I  1 3 a 1 + + + 

q~x = u. (7) 

Now we use the soliton solution (3) with varying 
parameters O = O(y, t), V= V(y, t) > 0 and the 
leading order term of the test function, 

u(x,  y, t) = U o ( X -  O, V) + u l ( x -  O, V; y, t) 

Here u 1 (I Ul I << I Uo I) is a nonadiabatic correction 
to the BO soliton u 0 induced due to transverse 

effects which are described by the last, perturbation- 
like term in Eq. (2). Thus, we substitute the soliton 
solution (3) into the variational problem (6), (7) and 
perform the integration along the soliton longitudinal 
coordinate x. After such an "averaging" procedure 
[12,13] we get the averaged Lagragian L = 
f_+~ dx  L, 

( 1V2/,~2 ]_ Vyy 3V 2 ) 
L = "l'l" --  V O  t -]- ½ V  2 - ~ - -  v y  V 2V 2 ' 

(8) 

which depends now on the new variables, the soliton 
velocity (V) and soliton "center-mass" coordinate 
(O). Then, variations of action (6) with respect to 
the new variables reduce the original (2 + 1) prob- 
lem (2) to the (1 + 1) Whitham equations, 

V t ~- ( V 2 ~ ) y ) y = O ,  (9a) 

v 7 v .  
O t -  V + V02 + V3 V2 O. (9b) 

Usually the Whitman equations are analyzed in the 
long-wave limit, that is in the present context the last 
two terms in Eq. (9b) are neglected. However, it is 
easy to check that the linearized analog of a full 
system (9a), (9b) allows us to reproduce the exact 
discrete-spectrum solution (4), (5) for an arbitrary 
value of a transverse wave number (p) .  It implies 
that the evolution of the modulated BO solitons 
occurs almost adiabatically and the nonlocalized soli- 
ton tail (radiation) is not excited within the frame- 
work of the linear approximation. We have calcu- 
lated the first nonadiabatic correction u I to the BO 
soliton u 0 induced due to the transverse effects and 
found that it is also free of nonlocalized terms, 

V.. 2 2 V y O y  
Y g o-  uov + 

(10) 

Thus, the radiation field does not appear even in the 
quadratic nonlinear approximation and the evolution 
of the modulated BO solitons is described by the 
Whitham equations (9a), (9b) with good accuracy. 
However, it is necessary to mention that the last term 
in (10) decays like ~ xu o as x ~ o~ and, hence, the 
next-order (cubic) approximation generates nonlocal- 
ized terms describing a very small radiation field 
emitted by the BO soliton. 
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3. As it is clear from (4), the transverse instability 
of the BO solitons is of serf-focusing type [16-18], 
i.e., the bending of the soliton front is enforced by 
the growth of the soliton amplitude (velocity) at the 
faster moving concave portions of the front. Here we 
investigate the problem of long-term development of 
this instability using the weakly nonlinear (quadratic) 
approximation to the Whitham equations (9a), (9b). 
To this end, we introduce a small-amplitude smoothly 
modulated correction to the coordinate of a nonper- 
turbed BO soliton having the velocity V 0 ( O =  Vot 
+ ,S(~/, o-), where the small parameter , deter- 
mines the slow variables ~7 = ey  and tr = et). Then, 
from Eq. (9b) we derive the following asymptotic 
expansion for the soliton velocity, 

V ~ V 0 -[- , 2 S  o. -[- , 4  VoS2 _ ~02 Scr.q.q _~_ O ( , 6 ) .  

Finally, substituting this expansion into Eq. (9a) 
gives a closed equation for S(~/, tr), 

S,~ + V2S,m + ,2(Snnm7 + 4VoSnS~n + 2VoS~Sm7 ) 

"[- 0 ( ,  4) ~--" 0. (11) 

Eq. (11) coincides with the Kanp equation [19] with 
the accuracy of the cubic nonlinear term having 
order O(,4).  On the other hand, the transformation 
of Eq. (11) to  Lagrangian coordinates (see Ref. [19]), 

2 
f f=~7 ,  o - ' = o ' - : - - , 2 S ( ~ ,  o ' ) ,  

v0 
1 

R = S~ - -~oo e 2 ( S~ ) 2 , 

allows us to reduce Eq. (11) to the integrable elliptic 
Boussinesq equation for R(ff ,  tr'), 

g ~ +  v2gnn+,E(gnn+ aVogE)n + 0 ( , 4 ) = 0 .  

(12) 

Here we drop the prime of the new variables for 
sinaplicity. It is important to note that the elliptic 
Boussinesq equation (12) gives the same dispersion 
relation (5) for unstable periodic perturbations on the 
soliton background (R-= 0) as the original model 
(2). Using the Zakharov-Shabat dressing method, 
Breizman and Malkin [20] found the exact solutions 
to Eq. (12) describing the long-term dynamics of the 
unstable periodic perturbation. According to the ap- 
proximation made above, we keep the leading order 

of these solutions and thus obtain an approximate 
solution to the Whitham equations (9a), (9b) in terms 
of the original variables O, V, 

2p  2 sinh[ h ( t  - T)] 

0~. Vo t -  V0h{cosh[ h ( t  - T)] -- cos(py)} ' 

(13a) 

2pZ{cosh[ h ( t -  ~')] cos(py) - 1} 
V=Vo+ 

Vo{cosh [ h ( t  - r ) ]  - cos( py)}2 

(13b) 

where the growth rate A is defined by formula (5) 
and ~- is an arbitrary parameter. Let us analyze the 
general solution (13a), (13b) for a special limiting 
case of the transverse wave number, p ~ 0. In this 
case, the solution describes self-focusing of the BO 
soliton subjected to an initially localized perturba- 
tion, it is given by rational functions of the form 

4 ( t -  ~') 
O=Vot- Vo[y2W(t_r)2], (14a) 

4 [ V 2 ( t - r ) e - y  2] 

V-.~ VO + vo[y2_I_ Vg( t_T)2]2 .  (14b) 

Using formulae (3), (14a), (14b) we get an approxi- 
mate picture of the dynamics of a perturbed BO 
soliton and present it in Figs. la, lb. It can be clearly 
seen that the initial serf-focusing of the soliton am- 
plitude in a localized region is accompanied by its 
self-contraction and acceleration. As a result, a 2D 
localized perturbation with permanently increasing 
amplitude escapes the BO soliton leaving a hole in 
its profile. Formally speaking, an approximate solu- 
tion (14a), (14b) displays the formation of a singular- 
ity at y = 0 in a finite time t = ~-. However, the 
applicability of this solution is limited by the time 
t = t * = ~- - 1 /x /2  V0 2 when the velocity V turns to 
zero at the points y = _ y  * = _+ vr3-/x/2 V 0. The 
breakdown time of our approximate solution (14a), 
(14b), t*,  corresponds to the time of spatial separa- 
tion of the 2D localized perturbation and the original 
BO soliton. The further dynamics of such a collaps- 
ing 2D cluster should be investigated in the frame- 
work of the original Whitham equations (9a), (9b). 

The general solution (13a), (13b) describes the 
same dynamics of a periodic transverse perturbation 
upon the BO soliton as the solution (14a), (14b) 
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Y 

b) 

Y 

Fig. 1. Formation of a 2D collapsing cluster. Evolution of a 
perturbed BO soliton described by formulae (3), (14a), (14b) with 
V 0 = l , z = 0 : ( a )  t = - 2 . 5 ; ( b )  t = - 1 . 3 .  

does, the collapsing 2D clusters are formed at each 
period of the transverse perturbation. We would like 
to mention that our analytical results are in good 
agreement with the numerical simulations within the 
original model (1) reported in ReL [8]. In this paper, 
the initial stage of the 2D collapse initiated by the 
serf-focusing BO solitons was simulated. 

4. In the previous section we found that the 
self-focusing instability of the BO solitons leads to 
formation of 2D soliton-like structures with increas- 
ing amplitudes escaping the perturbed BO soliton. 

Therefore, in order to describe the further dynamics 
of the structures it is necessary to consider essen- 
tially 2D soliton solutions to the Whitham equations 
(9a), (9b). Here we present the steady-state solutions 
which are prescribed by the functions (9 = v t + 
(9 o, V =  W ( y - Y o ) ,  where v, ~90, and Y0 are arbi- 
trary parameters and the function W ( y )  satisfies the 
second-order ODE, 

W W -  1/¢ 2 + W 3 ( W  - v) = 0. (15) 

A general solution to Eq. (15) can be readily found 
and is given by the periodic function 

p2 
W = . (16) 

_ _ p Z  c o s ( p y )  

Here the parameter v must be positive in order to 
satisfy the condition W ( y )  > 0, while the parameter 
p belongs to the interval 0 ~ p  ~< v. The functions 
(3), (16) describe a steady-state soliton with a trans- 
versely modulated front, and the parameters v and p 
determine the soliton velocity and transverse wave 
number, respectively. In the limit p ~ v the ampli- 
tude of the transverse perturbations on the soliton 
background tends to zero and this point coincides 
with the instability cutoff for  the BO solitons with 
velocity v (see formula (5)). Thus, near the critical 
point p = v the branch of the steady-state 2D waves 
bifurcates from the 1D soliton solutions according to 
the hypothesis of Ref. [9]. In the other limit ( p  ~ 0) 
a transversely periodic solitary wave degenerates to 
the algebraic soliton, 

2v 
W =  1 + t 'Zy 2 '  (17 )  

which corresponds to the 2D solitary wave in the 
original model (2). Thus, our results imply that the 
field of 2D solitons falls to zero like x -z,  y-Z, and, 
moreover, formulae (3), (17) give a good analytical 
approximation to the real soliton solution which was 
calculated numerically in Ref. [10] for model (1). 
However, surprisingly, the soliton solution (17) is 
not unique within the framework of the Whitham 
equations (9a), (9b). Extending the parameter p of 
function (16) into a complex plane ( p  = iq) we can 
find another, exponentially localized solution 

q2 

W =  ~--~+ qZc°sh(0T) _ v (18) 
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The 2D solitary wave (18) has two parameters v, q 
and in the limit q ~ 0, u > 0 transforms into the 
algebraic soliton (17). It is interesting to note that the 
parameter u for finite q may have an arbitrary sign 
because the function W(y), (18), is positive for any 
v. Therefore, 2D solitary waves of this type may 
propagate in an arbitrary direction with respect to the 
x-axis. It means that, in the original problem, such 
solitary waves correspond both to "subsonic" and 
"supersonic" waves, while the BO solitons and 
algebraic 2D solitons are always "subsonic" [8]. 

This new class of steady-state 2D soliton solu- 
tions to model (2) is essentially anisotropic as the 
soliton field falls to zero algebraically in the longitu- 
dinal (x)  direction and exponentially in the trans- 
verse (y )  direction. However, the supersonic solitary 
waves are in resonance with the linear dispersing 
perturbations and, hence, we can expect that the 
whole family of exponential solitons (18) for u < 0 is 
unstable due to such a resonant interaction. The 
problem of linear stability of new solitons for v > 0 
and their role in the dynamics of localized perturba- 
tions remains open at the moment. However, we will 
show in the next section that all kinds of 2D solitary 
waves are unstable with respect to finite perturba- 
tions and that they transform into collapsing 2D 
clusters due to this nonlinear instability. 

5. Now we consider the long-term dynamics of 
the 2D localized perturbations and show that the 
Whitham equations (9a), (9b) permit the formation 
of 2D singularities in finite time (collapse). Indeed, it 
is easy to check that the model (9a), (9b) inherits the 
critical collapse property of model (1). To this end, 
we write the conserved quantities for Eqs. (9a), (9b), 

co  

= ,,f d y  V, (19a) G 
- - o o  

'Py = - ~ f_~ d y VOy, (19b) 

H =  ½~r£ dy [h(y,  t ) - h ( ~ ,  t ) ] ,  

3V/ 2Vyy 
h(y ,  t) = V20y 2 + V2 V V2" (19c) 

Here we have subtracted the diverging component of 
H at infinity so that the integral (19c) is well defined 
both for algebraic (17) and exponential (18) soliton 

solutions to Eqs. (9a), (9b). The quantities (19a)- 
(19c) have in the original problem (2) the meanings 
of the x and y projections of the momentum and the 
energy (Hamiltonian) averaged on the BO soliton 
(3). 

Now we make the scaling transformation V(y)= 
aV'(ay), Oy(y)=  Oy(ay) retaining the projections 
of the momentum Px,y. Then, it follows from Eq. 
(19c) that the Hamiltonian H is a homogeneous 
function of the scaling parameter a, 

H( O, V) = aH( O', V'). 

Therefore, Eqs. (9a), (9b) provide a model of the 
critical collapse. The critical value of the energy H 
occurs on the soliton solutions (17), (18) for which 
H = 0. Furthermore, in contrast to the original mod- 
els (1), (2) we are able to find another remarkable 
property of the critical collapse, the explicit collapse 
transformation between the solutions to the Whitham 
equations (9a), (9b) (O, V) and their steady-state 
reduction (15) (W). This transformation has the sim- 
ple form 

o=- f ° w(----i+ 1- 
(20a) ( )1J3 

V= W(71), rl= r - t  y. (20b) 

It describes the serf-similar dynamics of perturbed 
2D solitary waves given by Eqs. (17), (18) and the 
parameter r determines the characteristic time of the 
soliton dynamics. For small values of t we can 
expand (20a), (20b) in power series in r-1 and get a 
linear perturbation to the 2D solitary waves, 

vt 2 1 f y y  dy 
O = u t +  6r ~ ' o  W + O ( r - Z ) '  (21a) 

t 
V= W(y)  + ~ ( W + y W )  + O(r-2) ,  (21b) 

The expansions (21a), (21b) determine the instability 
of the 2D soliton with respect to finite-amplitude 
perturbations and such an instability is relatively 
slow, power-like. It is obvious from (20) that the 
nonlinear stage of the 2D soliton instability is differ- 
ent for different signs of the parameter r ,  either the 
self-similar collapse for r >  0 or the self-similar 
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decay for 7. < 0. Thus, depending on a weak initial 
perturbation, the solitons with slightly increased am- 
plitudes collapse whereas the solitons with slightly 
decreased amplitudes spread out. 

It follows from (17), (20a), (20b) at 7.> 0 that 
near the singularity created by the collapse of the 
algebraic 2D soliton the amplitude u in the original 
model (2) is given by formula (3) with the parame- 
ters @, V in the form 

~y4 7" t 4/3 
0 ~ - 24---~ ( ~ ] ' (22a) 

V = - -  (22b) py2 

The collapse of the self-focusing 2D algebraic soli- 
ton is shown in Figs. 2a, 2b. It can be easily seen 
that the shape of the self-focusing 2D soliton (Fig. 
2a) is similar to the shape of the soliton-like struc- 
ture which is formed as a result of the BO soliton 
instability (Fig. lb). Moreover, they have the same 
asymptotics of the field decay ( ~  x -z ,  y -Z)  as fol- 
lows from formulae (14b), (22b). We would like to 
emphasize that the collapsing structure remains self- 
similar for any time (Fig. 2b). 

Note that our results are different from the self- 
similar substitution given in Ref. [8], u = aU(ax,  ay), 
where a = ( 7 " - t )  -~/2. However, in analogy with 
the 1D BO equation (see Ref. [21]), this substitution 
is not responsible for the collapse phenomenon, it 
describes the self-similar dynamics of linear disper- 
sive waves. The correct structure of the collapsing 
clusters can be found only approximately and is 
presented by formulae (3) and (22). Furthermore, 
using (17), (19a) we can estimate the threshold value 
Pcr for the momentum of the 2D algebraic soliton, 
Pcr=  277"2" According to the general theory of the 
critical collapse phenomenon (see, e.g. Ref. [1]), the 
localized initial distributions with Px < Per spread 
out and decay while those with Px > Pc~ focus and 
collapse with permanent emission of radiation waves. 
The critical (Px = Per) collapse or decay are radia- 
tionless, and they are approximately described by the 
transformation (20a), (20b). 

Thus, the 2D solitary waves found in Ref. [10] 
cannot describe the steady-state localized perturba- 
tions in shear flows because of their slow power-like 
instability. However, the structure of serf-focusing 

a) 

Y 

i b) 

Fig. 2. Self-similar radiationless collapse. Evolution of a 2D 
algebraic soliton described by formulae (3), (17), (20a), (20b) with 
u = 1, r = 1: (a) t = 0.2; (b) t = 0.8. 

2D perturbations remains similar to that of these 2D 
algebraic solitons. Therefore, we might expect that 
the large-amplitude perturbations slowly evolve into 
the " thorn "-l ike coherent structures similar to those 
observed in Ref. [6] in the boundary-layer type shear 
flows above the plate, having at each instant the 
same shape as the 2D soliton of model (1). 

6. In this paper we have presented the explicit 
collapse transformation of the steady-state solutions 
to the Whitham equations which were obtained from 
the models (1), (2). This transformation is similar to 
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that for the critical 2D NLS equation [2,3]. However, 
in the latter case it is associated with a nontrivial 
symmetry of solutions to the 2D NLS equation and 
with the virial theorem which is very useful for 
describing long-term dynamics of localized initial 
perturbations [4]. Unfortunately, in our case, such 
additional symmetry and the virial theorem do not 
exist for the Whitham equations (9a), (9b). More- 
over, we were unable to generalize even the collapse 
transformation (20a), (20b) for the original models 
(1), (2). Apparently, they do not possess this remark- 
able mathematical property of the 2D NLS equation. 
Therefore, the Whitham adiabatic approach seems to 
be especially fitted for the analytical description of 
the critical 2D wave collapse. We note that we have 
checked that the Whitham equations for the 2D NLS 
equation (which were obtained in Ref. [13]) inherit 
all properties of the model including the general 
collapse transformation and the virial theorem. Thus, 
we may expect that the Whitham approach gives 
correct results in other problems where the radiation 
field is not essential for the soliton evolution. 
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