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We describe a mechanism that results in the nonlinear instability of stationary states even in the case where
the stationary states are linearly stable. This instability is due to the nonlinearity-induced coupling of the
linearization’s internal modes of negative energy with the continuous spectrum. In a broad class of nonlinear
Schrödinger equations considered, the presence of such internal modes guarantees the nonlinear instability
of the stationary states in the evolution dynamics. To corroborate this idea, we explore three prototypical case
examples: (a) an antisymmetric soliton in a double-well potential, (b) a twisted localized mode in a one-
dimensional lattice with cubic nonlinearity, and (c) a discrete vortex in a two-dimensional saturable lattice.
In all cases, we observe a weak nonlinear instability, despite the linear stability of the respective states.
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Introduction.—Among dispersive nonlinear partial dif-
ferential equations, the nonlinear Schrödinger (NLS) model
[1,2] stands out as a prototypical system that has proved to
be essential in modeling and understanding features of
numerous areas in nonlinear physics. The relevant fields of
application vary from optics and the propagation of the
electric field envelope in optical fibers [3,4] to the self-
focusing and collapse of Langmuir waves in plasma
physics [5,6]. It is also encountered in the modeling of
deep water and freak or rogue waves in the ocean [7,8], as
well as in atomic physics and the dynamics of superfluids
and atomic Bose-Einstein condensates [9–11].
One of the most customary ways to approach the

experimental observations of nonlinear dispersive waves
in these different physical systems is to explore the standing
wave solutions that NLS models may possess and to
understand their spectral and dynamical stability character-
istics [12]. This is accomplished not only in homogeneous
continuous media, but also in inhomogeneous and discrete
ones, not only in one but also in higher dimensions [13–15].
Then, the conventional wisdom suggests that should
the solution in the NLS model be found to be linearly
(spectrally) stable, then it should be expected to be dynami-
cally stable as well and hence a suitable candidate for
observations in physical experiments. By linear stability
here, we imply the absence of eigenvalues with nonzero real
parts, as well as the absence of multiple and embedded
imaginary eigenvalues with the exception of the zero
eigenvalue generated by the symmetries of the NLSmodels.
In the present work, we explore an important, as well as

generic, nonlinear mechanism of instability of standing
wave solutions, which are linearly stable. The instability is
induced by the linearization’s internal modes of negative

energy or negative Krein signature [16] that correspond to
simple imaginary eigenvalues and represent negative
“directions” of the NLS energy at the standing wave
solutions. While perfectly innocuous in the linear setting,
these internal modes of negative energy can be in resonance
with the continuous spectrum (or other internal modes) due
to nonlinearity, in which case they lead to the nonlinear
instability of the standing wave solutions.
For a ground state, small amplitude excitations of the

standing wave always increase the NLS energy so that
the standing wave is an energetically stable minimum of the
system, which is also dynamically stable. Internal modes for
such ground states may only have positive energy or a
positiveKrein signature [17,18]. However, for many excited
states, small amplitude excitations may decrease the NLS
energy and still do not result in the appearance of linear
instability. This has led to the widespread belief that
energetic instability does not generically imply dynamical
instability; instead “the energetic instability can only desta-
bilize the system in the presence of dissipative terms which
drive it towards configurations of lower energy” (p. 58 in
Ref. [9]). Our aim herein is to challenge this conventional
wisdom and to establish through a diverse array of case
examples that, in fact, generically, excited states bearing an
energetic instability will also manifest a dynamical one.
The initial mathematical formulation of the nonlinear

mechanism of instability of excited states was obtained by
Cuccagna [19,20], but these results have not been con-
firmed in the physics literature by numerical or experi-
mental evidence. In the present work, we give numerical
evidence of the nonlinear instability due to the internal
modes of negative energy based on three case examples
involving continuous and discrete NLS models in one and
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two dimensions. The discovery of this nonlinear mecha-
nism may broadly impact researchers in nonlinear physics,
enabling them to identify and to explain weak (nonlinear)
instabilities of the standing waves observed in numerous
experimental setups in atomic, optical, fluid, or plasma
systems related to this general framework.
Theoretical formulation.—The cubic NLS model in a

generalized form reads

i∂tu ¼ −∇2uþ VðxÞuþ gjuj2u; ð1Þ

where u is a complex field, V characterizes the external
potential with a fast decay to zero at infinity, and g is a
coefficient that characterizes the self-focusing (g < 0) or self-
defocusing (g > 0) nature of the nonlinearity. The stationary
state takes the form uðx; tÞ ¼ e−iωtϕðxÞ, where ω is real.
The prototypical example of the nonlinear instability

in the NLS model (1) occurs when the Schrödinger
operator −∇2 þ V admits two simple negative eigenvalues
(energy levels) E0 < E1. The ground state bifurcates for ω
near E0, whereas the excited state bifurcates for ω near E1.
In particular, the excited state can be represented by
ϕðxÞ ¼ ϵu1ðxÞ þOðϵ3Þ, where u1 is the L2-normalized
eigenfunction of −∇2 þ V for eigenvalue E1, Oðϵ3Þ is the
remainder due to the cubic nonlinearity, and ϵ is found from
ω by ω ¼ E1 þ gðRR ju1j4dxÞϵ2.
When considering the stability of the stationary state, we

utilize the linearization, e.g., by means of

uðx; tÞ ¼ e−iωt½ϕðxÞ þ δ(aðxÞeλt þ b̄ðxÞeλ̄t)�; ð2Þ

with small parameter δ (independently of ϵ), and obtain the
spectral problem

Hψ ¼ iλσ3ψ ; ð3Þ

where ψ ¼ ða; bÞT , σ3 ¼ diagð1;−1Þ, and H is given by

H ¼
�
−∇2 þ V − ωþ 2gjϕj2 gϕ2

gϕ̄2 −∇2 þ V − ωþ 2gjϕj2
�

:

Hereafter, for simplicity, we assume that ϕ is real. If ϵ is
small, it is easy to confirm that the spectral problem (3) has
a double zero eigenvalue due to the gauge symmetry of the
NLS model, the continuous spectrum for λ ∈ ið−∞;−jωj�
and λ ∈ i½jωj;∞Þ, and a pair of internal modes at λ ¼ �iΩ
with Ω ¼ E1 − E0 þOðϵ2Þ > 0. Assuming that the two
negative energy levels of −∇2 þ V satisfy

1

2
jE1j < jE1 − E0j < jE1j; ð4Þ

we conclude that Ω < jωj but 2Ω > jωj; hence, the internal
mode eigenfrequency is isolated from the continuous
spectrum but the second harmonic is embedded into the
continuous spectrum. The second harmonic can be gen-
erated by the nonlinear terms beyond the linear

approximation (2). Also, note that the mode energy is
defined by

K ¼ hHψΩ;ψΩi ¼ −Ω
Z

R
ðjaΩj2 − jbΩj2Þdx; ð5Þ

where ψΩ ¼ ðaΩ; bΩÞT is the eigenvector for the eigenvalue
λ ¼ iΩ. Since Ω ¼ E1 − E0 þOðϵ2Þ > 0 and ψΩ ¼
ðu0; 0ÞT þOðϵ2Þ, where u0 is the L2-normalized eigen-
function of −∇2 þ V for the lowest energy level E0, it
follows that the internal mode has negative energy, that is,
K < 0. The sign of K is usually referred to as the Krein
signature.
Now, we will explain why the internal mode of negative

energy, when coupled with the continuous spectrum due to
the second harmonic, leads to the nonlinear instability of
the stationary state. We shall consider the expansion in
amplitudes of the internal mode

uðx; tÞ ¼ e−iωt½ϕðxÞ þ δu1ðx; tÞ þ δ2u2ðx; tÞ þOðδ3Þ�
with u1ðx; tÞ ¼ cðτÞaΩðxÞeiΩt þ c̄ðτÞb̄ΩðxÞe−iΩt, where
cðτÞ is the complex amplitude of the internal mode
evolving in slow time τ¼δ2t. Note that because HþΩσ3
is a self-adjoint operator, we can choose the internal mode
ðaΩ; bΩÞT to be real. Using the expansion above, similarly
to what was done in the case of internal modes of positive
energy [18], we obtain the explicit representation of the
second-order correction term

u2ðx; tÞ ¼ c2a2ðxÞe2iΩt þ jcj2a0ðxÞ þ c̄2b̄2ðxÞe−2iΩt;

where ψ2 ¼ ða2; b2ÞT and ψ0 ¼ ða0; a0ÞT are obtained
from bounded solutions of the inhomogeneous problems

ðH þ 2Ωσ3Þψ2 ¼ −gϕ
� ðaΩ þ 2bΩÞaΩ
ð2aΩ þ bΩÞbΩ

�

ð6Þ

and

Hψ0 ¼ −2gϕða2Ω þ aΩbΩ þ b2ΩÞ
�
1

1

�

: ð7Þ

Since the kernel ofH is spanned by the eigenvector ðϕ;−ϕÞT
due to the gauge symmetry, there is a real solution of Eq. (7)
decaying at infinity. On the other hand, because 2Ω > jωj,
the correction term ψ2 is bounded but not decaying at
infinity. We apply the Sommerfeld radiation condition

ψ2ðxÞ → RΩe2e∓ikΩx as x → �∞; ð8Þ
where e2 ¼ ð0; 1Þ, kΩ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ω − jωjp
, and the radiation tail

amplitudeRΩ is a uniquely determined complex coefficient.
Because of the Sommerfeld radiation condition (8), the
second harmonic ða2; b2Þ is given by complex functions.
Proceeding to the third-order correction term, as in

Ref. [18], we obtain the evolution equation for the
amplitude cðτÞ in slow time τ ¼ δ2t
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iK
dc
dτ

þΩβjcj2c ¼ 0; ð9Þ

where K is given by Eq. (5) and β is found from the
projection of the inhomogeneous problem for the third-
order correction term on the internal mode ðaΩ; bΩÞT .
A long but straightforward computation yields

2iImðβÞ ¼ 2ðā02a2 þ b̄02b2 − ā2a02 − b̄2b02Þjx→þ∞
x→−∞

¼ 8ikΩjRΩj2: ð10Þ
Introducing the square amplitude QðτÞ ¼ jcðτÞj2, we

obtain a simple differential equation

K
dQ
dτ

¼ −8ΩkΩjRΩj2Q2; ð11Þ
starting with the positive initial value Qð0Þ. For the internal
modeofpositive energywithK > 0, this equation leads to the
slow (i.e., power-law) decay of the internalmode in time [18].
For the internalmode of negative energyK < 0, this equation
guarantees the power-law growth of the internalmode in time
and eventual blowup of the quadratic approximation in
Eq. (11), although this growth is typically saturated by the
nonlinearity. Mathematical justification of the normal form
equation (11) can be found in Refs. [19,20].
Case example 1: antisymmetric soliton in double-well

potentials.—The dynamics of the antisymmetric (so-called
π) solitons in a double-well potential has been explored
extensively in the recent physical literature (see, e.g.,
Ref. [21]) motivated by experiments in atomic [22–24]
and optical [25,26] physics. In comparison to the work
presented herein, such solitons were realized experimen-
tally for short dynamical time scales, for which no
dynamical instability was detected [24]. Here, we report
on the weak (nonlinear) instability of the antisymmetric
solitons in the NLS model (1) with the repulsive interaction
g ¼ 1 and the potential

VðxÞ ¼ V0(sech2ðx − x0Þ þ sech2ðxþ x0Þ): ð12Þ
We take V0 ¼ −1 and x0 ¼ 2 to ensure that V is the
double-well potential. For ω ¼ −0.4, the frequency of the
internal mode of the antisymmetric soliton is Ω ≈ 0.203
(i.e., Ω < jωj but 2Ω > jωj), ensuring the second harmonic
occurs inside the continuous spectrum.

In Fig. 1, we monitor the dynamical evolution of the
antisymmetric soliton, perturbed by the internal mode (see
the Supplemental Material [27] for further details). We
observe the slow manifestation of a dynamical instability,
both in the space-time evolution in the top panel, as well as
more concretely in the time evolution of the maximal
amplitudes in the two potential wells in the bottom panel.
The longer term dynamics shows that the growing oscil-
latory dynamics of the internal mode eventually returns to
the initial state leading to recurrent dynamics.
Case example 2: the twisted localized mode in a one-

dimensional lattice with cubic nonlinearity.—Weexamine a
twisted localized mode in the one-dimensional cubic NLS

lattice [15]. Such states have been previously explored in
both one-dimensional [28] and two-dimensional [29] optical
experiments. The discrete NLS equation is a prototypical
model of optical waveguide arrays in nonlinear optics [30].
We take the discrete NLS equation in the standard form:

i _un ¼ −CΔ2un − junj2un: ð13Þ
Here, un plays the role of the envelope of the electric field at
the nth waveguide and C represents the strength of the
evanescentcouplingbetween thewaveguides,whileΔ2 stands
for the standard 3-point stencil in the one-dimensional lattice.

The twisted localized modes can be exactly represented in
the limit of C ¼ 0 (so-called anticontinuum limit) as
unðtÞ ¼ eitðδn;0 − δn;1Þ, setting ω ¼ −1 without loss of
generality. As C ≠ 0 increases, as shown in Ref. [31], the
solution is linearly stable but it has one internal mode of
negative energy with the frequency Ω ¼ OðC1=2Þ as C → 0.
For small C, this frequency is isolated from the continuous
spectrum,which corresponds to the frequencies in the interval
½1; 1þ 4C�. For C ¼ 0.01, the internal mode frequency is
Ω ≈ 0.204 so that the condition 2Ω > jωj is not satisfied.
While this case is unstable too via the proposed mechanism,
the instability only arises through a higher harmonic (the fifth
harmonic, in fact) of the mode frequency. That is why the
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FIG. 1 (color online). The top panel shows the space-time
evolution of a perturbed antisymmetric soliton in the NLS model
(2) with the double-well potential (12). The slow growth over
time is further illustrated in the bottom panel of the figure
containing the evolution of the maximal amplitude in the left and
right potential wells by a solid (blue) and dashed (red) line. Inset:
detail of the growth dynamics.
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instability is not visible on the time scale of our dynamical
simulations shown in the top panel of Fig. 2.

On the other hand, for the case of C ¼ 0.07, the internal
mode frequency isΩ ≈ 0.598 and2Ω > jωj is satisfied. In the
dynamics of the bottompanel of Fig. 2, we thus initializewith
such a solution, perturbed by this internal mode. We can
clearly see in this panel (showing the evolution of one of the
two central amplitudes at n0 ¼ 0) that there is very slow
growth reminiscent of a power law. After this instability
manifests itself, it eventually saturates. The theory does not
reveal any information about the ultimate fate of the dynam-
ics. The numerics suggest a resulting genuinely periodic state
for the modulus, hence a genuinely quasiperiodic (or
breather-on-breather [32,33]) state for the system. This, in
turn, suggests that it would be quite worthwhile to further
explore such states dynamically.
Case example 3: a discrete vortex in a two-dimensional

saturable lattice.—Our third example is also highly moti-
vated physically: we inspect discrete vortices in two-
dimensional lattices that were robust enough dynamically
to also be accessible in the optical observations within

photorefractive optical crystals [34,35]. Here, to comply
with the photorefractive nature of the nonlinearity and to
illustrate the genericity of our results, a saturable non-
linearity has been implemented [36] (although the results
would still hold in the cubic case). The discrete saturable
NLS equation takes the form

i _un;m ¼ −CΔ2un;m −
jun;mj2un;m
1þ jun;mj2

; ð14Þ

whereΔ2 in this case stands for the standard 5-point stencil in
the two-dimensional square lattice.

Our example shown in Fig. 3 corresponds to the case of
C ¼ 0.09. In this case, the continuous spectrum covers the
frequencies in the interval ½−ω;−ωþ 8C�. The discrete
vortex consisting of four excited principal sites at the center
of the lattice with phases of approximately 0, π=2, π, and
3π=2 is found forω ¼ −0.35 to possess three internal modes
with frequencies Ω ¼ 0.012, 0.167, and 0.191. Among the
three, the last frequencyΩ ¼ 0.191 has its second harmonic
lying within the linear mode band; hence, we anticipate its
destabilization by the mechanism reported herein. Indeed,
this is what we observe in Fig. 3. However, the instability in
this case appears to be far more “detrimental” for the state in
comparison to the previous examples. In particular, the slow
growth of the instability eventually gives rise to a dramatic
event through which one among the four vortex principal
nodes picks up most of the power in the system, while the
other three considerably decrease in power. The resulting
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FIG. 2 (color online). Evolution of twisted localized modes in
the discrete NLS model (13). Top: time evolution of the four
centermost sites (i.e., the two central ones 0 and 1, with a square
amplitude of ≈1.3 shown also by solid and dashed line in the left
inset, and their immediate neighbors, sites −1 and 2, with a
square amplitude of ≈0.01 shown also by solid and dashed line in
the right inset) of the structure for C ¼ 0.01; no instability is
manifested. The insets show a zoom in of the relevant sites
revealing their oscillatory behavior. Bottom: the evolution of one
of the central sites for C ¼ 0.07 (the inset shows its envelope
illustrating the unstable evolution). In both panels n0 ¼ 0.
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FIG. 3 (color online). The top panel shows the modulus time
evolution of jun¼0;m¼0;�1j, while the bottom panel illustrates the
corresponding evolution of jun¼1;m¼0;�1j [i.e., four sites con-
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dynamics effectively leads to a single-site ground state
configuration of the two-dimensional lattice.
Conclusions.—In the present work, we examined a

mechanism for nonlinear instability that is generic for excited
states of nonlinear Schrödinger systems. The generality and
potential experimental ramifications (through numerical
experiments herein) of our findings were also discussed.
Itwas shown that themechanismoccurs independently of the
discrete or continuum, one- or multidimensional, cubic or
saturable nature of the underlyingNLSmodels, as long as the
excited nature of the state is manifested via the internal
modes of negative energy. The mechanism is found to give
rise to a weak (power-law in its apparent manifestation)
instability that eventually deforms, or in some cases (e.g., the
discrete vortex) completely destroys the configuration.
While the mechanism presented herein is explicitly

established, there are numerous questions that are worthy
of further investigation, in addition to its potential exper-
imental demonstration. The latter seems within reach,
especially in light of recent schemes enabling parametric
tunability such as that of coupling [37], in addition to the
feasibility of initial conditions realizing all of the above
excited states experimentally, as indicated above. It would be
relevant to confirm that the mechanism can be numerically
observed also in the case of higher order harmonics, e.g.,
when nΩ < jωj but ðnþ 1ÞΩ > jωj. Understanding also
better the nature of the resulting end states (e.g., potentially
quasiperiodic ones or ground states) and of perturbations that
lead to different ones among the “available” stateswould be a
particularly intriguing problem. Additionally, it would be
relevant to explore whether the mechanism is applicable to
other dispersive wave systems of intense current interest,
such as, e.g., nonlinear Dirac equations.
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