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Abstract

Partial differential equations that conserve energy can often be written as infinite-
dimensional hamiltonian systems of the following general foffn= JE'(u(t)), u(t) €
X where:J : X — X is a symplectic matrix and : X — R is aC? functional defined
on some Hilbert spac&’. A critical point of this equation is a point € X such that
E'(¢) =0.

We investigate the spectral stability of solutions in a neighborhood of the critical
point by using the linearized Hamiltonian syst%h: JE"(¢)v. The main objective of
this thesis is to develop analysis of the spectral properties of the non-self-adjoint operator
JE"(¢) using the Pontryagin space decomposition. We adopt parallel computations on
Sharcnet clusters to study eigenvalues and eigenvectorB’tfp) numerically.

The structure of the thesis is as follows. The brief introduction to the spectral
stability theory is given in Chapter 1. Count of spectrally unstable eigenvalues of the lin-
earized Hamiltonian system using the indefinite metric approach is given in Chapter 2.
This chapter with general theory is followed by case study of three particular problems
where applications of analysis are interwinded with numerical approximations. In Chapter
3, we analyze spectral stability of double-hump solitary wave solutions of the fifth-th or-
der Korteweg—de Vries equation. In Chapter 4, we deal with the coupled-mode system of
the Dirac type, where the linearized operators can be block-diagonalized for analytical and
numerical studies. In Chapter 5, we study the spectrum of the singular differential operator
L = 0y + €0p(sin00y) subject to the periodic boundary conditions ®r [—m,w]. We
prove that the set of linearly independent eigenfunctions for isolated simple purely imagi-
nary eigenvalues is complete but does not form a bast&,ip([—, 71]). In the concluding
Chapter 6, we summarize all our results and formulate a list of open questions for further

research.
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CHAPTER 1

INTRODUCTION

1.1 The organization of the thesis

Chapter 1gives a brief introduction to solitary wave solutions of nonlinear PDEs, to the
spectral stability theory and a review of different numerical approaches.

Chapter 2develops the count of isolated and embedded eigenvalues in a gener-
alized eigenvalue problem defined by two self-adjoint operators with a positive essential
spectrum and a finite number of isolated eigenvalues. This generalized eigenvalue problem
determines spectral stability of nonlinear waves in a Hamiltonian dynamical system. The
theory is based on Pontryagin’s Invariant Subspace theorem in an indefinite inner product
space but it extends beyond the scope of earlier papers of Pontryagin, Krein, Grillakis, and
others. In particular, we prove the following three main original results:

(i) the number of unstable and potentially unstable eigenvalues of the generalized eigen-
value problemAu = ~vKwu equalsthe number of negative eigenvalues of the self-
adjoint operatorst and K1,

(ii) the total number of isolated eigenvalues of the generalized eigenvalue prdblem
~vKu is bounded from abovby the total number of isolated eigenvalues of the self-
adjoint operatorst and K 1,

(iii) the guadratic forms defined by the two self-adjoint operatoesyd K ! arestrictly
positiveon the subspace related to the continuous spectrum of the generalized eigen-
value problemAdu = yKu.

Applications of general theory are developed for three examples: solitons and vortices of
the nonlinear Sclidinger equations and solitons of the Korteweg—De Vries equations.

Chapter 3deals with the existence and stability of two—pulse solutions in the fifth-
order Korteweg—de Vries (KdV) equation. Two new results are obtained:

(i) the Petviashvili method of successive iterations is developed for numerical (spectral)
approximations of the two-pulse solitons and convergence of the iterations is proved
in a neighborhood of the solutions,
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(i) structural stability of embedded eigenvalues of negative Krein signature is proved in
a context of a linearized KdV equation.

Combined with stability analysis in Pontryagin spaces from the second chapter, the new
results complete the proof of spectral stability of the corresponding two-pulse solutions.
Eigenvalues of the linearized problem are approximated numerically in exponentially weighted
spaces where embedded eigenvalues are isolated from the continuous spectrum. Approx-
imations of eigenvalues and full numerical simulations of the fifth-order KdV equation
confirm stability of two-pulse solutions related to the minima of the effective interaction
potential and instability of two-pulse solutions related to the maxima points.

Chapter 4considers the Hamiltonian coupled-mode system that occur in nonlinear
optics, photonics, atomic physics, and general relativity. Spectral stability of gap solitons is
determined by eigenvalues of the linearized coupled-mode equations, which are equivalent
to a four-by-four Dirac system with sign-indefinite metric. Our main result is:

(i) the block-diagonal representation of the linearized coupled-mode equations is con-
structed to reduce the spectral problem to two coupled two-by-two Dirac systems.

This block-diagonalization is used in numerical computations of eigenvalues that determine
stability of gap solitons.

Chapter 5studies the spectrum of the linear operator= —0, — €0y(sin 9y)
subject to the periodic boundary conditions[emnr, r|. Our three main results are:

(i) ]Ehe‘o|peratorL admits the closure ith*([—,7]) with the domain inH] . ([—7, )
or |e] < 2,

(i) the spectrum of the operatérconsists of an infinite sequence of isolated eigenvalues
with accumulation point at infinity,

(iii) the set of eigenfunctions of the operafois complete inZ?  ([—m, 7]).

By using numerical approximations of eigenvalues and eigenfunctions, we show that all
eigenvalues are simple, located on the imaginary axis and the angle between two subse-
guent eigenfunctions tends to zero for larger eigenvalues. As a result, the complete set of
linearly independent eigenfunctions does not form a basis ir([—, 7).

Chapter 6summarizes the main results and states open questions for further re-
search.

1.2 Nonlinear waves and solitons

Solitary waves or solitons are localized travelling wave solutions of nonlinear PDEs, re-
sulting from a certain balance of dispersive and nonlinear effects. A variety of examples
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exists in the natural science. A solitary wave was first observed by J. Scott Russell in 1834
while riding on horseback beside the narrow Union canal near Edinburgh, Scotland. He
described his observation as follows:

"l was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped - not so the mass of water in
the channel which it had put in motion; it accumulates round the prow of the vessel in a
state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and well defined heap
of water, which continued its course along the channel apparently without change of form
or diminution of speed. | followed it on horseback, and overtook it still rolling on at a rate
of some eight or nine miles an hour, preserving its original figure some thirty feet long and
a foot to a foot and a half in height. Its height gradually diminished, and after a chase of
one or two miles | lost it in the windings of the channel. Such, in month of August 1834,
was my first chance interview with that rare and beautiful phenomenon which I have called
the Wave of Translation... ”

Further investigations were undertaken by G.B. Airy [1845], G.G. Stokes [1847],
J.V. Boussinesq [1871] and B. Rayleigh [1876] in an attempt to understand this phenom-
enon. J.V. Boussinesq derived a one-dimensional nonlinear evolution equation, which now
bears his name, in order to obtain an approximate description of the solitary wave.

Soliton collisions were studied by the computer experimentation in the 1960s by M.
Kruskal and N. Zabusky [126]. The experiment can be described as follows. If we start with
two solitons, the faster one will overtake the slower one and, after a complicated nonlinear
interaction, the two solitons will emerge unchanged as they move, except for a slight delay.
This kind of behaviour is expected for linear problems since each eigenfunction evolves
separately, but that it could happen for a nonlinear problem was a complete surprise at that
time.

The development of the mathematical theory of solitons started from the works of
P. Lax [83], V. Zakharov and A. Shabat [127], M.J. Ablowitz, D.J. Kaup, A.C. Newell and
H. Segur [1]. In parallel, optical solitons were independently predicted and experimentally
realized in 1980 [90].

The easiest way to describe an optical soliton is using the spatial domain, where
it is simply a self-guided wave. Consider an optical beam as narrow as 5 microns. If
such a beam propagates in a linear medium it diffracts and broadens after even a short
1mm distance. In a nonlinear material light actually changes the index of refraction of the
medium in which it propagates, leading to self-focusing. This self-focusing competes with
diffractive effects, and at sufficient intensities can lead to the development of a structure for
which diffraction and self-focusing exactly balance to create a soliton. The field of optical
solitons has greatly developed over the past decade, and they have become a promising
candidate for optical communication networks.

Typical examples of nonlinear partial differential equations that have soliton so-
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lutions include the Korteweg-de Vries equation, the nonlinear &@tthger equation, the
coupled-mode Dirac equations, and the sine-Gordon equation. Soliton solutions of nonlin-
ear partial differential equations have arisen in a number of physical contexts: water waves,
collision-free hydromagnetic waves, plasma physics, non-linear optics, lattice dynamics,
ion-acoustic waves (for details and further references see, for example: M.J. Ablowitz and
H. Segur [2]; S.P. Novikov, S.V. Manakov, L.P. Pitaevskii and V.E. Zakharov [91])

1.3 Spectral stability problems

Partial differential equations that conserve energy can often be written as infinite-dimensio-
nal Hamiltonian systems. We investigate the spectral stability of critical points of such
systems by using the linearization. We call the critical point spectrally stable if the whole
spectrum of the linearized energy operator lies in the closed left complex half plane. Spec-
tral stability is the necessary condition for the Lyapunov stability.

Spectral stability of solitary waves has been studied extensively in the recent past.
The first stability instability theorem for a scalar NLS equation was proved by J. Shatah,
W. Strauss [59] and M. Weinstein [122]. Their result was restricted to the case when the
linearized energy operator had not more than one negative eigenvalue and method was
based on the variational structure of the problem. More general approach (for the case of a
finite number of negative eigenvalues) was developed in [60]. This work was followed by
the work of M. Grillakis [62] who derived existence criteria of an eigenvalue of linearized
energy operator with strictly positive real part in terms of the difference in the number
of negative eigenvalues of two self-adjoint operatbrsand L._ which diagonalize this
operator.

In many problems, stability of equilibrium points in a finite—dimensional Hamil-
tonian system of finitely many interacting particles is determined by the eigenvalues of
some generalized eigenvalue problem [49],

Au = vKu, u e R", (1.1)

where A and K are symmetric matrices iR"*™ which define the quadratic forms for
potential and kinetic energies, respectively. The eigenvalaerresponds to the normal
frequency\ = iw of the normal mode of the linearized Hamiltonian system near the equi-
librium point, such thaty = —\? = w?. The equilibrium point is unstable if there exists
an eigenvaluey such thaty < 0 or () # 0. Otherwise, the system is spectrally sta-
ble. Moreover, the equilibrium point is a minimizer of the Hamiltonian if all eigenvalues
~ are positive and semi-simple and the quadratic forms for potential and kinetic energies
evaluated at eigenvectors df, = vKu are strictly positive.

The eigenspace corresponding to a given eigenvalue is the vector space of all its
eigenvectors. The geometric multiplicity of an eigenvalue is the dimension of the associ-
ated eigenspace. The generalized eigenspace is the vector space of all eigenvectors and
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generalized eigenvectors corresponding to the eigenvalue. The algebraic multiplicity is the
dimension of the associated generalized eigenspace. When the magnpositive definite,

all eigenvaluegy are real and semi-simple (that is the geometric and algebraic multiplici-
ties coincide). By the Sylvester’s Inertia Law theorem [50], the numbers of positive, zero
and negative eigenvalues of the generalized eigenvalue prablem vKu equal tothe
numbers of positive, zero and negative eigenvalues of the métrix

In our context, the Hamiltonian system is infinite dimensional as it represents a
nonlinear PDE, while the critical points of the system are solitary wave solutions. In many
PDE problems, a linearization of the nonlinear system at the spatially localized solution
results in the generalized eigenvalue problem of the fdum= vKwu, whereA and K !
are self-adjoint operators on a complete infinite-dimensional metric space (Hilbert space).
This generalized eigenvalue problem can be studied using the Pontryaginkpatere
the indexx equals to the number of negative eigenvalues of the operdtorss— .

The indefinite metric spaci; (that is with the indexc = 1) was first introduced
by S.L. Sobolev in 1940’s when he studied the rotating shallow water model. S.L. Sobolev
sparked the interest of L.S. Pontryagin who wrote a pioneer article "Hermitian operators in
spaces with indefinite metric” in 1944. This Pontryagin’s result started the new branch of
the functional analysis - theory of linear operators in indefinite metric space.

Most of fundamental results in this theory were obtained by M.G. Krein in 1960’s:
axiomatic approach to the Pontryagin spélce spectral theory of unitary and self-adjoint
operators acting in Pontryagin space, sign definite invariant subspaces of these operators,
bifurcation theory. M.G. Krein also described application of this indefinite matric spectral
analysis to the problem of oscillations of heavy viscous fluid in the open motionless vessel
(the most complete list of references can be found in [8, 67]). The spectral properties
and sign definite invariant subspaces of dissipative and contractive operators acting in the
spaces with indefinite metric were studied in 1980’s by T. Azizov and I.S. Iohvidov [8].

There has been recently a rapidly growing sequence of publications on mathemati-
cal analysis of the spectral stability problem in the context of nonlineard8aotger equa-
tions [37, 70, 97]. Besides predictions of spectral stability or instability of spatially lo-
calized solutions in Hamiltonian dynamical systems, linearized Hamiltonian systems are
important in analysis of orbital stability [59, 60, 33], asymptotic stability [105, 107, 36],
stable manifolds [32, 112], and blow-up of solutions in nonlinear equations [104, 80].

1.4 Numerical methods in nonlinear PDESs.

Both spectral and nonlinear stability of a critical point in a dynamical system can be inves-
tigated numerically.

To solve a spectral stability problem, the eigenvalues of the operdt6(¢) can
be found by the Fourier basis decomposition and the Galerkin approximation. Although
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this is a very robust numerical method it may also result in spurious unstable eigenvalues
originated from the continuous spectrum as it was found for the coupled mode Dirac sys-
tem in [9, 10]. A delicate but time-consuming implementation of the continuous Newton
method was developed to identify the "right” unstable eigenvalues from the spurious ones
[9, 10]. Similar problems were discovered in the variational method [76, 77] and in the nu-
merical finite-difference method [114, 115]. To analyse the bifurcations from the edge of
the continuous spectrum, however the more accurate method of the discretization should be
applied. A new progress on computations of eigenvalues in the coupled-mode system was
made with the use of exterior algebra in the numerical computations of the Evans function
[41].

Another approach is the discretization of the linear differential operatdt(o)
using approximation of derivatives by the differentiation matrices. Itis a very useful tool to
convert a two-point boundary eigenvalue problem to a matrix eigenvalue problem [22, 44].
Differentiation matrices are derived from a spectral collocation method. In this method,
an unknown solution to the differential equation is expanded as a global interpolant, such
as trigonometric or polynomial functions [45, 58]. In other methods, such as finite ele-
ments or finite differences, the underlying expansions involves local interpolants such as
piecewise polynomials. In practice that means that the accuracy of the spectral methods is
superior: for problems with smooth solutions convergence ratéx ef) or O(e=°v")
are routinely achieved, whereis the number of grid nodes. In contrast, finite difference
or finite elements yield convergence rates that are only algebraictypically O(n~?2) or
O(n™4).

The negative side of using spectral methods instead of finite differences or finite el-
ements is replacing sparse matrices by full matrices that leads to the significant increase of
the computational time. Partially this long-computational-time problem can be solved by
means of parallel software libraries (Scalapack) which were recently developed for com-
putations of large eigenvalue problems [54]. Distribution of computations of eigenvalues
for different parameter values between parallel processors can be implemented by using
Message Passing Interface [30].

To solve a nonlinear stability problem, a slightly perturbed spectrally stable critical
point ¢ can be used as an initial value of the nonlinear dynamical problem. A split-step
method can be used to discretize the time variable of the partial differential equation and
the finite-difference or Fourier methods can be used to discretize space variable [121].
Although this method is robust and widely used, it does not solve the stiffness problem,
which arises in the higher-order weakly nonlinear partial differential equations such as the
fifth-order KdV equation with cubic nonlinearity. The reason why the problem is stiff
can be explained by different scales associated with linear and nonlinear components of
the equation. The linear part involves a huge range of scales from the very slow to the
very fast, while the effects of nonlinearity are significant only over long time intervals and
couple the various linear modes. The problem can be eliminated by numerical pseudo-



PHD THESIS— M. CHUGUNOVA MCMASTER— MATHEMATICS & STATISTICS 7

spectral method which is described in details in [89]. The method is based on the explicit
analytical integration of the linear part of the equation, through an integrating factor. The
fourth-order Runge-Kutta method can be used to integrate the evolution equation in time.
The greatest advantage of this numerical method is that no stability restriction arising from
the linear part of the partial differential equation is posed on the timestep of the numerical
integration scheme.
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CHAPTER 2

SPECTRAL ANALYSIS OF LINEARIZED HAMILTONIAN
SYSTEMS USING THE PONTRYAGIN SPACE
DECOMPOSITION.

2.1 Introduction

Nonlinear partial differential equations that conserve energy can often be written as infinite-
dimensional Hamiltonian systems in the following general form:

% = JE'(u(t)), u(t) € X, (2.1.2)
whereJ : X — X is a symplectic operator with the propetfy = —J andFE : X —

R is a C? functional defined on some Hilbert spade A critical point ¢ € X of the
Hamiltonian functionalE, such thatE’(¢) = 0, represents a localized solution of the
nonlinear partial differential equation. The spectral stability of a localized solytimn
defined by the spectrum of the non-self-adjoint eigenvalue problem

JE"(¢)v = v, vEX, (2.1.2)

which is obtained after a linearization of the Hamiltonian system (4.2.6). Although the
operator/ E"(¢) is non-self-adjoint, it is related to the self-adjoint operditf¢) by mul-
tiplication of the symplectic operatof. In many specific examples, such as the nonlinear
Schibdinger and Korteweg—de Vries equations, the non-self-adjoint eigenvalue problem
(2.1.2) can be rewritten as the generalized eigenvalue problem

Aw = yKw, we X, (2.1.3)

whereA and K are self-adjoint operators in the Hilbert spaé@ndy = —\2. The critical

point ¢ is said to have an unstable eigenvalué v < 0 or Im(vy) # 0. Otherwise, the
critical point is weakly spectrally stable. Moreover, it is a minimizer of the Hamiltonian
functional £(¢) if all eigenvaluesy are positive and the quadratic forié-, -) and (K-, -)
evaluated at the eigenvectors of the generalized eigenvalue problem (2.1.3), are strictly
positive.
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The main purpose of this chapter to develop analysis of the generalized eigenvalue
problem 2.1.3 in infinite dimensions by using the Pontryagin space decomposition [106].
The theory of Pontryagin spaces was developed by M.D. Krein and his students (see books
[8, 53, 67]) and partly used in the context of spectral stability of solitary waves by R.
MacKay [86], M. Grillakis [62], and V. Buslaev & G. Perelman [21] (see also a recent
application in [64]). We shall give an elegant geometric proof of the Pontryagin’s Invari-
ant Subspace theorem.We shall give an elegant geometric proof of Pontryagin’s Invariant
Subspace Theorem and then apply this theorem to establish our main results:

(i) the number of unstable and potentially unstable eigenvalues of the generalized eigen-
value problem (2.1.3¢qualsthe number of negative eigenvalues of the self-adjoint
operatorsd and K 1,

(i) the total number of isolated eigenvalues of the generalized eigenvalue problem (2.1.3)
is bounded from abowvey the total number of isolated eigenvalues of the self-adjoint
operatorsd and K1,

(iii) the quadratic forms defined by the two self-adjoint operatoesyd K ! arestrictly
positiveon the subspace related to the continuous spectrum of the generalized eigen-
value problem (2.1.3).

The first result is a remake of the main results obtained in [37, 70, 97], although the
method of proof presented therein is quite different than that given here. The second result
gives a new inequality on the number of isolated eigenvalues of the generalized eigenvalue
problem (2.1.3), which can be useful to control the number of neutrally stable eigenvalues
in the gap of the continuous spectrum of the linearized operator associated with the stable
localized solutions. The third result has a technical significance since it establishes a simi-
larity between Sylvester’s Inertial Law used in [97] and Pontryagin’s space decomposition
used here. With this construction, one can bypass the topological theory developed in [62]
and used in [70].

The structure of this chapter is as follows. Main formalism of the generalized eigen-
value problem is described Bection 2.2 The Pontryagin Invariant Subspace theorem is
proved inSection 2.3Spectral properties of self adjoint operators acting in the Pontryagin
space are studied in ti&ection 2.4 Main results on eigenvalues of the generalized eigen-
value problem are formulated and provedSaction 2.5Sections 2.6, 2.7 and 2ddntain
applications of the main results to solitons and vortices of the nonlinear Schrodinger equa-
tions and solitons of the Korteweg—De Vries equations.
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2.2 Formalism and review of results

Let L, andL_ be two real-valued self-adjoint operators defined on a Hilbert spaséh
the inner product-, -). Our two assumptions on operatdrs and L _ are listed here:

P1 The essential spectrum(L. ) includes the absolute continuous part bounded from
below byw, > 0 andw_ > 0 and finitely many embedded eigenvalues of finite
multiplicities.

P2 The discrete spectrum, (L) in X includes finitely many isolated eigenvalues of
finite multiplicities with p(L..) positive,z(L.) zero, andn(L.) negative eigenval-
ues.

We consider the linear eigenvalue problem defined by the self-adjoint opefatonsthe
form
Liu=-\w, L_w=\u, u,w € X, (2.2.1)

where) € C. Under the assumptions P1-P2 the ketwell _ of the operatod._ is finite
dimensional, the eigenvalue= 0 of this operator is isolated. It follows from above that
the range of the operatosin ._ =: H is closed. LetP be the orthogonal projection from
X to H, whereH is the constrained Hilbert space

H={ueX: ulKer(L_)}. (2.2.2)
SincePu € range(L_), thenPw = APL-'Pu and
PL,Pu=—\NPL_'Pu, ueH.

Therefore, the linear eigenvalue problem (2.2.1) in the Hilbert spacerewritten as the
generalized eigenvalue problem in the constrained spiaas follows

Au = yKu, u€eH, (2.2.3)

whereA = PL,.P, K = PL_'P, andy = —\2. We note thatkX is a bounded invertible
self-adjoint operator ofi{, while A is a generally unbounded non-invertible self-adjoint
operator or¥{. Finitely many isolated eigenvalues of the operatbend K ~! in H are dis-
tributed between negative, zero and positive eigenvalues away from the essential spectrum.
By the spectral theory of self-adjoint operators, the Hilbert sgdasan be equivalently

These indices can be zero and the corresponding subspaces can be empty. For instaned),ithen
p(Ly) = z(Ly) = 0.
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decomposed into two orthogonal sums of subspaces which are invariant with respect to the
operatorss and A:

H=HyoHEeHED, (2.2.4)
H=H,oH,®H, &HTW, (2.2.5)

where notation-(+) stands for negative (positive) isolated eigenvalogsy the isolated
kernel, ando, for the essential spectrum that includes the absolute continuous part and
embedded eigenvalues. The subspadgsand HY are empty ifw, = 0, while o.(A)
belongs to the intervdlv,,oc0). SinceP is a projection defined by eigenspacesiof

while K = PLZ'P, itis obvious thatlim(H ) = n(L_), dim(H};) = p(L_), ando,(K)
belongs to the intervdl, w™']. The eigenvalues ofl are related to the eigenvalues lof
according to the standard variational theory in constrained Hilbert spaces [60, 37]. The
main result of this theory is formulated in the following proposition.

Proposition 2.1 Letw, > 0, Ker(L_) = Span{vy, ve, ..., v, } € X, and define the matrix-
valued functionV ():

Vg o(Ly):  My(p) = ((n— L) i, v;), 1<i4,5<n. (2.2.6)

Let ng, 29, and p, be the number of negative, zero and positive eigenvalugd 0=
lim,,1o M (1)?. Then,

dim(H,) = n(Ly) — po — 29, dim(HY) = 2(A) + 2,
dim(H5) < p(Ly) + po + 2(Ls) — 2(A). (2.2.7)

Proof. According to the results of [37], all eigenvalues oft/ () are strictly decreasing
functions ofu on the intervalg —oo, w, )\o4(L+ ). These functions may have infinite jump
discontinuities from minus infinity to plus infinity across the pointsrgfL, ) and have a
uniform limit to minus zero ag — —oo. The count of jumps of the eigenvalues/af( )
gives the count of eigenvalues of the constrained variational problem

(M - L+)U = Z Vivy, CS Ha IUS (_OO7W+)a (228)
j=1

where(vy, 1y, ..., 1,) are Lagrange multipliers. The first two equalities (2.2.7) are proved in
Lemma 3.4 of [37] for the casg L, ) = z(A) = 0 and in Theorem 2.9 of [37] for the case
z(Ly) # 0. The last inequality (2.2.7) follows from the count of positive eigenvalues of

2SinceL is generally non-invertible, some eigenvalues\f can be infinite ifz(A) # z(L, ) that is if
Ker(L) ¢ H. The numbersy, zg, andpy denotefinite eigenvalues of\fy, such thaty + z4 + pp < n.
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the constrained variational problem (2.2.8), which originate from jumps of eigenvalues of
M(p)on0 < p < w atp(L,) positive eigenvalues af ,, from p, positive eigenvalues of

My, and from(z(L.)—z(A)) eigenvalues oM (1) which have infinite jump discontinuities
across: = 0. The upper bound in the last inequality is achieved if all limiting eigenvalues
of My = lim,,, M (n) are either negative or diverge to negative infinity. "

Since A has finitely many negative eigenvalues akichas no kernel ir, there
exists a small number> 0inthe gaf) < § < |o_1|, whereo_; is the smallest (in absolute
value) negative eigenvalue 6f~* A. The operatord + § K is continuously invertible irH
and the generalized eigenvalue problem (2.2.3) is rewritten in the shifted form,

(A+0K)u = (y+9)Ku, u € H. (2.2.9)

By the spectral theory, an alternative decomposition of the Hilbert spaexists for0 <
0 < |U_1’:
_ oe(A+6
H=Hus0 © Hiysx © HA+(5; o, (2.2.10)

whereo.(A + §K) belongs to the intervalusx,00) andwaysx is the minimum of
oe(A+0K). If wy > 0, thenwa,sx > 0 for sufficiently smally # 0. If w, = 0, we shall
add the following assumption:

P3 If w, = 0, thenw 4,55 > 0 for sufficiently smalls > 03. Moreoverdim(Ker(A)) <
1 and there exists at most one small negative eigenvaltieof A + ¢ K, such that
limgyo p2(0) = 0.

We shall now introduce notations for particular eigenvalues of the generalized eigen-
value problem (2.2.3) and formulate our main results proved in this chapteN LéN, ),
NZ? (ND), andN," (N;7) be respectively the numbers of negative, zero, and positive eigen-
valuesy of the generalized eigenvalue problem (2.2.3) with the account of their algebraic
multiplicities whose eigenvectors are associated to the non-negative (non-positive) values
of the quadratic form{ K-, -). The positive eigenvalueg with v > w,w_ are embedded
into the continuous spectrum of the generalized eigenvalue problem (2.2.3). Finally, let
N.+ (N.-) be the number of complex eigenvalues in the upper (lower) half-pjaneC,
Im(y) > 0 (Im(y) < 0). Becaused and K are real-valued operators, it is obvious that
Ng+ = N-.

Theorem 1 Let assumptions P1-P3 be satisfied. Eigenvalues of the generalized eigenvalue
problem (2.2.3) satisfy the following two equalities:

N, + N+ N, + N+ = dim(H ., 55) (2.2.11)
N, + N+ N,;f + N+ = dim(Hy) (2.2.12)

3The first statement of assumption P3 was recently proved for abstract opetatodds in [7].
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Proof. The theorem is proved in Section 5. "

Corollary 2.2 Let N, = dim(H, s,) + dim(H ) be the total negative index of the
shifted generalized eigenvalue problem (2.2.9). Ngt; = N, + N, + 2N+ be the total
number of unstable eigenvalues that includes = N + N, negative eigenvalues< 0
andN, = N.+ + N.- complex eigenvalues willm(v) # 0. Then,

AN = Npeg — Nynst = 2N,F + 2N > 0. (2.2.13)
Proof. The equality (2.2.13) follows by the sum of (2.2.11) and (2.2.12). "

Theorem 2 Let assumptions P1-P2 be satisfied and> 0. Let Ny = dim(H,; @ H% @
H) be the total number of isolated eigenvalues4of Let Ny = dim(Hy; @ Hj.) be
the total number of isolated eigenvalues /6f Isolated eigenvalues of the generalized
eigenvalue problem (2.2.3) satisfy the inequality:

N, + N) 4+ N, + N+ < N+ Ng, (2.2.14)
whereN" is counted from isolated positive eigenvalyes w, w_.
Proof. This theorem is proved in Section 5. "
Corollary 2.3 Let Nyt = N4 + Nk be the total number of isolated eigenvalues of oper-
atorsA and K. Let Ny, = N, + N, + NI? + NO + NS + N,f + N+ + N.- be the total
number of isolated eigenvalues of the generalized eigenvalue problem (2.2.3). Then,

Nisol < Ntotal + d1m<H;()7 (2215)

whereN," and N,/ are counted from isolated positive eigenvalyes w,w_.

Proof. The inequality (2.2.15) follows by the sum of (2.2.12) and (2.2.14). "

To prove Theorems 1 and 2, we shall prove Pontryagin’s Invariant Subspace The-
orem and apply this theorem to the count of isolated and embedded eigenvalues for the
non-self-adjoint operatak —! A.

2.3 Pontryagin’s Invariant Subspace Theorem

We develop here an abstract theory of Pontryagin spaces with sign-indefinite metric, where
the main result is Pontryagin’s Invariant Subspace Theorem.
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Definition 3.1 Let H be a Hilbert space equipped with the inner prodgct) and the
sesquilinear forn-, -]*. The Hilbert spacéH is called the Pontryagin space (denoted as
I1,,) if it can be decomposed into the sum, which is orthogonal with respéct|jto

H=T1, =1, eI, (2.3.1)
wherell, is a Hilbert space with the inner produgt -) = [, -], I1_ is a Hilbert space with
the inner product-, -) = —[-, -], andx = dim(Il_) < oc.

Remark 3.2 We shall write components of an elemenin the Pontryagin spacd, as a
vectorr = {z_, xz}. The orthogonal sum (2.3.1) implies that any non-zero elemeAt
is represented by two terms,

Veell,: rz=xy+2_, (2.3.2)

such that
[Iq,,ﬂj‘,] = 07 [I‘+,JJ+] > 07 [x*ﬁv*] < 07 (233)

andll, NII_ = @.

Definition 3.3 We say thail is a non-positive subspaceldf, if [z, z] < 0Vx € II. We say
thatIT is a maximal non-positive subspace if any subspadé.adf dimension higher than
dim(IT) is not a non-positive subspaceldf. Similarly, we say thatl is a non-negative
(neutral) subspace di,, if [z, z] > 0 ([, z] = 0) Vx € II.

Lemma 3.4 The dimension of the maximal non-positive subspadg, a$ «.

Proof. By contradiction, we assume that there exist& & 1)-dimensional non-positive
subspacél. Let{e;, ey, ...,e.} be a basis idl_ in the canonical decomposition (2.3.2).
We fix two elementg;, y, € II with the same projections t, o, ..., e, }, such that

Y1 = e + Qges + ... + Qe + Yip,

Yo = Q1€ + Q€ + ... + Qe + Yop,

wherey,,, yo, € I1;. Itis clear thayl—m = y1,—Yop € 1L suchthaty;,—ysp, Y1p—y2p] >
0. On the other handy; — y» € TI, such thafy; — y2, 51 — y2] < 0. Hence, we have a
contradiction, which is resolved onlygf,, = y2, = 0. Therefore[T is still ax-dimensional
non-positive subspace of,. "

“We say that a complex-valued form, v] on the product spack x H is a sesquilinear form if it is linear
in u for each fixedv and linear with complex conjugate infor each fixedu.
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Lemma 3.5 (Cauchy-Schwartz)Let II be either non-positive or non-negative subspace
of I1,.. Then,

Vi, geIl: |[f, gl <If, fllg.9)- (2.3.4)

Proof. The proof resembles that of the standard Cauchy—Schwartz inequalitil het
non-positive subspace of,,, Then, for anyf, g € IT and anyx, 5 € C, we have

0> [af 4+ Bg,af + Bg) = [f, fllal* + [f, glaB + [g. flaB + g, 9l|B]°.  (2.3.5)

If [f, 9] = 0, then inequality (2.3.4) is satisfied singe f] < 0 and|g, g] < 0. If [f, g] # 0,
then we choose
£, 9]

R _ hJl
aeR o I=1rar

such that inequality (2.3.5) becomes

0> [f. flo® + 2al[f, g]| + [g. 9.

The inequality is satisfied if the discriminant of the quadratic equation is non-positive such
that4|[f, g]|>—4[f, f]lg, 9] < 0, thatis inequality (2.3.4). Lt be a non-negative subspace

of I1.. Then, for anyf, g € Il and any, 5 € C, we haveaf + 89, af + Fg] > 0 and the
same arguments result in the same inequality (2.3.4). "

Corollary 3.6 LetII be either non-positive or non-negative subspacélof Let f € II
such that f, f] = 0. Then[f,g] =0, Vg € II.

Proof. The proof follows from inequality (2.3.4) sin€e< |[f, g]|> < 0. "

Lemma 3.7 LetII be an invariant subspace of,, with respect to operatof” andII+ be
the orthogonal compliment 6f in I1,. with respect td-, -]. Then,IT+ is also invariant with
respect tdl".

Proof. For all f € Dom(T) N1I, we haveT'f € II. Letg € Dom(T) N II+. Then
l9.Tf]=1[Tg, f]=0. .

Theorem 3 (Pontryagin) LetT be a self-adjoint bounded operatorlih,, such thafT, | =
[-,T-]. There exists a-dimensional, maximal non-positivE;invariant subspace dfl,..

Remark 3.8 There are historically two completely different approaches to the proof of this
theorem. A proof based on theory of analytic functions was given by L.S. Pontryagin [106]
while a proof based on angular operators was given by M.G. Krein [53] and later developed
by students of M.G. Krein [8, 67]. Theorem 3 was rediscovered by M. Grillakis [62] with
the use of topology. We describe a geometric proof of Theorem 3 based on Shauder’s
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Fixed Point Theorem. The proof uses the Cayley transformation of a self-adjoint operator
in I1,; to a unitary operator iiil, (Lemma 3.9) and the Krein representation of the maximal
non-positive subspace @f, in terms of a graph of the contraction map (Lemma 3.11).
While many statements of our analysis are available in the literature, details of the proofs
are missing. Our presentation gives full details of the proof of Theorem 3 (see [64] for a
similar treatment in the case of compact operators).

Lemma 3.9 Let T be a linear operator inl, andz € C, Im(z) > 0 be a regular point
of the operator?’, such that: € p(T"). LetU be the Cayley transform &f defined by
U= (T —z)(T — z)~'. The operatord’ andU have the same invariant subspace$lin

Proof. LetII be a finite-dimensional invariant subspace of the opef@tarlL,. It follows
from z € p(T) that(T — 2)II = T then(T — )11l = M and(T — 2)(T — z)~'II C 11,
i.e UII C II. Conversely, letl be an invariant subspace of the operdfoit follows from
U—1=(z-2)(T —z)"'thatl € p(U) thereforell = (U — I)II = (T — z)~'1I. From
there,I1 C dom(7) and(7T" — z)II = IIsoT1I C II. "

Corollary 3.10 If T'is a self-adjoint operator i, thenU is a unitary operator irnl,.

Proof. We shall prove thaj/g, Ug| = [g, g], whereg € dom(U), by the explicit compu-
tation:

[Ug,Ugl = (T = 2)f.(T = 2)f] = [T, Tf] = 2[f, Tf] = 2[Tf, f] + |2P[f, f],

where we have introduceti€ dom(T') such thatf = (T — z)"'g. "

Lemma 3.11 A linear subspacél C II, is a k-dimensional non-positive subspacelbf
if and only if it is a graph of the contraction mag : I1_ — II,, such thafl = {z_, Cx_}
and | Kz_| < [lz_].

Proof. LetlIl = {z_, z, } be ak-dimensional non-positive subspacelbf. We will show
that there exist a contraction m#&p: I1_ — II, such thatl is a graph ofC. Indeed, the
subspacél is a graph of a linear operatdi if and only if it follows from {0,z } € II that
z, = 0. Sincell is non-positive with respect to, -], then[z, z] = ||z ||> — ||lz_|* < 0,

where|| - || is a norm inH. As aresult) < ||z,|| < ||z—| and ifz_ = 0 thenz, = 0.

Moreover, for anyz_ € I1_, it is true that||Cx_|| < ||z_|| such thatC is a contraction
map. Conversely, e be a contraction mafe : I1_ — II,. The graph ofC belongs to
the non-positive subspace bf, as

[z, 2] =z [I* = o |* = [Ka—|* = [l=—|* < 0.
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LetIl = {z_,Kz_}. Sincedim(I_) = «, thendim(II) = . ° .

Proof of Theorem 3 Letz € C, Im(z) > 0 be a regular point of the self-adjoint operator
TinIl,. LetU = (T — z)(T — z) ! be the Cayley transform &f. By Corollary 3.10[ is

a unitary operator il.. By Lemma 3.9/ andU have the same invariant subspaceH jn
Therefore, the existence of the maximal non-positive invariant subspace for the self-adjoint
operator!’ can be proved from the existence of such a subspace for the unitary ogérator

Letz = {z_,z,} and
U — {Un U12}

U21 U22

be the matrix representation of the operdtowith respect to the decomposition (2.3.1).
Let IT denote ax-dimensional non-positive subspacelin. SinceU has a trivial kernel
in II,, and U is unitary inII, such thaflUz, Uz] = [z,z] < 0, thenII = Ul is also a
r-dimensional non-positive subspaceldf. By Lemma 3.11, there exist two contraction
mappingskC and K for subspace$l andII, respectively. Therefore, the assignméint=
Ull is equivalent to the system,

:’TL _ Ui Uio T\ _ (Ur + UKz
Kz_ U21 U22 Kx_ (U21 + UQQK:)J}, ’
and it follows from the mappingl_ — I1_ that

Uz + UpK = K(Uyy + UpK).

We shall prove that the operat@li;; + U;2K) is invertible. By contradiction, we assume
that there exists_ # 0 such thatt_ = (Uy; + U12K)x_ = 0. Sincez_ = 0 implies that
i, = K#_ =0, we obtain thafz_, Kz_} is an eigenvector in the kernel bf. However,
U has a trivial kernel i, so thatr_ = 0. Let F(K) be an operator-valued function in the
form,

F(K) = (Uy + UgK)(Uyy + UpK) 71,

such thatC = F(K). This function is defined for any contraction operakor By Lemma

3.11, the operatoF’'(K) maps the operator unit bgJIC|| < 1 to itself. SinceU is a con-
tinuous operator antl;; is a finite-dimensional operator, théR, is a compact operator.
Hence the operator bd|lC|| < 1 is a weakly compact set and the functi6itC) is con-
tinuous with respect to weak topology. By Schauder’s Fixed-Point Principle, there exists
a fixed point/Cy such thatF'(Ky) = Ky and||/Cy|] < 1. By Lemma 3.11, the graph of

KCo defines the:-dimensional non-positive subspalde which is invariant with respect to

U. By Lemma 3.4, the:-dimensional non-positive subspaldeés a maximal non-positive
subspace ofl,. "

SExtending arguments of Lemma 3.11, one can prove that the subdgacrictly negative with respect
to [+, -] if and only if it is a graph of the strictly contraction m&p: IT_ — II,, such thafl = {z_,Kz_}
and||Kz_|| < [z
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2.4 Spectrum of a self-adjoint operator in Pontryagin space

We apply here Pontryagin’s Invariant Subspace Theorem (Theorem 3) to the product of
two bounded invertible self-adjoint operatdfs= BC in Pontryagin spacél,,, where

x = dim(H;). In the context of the shifted generalized eigenvalue problem (2.2.9), we
shall consider two operatofs in two different Pontryagin spacés.. In the first setting,

B = (A+6K) ' andC = K with k = dim(Hy), while in the second settind? = K

andC = (A+ 0K)~" with k = dim(H_ s, ). With a slight abuse of notations, we shall
denote eigenvalues of the operator= BC by )°. In the context of the shifted generalized
eigenvalue problem (2.2.9),= (y+ ) ! in the first setting and = (v +§) in the second
setting.

Lemma 4.1 Let’H be a Hilbert space with the inner produgt-) and B, C' : H — H be
bounded invertible self-adjoint operators’. Define the sesquilinear form

and extend< to the Pontryagin spacH,,, wherex is the finite number of negative eigenval-
ues ofC' counted with their algebraic multiplicities. The operatbr= BC'is self-adjoint

in I1, and there exists a-dimensional maximal non-positive subspacélgfwhich is in-
variant with respect td@".

Proof. It follows from the orthogonal sum decomposition in the Hilbert spHciat the
quadratic form(C-, -) is strictly negative on the-dimensional subspack . and strictly
positive on the infinite-dimensional subspaké @ H"Ce(c). By continuity and Gram—
Schmidt orthogonalization, the Hilbert spakgis extended to the Pontryagin spadg
with respect to the sesquilinear form (2.4.1). The bounded opéfatoBC is self-adjoint
in I1,;, sinceB andC are self-adjoint irf{ and

T-,-] = (CBC-,-) = (C-, BC) = [, T'].

Existence of the:-dimensional maximal non-positivE-invariant subspace di,, follows
from Pontryagin’s Invariant Subspace Theorem (Theorem 3). "

Remark 4.2 The decomposition (2.3.1) of the Pontryagin spékeis canonical in the
sense thall, NI = @. We consider now various sign-definite subspaceld,ofvhich
are invariant with respect to the operaioe= BC'. In general, these invariant sign-definite
subspaces do not provide a canonical decompositidm, of

6Spectral parametex here does not correspond to parametarsed in the linear eigenvalue problem
(2.2.2).
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Let H.+ (H.-) denote the/-invariant subspace associated with complex eigenval-
uesA in the upper (lower) half-plane arid,,(#,) denote the non-positive (non-negative)
T-invariant subspace associated with real eigenvalueSpectrum ofl’ consists of three
disjoint sets: isolated and embedded eigenvalues, continuous spectrum, and residual spec-
trum (see Definitions 4.3 and 4.4). We will show that the maximal non-poditivesariant
subspace in Lemma 4.1 does not include the residual and continuous spectra but may in-
clude isolated and embedded eigenvalues of finite multiplicities.

Definition 4.3 We say tha# is a point of the residual spectrum ofif

Ker(T — A\I) = @, Range(T — M) # 1,

and ) is a point of the continuous spectrummOff

Ker(T'— M) = @, Range(T — \I) # Range(T — \I) = I1,..

Definition 4.4 We say that\ is a point of the discrete spectrum 6f(an eigenvalue) if
Ker(T — M) # @. The eigenvalue is said to be multiple if

dim (NgenKer(T' — AI)*) > 1.
Let A\, be a multiple eigenvalue with
dim (Ker(T — AI)) = 1, dim (NgenKer(T — A)¥) = n < oo.

The canonical basis for the corresponding eigenspace is defined by the Jordan block of
generalized eigenvectors

f] ell,: Tfj:)\(]fj—i_f]*lu ]:17777‘7 (242)

where f, = 0. If n = oo, the eigenvalue\; is said to have an infinite multiplicity. If
dim (Ker(7' — M\oI)) > 1, the eigenspace associated with the eigenvaluean be repre-
sented by the union of the Jordan blocks.

Lemma 4.5 The residual spectrum @t is empty.

Proof. By a contradiction, assume thatbelongs to the residual part of the spectrum of
T such thatker(7 — A\I) = @ but Range(T" — AI) is not dense ifl,. Letg € II, be
orthogonal taRange(7" — A1), such that

Vi€l 0=[T—A)f gl =[f.(T—A)gl.

Therefore (T — \I)g = 0, thatis) is an eigenvalue df. SinceT is real-valued operator,
A is also an eigenvalue @f and hence it can not be in the residual part of the spectrum of
T. ]
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Lemma 4.6 The continuous spectrum bfis real.

Proof. Let P* and P~ be orthogonal projectors td™ andII~ respectively, such that

I = P* + P~. Sincell* are defined by the quadratic form (2.4.1), the self-adjoint op-
eratorC' admits the polar decompositiant = J|C|, whereJ = PT — P~ and|C| is a
positive operator. Sincé” = I andC is self-adjoint, we havg|C|J = |C|. As a result,
J|C|V2J = |C|"/? and the operatdf = BC is similar to the operator

|C1Y2BJ|C1Y? = |C1Y2BJ|CIM2(J + 2P7) = |C|V*B|C|V? 4 2|C|Y2BJ|C|Y2P~.

SinceP~ is a projection to a finite-dimensional subspace, the opefaid? B.J|C|'/? is a
finite-rank perturbation of the self-adjoint operali6tt'/? B|C|*/2. By Theorem 18 on p.22
in [51], the continuous part of the self-adjoint operatof'/2B|C|'/? is the same as that of
|C|'/2BJ|C|'/2. By similarity transformation, it is the same as thaflof .

Theorem 4 LetII. be an invariant subspace associated with the continuous spectrum of
T. Then|f, f] > 0,Vf € Il..

Proof. By Lemma 4.1, the operatdr has ax-dimensional maximal non-positive invariant
subspace ofl,.. Let us denote this subspace lly Because spectrum @fis decomposed

into disjoint sets of eigenvalues and the continuous spectrum, any finite-dimensional invari-
ant subspace df cannot be a part dfl.. Therefore]l andIl. do not intersect. Assume
now that there existg, € II. such that fy, fo] < 0. Sincef, ¢ II, the subspace spanned

by fo and the basis vectors i is a (x + 1)-dimensional non-positive subspaceldf.
However, by Lemma 3.4, the maximal dimension of any non-positive subspateist.
Therefore| fy, fo] > 0 for any f, € II.. "

2.5 Eigenvalues of the generalized eigenvalue problem

We count here isolated and embedded eigenvalues for the product ofgérat®C'. This
operator is self-adjoint in the Pontryagin spdég which is defined by the sesquilinear
form (2.4.1) withx = dim(H.). This count is used in the proofs of our main Theorems

1 and 2. We assume that the eigenspaces associated with eigenvaluaseatpresented

by the union of the Jordan blocks, according to Definition 4.4. Each Jordan block of gen-
eralized eigenvectors (2.4.2) is associated with a single eigenveciorWwe start with an
elementary result about the generalization of the Fredholm theory in the Hilbert Bpace
to that in the Pontryagin spacg,.

Proposition 5.1 Let A\ be an isolated eigenvalue Gf = BC associated with a one-
dimensional eigenspadd,, = Span{fo}. Then,\, = A, is algebraically simple if and
only if [ fo, fo] # 0, while \q # )¢ is algebraically simple if and only iffy, fo] # 0.
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Proof. SinceB andC' are bounded invertible self-adjoint operators in the Hilbert spéce
the eigenvalue probleffif = A\f in the Pontryagin spadeé, is rewritten as the generalized
eigenvalue problent’f = AB~!f in the Hilbert spacé{. Since), is an isolated eigen-
value, the Fredholm theory for the generalized eigenvalue problem impliegthat)\,

is algebraically simple if and only ifB~'fy, fo) # 0, while \y # )\, is algebraically
simple if and only if(B='f,, fo) # 0. Since), # 0 (otherwise,C' would not be invert-
ible), the condition of the Fredholm theory is equivalent to the condition(thi#, f,) # 0

and (C'fo, fo) # 0, respectively. The assertion is proved due to definition (2.4.1) of the
sesquilinear form. "

Lemma 5.2 (Pontryagin) Let %, and, be eigenspaces associated with eigenvalues
and . of the operator?” in II, and A # p. ThenH, is orthogonal to,, with respect to

[7]

Proof. Letn andm be dimensions of{, and7,, respectively, such that > 1 and
m > 1. By Definition 4.4, it is clear that

feHy e (T—A)"f =0, (2.5.1)
geH, = (T —pul)"g=0. (2.5.2)

We should prove thdtf, g] = 0 by induction forn +m > 2. If n+m =2 (n = m = 1),
then it follows from system (2.5.1)—(2.5.2) that

(/\_ﬂ)[fag]zoa fGH)\, gEH,ua

such that f,g] = 0 for A # ji. Let us assume that subspaéeésand’, are orthogonal
for 2 < n+m < k and prove that an extended subspatewith » = n + 1 remains
orthogonal toH,,. To do so, we defing = (T" — A\I) f and verify that

feHy <= (T =X)"f=(T-X)"f=0.
By the inductive assumption, we hayg g] = 0, such that
(T —X)f,g] = 0. (2.5.3)
By using system (2.5.1)—(2.5.2) and relation (2.5.3), we obtain that
A=m)f,9 =0, feHy geH,.

Using the same analysis, one can prove that an extended sulﬂ%pamm m=m+1
remains orthogonal t#(,. As a result, the assertion of the lemma follows by the induction
method. "
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Lemma 5.3 Let H,, be an eigenspace associated with a multiple real isolated eigen-
value \q of 7" in II,, and { f1, f2, ... f»} be the Jordan chain of eigenvectors. &} =
Span{ fi, fa, ..., fu} C Hax,» Wherek = % if nis even andk = ”7*1 if n is odd, and

7:(0 = Span{flu f27 "'7fk7fk+1} - 7-[)\0'

e If nis even{ = 2k), the neutral subspack, is the maximal sign-definite subspace
of H)\O.

e If nisodd @ = 2k + 1), the subspacé{, is the maximal non-negative subspace
of H,, if [f1, f»] > 0 and the maximal non-positive subspacertyf, if [fi, f.] <
0, while the neutral subspacK, is the maximal non-positive subspace?of, if
[f1, f»] > 0 and the maximal non-negative subspac@{qf if [f1, f.] < 0.

Proof. Without loss of generality we will consider the casg= 0 (if A\, # 0 the same
argument is applied to the shifted self-adjoint oper&toes T'— \oI). We will show that
[f, f1 =0,V f € Hy. By a decomposition over the basisfiy, we obtain

k kok
vf:ZOéifi U f] :Zzai@j Lfi, f5]- (2.5.4)
i=1 i=1 j=1
We use that
i fi] = [T fis1, Tfisa) = oo = [TF firs TF fin] = [T firns fivn] »

foranyl < i,j < k. In the case of even = 2k, we have(f;, f;] = [T fitx, fi+1] = 0 for

alll <i,j <k.Inthecase of odd = 2k+1, we have[f;, f;] = [T"" fis k1, fi+k+1]) = 0
forall 1 < 4,57 < k. Therefore,/H, is a neutral subspace @{,,. To show that it is

the maximal neutral subspace®f,,, let H;, = Span{ fi, f2, ..., fx, fx, }» Wherek + 1 <

ko < n. Sincef, ., does not exist in the Jordan chain (2.4.2) (otherwise, the algebraic
multiplicity is n + 1) and )\, is an isolated eigenvalue, théfy, f,,] # 0 by Proposition 5.1.

It follows from the Jordan chain (2.4.2) that

[flafn] = [Tmilfrmfn] = [fmaTmilfn] = [fm,fnferl] 7é 0. (255)

Whenn = 2k, we havel < n — ky + 1 < k, such that{f,, fn_k,+1] # 0 and the
subspacé, is sign-indefinite in the decomposition (2.5.4). Whenr= 2k + 1, we have
1 <n—ki+1<Ekforkyg >k+2andn —ky+1=%k+1forky = k+ 1. In
either case|fi,, fn_k,+1] # 0 and the subspadk|, is sign-indefinite in the decomposition
(2.5.4) unlessy, = k + 1. In the latter case, we havéi.1, fri1] = [f1, fn] # 0 and
[fis fer1) = [T*fix, fa] = 0for 1 < j < K, such that this subspadg, = H, with
ko = k + 1 is non-negative foffi, f,.] > 0 and non-positive foffi, f,.] < 0. n
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Remark 5.4 If )\, is a real embedded eigenvalu€lgfthe Jordan chain (2.4.2) can be trun-
cated atf,, evenif[f, f,] = 0. Indeed, the Fredholm theory for the generalized eigenvalue
problem (used in Proposition 5.1) gives a necessary but not a sufficient condition for exis-
tence of the solutiorf,,.; in the Jordan chain (2.4.2) if the eigenvalugis embedded into

the continuous spectrum. [If;, f,,] = 0 but f,,,; does not exist ifil,;, the neutral subspaces

H, for n = 2k and’H, for n = 2k + 1 in Lemma 5.3 do not have to be the maximal non-
positive or non-negative subspaces. The construction of a maximal non-positive subspace
for embedded eigenvalues depends on the computations of the projection [fhafiixin

the eigenspace(, = Span{fi, ..., f»}. Forinstance, if\, is an algebraically simple em-
bedded eigenvalue, then the corresponding eigenskigce- Span{ f1} is either positive

or negative or neutral depending on the valuéfef f;].

Lemma5.5 Let )\, € C, Im()\) > 0 be an eigenvalue df in I1,;, H,, be the correspond-
ing eigenspace, and(,, = {H,,,H5,} C IL.. Then, the neutral subspad@¢,, is the
maximal sign-definite subspace?éif\o, suchthatf, f] =0,Vf € H,,.

Proof. By Lemma 5.2 withA = p = )\, the eigenspac@{,, is orthogonal to itself
with respect td-, -], such thati,, is a neutral subspace &f,,. It remains to prove that
H,, is the maximal sign-definite subspacel. Let H,, = Span{ fi, fo, ..., fn}, Where
{f1, fa, .., fa} is the Jordan chain of eigenvectors (2.4.2). Consider a subé‘b’%c&
Span{ f1, fa, ..., fn, f;} forany1l < j < n and construct a linear combination ff,_;
andf;:

Va €C:  [for1j+afj, far1j +af;] = 2Re (oz[fj, fn+1—j]) . (2.5.6)

By Proposition 5.1, we havgf,, fi] # 0 and, by virtue of the chain (2.5.5), we obtain
[fi, fas1—;] # 0. As a result, the linear combinatiofy,1—; + a.f; in equality (2.5.6) is
sign-indefinite with respect tp, -]. [

We shall summarize the count of the dimensions of the maximal non-positive and
non-negative subspaces associated with eigenspacgsirofll,,. Let N,,(Ag) (N,(o))
denote the dimension of the maximal non-positive (non-negative) subspdte aufrre-
sponding to the eigenvalug. By Lemma 5.3, if\; is a real isolated eigenvalue, then the
sum of dimensions of the maximal non-positive and non-negative subspakigs efuals
the dimension of,, (although the intersection of the two subspaces can be non-empty).
For each Jordan block of generalized eigenvectors, we have

(i) If n =2k, thenN,(\g) = N,( o) = k.
(i) If n=2k+1and[fy, f,] > 0,thenN,(\g) =k + 1 andN, () = k.
(i) If n =2k +1and[fi, f,] <0, thenN,(\o) =k andN,,(\¢) =k + 1.
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By Remark 5.4, if\, is a simple embedded eigenvalue, then
(i) If [f1, fa] > 0,thenN,(Ao) =1, N,,(Ag) = 0.
(ii) If [f1, f1] <0,thenN,(Ag) =0, N,(Xo) = 1.

(iii) If [f1, f1] = 0, thenN,(\g) = N.(Xo) = 1.

We note that the sum of dimensions of the maximal non-positive and non-negative sub-
spaces ofH,,, that iSN,(\g) + N,(\o), exceeds the dimension &f,, in the case (iii).
If \o is a multiple embedded eigenvalue, computations of the projection mgtri%| is
needed to find the dimension§,(\,) andN,,()o). Finally, by Lemma 5.5, if\, is a com-
plex eigenvalue, theiV,(\y) = N,,(Ao) = dim(H,,) = %dim(ﬂx\o).

Before proofs of Theorems 1 and 2, we have to deal with one more complication,
which is the presence of zero eigenvalues of operdtoDperatorA determines eitheB
or C'in the product operatdf' = BC'. Since we shiftd to A + K for sufficiently small
6 > 0, all zero eigenvalues ot become small non-zero eigenvaluesfof- 0 K, whereK
is a bounded invertible self-adjoint operator that also determines ditloeC'. Therefore,
we need to know how many zero eigenvaluesdabecomes small positive and negative
eigenvalues ofl + 6 K. This splitting is described by the following result.

Lemma 5.6 LetH, be an eigenspace associated with a multiple zero eigenvalue of opera-
tor K 'AinH and{fy, ..., f.} be the Jordan chain of eigenvectors, such that Ker(A).
Letw, > 0and0 < § < |o_,|, whereo_; is the smallest negative eigenvalue/of! A.
Then(K f1, f,) # 0 and

e If n is odd, the subspacH,, corresponds to a positive eigenvalue of the operator
(A4 6K)if (K fi1, f,) > 0 and to a negative eigenvalue(iK fi, f,,) < 0.

e If n is even, the subspadé, corresponds to a positive eigenvalue of the operator
(A+0K)if (K f1, fn) < 0 and to a negative eigenvalue(iK f1, f,,) > 0.

Proof. Letu(0) be an eigenvalue of the self-adjoint operatard K related to the subspace

'H,. By analytic perturbation theory for isolated eigenvalues of self-adjoint operators (see
Chapters VI1.3 in [75]), eigenvalug; () is a continuous function af and

M(é) — (_1)n+1 (Kflafn) (257)

(fi: f1)

Sincew, > 0, the zero eigenvalue of is isolated from the continuous spectrumiof ! A,

such that( K fi, f,) # 0 by the Fredholm theory for the generalized eigenvalue problem
(2.2.3). The assertion of the lemma follows from the limiting relation (2.5.7). Since no
eigenvalues ofX ~' A exists in(—|o_4],0), the eigenvalug:(d) remains sign-definite for
0<0<|o_q]. "

lim
6—0T 5”
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Remark 5.7 If w; = 0 and assumption P3 is satisfied wiler(A) = Span{ f, }, then the
eigenvalueu(9) is negative only if( K f1, fi) < 0. If (K f1, f1) > 0, the eigenvalug.(¢)

is either positive or does not existAll other small eigenvalues, which may bifurcate from
the end points of the essential spectrumdolby means of the edge bifurcations [74], are
positive, according to assumption P3.

Proof of Theorem 1 We use the shifted generalized eigenvalue problem (2.2.9) for suf-
ficiently small§ > 0 and consider the bounded operafor= (A + 6K) 'K, that is

B = (A+4dK)'andC = K. By Lemma 4.1, the operat@t is self-adjoint with respect to
[-,] = (K-,-) and it has a:-dimensional maximal non-positive invariant subspace, where
x = dim(Hy). Counting all eigenvalues of the shifted generalized eigenvalue problem
(2.2.9) with the use of notations of Section 2, we establish equality (2.2.12).

Now, let B = K andC = (A + 6K)~" and consider the bounded operafor= K (A +
dK)~! which is self-adjoint with respect tp,:] = ((4 + 6K)~',-). The self-adjoint
operator(A + 6 K)~! defines the indefinite metric in the Pontryagin spHgewherei =
dim(H,, 54 ). For any simple eigenvalug, of the shifted eigenvalue problem (2.2.9), we
have

Vi,g€Hy: ((A+0K)f,g9) = (0 +)(Kf, g)

If 79 > 0 orIm(yy) # 0, the maximal non-positive eigenspaceloin II; associated with

7o coincides with the maximal non-positive eigenspac& af I1,.. If v, < 0, the maximal
non-positive eigenspace @f in II; coincides with the maximal non-negative eigenspace
of T"in II,,. The same statement can be proved for the case of multiple eigenvglues
Threrefore, the dimension of the maximal non-positive eigenspadeinfIl; is N, +

N? + Nt + N+, such that equality (2.2.11) follows by Lemma 4.1. "

Proof of Theorem 2 We prove this theorem by contradiction and explicit computations.
First, we introducel’ andII,, according to the choic®& = (A + §K)~' andC = K.

Let IT be a non-negative invariant subspacdlipn which is spanned by eigenvectors of
the generalized eigenvalue problem (2.2.3) Agr negative eigenvalues < 0, NI? zero
eigenvalues, = 0, N, positive isolated eigenvalugs> 0, and N+ complex eigenvalues
with Im(y) > 0. Let us assume tha¥, + N + N, + N+ > N4 + Nk and derive a
contradiction.

By Gram-Schmidt orthogonalization with respect to the inner product in the Hilbert
spaceH, if N, + N,? + N; + N+ > N4 + Nk, then there exist a vectare II such that
(h, f) = 0and(h,g) = 0 forany f € H, & H% ® H} andg € H; & H};. Therefore,
he HEYW nH™, such that

(Ah,h) > wi(h,h),  (Khh) <w”'(h,h),

"Positive eigenvalues can disappear in the essential spectrdm 61 if 11(5) > w4, sx for sufficiently
smallé > 0.
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and
(Ah,h) > wyw_(Kh,h).

+
On the other hand, sindec II, then it can be represented by= va 1+N TN G,

where(hy, ha, ..., hy- +N§+N;+NC+) is a basis inl associated with the eigenspaces of the
generalized eigenvalue problem (2.2.3). By Lemmas 5.2 and 5.5, we obtain
(Ah,h) = aa;(Ahg, hy)
irj
= Z Oli@j(Ahi,hj) + Z Oli@j(Ahi,hj) + Z Oli@j(Ahi,hj).

Yi=7;<0 vi=7;=0 vi=7;>0
By Lemma 5.3, the non-zero values (A h;, h;) for isolated eigenvalues occur only for
(Afrs1, frr1), Where fr.q is the generalized eigenvector for a multiple eigenvalue with

odd algebraic multiplicityn = 2k + 1. Since all these cases are similar to the case of
simple eigenvalues, we can write the representation above in the simplified form

(Ah,h) =Y oy (Ahy, by) + > lagP(Ahy, hy) + > lag*(Ahy, hy)

73 <0 7;=0 ~;>0
=yl P(Ehy hy) + > yileyl(Khy, by)
v;<0 ;>0
< Wyw_ Z |Oéj|2(Khj,hj),
v;>0

where we have used the fact th@dt'h;, ;) > 0 for any eigenvectoh; < II and that
v; < wyw_ for any isolated eigenvalug. On the other hand,

(Kh,h) =Y cwd;(Khi, hy)

= oyl (Khy, hy) + > oy (Khy, hy) + > oyl *(Khy, hy)

7;<0 v;=0 7;>0
> > oyl (Khy, hy)
v;>0
Therefore,(Ah, h) < w,w_(Kh,h), which is a contradiction. As a resuly,” + N +
N;+NC+SNA+NK. [ |

Remark 5.8 Isolated eigenvalues of infinite multiplicities are excluded by the counts of
Theorems 1 and 2. Embedded eigenvalues of infinite multiplicity are possible but they may
only correspond to finitely many Jordan blocks of finite length, according to Theorem 1. In
the Jordan block decomposition, one can not exclude an infinite number of simple Jordan
blocks corresponding to the same embedded eigenvalue with infinitely many eigenvectors
in the positive invariant subspaceldf.
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2.6 Application: NLS solitons

Consider a nonlinear Sabdinger (NLS) equation in multi dimensions,

iy = —A+ F([Y)*)y, A=02, +..+0°

11 Tqxrq?

(2.6.1)

where(z,t) € R? x R andy € C. For a suitable nonlinear functiof(|:|?), where I

is C>~ and F(0) = 0, the NLS equation (2.6.1) possesses a solitary wave solutien
é(x)e™!, wherew > 0 and¢ : R? — R is an exponentially decaying> function. See

[88] for existence and uniqueness of ground state solutions to the NLS equation (2.6.1).
Linearization of the NLS equation (2.6.1) with the ansatz,

¢’::<¢(f)+-hdx)—kiu(xﬂeﬁ«+[ﬂ(x)%—é@(mﬂeh><¥“ﬁ (2.6.2)

where) € C and(u(z), w(z)) € C?, results in the linear eigenvalue problem (2.2.1)(after
neglecting all terms witlhy andw with the order higher than one), whelte are Schdinger
operators given by

Ly = —A+w+ F(¢?) +20°F'(¢%), (2.6.3)
L= —-A+w+ F(¢?). (2.6.4)

We note that.,. are unbounded operators andL.) = [ws,00) Withw, = w_ = w > 0.

The kernel ofL_ includes at least one eigenvectgrr) and the kernel of., includes at

leastd eigenvector®), ¢(z), j = 1,...,d. The Hilbert space is defined as= L?(R?,C)

and the main assumptions P1-P2 are satisfied due to the exponential decay of the functions
F(¢*) and¢?F’(¢?). Theorems 1 and 2 give precise count of eigenvalues of the stability
problemL_ L, u = —\?u, provided that the numbedsm (H ), dim(H_ ;, ), Nk andN4

can be computed from the count of isolated eigenvalues ef PL, P andK = PL_'P,

whereP is the orthogonal projection to the complementaf(L_). We illustrate these
computations with two examples.

Example 1. Let ¢(z) be the ground state solution such thét) > 0 onx € R?,
By spectral theoryKer(L_) = {¢} is one-dimensional and the subsp&¢g is empty.

e It follows by equality (2.2.12) thatv,, = N? = N, = N, = 0. Therefore,
the spectrum of the generalized eigenvalue problem (2.2.3) is real-valued and all
eigenvalues are semi-simple.

e SinceKer(L_) ¢ Ker(L,) andH is empty, eigenvectors dfer(A) are in the
positive subspace dft’, such thatN]? = z(L,). By Lemma 5.6, zero eigenvalues of
A become positive eigenvalues df+ K for anyd > 0, such thatlim(H,_ ;) =
dim(H ).
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e Itfollows by equality (2.2.11) thaV,” = dim(H, 5 ). By Proposition 2.1, we have
dim(H,) = n(L+) — po — 20, Wherep, andz, are the number of positive and zero

values of a scalar functiohly = —(L7'¢, ¢). SinceL,d,¢(x) = —¢(z), we have
Mo = 330191

e It follows by inequality (2.2.14) thatv, + N + N\ < dim(H}) + dim(H}) +
dim (A7) + dim(H};). By Proposition 2.1 and the previous counts, we obfgjn<
p(Ly) +p(L-) + po + 2.

Remark 6.1 If n(Ly) = n € Nand-L||¢||2, > 0, the count above give§ =n(Ly) —

1, which coincides with Theorem 2.1 of [61] (the case= 1 is known as the Stability
Theorem in [59]). Ifn(Ly) =1, 2(Ly) = d, p(Ls+) = p(L_) = 0 and-L||¢||2, < 0, the
count above gived/” = 1, Ng = d,andN,"” = 0, which is proved, with a direct variational
method, in Proposition 2.1.2 [104] and Proposition 9.2 [80]dct 1 and in Lemma 1.8
[112] for d = 3, in the context of the super-critical power NLS equation with- || and
q> 2.

Remark 6.2 Stability of vector solitons in the coupled NLS equations, which generalize
the scalar NLS equation (2.6.1), is defined by the same linear eigenvalue problem (2.2.1),
where L. are matrix Schidinger operators. General results for non-ground state solu-
tions are obtained in [70, 97] fat = 1 and in [37] ford = 3. Multiple and embedded
eigenvalues were either excluded from analysis by an assumption [97, 37] or were treated
implicitly [70]. The present work generalizes these results with a precise count of multiple
and embedded eigenvalues.

Example 2. Let the cubic NLS equation (2.6.1) with = |¢|* be discretized
so thatA = eAgise, WhereAy;. is the second-order discrete Laplacian and a small
parameter. We note tha\,;.. is a bounded operator and(—Agis.) € [0,4d]. The Hilbert
space is defined a& = [?(Z4,C). By the Lyapunov—Schmidt reduction method, the
solutiony = ¢e™? with w > 0 and¢ € 1?(Z¢) bifurcates from the limiting solution with
N non-zero lattice nodes at= 0. It is proved in [98] ford = 1 and [99] ford = 2 that
Lg||Z > 0, Ker(Ly) = @, andKer(L_) = {¢} for sufficiently smalle # 0. It follows
by equalities (2.2.11) and (2.2.12) that

N, + N+ Nev =n(Ly) -1,
N, + N+ N+ =n(L_),
where it is found in [98, 99] that(L,) = N andn(L_) < N — 1. Lyapunov—Schmidt

reductions give, however, more precise information than the general count above, since
Corollary 3.5 in [98] ford = 1 predicts thatN,” = n(L_), N, = N+ = 0, andN, =
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N — 1 —n(L_)8 Similarly, it follows by inequality (2.2.14) and the above count that
N <2n(L_) 4 dim(H}) + dim(H}).

If the solution¢ is a ground state, theN = 1 andn(L_) = 0. In this case, the above
inequality shows that the number of edge bifurcations from the continuous spectrum of
K~1A (given byN,") is bounded from above by the number of edge bifurcations from the
essential spectrum of (given bydim(#})) and the numbers of edge bifurcations from
the essential spectrum &f~! (given bydim(H}.)). The bound above becomes less useful

if N> 1landn(L_)#0.

Remark 6.3 The Lyapunov—-Schmidt reduction method was also used for continuous cou-
pled NLS equations with and without external potentials. See [71, 103] for various results
on the count of unstable eigenvalues in parameter continuations of the NLS equations.

2.7 Application: NLS vortices

Consider the two-dimensional NLS equation (2.6.1) in polar coordir{atés:
1 1
iy = =AY+ F([P),  A=0]+-0,+ 50, (2.7.1)

wherer > 0 andd € [0,2x]. Assume that the NLS equation (2.7.1) possesses a charge-
m vortex solutiony) = ¢(r)e™T! wherew > 0, m € N, and¢ : R, — Ris an
exponentially decaying'> function with ¢(0) = 0. See [94] for existence results of
chargem vortices in the cubic-quintic NLS equation with= —|[«|? + |+/|%. Linearization

of the NLS equation (2.7.1) with the ansatz,

b= (B + 91 (1, 0)eM + p_(r,0)) e, (2.7.2)
where\ € C and (g, (r,6), p_(r,0)) € C?, results in the stability problem,
o3Hp = i\, (2.7.3)
wherep = (¢4, 0_)T, 03 = diag(1,—1), and

o (TAFEFF() + 7 F () GF (§)e ™
N G F(§?)e>m? At w+ F(¢%) + ¢ F(¢?) )

8Corollary 3.5 in [98] is valid only when small positive eigenvalued.af are simple. It is shown in [99]
for d = 2 that the case of multiple small positive eigenvalued.of leads to splitting of real eigenvalues
N, of the generalized eigenvalue problem (2.2.3) to complex eigenvaiyesbeyond the leading-order
Lyapunov—Schmidt reduction.
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Expandyp(r, 8) in the Fourier series
0= 3 e
nez

and reduce the problem to a sequence of spectral problems for ODEs:

osH,p, =i p,, n € Z, (2.7.4)
wherep, = (0" o""™)T and
g (At F(6%) + ¢ F'(¢7) P’ I (¢7)
" P*F(¢7) A+ w+ F(¢°) + ¢ F'(¢%) )

The operatord, is given by expression

1 2

A= —0% — -0, + w

T T

Whenn = 0, the stability problem (2.7.4) transforms to the linear eigenvalue problem
(2.2.1), whereL, is given by (2.6.3)~(2.6.4) witl\ = 9?7, + 19, — T—f and (u, w) are
given byu = <p(+m) + U™ andw = —i(gogrm) — "™, Whenn € N, the stability
problem (2.7.4) transforms to the linear eigenvalue problem (2.2.1) wjth= H,, and

L_ = o3H, 03, Wwhere

01
Ly =L +2¢*F'(¢°)on, o1 = (1 0);

and(u,w) are given byu = ¢, andw = —iosp,. When—n € N, the stability problem
(2.7.4) admits a transformation with_,, = o, H,,0; andozo; = —o,03 to the stability
problem withn € N. Let us introduce the weighted inner product for functions on0:

(f.9), = / " r)g(ryrdr.

Inallcases: = 0,n € Nand—n € N, L, are unbounded self-adjoint differential operators
ando.(Ly) = [ws,00) With wy = w_ = w > 0. The kernel of the linearized operators
includes at least three eigenvectors:

n=+1: ¢ 4=9¢(r)1F %gzﬁ(r)agl, n=0: ¢,=¢(r)osl,

where1 = (1,1)T. The Hilbert space is defined & = L?(R,,C) for n = 0 and
X = L}(R,,C?) for +n € N. In all cases, the main assumptions P1-P2 are satisfied due
to exponential decay of the functio®¥ ¢?) and¢? F’(¢?).



32 PHD THESIS— M. CHUGUNOVA MCMASTER— MATHEMATICS & STATISTICS

The casen = 0 is the same as for solitons (see Section 5.1). We shall hence
consider adjustments in the count of eigenvalues in the tase N, when the stability
problem (2.7.4) is rewritten in the form,

0-3Hn90n = Z)\Qon
{Uancp_n _r meN. (2.7.5)

Let L, = diag(H,, H_,,) andL_ = diag(o3H,,03,03H_,,03).

Lemma 7.1 Let A be an eigenvalue of the stability problem (2.7.5) with the eigenvector
(¢,,,0). Then there exists another eigenvalue with the linearly independent eigen-
vector (0, 01¢,). If Re(\) > 0, there exist two more eigenvalugs-\ with the linearly
independent eigenvecto8, 019,,), (@,,,0).

Proof. We note that,o3 = —030;, ando? = o2 = 0, Whereo, = diag(1, 1). Therefore,
each eigenvalua of H, with the eigenvectorp, generates eigenvalue) of H_,, with
the eigenvectop_,, = o1¢,,. WhenRe(\) # 0, each eigenvalug of H,, generates also
eigenvalue-\ of H,, with the eigenvectop, and eigenvalua of H_,, with the eigenvector

Py = 1Py .

Theorem 5 Let V,.. be the number of real eigenvalues in the stability problem (2.7.5) with
Re(\) > 0, Neomp be the number of complex eigenvalues idttiA) > 0 andIm(\) > 0,
Nimae 0€ the number of purely imaginary eigenvalues vitii\) > 0 and(p,,, H,¢,) <

0, and N, be the algebraic multiplicity of the zero eigenvaluerefi, ¢, = iAp,, with
(@, Hop,) < 0. Then,

1 — —

§Nreal + NCOTHP = n(Hn) - Nzero - Nimag7 (276)

whereN,., IS even.

Proof. By Lemma 7.1, a pair of real eigenvalues®fH,,p,, = i\p, corresponds to
two linearly independent eigenvectags andg,,. Becausé H,,¢,,, ¥,,) is real-valued and
hence zero fon € R, we have

By counting multiplicities of the real negative and complex eigenvalues of the general-
ized eigenvalue problem (2.2.3) associated with the stability problem (2.7.5), we have
N, = N, = Nyear @ndN+ = 2Ncom,- By Lemma 7.1, a pair of purely imaginary and zero
eigenvalues of the stability problem (2.7.5) corresponds to two linearly independent eigen-
vectors(¢p,,, 0) and(0, ¢_,,), wherep_,, = o1, and(H_,_,,, p_,) = (H,p,, ¥,). By
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counting multiplicities of the real positive and zero eigenvalues of the generalized eigen-
value problem (2.2.3) associated with the stability problem (2.7.5), we Nive 2N,

and N,f = 2N g Since the spectra dff,,, 01 H,01, ando3zH, 03 coincide, we have
n(L_) = 2n(H,). As a result, equality (2.7.6) follows by equality (2.2.12) of Theorem 1.
By Lemma 7.1, the multiplicity ofV,., is even in the stability problem (2.7.5). "

Corollary 7.2 LetA = PL,P and K = PL”_'P, whereP is an orthogonal projection to
the complement dfer(L_) = Span{vy, ..., v, }. The number of small negative eigenvalues
of A + JK for sufficiently smalb > 0 equals the number of non-negative eigenvalues of
My = limmo M(,u), WhereMij(,u> = ((,u — L+)_1Ui, ’Uj).

Proof. The same count (2.7.6) follows by equality (2.2.11) of Theorem 1 if and only
if dim(H, 45x) = dim(Hy) = n(L_). Since the zero eigenvalue dfis isolated from

the essential spectrum andL.,.) = n(L_), the number of small negative eigenvalues of
A + 0K for sufficiently smally # 0 must be equal to

dim(Hygr) — dim(H) = n(Ly) — dim(H).

By Proposition 2.1, this number is given by the numfagf z, of non-negative eigenvalues
of matrix M,. ]

Example 3.Let¢(r) be the fundamental chargevortex solution such that(r) >
0 for » > 0 and¢(0) = 0. By spectral theoryiKer(H,) = Span{¢,} and the analysis for
n = 0 becomes similar to Example 1. In the case& N, let us assume thdfer(H;) =
Span{¢, } andKer(H,,) = @ forn > 2.

e By direct computation, we obtaifw; H,03) ¢, = —3r¢(r)1 and

((o03Hy03) 'y, py) = /OO r¢? (r)dr > 0.
0

By Lemma 5.6, we havéV? = 0 forn = 1 (N? = 0 holds also fom > 2). By
Proposition 2.1, we have thel, < 0 such thatp, = zp = 0 for all n € N.
Corollary 7.2 is hence confirmed.

e Since(os¢,, ;) = 0 andKer(o3Hyo3) = {03¢,}, theng, L Ker(o3H,03). By
Proposition 2.1, we have(A) = z2(Ly) = 1forn = 1 andz(A) = z(Ly) = 0 for
n > 2.

e By Theorem 5, we have

Nreal + 2]\']comp = 2n(Hn) — 2Ny,

imag’

(2.7.7)

where N._

ima,

with Re(\) = 0, Im()\) > 0, and(H,,,, p,,) < 0, while N

zero

¢ gives the total number of eigenvalues in the sta;t:)[i)lity groblem (2.7.5)
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Remark 7.3 Stability of vortices was considered numerically in [94], where Lemma 7.1
was also obtained. The closure relation (2.7.7) was also discussed in [70] in a more gen-
eral context. \ortices in the discretized scalar NLS equation were considered with the
Lyapunov—Schmidt reduction method in [99]. Although the reduced eigenvalue problems
were found in a much more complicated form compared to the reduced eigenvalue problem
for solitons, equality (2.7.7) was confirmed for all vortex configurations considered in [99].

2.8 Application: KdV solitons

Consider a general fifth-order KdV equation,
Uy = AUy — A9Vze + A3Vezzee + 30100, — by (VUzee + 2040,0) + 6b30°0,, (2.8.1)

where(aq, as, az) and(by, by, b3) are real-valued coefficients for linear and nonlinear terms,
respectively. Without loss of generality, we assume #hat 0 and

Cuave(K) = a1 + ask® + azk* >0,  keR. (2.8.2)

For suitable values of parameters, there exists a traveling wave saltion) = ¢(x —ct),
wherec > 0 and¢ : R — R is an even and exponentially decaying function. Existence
of traveling waves was established in [128, 65, 5|49 b3 = 0, in [25] for b3 = 0, in

[68] for b, = —by = b3 = 1, and in [84] forb; = 0 or b; = by = 0. Linearization of the
fifth-order KdV equation (2.8.1) with the ansatz

v(z,t) = ¢z — ct) + w(x — ct)e

results in the stability problem

0. L_w = \w, (2.8.3)
whereL_ is an unbounded fourth-order operator,
d* d> d d " 9
L= Ay 3~ 25 +ay +c+3bio(r) — b2%¢(5)% —ba¢"(x) + 6b3¢°(z). (2.8.4)

Due to the condition (2.8.2), we have(L_) € [c, o), such thatv_ = ¢ > 0. The kernel
of L_ includes at least one eigenvectg(z). Since the image of._ is in L?(R), the
eigenfunctionw(x) € L'(R) for A # 0 satisfies the constraint:

(1,w) = /Rw(x)dx = 0. (2.8.5)

Letw = u/(x), whereu(z) — 0 as|z| — oo and defineL, = —0,L_0,. The essential
spectrum of., islocated at. (L. ) € [0,00), such thatv, = 0. The kernel of_,. includes
at least one eigenvectof ).
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Let the Hilbert spacé’’ be defined ag’ = L*(R, C). The main assumptions P1-P2
for L_ and L, are satisfied due to exponential decay of the functipr). Sincew, = 0,
the kernel of L, is embedded into the endpoint of the essential spectrum, of This
introduces a technical complication in computations of the inverge, df79], which we
avoid here with the use of the shifted generalized eigenvalue problem (2.2.9) witt.
We still need to check assumption P3. It is easy to see that

s ).
C

- | >=->0
¢+ Cyave(K) | — ’

WALSK — Igel]}fg ]{32(6 + Cwave(k’)) +

such that the first part of assumption P3 is satisfied. Since new eigenvaldesiéf bifur-
cating from the end points of the essential spectrui &f § K with the edge bifurcations
are quadratic with respect 8d74], while the end points are linear with respect{all new
eigenvalues are positive for sufficiently smalt 0. Therefore, assumption P3 is satisfied
if we assume that the kernel &f. is one-dimensional, that iser(L.) = Span{¢}.

We shall apply Theorem 1 after the count of isolated and embedded eigenvalues in
the stability problem (2.8.3). Sinece, = 0, the continuous spectrum of L_ covers the
entire imaginary axis ok. Therefore, all real and complex eigenvalues are isolated, while
all purely imaginary eigenvalues including the zero eigenvalue are embedded.

Lemma 8.1 Let )\, be areal eigenvalue of the stability problem (2.8.3) with the real-valued
eigenvectorw,(x), such thatRe();) > 0 andIm();) = 0. Then there exists another
eigenvalue-); in problem (2.8.3) with the linearly independent eigenveaig—=x). The
linear combinationsu () = w;(x) £ w;(—x) are orthogonal with respect to the operator
L,

(L,wji, w]i) = +2(L_wj(—x),w;(x)), (L,w;F, w]i) = 0. (2.8.6)

Proof. Since¢(—z) = ¢(z), the self-adjoint operatak _ is invariant with respect to the
transformation: — —z. The functionsw;(x) andw,;(—z) are linearly independent since
w;(z) has both symmetric and anti-symmetric parts providedtha¢ 0. Under the same
constraint,

(L_wj(xx),w,;(£x)) = :l:)\j_1 (L_wj(xx), 0, L_w;(£x)) =0,
and the orthogonality relations (2.8.6) hold by direct computations. "

Corollary 8.2 Let \; be a complex eigenvalue of the stability problem (2.8.3) with the
complex-valued eigenvectort (z), such thaRe();) > 0 andIm(\;) > 0. Then there exist
eigenvalues ;, —);, and— ), in problem (2.8.3) with the linearly independent eigenvectors
w;(z), w;(—z), andw;(—z), respectively.
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Lemma 8.3 Let \; be a purely imaginary embedded eigenvalue of the stability problem
(2.8.3) with the complex-valued eigenvectg(z), such thatRe();) = 0 andIm(};) >

0. Then there exists another eigenvalug; = \; in problem (2.8.3) with the linearly
independent eigenvectar;(—z) = w;(z). The linear combinations;f(x) = w;(z) £
w;(z) are orthogonal with respect to the operatbr,,

(L- w , W5 ¥) = 2Re (L_wj(z), w;(z)), (L_wf,wji) = 0. (2.8.7)

Proof. Since operatol_ is real-valued, the eigenvectar;(z) of problem (2.8.3) with
Im();) > 0 has both real and imaginary parts, which are linearly independent. Under the
constraint\; # 0,

(L_wj,w;) = A" (L_wy, 8, L_w;) = 0,

and the orthogonality equations (2.8.7) follow by direct computations. "

Theorem 6 Let V.., be the number of real eigenvalues of the stability problem (2.8.3)
with Re(A) > 0, Neomp be the number of complex eigenvalues wiie(\) > 0 and
Im(A) > 0, and N, be the number of imaginary eigenvalues with(\) > 0 and
Re (L_wj(z),w,(x )) < 0 for the corresponding eigenvectars. Assume thakKer(L; ) =
Span{¢} € H and-L||¢|2, # 0. Then,

Nreal + 2Ncomp + 2N, (L_) — Do, (288)

imag —
wherep, = 1if £||¢||2, > 0 andp, = 0if £[|¢[|2, <0

Proof. Each isolated and embedded eigenvajue- >\2 of the generalized eigenvalue
problem (2.2.3) is at least double with two linearly mdependent elgenvexff(@ﬂs defined

by w = 0, ui By Lemma 8.1 and Corollary 8.2, the dimension of the maximal non-
posmve mvanant eigenspace for isolated (real and complex) eigenvalues coincide with the
algebraic multiplicities of isolated eigenvalues, such tNgt = N = Nye and N+ =
2N.omp- By Lemma 8.3 and the relation for eigenvectors of the stability problem (2.8.3),

(Lyu,u) = (L_u',u") = (L_w,w), (2.8.9)

we haveN " = 2N, . By Remark 5.7 and the assumption that (L, ) = Span{¢} € H

imag*

and £|¢[3, # 0, we haveN? = py, wherep, = 1if (L='¢,¢) < 0 andp, = 0 if

(L 1¢ $) < 0. SincelL_ 8Cq5( ) = —¢(z), we obtain thatl L='¢, ¢) = —(0.¢,¢) =
—14¢||2.. The count (2.8.8) follows by equality (2.2.12) of Theorem 1. "

Remark 8.4 Sincedim(H ;) = dim(Hy) + NJ and N, = N, the same count
(2.8.8) also follows by equality (2.2.11) of Theorem 1.:

Nreal + 2Neomp + 2N; 0y = dim(H, sx) — Ny = dim(H,), (2.8.10)

imag
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provided thatdim(H,) = m(L_) — p,. By Proposition 2.1, we have, = 0 (since
Ll1¢||2. # 0 by assumption) andim(H ) = n(L;) — po, Wherep, is the same as in
Theorem 6 sincéL;'¢', ¢') = (LZ'¢, ¢). Similarly, because of relation (2.8.9), we have
n(Ly) = n(L_) and equality (2.8.10) is identical to equality (2.8.8).

Remark 8.5 If n(L_) = 1, Theorem 6 predicts stability fof||¢[|2, > 0 and instability

With Nyear = 1 and Neopmp = 0 for %H(ﬁ”%? < 0. This result coincides with the Stability—
Instability Theorems in [13, 116]. By a different method, Lyapunov stability of positive
traveling wavesy(z) was considered in [122]. Specific studies of stability for the fifth-
order KdV equation (2.8.1) were reported in [66, 42] with the energy-momentum methods.
Extension of the Stability—Instability Theorems of [13, 122] with no assumption on a sim-
ple negative eigenvalue df_ was developed in [84, 93] with a variational method. The
variational theory is limited however to the case of homogeneous nonlinearitiek; e-@.

or by = by = 0. Our treatment of stability in the fifth-order KdV equation (2.8.1) is novel
as it exploits a similarity between stability problems for KdV and NLS equations. The first
application of this theory to stability of N-solitons in the KdV hierarchy was reported in
[79]. Another treatment of the coupled Klein—-Gordon—Boussinesq system, which satisfies
propertiesv; = 0 andn(L_) = 1, is reported in [81]. The casﬁ”d)ﬂig = 0 was recently
considered in [32] for the generalized KdV equation.

Remark 8.6 Theorem 6 can be generalized to any KdV-type evolution equation, when the
linearized operator._ is invariant with respect to the transformation— —z. When
Nimag = 0, the relation (2.8.8) extends the Morse index theory from gradient dynamical
systems to the KdV-type Hamiltonian systems. For gradient dynamical systems, all nega-
tive eigenvalues of, _ are related to real unstable eigenvalues of the stability problem. For
the KdV-type Hamiltonian system, negative eigenvalues ofmay generate both real and

complex unstable eigenvalues in the stability problem (2.8.3).
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CHAPTER 3

SPECTRAL STABILITY OF TWO-PULSE SOLUTIONS IN
THE FIFTH-ORDER KDV EQUATION.

3.1 Introduction

One-pulse solutions (solitons) are commonly met in many nonlinear evolution equations
where dispersive terms (represented by unbounded differential operators) and nonlinear
terms (represented by power functions) are taken in a certain balance. Typical examples
of such nonlinear evolution equations with one-pulse solutions are given by the NLS (non-
linear Schodinger) equation, the Klein-Gordon (nonlinear wave) equation and the KdV
(Korteweg-de Vries) equation, as well as their countless generalizations.

One-pulse solutions are the only stationary (traveling) localized solutions of the
simplest nonlinear evolution equations. However, uniqueness is not a generic property
and bound states of spatially separated pulses can represent other stationary (traveling)
localized solutions of the same evolution equation. For instance, two-pulse, three-pulse,
and generallyV-pulse solutions exist in nonlinear evolution equations with a higher-order
dispersion (represented by a higher-order differential operator). The prototypical example
of such situation is the fifth-order KdV equation in the form,

U + Ugpy — Uppgze + 2Uly = 0, reR, teR,, (3.1.1)

whereu : R x R, — R and all coefficients of the nonlinear PDE are normalized by
a scaling transformation. The more general 5th order KdV equation has been used by
W. Craig and M. Groves [35] to describe weakly nonlinear long waves on the surface of
a fluid with surface tension. See T.J. Bridges & G. Derks [16] for a review of history and
applications of the fifth-order KdV equation (3.1.1) to magneto-acoustic waves in plasma
and capillary-gravity water waves.

Traveling localized solutions(z,t) = ¢(z — ct) of the fifth-order KdV equation
(3.1.1) satisfies the fourth-order ODE

o) — " + cp = ¢, z € R, (3.1.2)

wherez = x — ct is the traveling coordinate and one integration of the fifth-order ODE in
z is performed subject to zero boundary conditiong¢n) and its derivatives ag| — co.

39
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Existence of localized solutions (homoclinic orbits) to the fourth-order ODE (3.1.2) was
considered by methods of the dynamical system theory. See A.R. Champneys [24] for a
review of various results on existence of homoclinic orbits in the ODE (3.1.2).

In particular, it is proved with the variational method by B. Buffoni & E. Sere [19]
and M. Groves [63] (see references to earlier works in [24]) that the fourth-order ODE
(3.1.2) has the one-pulse solutigfz) for ¢ > 0, which is the only localized solution of
the ODE (3.1.2) fof) < ¢ < 1 up to the translatio(z — s) for any s € R. The analytical
expression for the one-pulse solution is only available:fef% < }l with

105 z
o(2) = 338 sech? (2\/§) : (3.1.3)

Forc > % the fourth-order ODE (3.1.2) has infinitely many multi-pulse solutions in addi-
tion to the one-pulse solution [19, 63]. The multi-pulse solutions look like multiple copies
of the one-pulse solutions separated by finitely many oscillations close to the zero equilib-
rium ¢ = 0. Stability and evolution of multi-pulse solutions are beyond the framework of
the fourth-order ODE (3.1.2) and these questions were considered by two theories in the
recent past.

The pioneer work of K.A. Gorshkov & L.A. Ostrovsky explains multi-pulse solu-
tions of the fifth-order KdV equation (3.1.1) from the effective interaction potential com-
puted from the one-pulse solution [56, 57]. When the interaction potential has an alternat-
ing sequence of maxima and minima (which corresponds to the case when the one-pulse
solution¢(z) has oscillatory decaying tails at infinity), an infinite countable sequence of
two-pulse solutions emerge with the property that the distance between the pulses occurs
near the extremal points of the interaction potential. Three-pulse solutions can be con-
structed as a bi-infinite countable sequence of three one-pulse solutions where each pair of
two adjacent pulses is located approximately at a distance defined by the two-pulse solu-
tion. Similarly, N-pulse solutions can be formed by & — 1)-infinite countable sequence
of N copies of one-pulse solutions. The perturbative procedure in [56] has the advan-
tages that both the linear and nonlinear stability of multi-pulse solutions can be predicted
from analysis of the approximate ODE system derived for distances between the individual
pulses. Numerical evidences of validity of this procedure in the context of the fifth-order
KdV equation are reported in [20].

A different theory was developed by B. Sandstede [110] who extended the X.B.
Lin’s work on the Lyapunov—Schmidt reductions for nonlinear evolution equations [85].

In this method, a linear superposition &f one-pulse solutions(z) = Ej.vzl O(z — s5)

is a solution of the ODE (3.1.2) in the case when the distances between pulses are infinite
(i.e. |sj+1 — sj| = o0, Vj). The Jacobian of the nonlinear ODE (3.1.2) defines a linear
self-adjoint operator front/*(R) to L?(R):

H=c— 0>+ 0 —2¢(2), c>0, (3.1.4)
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where the unbounded differential part- 9 + 92 is positive and bounded away from zero
while the exponentially decaying potential terr2¢(z) is a relatively compact perturba-
tion. Wheng(z) is a linear superposition oV infinitely-separated one-pulse solutions
(= — s;), the Jacobiaft{ hasN zero eigenvalues related to the eigenfunctidf(s — s;)
due to the translational invariance of the ODE (3.1.2). The Lyapunov—Schmidt method
leads to a system of bifurcation equations for the distances between individual pulses.
When¢(z) is the N-pulse solution with finitely separated pulses (il&;.1 — s;| < oo,
Vj), one zero eigenvalue of the Jacobian operatosurvives beyond the reductive pro-
cedure due to the translational invariance of Nigulse solutions(z), while N — 1 real
eigenvalues bifurcate from zero. The reduction method may give not only information
about existence of multi-pulse solutions but also prediction of their spectral stability in the
linearized time-evolution problem [110]. The linearized problem for the fifth-order KdV
equation takes the form

0. Hv = \v, z € R, (3.1.5)

wherev : R +— C is an eigenfunction for a small perturbation @fz) in the reference
framez = x — ¢t and )\ € C is an eigenvalue. We say that the eigenvalus unstable
if Re(A) > 0. We say that the eigenvalueis of negative Krein signaturé Re(\) = 0,
Im()\) > 0,v € H*(R) and(Hv,v) < 0.

Our interest to this well-studied problem is revived by the recent progress in the
spectral theory of non-self-adjoint operators arising from linearizations of nonlinear evolu-
tion equations [29]. These operators can be defined as self-adjoint operators into Pontrya-
gin space where they have a finite-dimensional negative invariant subspace. Two physically
relevant problems for the fifth-order KdV equation (3.1.1) have been solved recently by us-
ing the formalism of operators in Pontryagin spaces. First, convergence of the numerical
iteration method (known as the Petviashvili method) for one-pulse solutions of the ODE
(3.1.2) was proved using the contraction mapping principle in a weighted Hilbert space
(which is equivalent to Pontryagin space with zero index) [101]. Second, eigenvalues of
the spectral stability problem in a linearization of the fifth-order KdV equation (3.1.1) were
characterized in Pontryagin space with a non-zero index defined by the finite number of
negative eigenvalues &f using the invariant subspace theorem [79, 29].

Both recent works rise some open problems when the methods are applied to the
N-pulse solutions in the fifth-order KdV equation (3.1.1), even in the case of two-pulse
solutions (V = 2). The successive iterations of the Petviashvili's method do not converge
for two-pulse solutions. The iterative sequence with two pulses leads either to a single pulse
or to a spurious solution with two pulses located at an arbitrary distance (see Remark 6.5 in
[101]). This numerical problem arises due to the presence of small and negative eigenvalues
of H. A modification of the Petviashvili's method is needed to suppress these eigenvalues
similarly to the work of L. Demanet & W. Schlag [40] where the zero eigenvalue associated
to the translational invariance of the three-dimensional NLS equation is suppressed. We
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shall present the modification of the iterative Petviashvili's method in this chapter. See also
[26, 92] and [14, 15] for alternative numerical techniques for approximations of multi-pulse
solutions of the fifth-order KdV equation.

Another open question arises when spectral stability of multi-pulse solutions is con-
sidered within the linear eigenvalue problem (3.1.5). By either the Gorshkov—Ostrovsky
perturbative procedure or the Sandstede—Lin reduction method, the small eigenvalues of
the Jacobian operat@t result in small eigenvalues of the linearized operégi, which
are either pairs of real eigenvalues (one of which is unstable) or pairs of purely imaginary
eigenvalues of negative Krein signature (which are neutrally stable but potentially unsta-
ble). Both cases are possible in the fifth-order KdV equation in agreement with the count
of unstable eigenvalues in Pontryagin spaces (see Theorem 6 in [29]). (Similar count of
unstable eigenvalues and eigenvalues of negative Krein signatures was developed for the
NLS equations in recent papers [70, 97].) Since the real eigenvalues are isolated from the
continuous spectrum of the eigenvalue problem (3.1.5), they are structurally stable and per-
sist with respect to parameter continuations. However, the purely imaginary eigenvalues
are embedded into the continuous spectrum of the eigenvalue problem (3.1.5) and their
destiny remains unclear within the reduction methods. It is well known for the NLS-type
and Klein—Gordon-type equations that embedded eigenvalues are structurally unstable to
the parameter continuations [62]. If a certain Fermi golden rule related to the perturba-
tion term is nonzero, the embedded eigenvalues of negative Krein signature bifurcate off
the imaginary axis to complex eigenvalues inducing instabilities of pulse solutions [37].
(The embedded eigenvalues of positive Krein signature simply disappear upon a generic
perturbation [37].) This bifurcation does not contradict the count of unstable eigenvalues
[70, 97] and it is indeed observed in numerical approximations of various pulse solutions
of the coupled NLS equations [103].

From a heuristic point of view, we would expect that the time evolution of an en-
ergetically stable superposition of stable one-pulse solutions remains stable. (Stability of
one-pulse solutions in the fifth-order KdV equation (3.1.1) was established with the vari-
ational theory [84] and the multi-symplectic Evans function method [16, 17].) According
to the Gorshkov-Ostrovsky perturbative procedure, dynamics of well-separated pulses is
represented by the Newton law for particle dynamics which describes nonlinear stability
of oscillations near the minima of the effective interaction potential [57]. Therefore, we
would rather expect (on the contrary to embedded eigenvalues in the linearized NLS and
Klein—Gordon equations) that the embedded eigenvalues of negative Krein signature are
structurally stable in the linear eigenvalue problem (3.1.5) and persist beyond the leading
order of the perturbative procedure. (Multi-pulse solutions of the NLS and Klein—Gordon
equations with well-separated individual pulses are always linearly stable since the small
purely imaginary eigenvalues of the Lyapunov—Schmidt reductions are isolated from the
continuous spectrum of the corresponding linearized problems [124].)

Since the count of unstable eigenvalues in [29] does not allow us to prove structural
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stability of embedded eigenvalues of negative Krein signature, we address this problem
separately by using different analytical and numerical techniques. In particular, we present
an analytical proof of persistence (structural stability) of embedded eigenvalues of nega-
tive Krein signature in the linearized problem (3.1.5). We also apply the Fourier spectral
method and illustrate the linearized stability of the corresponding two-pulse solutions nu-
merically. Our analytical and numerical methods are based on the construction of expo-
nentially weighted spaces for the linear eigenvalue problem (3.1.5). (See [96] for analysis
of exponentially weighted spaces in the context of the generalized KdV equation.) See
[28] for computations of the Maslov index for two-pulse solutions of the fifth-order KdV
equation (3.1.1) and [123] for stability analysis of two-pulse solutions of the coupled KdV
equations.

This chapter is structured as followsSection 3.2contains a summary of avail-
able results on existence and stability of one-pulse and two-pulse solutions of the fifth-
order KdV equation (3.1.1B5ection 3.3resents a modification of the iterative Petviashvili
method for convergent numerical approximations of the two-pulse solutions in the fourth-
order ODE (3.1.2). Section 3.4develops the proof of structural stability of embedded
eigenvalues in the eigenvalue problem (3.1.5) and numerical approximations of unstable
and stable eigenvalues in an exponentially weighted sp@eetion 3.5lescribes full nu-
merical simulations of the fifth-order KdV equation (3.1.1) to study nonlinear dynamics of
two-pulse solutions.

3.2 Review of available results

Linearization of the ODE (3.1.2) at the critical poiit 0, 0, 0) leads to the eigenvalues
given by roots of the quartic equation,

k' —k*+c=0. (3.2.1)

Whenc < 0, one pair of roots: is purely imaginary and the other pair is purely real. When

0<c< i two pairs of rootss are real-valued. Whea > 1, the four complex-valued

4’

rootsx are located symmetric about the axes. We will use notatigrs Im(x) > 0 and

ko = Re(r) > 0 for a complex root of (3.2.1) in the first quadrant for 1. The following

two theorems summarize known results on existence of one-pulse and two-pulse solutions

of the ODE (3.1.2).

Theorem 3.2.1 (One-pulse solutions)

(i) There exists a one-pulse solutigfz) of the ODE (3.1.2) for > 0 such thatp €
H?*(R)NC®(R), ¢(—2) = ¢(z), and¢(z) — 0 exponentially a$z| — oo. Moreover,
¢(z) is C™(R) for anym > 0.
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(i) The Jacobian operatck in (3.1.4) associated with the one-pulse solutign) has
exactly one negative eigenvalue with an even eigenfunction and a simple kernel with
the odd eigenfunction’(z).

(iii) Assume that the mafyz) frome > 0to H?(R) is C*(R, ) and thatP’(c) > 0, where
P(c) = ||¢||3.- The linearized operatad, H has a two-dimensional algebraic kernel
in L2(R) and no unstable eigenvalues witl(\) > 0.

Proof. (i) Existence of a symmetric solutiof(z) in H*(R) follows by the mountain-pass
lemma and the concentration-compactness principle (see Theorem 8 in [63] and Theorem
2.3in [84]). The equivalence between weak solutions of the variational theory and strong
solutions of the ODE (3.1.2) is established in Lemma 1 of [63] and Lemma 2.4 of [84].
The exponential decay of( ) follows from the Stable Manifold Theorem in Appendix A
of [19]. Finally, the smoothness of the functigfk) is proved from the ODE (3.1.2) by the
bootstrapping principle [32].

(i) The Jacobian operatdf coincides with the Hessian of the energy functional
J(u) used in the constrained variational problem in [63]. By Proposition 16 in [63], the
one-pulse solution(z) is a global minimizer of/ (u) subject to the constraidt (u) = K,
where K (u) = [, u’dz. By Lemma 2.3 in [101],¢ is a minimizer of the constrained
variational problem if{ has exactly one negative eigenvalue. Since the negative eigenvalue
corresponds to the ground state?of the corresponding eigenfunction is even. The kernel
of H includes an eigenvalue with the odd eigenfunctitfx) due to the space translation.
The one-pulse solution is isolated, and the kernél{aé hence simple, due to the duality
principle in Theorem 4.1 of [19]. If it is not simple, then global two-dimensional stable
and unstable manifolds coincide and the time for a homoclinic orbit to go from the local
unstable manifold to the local stable manifold is uniformly bounded. However, a sequence
of homoclinic solutiongu, },en Was constructed in [18] such that the time between local
manifolds grows linearly im. By the duality principle, no second even eigenfunction exists
in the kernel ofH.

(iii) Smoothness of the map(z) from ¢ > 0 to H%(R) is a standard assumption
(see Assumption 5.1 in [84]). IP'(¢) > 0, the one-pulse solution is stable, according
to Theorem 4.1 of [84] and Theorem 8.1 of [16]. Therefore, no eigenvalugsHoiwith
Re(A) > 0 exist. The two-dimensional algebraic kernebot follows from the derivatives
of the ODE (3.1.2) ire andc:

He'(z) =0, HOP(2) = —¢(2). (3.2.2)

The algebraic kernel of,’H is exactly two-dimensional under the conditié®(c) # 0
[95]. O
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Theorem 3.2.2 (Two-pulse solutions)There exists an infinite countable set of two-pulse
solutionsg(z) of the ODE (3.1.2) for > ; such thatp € H*(R) NC*(R), ¢(—z) = ¢(z),

¢(z) — 0 exponentially agz| — oo, and ¢(z) resembles two copies of the one-pulse
solutions described in Theorem 3.2.1 which are separated by small-amplitude oscillatory
tails. The members of the set are distinguished by the distatetween individual pulses
which takes the discrete valués,, }.,.cn. Moreover, for any smali > 0 there existsy > 0

such that )
m™n
L,—=——
ko !

< 9, n € N. (3.2.3)

Proof. Existence of an infinite sequence of geometrically distinct two-pulse solutions with
the distances distributed by (3.2.3) follows by the variational theory in Theorem 1.1 of
[19] under the assumption that the single-pulse solutipr) is isolated (up to the space
translations). This assumption is satisfied by Theorem 3.2.1(ii). O

The following theorem describes an asymptotic construction of the two-pulse solu-
tions, which is used in the rest of this chapter.

Theorem 3.2.3Letc > ; and ®(z) denote the one-pulse solution described by Theorem
3.2.1. LetL. = 2s be the distance between two copies of the one-pulse solutions of the ODE
(3.1.2) in the decomposition

6(2) = B(z — 5) + Bz + 5) + (2), (3.2.4)
wherep(z) is a remainder term. LeV (L) be C*(R,, ) function defined by

W(L) = /RCI>2(Z)<I>(Z + L)dz. (3.2.5)

There exists an infinite countable set of extremB/@f.), which is denoted byL,, } ,,en.

(i) Assume that?”(L,) # 0 for a givenn € N. There exists a unique symmetric
two-pulse solutiom(z) described by Theorem 3.2.2, such that

L — L,| < Cpe "k, /2y < Cne ™ok, (3.2.6)
for someC,,, C,, > 0.

(i) The Jacobiar{ associated with the two-pulse solutigfz) has exactly two finite
negative eigenvalues with even and odd eigenfunctions, a simple kernel with the odd
eigenfunctiony’(z) and a small eigenvalug with an even eigenfunction, such that

2W"(Ly,)

Q(c)
for someD,, > 0, whereQ(c) = ||®'||7. > 0. In particular, the small eigenvalug

is negative wheml’”’(L,,) > 0 and positive wheml’”’(L,,) < 0.

[+ < D,e 2ok (3.2.7)
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(i) There exists a pair of small eigenvaluesf the linearized operatad, H associated
with the two-pulse solution(z), such that

AW (L)

< D,e ol 2.
P/(C) — ne bl (3 8)

A2+

for someD,, > 0, whereP(c) = |®||3. and P'(¢) > 0. In particular, the pair is
real wheniV”(L,,) < 0 and purely imaginary (up to the leading order) with negative
Krein signature whem”’(L,,) > 0.

Proof. When the tails of the one-pulse soluti®z) are decaying and oscillatory (i.e. when
c > i), the functioniV (L) in (3.2.5) is decaying and oscillatory inand an infinite set of
extrema{ L, },cn exists. Let us pick_, for a fixed value ofn € N such thatV’(L,) = 0
andW”(L,,) # 0.

(i) When the decomposition (3.2.4) is substituted into the ODE (3.1.2), we find the
ODE for p(z2):

(c—0240! —20(2—s) —2P(2+ ) p — ©* = 20(2 — 5)P(2 + 3). (3.2.9)

Let e = e~ be a small parameter that measures iffenorm of the overlapping term
®(z — s)P(z + s) in the sense that for eaeh> 0 there exist constants,, s, > 0 such that

|P(z — $)P(2 + 8)||pe < Coe Vs > sp. (3.2.10)

DenoteL = 2s ande¥(z; L) = 2®(z)®(= + L) and rewrite the ODE (3.2.9) fap(z) =
o(z + s):

(c— 02+ 07 —20(2)) p —2®(2 + L)p — 3° = e¥(z; L). (3.2.11)

The vector field of the ODE (3.2.11) is closed in function spBE€R), while the Jacobian
for the one-pulse solution
H=c—0°+0!—29(z2)

has a simple kernel with the odd eigenfuncti®iz) by Theorem 3.2.1(ii). By the Lyapunov—
Schmidt reduction method (see [55]), there exists a unique soldgtioca ¢.(z; L) €
H2R) : (®',¢) = 0, such thatpy(z; L) = 0 andp.(z; L) is smooth ine, provided
solves the bifurcation equatidn (L) = 0, where

+2(9(2), (2 + L)@z L)) + (9'(2), ¢(2; L))
€(OLV(z; L), @e(2; L)) — € (¥(z; L), 0.0(2; L))
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Sincep,(z; L) is smooth ine and py(z; L) = 0, then||pe(z; L) || g2w) < Ce for
someC' > 0 such that )
F(L) = =W'(L) + Fi(L),

where|W'(L)| < Cie and|F.(L)| < C,e* for someCy,C, > 0. The statement follows
by the Implicit Function Theorem applied to the scalar equagiét(L) = 0 under the
assumption that the rodt, of W’(L) is simple.
(if) The Jacobiart{ associated with the two-pulse solutigfz) in (3.2.4) has the
form:
H=c—0>+ 0! —20(z — s5) — 20(2 + 5) — 20(2).

In the limit s — oo, the Jacobiari has a double negative eigenvalue and a double zero
eigenvalue. By a linear combination of eigenfunctions, one can construct one even and
one odd eigenfunctions for each of the double eigenvalues. By continuity of eigenvalues
of self-adjoint operators, the double negative eigenvalue splits and the two simple eigen-
values remain negative for sufficiently large By reversibility of the system, eigenfunc-
tions for simple eigenvalues are either even or odd and by continuity of eigenfunctions,
there is exactly one even and one odd eigenfunctions for the two negative eigenvalues. By
the translation invariance, the double zero eigenvalue splits into a simple zero eigenvalue
which corresponds to the odd eigenfunctioiiz) and a small non-zero eigenvalue that
corresponds to an even eigenfunction. The splitting of the double zero eigenvalue in the
problemHuv = pwv is considered by the perturbation theory,

v(2) = 1@ (2 — 8) + ®' (2 + 5) + V(2), (3.2.12)

where(aq, as) are coordinates of the projections to the kernetah the limit s — oo and
V(z) is the remainder term. By projecting the eigenvalue probtém= pv to the kernel
of H and neglecting the higher-order terms, we obtain a reduced eigenvalue problem:

pQ(c)ay = —Way + W" (L), pQ(c)ag = W"(L,)ag — W,
whereQ(c) = ||®'||7. > 0, W"(L,,) is computed from (3.2.5) and
W =2 ([0'(z = ), 9(2) + Bz +5)) = 2 ([¥'(2), 3(2) + B2 + 1)) .

Since one eigenvalue must be zero with the odd eigenfungtian, the zero eigenvalue
corresponds to the eigenfunction (3.2.12) with= a» up to the leading order. By looking

at the linear system, we find that the zero eigenvalue corresponding to a, exists
only if W = W”(L,). The other eigenvalue at the leading ordet is —2W"(L,,)/Q(c)

and it corresponds to the even eigenfunction (3.2.12) wijth= —a,. By continuity of
isolated eigenvaluel with respect to perturbation terms and estimates of Theorem 2.3(i),
we obtain the result (3.2.7).
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(iii) In the limit s — oo, the linearized operatay,H for the two-pulse solution
¢(z) has a four-dimensional algebraic kernel according to the two-dimensional kernel of
the one-pulse solution (3.2.2). By the translation invariance, the two-dimensional algebraic
kernel survives for any with the eigenfunction$¢’(z), 0.¢(z)}. Two eigenvalues of the
operatord,H may bifurcate from the zero eigenvalue. The splitting of the zero eigenvalue
in the problem),Hv = \v is considered by the perturbation theory,

v(2) = —a1®' (2 — 8) — @' (2 + 8) + £10.P(2 — 5) + 320.P(2 + s) + V(2), (3.2.13)

where(aq, as, 51, B2) are coordinates of the projections to the algebraic kernél &f in

the limit s — oo andV'(z) is the remainder term. By projecting the eigenvalue problem
0. Hv = )l to the algebraic kernel of the adjoint operatagt{d. and neglecting the higher-
order terms, we find at the leading order that= Ao;, j = 1,2 and (o, a2) satisfy a
reduced eigenvalue problem:

1 ~ 1 ~
§>\2PI(C)061 = —WOél + W”<Ln)@2, 5/\2P1(C>062 = W//(Ln)()él — WO[Q,
where P(c) = ||®|%, andW = W"(L,). The non-zero squared eigenvali®at the
leading order is

e 2Q0n __4W(L,)

P'(c) P'(c)

Isolated eigenvalue8,H are continuous with respect to perturbation terms, so that we
immediately obtain the result (3.2.8) for € R whenW”(L,) < 0. In order to prove
(3.2.8) forA € iR whenW"(L,) > 0, we compute the energy quadratic form at the
leading order

(Hv,v) = —4W"(Ln) — P'(c) A,

wherev(z) is given by the eigenfunction (3.2.13) with = —a, = 1 andg; = Aa;j, j =

1,2. When\ € iR andW"(L,,) > 0, we have(Hv,v) < 0 up to the leading order, such
that A\ € iR is an eigenvalue of negative Krein signature. Persistence of the eigenvalues
of negative Krein signature (even although the eigenvalues iR are embedded into

the continuous spectrum ofH) follows from the invariant subspace theorem (Theorem
1in [29]). In the exponentially weighted spaces [96], the eigenvalues of negative Krein
signature are isolated and hence continuous, such that they satisfy the bound (3[2.8).

Remark 3.2.4 Theorem 3.2.3 is a modification of more general Theorems 1 and 2 in [110]
(see also [85]). We note that the persistence of eigenvalues (3.2.8) on the imaginary axis for
W"(L,) > 0 cannot be proved with the Lyapunov—-Schmidt reduction method since the es-
sential spectrum af,H occurs on the imaginary axis (contrary to the standard assumption
of Theorem 2 in [110] that the essential spectrum is located in the left half-plane.)
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The following conjecture from the Gorshkov—Ostrovsky perturbative procedure
[56, 57] illustrates the role dfi’(L) as the effective interaction potential for the slow dy-
namics of a two-pulse solution:
Conjecture: Let (1, (5 be some positive constants. For the initial time intewaf ¢ <
Cre™L/2 and up to the leading orded(e"0’), the two-pulse solutions of the fifth-order
KdV equation (3.1.1) can be written as the decomposition

u(z,t) = ®(x —ct —s(t)) + ©(z —ct + s(t)) + U(x, t),

where||U||z~ < Cye "0t and the slow dynamics df(t) = 2s(t) is represented by the
Newton law:

P'(c)L = —4W'(L). (3.2.14)

Although rigorous bounds on the time interval and the truncation error of the Newton law
were recently found in the context of NLS solitons in external potentials (see [47]), the
above conjecture was not proved yet in the context of two-pulse solutions of the fifth-order
KdV equation (3.1.1). We note that perturbation analysis that leads to the Newton law
(3.2.14) cannot be used to claim persistence and topological equivalence of dynamics of
the second-order ODE (3.2.14) to the full dynamics of two-pulse solutions in the fifth-order
KdV equation (3.1.1).

According to Theorem 3.2.3, an infinite set of extremdlofL) generates a se-
guence of equilibrium configurations for the two-pulse solutions in Theorem 3.2.2. Since
P’(¢) > 0 by Theorem 3.2.1(iii), the maxima points @f (L) correspond to a pair of real
eigenvalues\ of the spectral problem (3.1.5), while the minima pointsiof L) corre-
spond to a pair of purely imaginary eigenvaluesThe two-pulse solutions at the maxima
points are thus expected to be linearly and nonlinearly unstable. The two-pulse solutions
at the minima points are stable within the leading-order approximation (3.2.8) and within
the Newton law (3.2.14) (a particle with the coordindtg) performs a periodic oscilla-
tion in the potential well). Correspondence of these predictions to the original PDE (3.1.1)
is a subject of the present chapter. We will compute the interaction poté¥itia) and
the sequence of its extrema poifts, },cn, as well as the numerical approximations of
the two-pulse solutions of the ODE (3.1.2) and of the eigenvalues of the opératdn
(3.1.5).

3.3 Modification of the Petviashvili method

We address the Petviashvili method for numerical approximations of solutions of the fourth-
order ODE (3.1.2) withc > 0. See review of literature on the Petviashvili's method in
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[101]. By using the standard Fourier transform
6 = [ o ds keR,
R
we reformulate the ODE (3.1.2) as a fixed-point problem in the Sobolev Spa®):

o (k)

¢<k) — m, k G ]R, (3.3.1)

whereg@(k:) can be represented by the convolution integratz@(ﬁ) to itself. An even
real-valued solutior(—z) = ¢(z) of the ODE (3.1.2) inH?(R) is equivalent to the even
real-valued solutiom(—k) = ¢(k) of the fixed-point problem (3.3.1). Let us denote the
space of all even functions if?(R) by H2 (R) and consider solutions of the fixed-point
problem (3.3.1) in72 (R).

Let {u,(k)}oo, be a sequence of Fourier transformdHp, (R) defined recursively

by

u2 (k)

1 (k) = M2—n

i (k) "(e+ K2+ k)’
wheredy(k) € H2 (R) is a starting approximation antf,, = M][a,,] is the Petviashvili
factor defined by

(3.3.2)

Jole+ K>+ Y [a(k)) dk
[oalk)u2(k)dk

If u, € H*(R), thenu € L3(R) due to the Sovolev embedding theorem, and both the

nominator and denominator éf [4] are bounded. It follows from the fixed-point problem

(3.3.1) thatM[¢] = 1 for any solutionp € H2,(R). The following theorem was proved in
[101] and reviewed in [40].

Theorem 3.3.1 Leté(k) be a solution of the fixed-point problem (3.3.1)H#, (R). LetH
be the Jacobian operator (3.1.4) evaluated at the corresponding solgtionof the ODE
(3.1.2). IfH has exactly one negative eigenvalue and a simple zero eigenvalue and if

Mli] =

(3.3.3)

either ¢(z) >0 or |inf ¢(z)

z€R

C

— 3.4
<3 (3.3.4)
then there exists an open neighborhood arf HZ2 (R),in whichg is the unique fixed point
and the sequence of iteratiofs,, (k)}>° , in (3.3.2)—(3.3.3) converges to

Proof. We review the basic steps of the proof, which is based on the contraction mapping
principle in a local neighborhood ef in A2 (R). The linearization of the iteration map
(3.3.2) at the solutiom is rewritten in the physical spacec R as follows:

Upi1(2) = —20,0(2) + va(2) — (¢ — 0% + 02) " Hu,(2), (3.3.5)
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wherea,, is a projection ofy,, onto¢? in L?(R):

(92527 Uy,)
(¢2,0)

such thatu,, = ¢ + v, andM,, = 1 — «,, to the linear order. The operat@r = (c — 9> +
04)~1"H is a self-adjoint operator in Pontryagin spaggdefined by the inner product

Vigely: [f,g]={c—d240})f.9)

See [29] for review of Pontryagin spaces and the invariant subspace theoreme Sirice

the Pontryagin spadé, has zero index and, by the invariant subspace theorem, the operator
7 in Iy has exactly one negative eigenvalue, a simple kernel and infinitely many positive
eigenvalues. (Sincg is an identity operator with a compact perturbation, the spectrum of
T is purely discrete.) The eigenfunctions for the negative and zero eigenvalues are known
exactly as

oy =

To=-¢, T (z)=0.

Due to orthogonality of the eigenfunctions in the Pontryagin sphcand the relation
¢" = (c— 07 +0.)¢,

we observe that,, is a projection o, to ¢ in I1,, which satisfies the trivial iteration map:
1 =0, n>1,

no matter what the value afj is. In addition, projection of,, to ¢’ in Il is zero since
v, € H2 (R). As a result, the linearized iteration map (3.3.5) defines a contraction map if
the maximal positive eigenvalue @fin L?*(R) is smaller thar2. However,

7 <T‘L2> -1 S —2 I ﬁnf_l (U, (C - ag + 8;1)_1¢<Z)u) . (336)
If $(z) > 0onz € R, the right-hand-side of (3.3.6) is zero. Otherwise, the right-hand-side

)
of (3.3.6) is bounded from above Byinf.cr ¢(2)|, which leads to the condition (3.3.4).
U

Corollary 3.3.2 Let ¢(z) be a one-pulse solution of the ODE (3.1.2) with- 0 defined
by Theorem 3.2.1. Then, the iteration method (3.3.2)—(3.3.3) convergg¢s)ti a local
neighborhood of) in A2 (R) provided that the condition (3.3.4) is met.

The condition (3.3.4) is satisfied for the positive exact solution (3.1.3) i@r%.

Since the one-pulse solution is positive definite ot ¢ < }1 [5], it is also satisfied for
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all values ofc € (0, };) However, the solution is sign-indefinite for> 1, such that
the condition (3.3.4) must be checkagbosteriorj after a numerical approximation of the
solution is obtained.

Besides the convergence criterion described in Theorem 3.3.1, there are additional
factors in the numerical approximation of the one-pulse solution of the ODE (3.1.2) which
comes from the discretization of the Fourier transform, truncation of the resulting Fourier
series, and termination of iterations within the given tolerance bound. These three numeri-
cal factors are accounted by three numerical parameters:

(i) d - the half-period of the computational intervak [—d, d] where the solutiom(z)
is represented by the Fourier series for periodic functions;

(i) N -the number of terms in the partial sum for the truncated Fourier series such that
the grid sizeh of the discretization i& = 2d/N;

(i) e -the smalltolerance distance that measures deviatidf,dfom 1 and the distance
between two successive approximations, such that the method can be terminated at
the iterationn if

Ey=|M,—-1l<e¢ and  Ey = ||uns1 — unllz= < €.
and¢ = u,(z) can be taken as the numerical approximation of the solution

The numerical approximation depends weakly of the three numerical parameters,
provided (i)d is much larger than the half-width of the one-pulse solution,Xjii)s suf-
ficiently large for convergence of the Fourier series, and{iig sufficiently small above
the level of the round-off error. Indeed, the constraint (i) ensures that the truncation error
is exponentially small when the one-pulse solution is replaced by the periodic sequence
of one-pulse solutions in the trigonometric approximation [111]. The constraint (ii) en-
sures that the remainder of the Fourier partial sum is smaller than any inverse power of
N (by Theorem 3.2.1(i), all derivatives of the functigiiz) are continuous) [119]. The
constraint (iii) specifies the level of accuracy achieved when the iterations of the method
(3.3.2)—(3.3.3) are terminated. While we do not proceed with formal analysis of the three
numerical factors (see [40] for an example of this analysis), we illustrate the weak depen-
dence of three numerical factors on the example of the numerical approxinggtipof
the exact one-pulse solution (3.1.3), which existsder % Numerical implementation
of the iteration method (3.3.2)—(3.3.3) was performed in MATLAB according to a standard
toolbox of the spectral methods [119].

Figure 3.1displays the distanc& = ||¢ — ¢||.~ versus the three numerical fac-
torsd, h, ande described above. The left panel shows that the efr@onverges to the
numerical zero, which i©(107!%) in MATLAB under the Windows platform, when the
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Figure 3.1: The distanc& = ||¢ — ¢||.~ for the ODE (3.1.2) withe = % versus the
half-periodd of the computational interval, the step sizeof the discretization, and the

tolerance bound.

step sizéh is reduced, whilel = 50 ande = 10~'° are fixed. The middle panel computed

for h = 1 ande = 107! shows that the erraE’ converges to the levéd(10~'%) when the
half-width d is enlarged. The numerical zero is not reached in this case, because the step
sizeh is not sufficiently small. The right panel computed for= 1 andd = 50 shows that

the errorE converges to the same lev@(10~'?) as the tolerance boundis reduced. In

all approximations that follow, we will specifyy = 0.01, d = 50 ande = 10~'° to ensure

that the error of the iteration method (3.3.2)—(3.3.3) for one-pulse solutions is on the level
of the numerical zer®(10~19).

Figure 3.2 (left) shows the numerical approximation of the one-pulse solutions
for ¢ = 4, where the small-amplitude oscillations of the exponentially decaying tail are
visible. We check a posteriori the condition (3.3.4) for non-positive one-pulse solutions
linf.cr ¢(2)| < 2 for ¢ = 4. Figure 3.2(right) displays convergence of the errdrg, =
|M,, — 1| and Ew, = ||un41 — un || computed dynamically at eachasn increases. We
can see that the errd),; converges to zero much faster than the effqy, in agreement
with the decomposition of the linearized iterative map (3.3.5) into the one-dimensional pro-
jection «,, and the infinite-dimensional orthogonal compliment (see the proof of Theorem
3.3.1). In all further approximations, we will use the erfoy, for termination of iterations
and detecting its minimal values sinég, is more sensitive compared fo,.

Figure 3.3shows the dependence Bfc) = HdEH%Q(R) onc > 0. Since the de-

pendence oﬂ5(c) is strictly increasing and the approximation error is controlled in the
numerical method, the assumption of Theorem 2.1(iii) &t) > 0 is verified.
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Figure 3.2: One-pulse solutions of the ODE (3.1.2) wita: 4 (left) and convergence of
the errorsty,; and £, to zero versus the number of iterations
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Figure 3.3: The squaretf-norm of the one-pulse solutions of the ODE (3.1.2) versus



PHD THESIS— M. CHUGUNOVA MCMASTER— MATHEMATICS & STATISTICS 55

Since the numerical approximation$z) of one-pulse solutions can be computed
for any value of: > 0, one can use(z) for a givenc and compute the effective interaction
potential (3.2.5), which defines the extremal valdés },.n. Theorem 3.2.3 guarantees
that the two-pulse solutiop(z) consists of two copies of the one-pulse solutions separated
by the distancé. near the poinL,, whereWW’(L,,) = 0 andW”(L,,) # 0. Table 1 shows the
first four values of the sequengé.,, }>° , for ¢ = 1 (wheres,, = L,,/2 is the half-distance
between the pulses). It also shows the corresponding values from the first four numerical
approximations of two-pulse solutiogsgz) (obtained below) and the computational error
computed from the difference of the two numerical approximations. We can see that the
error decreases for larger indicesn the sequencéL,, } .y since the Lyapunov—Schmidt
reductions of Theorem 3.2.3 become more and more accurate in this limit.

solution | effective potential root finding error

s=s; | 5.058733328146916 | 5.079717398028492 | 0.02098406988158

s =389 | 8196800619090793 | 8.196620796452045 | 1.798226387474955 104
s=s3 | 11.338414567609066 | 11.338406246900558 | 8.320708507980612 - 10°
s=sy | 14.479997655627219 | 14.479996635578457 | 1.020048761901649 - 107°

Table 1: The first four members of the sequence of two-pulse solutions fotl.

By Theorem 3.2.3(ii), the Jacobian operatérassociated with a two-pulse solu-
tion ¢(z) has one finite negative eigenvalue in the space of even functions and one small
eigenvalue which is either negative or positive depending on the sigh’@f.,,). This
small eigenvalue leads to either weak divergence or weak convergence of the Petviashuvili
method in a local neighborhood #fin HZ (R). Even if the small eigenvalue is positive and
the algorithm is weakly convergent, the truncation error from the numerical discretization
may push the small eigenvalue to a negative value and lead thus to weak divergence of the
iterations.

Figure 3.4illustrates typical behaviors of the errafs, and E, versusn for the
starting approximation

Uo(Z) = UQ(Z — S) + Uo(Z + S), (337)

whereU,(z) is a starting approximation of a sequereg, (z) } .en Which converges to the
one-pulse solutio®(z) ands is a parameter defined nehy, /2 for the two-pulse solution
¢(z). The left panel shows iterations fenears; and the right panel shows iterations for
nearsy. SinceW”(L,) > 0 andW”(L,) < 0, the iteration method (3.3.2)—(3.3.3) diverges
weakly near the former solution, while it converges weakly near the latter solution.
At the initial stage of iterations, both errofs,, and £, quickly drops to small

values, since the starting iteratiokig(z  s) converge to the one-pulse solutiohé: F s)
while the contribution from the overlapping tails ®fz F s) is negligible. However, at
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the later stage of iterations, both errors either start to grow (the left parieéfjofe 3.9
or stop to decrease (the right panel). As it is explained above, this phenomenon is related
to the presence of zero eigenvalue7ofin the space of even functions which bifurcates
to either positive or negative values due to overlapping tail®@f + s) and due to the
truncation error. At the final stage of iterations on the left pan€igiire 3.4 the numerical
approximatioru,,(z) converges to the one-pulse solutidrz) centered at = 0 and both
errors quickly drop to the numerical zero, which occurs similarly to the right panel of
Figure 3.2 No transformation of the solution shape occurs for larga the right panel of
Figure 3.4

The following theorem defines an effective numerical algorithm, which enables
us to compute the two-pulse solutions from the weakly divergent iterations of the Petvi-
ashvili's method (3.3.2)—(3.3.3).

Theorem 3.3.3 Let¢(z) be the two-pulse solution of the ODE (3.1.2) defined by Theorems
3.2.2 and 3.2.3. There exists= s, nears = L,,/2 such that the iteration method (3.3.2)—
(3.3.3) with the starting approximatiom(z) = ®(z — s) + ®(z + s) converges t@(z) in

HZ, (R).

Proof. The iteration operator (3.3.2)—(3.3.3) in a neighborhood of the two-pulse solution
¢(z) in H2 (R) can be represented into an abstract form

U1 = M(€)v, + N (v, €), neN,

where the linear operatdt (¢) has a unit eigenvalue at= 0 and the nonlinear vector field
N(v,,€)is C*inwv, € H2 ande € R, such thatV(0,0) = D,N(0,0) = 0. Herew, is

a perturbation ofi,, to the fixed pointy ande is a small parameter for two-pulse solutions
defined in Theorem 3.2.3. By the Center Manifold Reduction for quasi-linear discrete
systems (Theorem 1 in [48]), there exists a one-dimensional smooth center manifold in a
local neighborhood of in HZ (R). Let¢ be a coordinate of the center manifold such that

¢ € R, ¢ =0 corresponds to = 0, and the dynamics on the center manifold is

fn—&-l = N(E)gn + f(gnv 6)7 n e Nv

wherep(e) satisfiesu(0) = 1 and f(&,,€) isC* in £ € R ande € R, such thatf(0,0) =
Je£(0,0) = 0. Consider the one-parameter starting approximatigiz) = ®(z — s) +
®(z + s) in a neighborhood of in A2 (R), wheres is close to the value = s,, defined in
Theorem 3.2.3. By the time evolution of the hyperbolic componenf, ggee Lemma 2 in
[48]), the sequence, approaches to the center manifold with the coordigatdterations
of ¢, are sign-definite in a neighborhood f= 0. Moreover, there exists; < s, and
sy > sp, such that the sequencés, (s1) }nen and{&,(s2) }nen are of opposite signs. By
smoothness of,, and&, from parametes, there exists a root, in betweens; < s, < sy
such that,, (s.) = 0 forall n € N. O
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Remark 3.3.4 The proof of Theorem 3.3.3 does not require that the sodie unique for

the one-parameter starting approximatigiiz) = ®(z — s) + ®(z + s). Our numerical
computations starting with a more general approximation (3.3.7) show, however, that the
roots, is unique neas = s,,.

To capture the two-pulse solutions according to Theorem 3.3.3, we compute the
minimum of the errorE, for different values ok and find numerically a root = s, of
the function

f(s) = min (Ey),

0<n<ng
wheren, is the first iterations after which the value b, increases (in case of the left
panel ofFigure 3.4 or remains unchanged (in case of the right pandtigtire 3.4. The
numerical roots = s, is found by using the secant method:

Sp—2f (Sk=1) — Sk—1.f (5k—2)
f(sk-1) — f(sk-2)

The Petviashvili method (3.3.2)—(3.3.3) with the starting approximation (3.3.7) whsre

close to the root = s, near the poins = s, converges to the two-pulse solutigiz)

within the accuracy of the round-off error.

Figure 3.5shows the graph of (s) near the value = s, for ¢ = 1. (The graph of
f(s) nears = s, as well as other values &f, look similar toFigure 3.5) The left panel
shows uniqueness of the root, while the right panel shows the linear behayitr)ofear
s = s, which indicates that the root is simple. Numerical approximations for the first four
values of the sequende,, } .« Obtained in this root finding algorithm are shown in Table
1. We note that the number of iterationg of the secant method (3.3.8) decreases with
larger values of:, such thatV, = 14 forn =1, N, = 12forn =2, N, = 10forn = 3
and N, = 9 for n = 4, while the number of iterations of the Petviashili method for each
computation does not exceédo iterations.

Figure 3.6shows numerical approximations of the two-pulse solutions:fer 1
andc = 4. We can see from the right panel that two-pulse solutions with4 resemble
the two copies of the one-pulse solutions from the left panElgire 3.2 separated by the
small-amplitude oscillatory tails.

Finally, the three-pulse and multi-pulse solutions of the fixed-point problem (3.1.2)
cannot be approximated numerically with the use of the Petviashili method (3.3.2). The
Jacobian operatdr associated with the three-pulse solution has two finite negative eigen-
values and one small eigenvalue in the space of even functions, while the stabilizing factor
of Theorem 3.3.1 and the root finding algorithm of Theorem 3.3.3 can only be useful for
one finite negative eigenvalue and one zero eigenvalue. The additional finite negative eigen-
value introduces atrongdivergence of the iterative method (3.3.2) which leads to failure
of numerical approximations for three-pulse solutions. This numerical problem remains
open for further analysis.

(3.3.8)

S =
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Figure 3.4: Errordy,; andE, versus the number of iterationdor the starting approxima-
tion (3.3.7) withs = 5.079 (left panel) and = 8.190 (right panel). The other parameters
are:c=1,d =50, h = 0.01 ande = 10715,
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Figure 3.5: Minimal value of., versuss nears; = 5.080 (left panel) and the zoom of the
graph, which shows the linear behaviorfdf) near the root (right panel).
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Figure 3.6: Numerical approximation of the first four two-pulse solutions of the ODE
(3.1.2) forc = 1 (left) andc = 4 (right).

3.4 Application: KdV two-pulse solitons

We address spectral stability of the two-pulse solution by analyzing the linearized problem
(3.1.5), where the operatt : H*(R) — L*(R) is the Jacobian operator (3.1.4) evaluated
at the two-pulse solution(z).

By Theorem 3.2.3(ii), operatdii has two finite negative eigenvalue, a simple ker-
nel and one small eigenvalue, which is negative whét{Z,,) > 0 and positive when
W"(L,) < 0. Persistence (structural stability) of these isolated eigenvalues beyond the
leading order (3.2.7) is a standard property of perturbation theory of self-adjoint operators
in Hilbert spaces (see Section IV.3.5in [75]).

By Theorem 3.2.3(iii), operatod,H has a pair of small eigenvalues, which are
purely imaginary wheV”(L,,) > 0 and real wherdV”(L,,) < 0. We first prove that no
other eigenvalues may induce instability of two-pulse solutions (i.e. no other bifurcations
of eigenvalues of,’H with Re(A) > 0 may occur). We then prove persistence (structural
stability) of the purely imaginary eigenvalues beyond the leading order (3.2.8). Combined
together, these two results lead to the theorem on spectral stability of the two-pulse solution
¢(z) that corresponds tb,, with W"(L,,) > 0.

Theorem 3.4.1 Let V.., be the number of real positive eigenvalues of the linearized prob-
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lem (3.1.5),Ncomp be the number of complex eigenvalues in the first open quadrant, and
Ninag D€ the number of simple positive imaginary eigenvalues @ith, v) < 0, where
v(x) is the corresponding eigenfunction fare iR ,. Assume that no multiple imaginary
eigenvalues exist, the kernelfis simple and”’(c) > 0, whereP = ||¢||2,. Then,

Nieal + 2Ncomp + 2N, = n(H) — 1, (3.4.2)

imag —
wheren(H) is the number of negative eigenvalueg-of

Proof. The statement is equivalent to Theorem 6 in [29] in the €B&€ ¢, ) = — (0.0, ¢) =
—%P’(c) < 0. The result follows from the invariant subspace theorem in the Pontryagin
spacdl,, wherex = n(H). O

Corollary 3.4.2 Let¢(z) = ®(z) be a one-pulse solution defined by Theorem 3.2.1. Then,
it is a spectrally stable ground state in the sense tNal = Neomp = Nipag = 0.

Remark 3.4.3 Figure 3.3 confirms thak®’(c¢) > 0 for the one-pulse solution. In addition,

it is shown in Lemma 4.12 and Remark 4.14 in [29] that multiple imaginary eigenvalues
may only occur if(Hv,v) = 0 such that:(H) > 2 is a necessary condition for existence
of multiple eigenvalues (witl#’(c) > 0). No multiple imaginary eigenvalues exists for the
one-pulse solutio®(z).

Corollary 3.4.4 Let¢(z) be a two-pulse solution defined by Theorem 3.2.3. Then,

() the solution corresponding tb, withW”(L,,) < 0 is spectrally unstable in the sense
that Nyear = 1 and Neowp = N, = 0 for sufficiently largeL,,

imag

(i) the solution corresponding tb,, with W”(L,,) > 0 satisfiesV,ca = 0 and Neomp +
N =1 for sufficiently largeL,,.

imag

Proof. It follows from Theorems 3.2.1 and 3.2.3 for sufficiently lamgethat the kernel of
H is simple forW”(L,,) # 0 and the only pair of imaginary eigenvalues witv, v) < 0
in the caséV(L,,) > 0 is simple. Therefore, assumptions of Theorem 3.4.1 are satisfied
for the two-pulse solutions(z) with W”(L,) # 0. By the count of Theorem 3.2.3(ii),
n(H) = 3 for W”(L,) > 0 andn(H) = 2 for W”’(L,,) < 0. Furthermore, persistence
(structural stability) of simple real eigenvalues of the operatét follows from the per-
turbation theory of isolated eigenvalues of non-self-adjoint operators (see Section VII1.2.3
in [75]). O
There exists one uncertainty in Corollary 3.4.4(ii) since it is not clear if the eigen-
value of negative Krein signature in Theorem 3.2.3(iii) remains imaginary,jp, or bi-
furcates to a complex eigenvalueM,,,. This question is important for spectral stability
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of the corresponding two-pulse solutions since the former case implies stability while the
latter case implies instability of solutions. We will remove the uncertainty and prove that
Nipag = 1 @nd Neom, = 0 for sufficiently largeL,,. To do so, we rewrite the linearized

problem (3.1.5) in the exponentially weighted space [96]:

L2={vell (R): e*v(z) € L*(R)}. (3.4.2)

loc

The linearized operatdat, H transforms to the form
Lo=(0.—0a)(c— (0. — )’ + (0. — )" —2¢(2)) , (3.4.3)

which acts on the eigenfunctian (z) = e**v(z) € L*(R). The absolute continuous part
of the spectrum oL, is located at\ = A\, (k), where

Ao(k) = (ik — a)(c — (ik — a)* + (ik —a)'), keR (3.4.4)
A simple analysis shows that

d
%Re()\a(k)) = —2ak(10k* — 10a® + 3),

d
%Im()\a(k‘)) = ¢ —3a® + 5a* + 3k*(1 — 10a?) + 5k™.

The following lemma gives a precise location of the dispersion relatioa A\, (k) on
A e C.

Lemma 3.4.5 The dispersion relation = \,(k) is a simply-connected curve located in
the left half-plane ok € C if

1
I<a<—, c> —. 3.4.5
ih 1 (3.4.5)

Proof. The mappingk — Im(),) is one-to-one provided that— 3a? + 5a* > 0 and
1—10a2 > 0. Sincec — 3o + 5a* reaches the minimum value anc [O, L } at the right

V10
enda = \/Lro and the minimum value is positive if > i the first inequality is satisfied
under (3.4.5). The second inequality is obviously satisfield|if < \/LTO The mapping

k — Re()\,) has a single extremal point at= 0 provided3 — 10a? > 0, which is satisfied

if o] < \/Lro The extremal point is the point of maximum and the entire curve is located in

the left half-plane of € Cif 0 < a < \/% O
The following two lemmas postulate properties of eigenfunctions corresponding to
embedded eigenvalues of negative Krein signature.
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Lemma 3.4.6 Letv,(z) be an eigenfunction ai,H for a simple eigenvalug, € iR, in
L3*(R). Then,\, € iR, is also an eigenvalue in? (R) for sufficiently smalt:.

Proof. Let k = ky € R be the unique real root of the dispersion relatioyik) = X,
(with o = 0) for a given eigenvalue, € iR,. The other four root$ = k.54 for
a given), € iR, are complex withRe(k;)| > ko > 0. By the Stable and Unstable
Manifolds Theorem in linearized ODEs [31], the decaying eigenfunati¢n) € L?(R) is
exponentially decaying with the decay rate greater thar 0 and it does not include the
bounded terme’*°* asz — 4-0o. By constructiony,(z) = e**v,(z) is also exponentially
decaying as — oo for sufficiently smallja| < . Sincevy, € L*(R) and due to the
exponential decay of,(z) as|z| — oo, we havey, € L*(R) for any smalla. O

Lemma 3.4.7 Let vo(z) € H?*(R) be an eigenfunction of,H for a simple eigenvalue
Ao € iR, with (Hvg,v9) < 0. Then, there exists, € H*(R), such that, = w}(x) and
wo(z) is an eigenfunction of{0, for the same eigenvalug. Moreover,(wg, vg) € iR,.

Proof. SinceH : H*(R) — L*(R), the eigenfunctiony(z) of the eigenvalue problem
0. Hvy = Agvy for any Ay # 0 must satisfy the constrairﬁR vo(z)dz = 0. Letyy, =
wg(z). Sincewvy(z) decays exponentially §s| — oo and(1,vy) = 0, thenwy(z) decays
exponentially agz| — oo, so thatw, € H?(R). By construction,H0.wy, = Hvy =
Ao [ vo(2)dz = Mwy. The values ofwy, vy) are purely imaginary as

(wo,vo) = / U_JQUQCZZ = /U_Joazwodz = —/woﬁzwodz = —/'LUQQ_)()CZZ = —(U)o,vo).
R R R R
Since Huy = Aowp With Ay € iR, and (Hwvg,vy) < 0, we have(wyg,vy)

= )\EI(H?J(),U()) S ZR+ ]
The following theorem states that the embedded eigenvalues of negative Krein sig-
nature are structurally stable in the linearized problem (3.1.5).

Theorem 3.4.8Let \q € iR, be a simple eigenvalue 6fH with the eigenfunction, €
H?*(R) such that(Hvy, vy) < 0. Then, it is structurally stable to parameter continuations,
e.g. for anyV € L*(R) and sufficiently small, there exists an eigenvalug € iR, of

9. (H + 6V (z))in H*(R), such that)s — \o| < C6 for someC > 0.

Proof. By Lemma 3.4.6,\, is also an eigenvalue of,, in L*(R) for sufficiently small

a. Let a be fixed in the bound (3.4.5). There exists a small neighborhood,ofvhich

is isolated from the absolute continuous part of the spectruf,ofBy the perturbation
theory of isolated eigenvalues of non-self-adjoint operators (see Section VIII.2.3 in [75]),
there exists a simple eigenvalug of 9,(H + dV (z)) in L2(R) for the same value of
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and sufficiently smald in a local neighborhood ofy, such that\s — \¢| < C¢ for some
C > 0.

It remains to show that the simple eigenvalues purely imaginary for the same
value ofa > 0. Denote the eigenfunction @k (H + 5V (z)) in H2(R) for the eigenvalue
As by vs(2), such that**vs € H?(R). If v; ¢ H*(R), then the count of eigenvalues (3.4.1)
is discontinuous at = 0: the eigenvalué,, in the numberV; .. até = 0 disappears from
the count ford # 0. If vs € H?*(R), then(1,v;) = 0 and sincevs(z) is exponentially
decaying agz| — oo, there existavs(z) € H?*(R) such thatv; = wj(z). The 2-form
(ws, vs) is invariant with respect to the weight since if e**v5(z) is an eigenfunction of
0,(H+ 6V (z)) for the eigenvalue; (i.e. vs € H2(R)), thene **w;(z) is an eigenfunction
of (H + 6V (2))0. for the same eigenvalug (i.e. ws € H? _(R)). Computing(ws, vs) at
a =0, we have

)\5(105, U(;) = (HU(;, U(;) e R.

Since(ws, vs) is continuous i and(ws, vs) € iR by Lemma 3.4.7, thens € R for any
5 # 0. O

Corollary 3.4.9 Let ¢(z) be a two-pulse solution defined by Theorem 3.2.3 that corre-
sponds toL,, with W”(L,,) > 0. Then, it is spectrally stable in the sense that., =
Neomp =0 andNi;lag = 1 for sufficiently largeL,,.

Remark 3.4.10 Using perturbation theory in exponentially weighted spaces for a fixed
valuea > 0, one cannot a priori exclude the shift of eigenvalgeo \s with Re(\s) > 0.

Even if vy(z) for )\ contains no terme?*>* asz — —oo (see Lemma 3.4.6), the eigen-
function v;(z) for A\s may contain the term’*s* asz — —oo with Im(ks) < 0 and
lims_,g ks = ko € R. However, when Theorem 3.4.8 holds (that is under the assumptions
thatvy, € H?(R) and(Huvy, v) < 0), the eigenvalue; remains onR and the eigenfunc-

tion vs(2) must have no term*s* with ks € R asz — —oo for any sufficiently smalb.

The hypothetical bifurcation above can however occug i H?(R) butvy € H2(R) with

a > 0. We do not know any example of such a bifurcation.

Remark 3.4.11 When the potential is symmetric (i.e(—z) = ¢(z)), the stability prob-
lem 0. Hv = Av admits a symmetry reduction: if(z) is an eigenfunction fon\, then
v(—2z) is the eigenfunction for-\. If Ay € iR is a simple eigenvalue ang € H2(R) with

a > 0, the above symmetry shows thate H? (R) with —a < 0. If Re()\s) > 0 and

vs € H2(R), then—vs(—z) € H? (R) is an eigenfunction of the same operator for eigen-
valueRe(—)s) = —Re()s) andIm(—\;) = Im(\s). Thus, the hypothetical bifurcation in
Remark 3.4.10 implies that the embedded eigenvajue iR may split into two isolated
eigenvalues\; and—\; asd # 0. Theorem 3.4.8 shows that such splitting is impossible if
Vo € HQ(R) and(HUQ,’UQ) < 0.
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We confirm results of Corollaries 3.4.4 and 3.4.9 with numerical computations of
eigenvalues in the linearized problem (3.1.5). Throughout computations, we use the values
a = 0.04 andc = 1, which satisfy the constraint (3.4.5). The spectra of the operatans
L*(R) andd, H in L2(R) are computed by using the Fourier spectral method. This method
is an obvious choice since the solutigfx) is obtained by using the spectral approxima-
tions in the iterative scheme (3.3.2)—(3.3.3). As in the previous section, we use numerical
parameterd = 100, h = 0.01 ande = 10~ for the Petviashvili method (3.3.2)—(3.3.3).

Eigenvalues of the discretized versions of the operdatorand £, are obtained
with the MATLAB eigenvalue solveeig . The spectra are shown diigure 3.7for the
two-pulse solutiony; (z) and onFigure 3.8for the two-pulse solutio,(z). The inserts
show zoomed eigenvalues around the origin and the dotted line connects eigenvalues of the
discretized operators that belong to the absolutely continuous part of the spégtnes
3.7and3.8clearly illustrate that the small eigenvaluefgiis negative for, (z) and positive
for ¢2(2), while the pair of small eigenvalues df, is purely imaginary foro,(z) and
purely real forg,(z). This result is in agreement with Corollaries 3.4.4 and 3.4.9. We
have observed the same alternation of small eigenvalues for two-pulse soltiehsand
¢4(z), as well as for other values of parameteenda.

The numerical discretization based on the Fourier spectral method shifts eigenval-
ues of the operator® andL,,. In order to measure the numerical error introduced by the
discretization, we compute the numerical value for the “zero” eigenvalue corresponding to
the simple kernel o and the double zero eigenvaluef. Table Il shows numerical val-
ues for the “zero” and small eigenvalues for two-pulse solutignis) with n = 1,2, 3, 4.

It is obvious from the numerical data that the small eigenvalues are still distinguished (sev-
eral orders higher) than the numerical approximations for zero eigenvalues=far, 2, 3

but they become comparable for higher-order two-pulse solutionst. This behavior is
understood from Theorem 3.2.3 since the small eigenvalues becomes exponentially small
for larger values of (largern) in the two-pulse solution (3.2.4) and the exponentially small
contribution is negligible compared to the numerical error of discretization.

¢1(2) ¢2(2) ¢3(2’) ¢4(2)
"Zero" EV of H 1.216-107Y | 2.668 - 1079 | 1.474-107Y | 1.894 - 10~

Small EV of H 1.785-1072 | 7.664 - 10~ | 3.334 - 107" | 2.921 - 107
"Zero” EVs of L, 0.365-107° | 0.532-107° | 0.783-107° | 1.237-107°
Re of small EVs ofC,, | 4.529-107° | 3.285-107% | 6.326 - 107 | 1.652 - 10~°
Im of small EVs ofC,, | 0.502- 10! [ 1.152-107% | 2.167-10~* | 5.444 - 10~

Table Il: Numerical approximations of the zero and small eigenvalues (EVSs) of operators
'H andL,, for the first four two-pulse solutions with= 1, o = 0.04, d = 100, h = 0.01
ande = 10~'°. The absolute values are shown.
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Figure 3.7: Numerical approximations of the spectra of operatpend L,, for the two-
pulse solutionp, (z) with ¢ = 1 anda = 0.04. The insert shows zoom of small eigenvalues
and the dotted curve connects eigenvalues of the continuous spectdym of
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Figure 3.8: The same as Figure 3.7 but for the two-pulse soldgtion .
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We have confirmed numerically the analytical predictions that all two-pulse solu-
tions corresponding to the poinks, with W”(L,,) < 0 (which are maxima of the effective
interaction potential) are unstable with a simple real positive eigenvalue, while all two-
pulse solutions corresponding to the poibtswith W”(L,,) > 0 (which are minima of the
effective interaction potential) are spectrally stable. The stable two-pulse solutions are not
however ground states since the corresponding linearized problem has a pair of eigenvalues
of negative Krein signature.

3.5 Nonlinear dynamics of two-pulse solution

The Newton law (3.2.14) is a useful qualitative tool to understand the main results of this
chapter. Existence of an infinite countable sequence of two-pulse solutign)},.cy is

related to existence of extremal poifts, },cn Of the effective potential functioil’ (L),

while alternation of stability and instability of the two-pulse solutions is related to the al-
ternation of minima and maxima points Bf (L). It is natural to ask if the Newton law
(3.2.14) extends beyond the existence and spectral stability analysis of two-pulse solutions
in the fifth-order KdV equation (3.1.1). In particular, one can ask if the purely imaginary
(embedded) eigenvalues of the linearized problem (3.1.5) lead to nonlinear asymptotic sta-
bility of two-pulse solutions or at least to their nonlinear stability in the sense of Lyapunov.
From a more technical point of view, one can ask whether the Newton law (3.2.14) serves
as the center manifold reduction for slow nonlinear dynamics of two-pulse solutions in
the PDE (3.1.1) and whether solutions of the full problem are topologically equivalent to
solutions of the Newton law. While we do not attempt to develop mathematical analysis
of these questions, we illustrate nonlinear dynamics of two-pulse solutions with explicit
numerical simulations.

The numerical pseudo-spectral method for solutions of the fifth-order KdV equa-
tion (3.1.1) is described in details in [89]. The main idea of this method is to compute
analytically the linear part of the PDE (3.1.1) by using the Fourier transform and to com-
pute numerically its nonlinear part by using an ODE solver. (&t ¢) denote the Fourier
transform ofu(x, t) and rewrite the PDE (3.1.1) in the Fourier domain (since the solution
decays exponentially, the Fourier domain can be applied as a substitution for the unbounded
domain): R

iy = i(K* + E°)0 — iku?. (3.5.1)

In order to computeLA?(k, t) we evaluate:*(z,t) onz € R and apply the discrete Fourier
transform. Substitution = s(k,t)ei<’“3+’“5)t transforms the evolution equation (3.5.1) to
the form: . R

s; = —ike {FHEI2 (| ). (3.5.2)

The fourth-order Runge-Kutta method is used to integrate the evolution equation (3.5.2) in
time with time stepA\t. To avoid large variations of the exponent for large valuek ahd
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t, the substitution above is updated aftetime steps as follows:
@ = Sk, ) EHE=mA) oy A<t < (m+ 1) AL (3.5.3)

The greatest advantage of this numerical method is that no stability restriction arising from
the linear part of (3.5.1) is posed on the timestep of numerical integration. On contrast, the
standard explicit method for the fifth-order KdV equation (3.1.1) has a serious limitation
on the timestep of the numerical integration since the fifth-order derivative term brings
stiffness to the evolution problem. The small timestep would be an obstacle for the long
time integration of the evolution problem due to accumulation of computational errors.
Numerical simulations of the PDE (3.5.1) are started with the initial condition:

w(z,0) = ®(z —s) + Pz + 3), (3.5.4)

where®(x) is the one-pulse solution ard is the initial separation between the two pulses.
The one-pulse solutiof(x) is constructed with the iteration method (3.3.2)—(3.3.3) for
¢ = 4. The numerical factors of the spectral approximation Are= 100, N = 22,

e = 107%5, while the timestep is set tht = 10~

Figure 3.9shows six individual simulations of the initial-value problem (3.5.1) and
(3.5.4) withs = 2.3, s = 28, s = 3.6, s = 4.2, s = 45 ands = 4.7. Figure 3.10
brings these six individual simulations on the effective phase plané) computed from
the distancd.(t) between two local maxima (humps) of the two-pulse solutions.

When the initial distancés = 2.3) is taken far to the left from the stable equilib-
rium point (which corresponds to the two-pulse solutigiix)), the two pulses repel and
diverge from each other (trajectory 1). When the initial distafice- 2.8) is taken close
to the left from the stable equilibrium point, we observe small-amplitude oscillations of
two pulses relative to each other (trajectory 2). When the initial distafices 3.6) and
(s = 4.2) are taken to the right from the stable equilibrium point, we continue observing
stable oscillations of larger amplitudes and larger period (trajectories 3 and 4). The oscil-
lations are destroyed when the initial distances are taken close to the unstable equilibrium
point (which corresponds to the two-pulse solutigfx)) from either left(s = 4.5) or right
(s = 4.7). In either case, the two pulses repel and diverge from each other (trajectories 5
and 6). Ripples in the pictures are due to radiation effect and the numerical integration does
not make sense aftér~ 500, because the ripples reach the left end of the computational
interval and appear from the right end due to periodic boundary conditions.

The numerical simulations of the full PDE problem (3.1.1) indicate the validity of
the Newton law (3.2.14). Due to the energy conservation, all equilibrium points in the New-
ton law are either centers or saddle points and the center points are surrounded by closed
periodic orbits in the interior of homoclinic loops from the stable and unstable manifolds
of the saddle points. Trajectories 2,3, and 4 are taken inside the homoclinic orbit from the
saddle point corresponding t®(z) and these trajectories represent periodic oscillations
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Figure 3.9: Individual simulations of the initial data (3.5.4) with- 2.3 (top left),s = 2.8
(top right), s = 3.6 (middle left), s = 4.2 (middle right),s = 4.5 (bottom left) and4.7
(bottom right).

of two-pulse solutions near the center point corresponding; t@). Trajectories 1 and

6 are taken outside the homoclinic orbit and correspond to unbounded dynamics of two-
pulse solutions. The only exception from the Newton law (3.2.14) is trajectory 5, which
is supposed to occur inside the homoclinic loop but turns out to occur outside the loop.
This discrepancy can be explained by the fact that the Newton law (3.2.14) daesacty
represent the dynamics of the PDE (3.5.1) generated by the initial condition (3.5.4) but it
corresponds to aasymptoticsolution after the full solution is projected into the discrete
and continuous parts and the projection equations are truncated (see details in [47] in the
context of the NLS equations).

Summarizing, we have studied existence, spectral stability and nonlinear dynamics
of two-pulse solutions of the fifth-order KdV equation. We have proved that the two-pulse
solutions can be numerically approximated by the Petviashili method supplemented with a
root finding algorithm. We have also proved structural stability of embedded eigenvalues
with negative Krein signature and this result completes the proof of spectral stability of
two-pulse solutions related to the minima points of the effective interaction potential. The
validity of the Newton law is illustrated by the full numerical simulations of the fifth-order
KdV equation (3.1.1).
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Figure 3.10: The effective phase plafie L) for six simulations on Figure 3.9, whefe
is the distance between two pulses. The black dots denote stable and unstable equilibrium
points which correspond to the two-pulse solutign&r) andg,(z).
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CHAPTER 4

BLOCK DIAGONALIZATION OF THE COUPLED-MODE
SYSTEM

4.1 Introduction

Various applications in nonlinear optics [118], photonics band-gap engineering [69] and
atomic physics [34] call for systematic studies of tmipled-mode systemvhich is ex-
pressed by two first-order semi-linear PDES in one space and one time dimensions. In non-
linear optics, the coupled-mode system describes counter-propagating light waves, which
interact with a linear grating in an optical waveguide [117]. In photonics, the coupled-
mode system is derived for coupled resonant waves in stop bands of a low-contrast three-
dimensional photonic crystal [3]. In atomic physics, the coupled-mode system describes
matter-wave Bose-Einstein condensates trapped in an optical lattice [102]. Existence, sta-
bility and nonlinear dynamics @fap solitonswhich are localized solutions of the coupled-
mode system, are fundamental problems for interest in the aforementioned physical disci-
plines.

In the context of spectral stability of gap solitons, it has been discovered that the
linearized coupled-mode equations are equivalent to a four-by-four Dirac system with sign-
indefinite metric, where numerical computations of eigenvalues represent a difficult numer-
ical task. The pioneer work in [9, 10] showed that spurious unstable eigenvalues originate
from the continuous spectrum in the Fourier basis decomposition and the Galerkin approx-
imation. A delicate but time-consuming implementation of the continuous Newton method
was developed to identify the "right” unstable eigenvalues from the spurious ones [9, 10].
Similar problems were discovered in the variational method [76, 77] and in the numerical
finite-difference method [114, 115].

While some conclusions on instability bifurcations of gap solitons in the coupled-
mode equations can be drawn on the basis of perturbation theory [9] and Evans function
methods [73, 100], the numerical approximation of eigenvalues was an open problem until
recently. A new progress was made with the use of exterior algebra in the numerical com-
putations of the Evans function [41], when the same results on instability bifurcations of
gap solitons as in [9] were recovered. Similar shooting method was also applied to gap soli-
tons in a more general model of a nonlinear $cimger equation with a periodic potential
[102].

71
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Our work addresses the problem of numerical approximations of eigenvalues of the
linearized coupled-mode system with a different objective. We will show that the linearized
coupled-mode system with a symmetric potential function can be block-diagonalized into
two coupled two-by-two Dirac systems. The two Dirac systems represent the linearized
Hamiltonian of the coupled-mode equations and determine instability bifurcations and un-
stable eigenvalues of gap solitons.

The purpose of block-diagonalization is twofold. First, the number of unstable
eigenvalues can be estimated analytically from the number of non-zero isolated eigenval-
ues of the linearized Hamiltonian. This analysis will be reported elsewhere. Second, a
numerical algorithm can be developed to compute efficiently the entire spectrum of the lin-
earized coupled-mode system. These numerical results are reported here for an example of
symmetric quadric potential functions.

The chapter is organized as follow&ection 4.2lescribes the model and its symme-
tries. Section 4.3jives construction and properties of gap solitons in the nonlinear coupled-
mode systemSection 4.4resents block-diagonalization of the linearized coupled-mode
system.Section 4.5ontains numerical computations of the spectrum of the block-diago-
nalized systemSection 4.resents examples of gap solitons for various models.

4.2 Coupled-mode system

We consider the Hamiltonian coupled-mode system in the form:

{ Z(Ut + Ux) + v = aﬂW<u7 u, v, T)) (4 2 ]_)

i(ve — vg) +u = W (u,u,v,0)

where(u,v) € C? z € R, ¢t > 0, andW (u, 4, v, ) is real-valued. We assume that the
potential function satisfies the following three conditions:

(i) W is invariant with respect to the gauge transformation:v) — ¢*(u,v), for all
aeR

(i) W is symmetric with respect to the interchange;v) — (v, u)
(i) W is analytic in its variables near= v = 0, such thatV = O(4).

The first property is justified by the standard derivation of the coupled-mode sys-
tem (4.2.1) with an envelope approximation [3]. The second property defines a class of
symmetric nonlinear potentials. Although it is somewhat restrictive, symmetric nonlin-
ear potentials are commonly met in physical applications of the system (4.2.1). The third
property is related to the normal form analysis [113], where the nonlinear functions are
approximated by Taylor polynomials. Since the quadratic part of the potential function
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is written in the left-hand-side of the system (4.2.1) and the cubic part violates the gauge
transformation and analyticity assumptions, the Taylor polynomialg sfart with quadric
terms, denoted a3(4).

We find a general representation of the functiifu, u, v, v) that satisfies the con-
ditions (1)-(3) and list all possible (four-parameter) quadric termig/of

Lemma4.2.1If W e C and property (1) is satisfied, such that

W(u,u,v,v) =W (uem,ﬂe_m, vem,@e_m) , Va € R, (4.2.2)
thenW = W (|ul?, |v|?, u).
Proof. By differentiating (4.2.2) inx and settingy = 0, we have the differential identity:

(0 _0 g 0 L
DW =i (u% —Up +v% - v%> W(u,u,v,v) = 0. (4.2.3)

Consider the set of quadratic variables
2 2 = 2
21 = |ul®, =%, z=uv, z4=u"

which is independent for any # 0 andv # 0 in the sense that the Jacobian is non-zero.
It is clear thatDz .5 = 0 and Dz, = 2z,. Therefore,DW = 2z,0,,W = 0, such that
W:W<Zl,22,23). L]

Corollary 4.2.2 If W € R and property (1) is met, then
W =W (|ul? |v|? uv + va).
Lemma 4.2.31f W € R and properies (1)-(3) are satisfied, then
W =W (Jul> + [v|?, |[u]*|v|?, ut + va).
Proof. By Corollary 4.2.2 and property (2), we can re-order the argumenis as 1/ =
W (Ju] + |v], |u|]v|,uv + vir). By analyticity in property (3)J¥ may depend only ofu/|?
and|v|? rather than oru| and|v|. O

Corollary 4.2.4 If W € R and properties (1)-(3) are satisfied, then

U— F U — Vo — '17—) W(u,u,v,v) =0 (4.2.4)

ul?=[v[?
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Corollary 4.2.5 The only quadric potential functiol’ € R that satisfies properties (1)-
(3) is given by

Qayq

W= Sl + [ol) + aalul o] + as(uf + o) (v +5u) + 5 (v + 5u)?, (4.2.5)

where(ay, as, as, ay) are real-valued parameters. It follows then that

W = ar|ul?u + agu|v]? + a3 [(2|ul* + [v[*)v + w?0] + a4 [v?u + |v|*u]
W = a1|v)*v + agv|ul® + az [(2]v]* + |ul?)u + v?u] + a4 [u?0 + |ul?v]

The potential function (4.2.5) with,,a, # 0 andas = a4 = 0 represents a
standard coupled-mode system for a sub-harmonic resonance, e.g. in the context of optical
gratings with constant Kerr nonlinearity [118]. Whep = a3 = a4 = 0, this system
is integrable with inverse scattering and is referred to as the massive Thirring model [78].
Whena; = ay, = 0 andas, ay # 0, the coupled-mode system corresponds to an optical
grating with varying, mean-zero Kerr nonlinearity, whetgeis the Fourier coefficient of
the resonant sub-harmonic aagis the Fourier coefficient of the non-resonant harmonic
[3] (see also [110]).

We rewrite the coupled-mode system (4.2.1) as a Hamiltonian system in complex-
valued matrix-vector notations:

d—‘; — JVH(u), (4.2.6)
whereu = (u, @, v, )7,
7

0
0

O = O
OOO

0 _ g
0 ==
0020

andH (u, @,v,7) = [, h(u,u,v,v)dz is the Hamiltonian functional with the density:
h=W(u,u,v,0) — (vu+ uv) + §(uax — U, U) — %(v@x — 0, D).

The HamiltonianH (u, @, v, v) is constant in time > 0. Due to the gauge invariance, the
coupled-mode system (4.2.1) has another constant of m@tjanu, v, v), where

Q= / (]u\2 + ]v|2) dzx. (4.2.7)
R
Conservation of) can be checked by direct computation:
 (Juf? + o) + - (ul? = of?) = DW =0 (4.28)
ot ox ’ o
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where the operatab is defined in (4.2.3). Due to the translational invariance, the coupled-
mode system (4.2.1) has yet another constant of matien u, v, v), where

P = —/ (ully — Uzt 4 v, — v, 0) dx. (4.2.9)
R

In applications, the quantitigg and P are referred to as the power and momentum of the
coupled-mode system.

4.3 Existence of gap solitons

Stationarysolutions of the coupled-mode system (4.2.1) take the form:

Ut (2, 1) = ug(x + 5)et+?
{ Vgt (7, 1) = vo(x + 5)et+id (4.3.1)

where(s, 0) € R? are arbitrary parameters, while the solutieg, vo) € C* onz € R and
the domain for parameter € R are to be found from the nonlinear ODE system:

ZU6 = WlUg —Uo—i-aﬁOW(Uo,ﬂo,Uo,l_)()) (43 2)
—M)(/) = WYy — U + a@OW(Uo, ﬂo, Vo, ’50) o
Stationary solutions are critical points of the Lyapunov functional:
A = H(u,u,v,7) + wQ(u, u,v,0), (4.3.3)

such that variations ok produce the nonlinear ODE system (4.3.2).

Lemma 4.3.1 Assume that there exists a decaying solutiaj)v,) of the system (4.3.2) on
x € R. If W € R satisfies properties (1)-(3), then = v, (module to an arbitrary phase).

Proof. It follows from the balance equation (4.2.8) for the stationary solutions (4.3.1) that
|U0|2 — |U0|2 = O() = O, \V/ZE € R,

where the constartt, = 0 is found from decaying conditions at infinity. Let us represent
the solutionguy, vo) in the form:

=/Q i0(z)+i®(z)
{;%g): Q(g)ee@(w)w(x) (4.3.4)

such that

{ iQ —2Q(0" + d')

= QCL)Q — 2Q672i6 + 2@08ﬂ0W(u0, Ug, Vg, ’ljo)
~iQ - 2Q(0 — ) =

2&)@ - 2Q€2i® + 2608@0W(U07 ’ELO) Vo, 60) (435)
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Separating the real parts, we obtain

Q(cos(20) —w — ©" — @) = Re [y, W (o, o, vo, Vo)) (4.3.6)
Q(cos(20) —w — O + &') = Re [090z, W (o, U, vo, Uo)] o
By Corollary 4.2.4, we havé’ = 0, such thatb(z) = ®,. O

Corollary 4.3.2 Letuy = vy. The ODE system (4.3.2) reduces to the planar Hamiltonian

form:
d (p 0

wherep = 20, ¢ = ), and
h = W(pv Q) - 2q cosp + 2&)(], W(pa Q) - W(Uo, ﬂg,Um@o). (438)

Proof. In variables(Q, ©) defined by (4.3.4) withb(z) = &, = 0, we rewrite the ODE
system (4.3.5) as follows:

(4.3.9)

Q/ = QQ 8111(2@) + 2Im [ﬂof)ﬁOW(uo, ao, Vo, T)g)]
QO = —wQ + Q cos(20) — Re [tig0u, W (1o, g, o, To)]

The system (4.3.9) is equivalent to the Hamiltonian system (4.3.7) and (4.3.8) if

{ OW (p, @) = i [y — D) W (0, o, vo, To) (4.3.10)

qan(pv q) = [anu() + ﬂoaao] W(Uo, ﬂo, Vo, 60)
The latter equations follows from (4.2.3), (4.2.4), and (4.3.4) with the chain rule. O

Corollary 4.3.3 Letug = vg. Then,

DngaaW = Op, W, 02aW = 0%W, 0%, W =02, W. (4.3.11)
The only homogeneous potential functibii € R of the order2n that satisfies
properties (1)-(3) is given by:

n—s

W = Zak ’u|2n 2k|v|2k +Z u T U ak75[|u|2n_2k_28|’U|2k])+An(un@n+ﬂnvn>.

= (4.3.12)
Where (a; 5, A,,) are real-valued coefficients which are subject to the symmetry
conditions:ay, s = ak, s if k1 + ke =n —sfors=0..n — 1.
Let’s introduce new parameters & 0,1..n — 1):
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n—s—1
2

A;= ) ap, ifn—sisodd

k=0

n—s—2

1 . .
A, = Z O+ Sanzs if n — sis even

Using the variable$(), ©) defined in (4.3.4) withb(z) = &, = 0, we rewrite the
ODE system (4.3.9) in the explicit form:

Q' =2Qsin(20) — 4Q" 3" sA,sin(250) — 2nA,Q" sin(2n0O)
{ 0 = —w 4 c08(20) — nAYQ" " —2Q" n 3" A, cos(250) — nA, Q""" cos(2nO)
(4.3.13)
First integral

n—1
—w +cos(20) — A, Q" — 2" Z Ay cos(250) — A,Q" ! cos(2n0) = 0.
s=1
subject to the zero conditiorg(x) — 0 as|z| — oo, reduces the second-order system to
the first-order ODE
O'(z) = (n — 1)(w — cos(20)), (4.3.14)
while the function)(z) can be found fron®(x) as follows:

(cos(20) — w)

=l — : >0 4.3.15
? Ag+ 2371 A, cos(250) + A, cos(2n©) @2 ( )
We introduce two auxiliary parameters:
1 —
p=—Y g=vVi-o? (4.3.16)
1+w

such thatl < u < oo and0 < B < 1. In general case we will have two branches of
solutions forO(z):

cosh((n — 1)fz)
\/cosh2((n — 1)Bz) + psinh?((n — 1)5z)
—/psinh((n — 1)5x)
\/coshQ((n — 1)Bz) + psinh?((n — 1)5z)

cos(O,) =

sin(0,) =
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and - .
o) sinh((n — 1))
\/sinh?((n — 1)5z) + jreosh?((n — 1)5a)
sin(6_) —/mcosh((n —1)fz)

V/sinh((n — 1)52) + jreosh?((n — 1)6z)

Choice of the branch depends on the conditifiz) > 0.

In more general case for the non-homogeneous symmetric potential solutions of the
ODE do not exist in the explicit form, because the elliptic integrals which will be naturally
originated by the ODE system do not have explicit solutions in the general case.

We will illustrate decaying solutions of the system (4.3.2) for the quadric potential
function (4.2.5). Decaying solutions may exist in the gap of continuous spectrum of the
coupled-mode system (4.2.1) fore (—1,1). We will derive explicit conditions on exis-
tence of gap solitons for the general quadric potential fundtiogiven by (4.2.5). Using
(4.3.14) and (4.3.15)for the case= 2 we obtain:

O'(z) = w — cos(20), (4.3.17)

Q= ; Q>0 (4.3.18)

where .
a; +a
t = cos(20), O(t) = agt? + 2ast + — 5 2

such that € [—1, 1]. Let’s consider two cases:

t>w; o) >0 =QF
{tSw; b)) <0 =Q (4.3.19)

We can solve the first-order ODE (4.3.17) using the substitutientan(©), such that

1—22 s 11—t
t = e —
14 22 14+¢

After integration with the symmetry constrai®{0) = 0, we obtain the solution

(z - \/ﬁ)‘ _ o2z

T (4.3.20)

Y

where

1 —
B=VI-u?,  p=—
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and—1 < w < 1. Two separate cases are considered:

sinh(fGz) cosh?(Bx) — psinh?(Bz)
< = —/u——= t= 4.3.21
v = \/ﬁcosh(ﬁx) cosh?(fBz) + psinh?(Bz)’ ( )
wheret > w, and
cosh(fx) sinh?(Bx) — pcosh?(fz)
> = —/p——= = 4.3.22
2 vz \/ﬁsinh(ﬂm) sinh®(8z) + pcosh?(Bz)’ ( )
wheret < w. Let’s introduce new parameters
A= a5+ a;+ 2 ‘;“2, (4.3.23)

B = —2(14+CL1 +(l2,
aj + as

2

It is clear thatA = ¢(—1) andC = ¢(1). If t > w and¢(t) > 0, it follows from (4.3.19)
and (4.3.21) that

C:2a3—i—a4—i—

(1= w) (e + 1) cosh®(Bz) — p)

+(r) =
v (Ap? + B+ C) cosh(Bz) — (Bu + 2Ap2) cosh®(Bz) + Ap?’ (4.3.24)

If ¢ <wandg(t) <0, it follows from (4.3.19) and (4.3.22) that
Q (z) = (w—1)(( + 1) cosh?(Bzx) — 1) 43,25

(Ap2 4 By + C) cosh?(Bz) — (Bu + 2C) cosh?(Bx) + C°

The asymptotic behavior of th@(z) at infinity depends on the location of the zeros of the
functiony(u) = Au® + Bu + C. The functiom)(u) is related to the functiom(t), such
that if )(u) = 0 theng(w) = 0.

Case:A<0,C>0

In this case the quadratic polynomi&(t) has exactly one roaf(¢,) = 0 such that
t; € [-1,1]. We have two branches of decaying solutions with the positive amplitude
Q(z). One branch occurs far < w < 1 with Q(z) = @*(x) and the other one occurs
for -1 < w < t; with Q(z) = @~ (x). At the pointw = ¢, the solution is bounded and
decaying.

Case:A>0,C>0

In this case the quadratic polynomiglt) has no roots or has exactly two roots on
[—1, 1]. We have a decaying solution with the positive amplitgde) forany—1 < w < 1
with Q(z) = QT (x) if ¢(t) does not have any roots dr1,1]. If ¢(t) has two roots
¢(t1) = 0 and¢(t) = 0 such that,,t, € [—1, 1] then we have a decaying solution with
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Q(z) = Q*(z) only on the intervainax(t1,t;) < w < 1. At the pointw = max(t, t2),
the solution becomes unbounded.

Case:A<0,C<0

In this case the quadratic polynomiglt) has no roots or has exactly two roots on
[—1, 1]. We have a decaying solution with the positive amplitgde) forany—1 < w < 1
with Q(z) = Q (z) if ¢(t) does not have any roots dr-1, 1]. If ¢(¢) has two roots
¢(t1) = 0 and¢(t) = 0 such that,,t, € [—1, 1] then we have a decaying solution with
Q(z) = Q (x) only on the interval-1 < w < min(ty, t3). At the pointw = min(t, ts),
the solution becomes unbounded.

Case:A>0,C<0

In this case no decaying solutions with positive amplitgie ) exist.

Other cases

Two special cases occur wheiil) = 0 or ¢(—1) = 0. If ¢(1) = 0, thenQ@ " (z)
has a singularity at = 0 forany—1 < w < 1. If ¢(—1) = 0, then@~(z) has a singularity
atz =0forany—1 < w < 1.

4.4 Block-diagonalization of the linearized couple-mode system

Linearization of the coupled-mode system (4.2.1) at the stationary solutions (4.3.1) with
s = 0 = 0 is defined as follows:

u(z,t) = ™! (ug(x) + U (z)e)
u(z,t) = e " (to(z) + Us(z)e)
v(x,t) = e’ (vo(z) + Us(z)eM)
o(z,t) = e ™ (o(z) + Uy(x)eM)

(4.4.1)

wherewv, = 1y, according to Lemma 4.3.1. Léf, g) be a standard inner product for
f,g € L*(R,C*). Expanding the Lyapunov functional (4.3.3) into Taylor series mgas
(ug, U, vo, Vo), we have:

1
A = A(to) + (U, VAly,) + 5 (U HU) + ... (4.4.2)

whereU = (U,,U,, Us,U,)" and H, is the the linearized energy operator in the explicit
form

H, = D(0,) + V(x), (4.4.3)
where
w — 10, 0 —1 0
D 0 w+id, 0 —1 (4.4.2)

-1 0 w+i, 0
0 -1 0 w—10,
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and
0? 9%, 0> . 0?

UoUQ Ugvo ~UQVo

0% 02, O 02
0

uoUo uovo up Vo _ _
TVoupg ~UoUo ~VOVO v2
2 2 2 2
aUouo avoﬂo avg avo Uo

The linearization (4.4.1) of the nonlinear coupled-mode system (4.2.1) results in the lin-
earized coupled-mode system in the form:

H,U =i\oU, (4.4.6)

whereo is a diagonal matrix of1, —1, 1, —1). Due to the gauge and translational symme-
tries, the energy operatéf,, has a non-empty kernel which includes two eigenvectors:

U1 = 0'110(1’)7 U2 = ug(x) (447)

The eigenvector¥J, , represent derivatives of the stationary solutions (4.3.1) with respect
to parameterg§d, s).

Due to the Hamiltonian structure, the linearized operatfly, has at least four-
dimensional generalized kernel with the eigenvectors (4.4.7) and two generalized eigen-
vectors (see [97] for details). The eigenvectors of the linearized operatgrsatisfy the
o-orthogonality constraints:

<UQ, U) = / (’aoUl + UOUQ + ?70U3 + ’UoU4) dr = 0, (448)
R

(), 0U) = / (@ — ubUs + TyUs — o) dae = 0. (4.4.9)
R

The constraints (4.4.8) and (4.4.9) represent zero variations of the conserved qu@ntities
andP in (4.2.7) and (4.2.9) at the linearization (4.4.1).

It follows from the explicit form ofH, and from Corollary 4.3.3 that the eigenvalue
problemH U = pU has two reductions:

(Z) U1 == U4, U2 = Ug, (’ll) U1 = —U4, U2 - —Ug. (4410)

Our main result on the block-diagonalization of the energy operdtoand the linearized
coupled-mode system (4.4.6) is based on the reductions (4.4.10).

Theorem 4.4.1Let W € R satisfy properties (1)-(3). L&t vg) be a decaying solution
of the system (4.3.2) an € R, wherevy, = u,. There exists an orthogonal similarity
transformationS, such thats—! = S7, where

101 0
g_ 1 |oro 1
“ V2|0t o0 1)

10-10
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that simultaneously block-diagonalizes the energy operatar

1 _(Hy 0 _
ST H,S = ( 0o g | = H, (4.4.11)
and the linearized operatarH,,
-1 o 0 H_\ _.
ST oH,S =0 <H+ 0o | = oL, (4.4.12)
whereH_. are two-by-two Dirac operators:
 (w—i0; F1

and
81%0“0 + 81%0170 822 + a1%01)0 _ _
Vj: - 8’32 :l': 8501_)0 a’gozo :i: 8501)0 W(u(], UO,UO,/UO) (4414)
0

Proof. Applying the similarity transformation to the operatoco, ) in (4.4.4), we have the
first terms in Dirac operatord.. Applying the same transformation to the potentiah)
in (4.4.5) and using Corollary 4.3.3, we have the second term in the Dirac opefators
The same transformation is applied similarly to the linearized opesdigrwith the result
(4.4.12). O

Corollary 4.4.2 The linearized coupled-mode system (4.4.6) is equivalent to the block-
diagonalized eigenvalue problems

o3H_o3H, Vi =~Vy, o3 o3H V3 =7V,, Y= _>‘27 (4.4.15)
whereV , € C? andos is the Pauli's diagonal matrix of1, —1).

Corollary 4.4.3 Letuy = (ug,uy) € C? and(f, g) be a standard inner product fdr, g €
L*(R,C?). Dirac operatorsH.. have simple kernels with the eigenvectors

H+u’0 = O, H_O'gllo = 0, (4416)
while the vectord/, , satisfy the constraints
(uo, Vl) = O, (UE), 0'3V2) =0. (4417)

Remark 4.4.4 Block-diagonalization described in Theorem 4.4.1 has nothing in common
with explicit diagonalization used in reduction (9.2) of [100] for the particular potential
function (4.2.5) withu; = a, = a4 = 0 andaz = 1. Moreover, the reduction (9.2) of [100]
does not work fow # 0, while gap solitons do not exist in this particular model &oe= 0.
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4.5 Numerical computations

Numerical discretization and truncation of the linearized coupled-mode system (4.4.6)
leads to an eigenvalue problem for large matrices [108]. Parallel software libraries were
recently developed for computations of large eigenvalue problems [54]. We shall use Scala-
pack library and distribute computations of eigenvalues of the system (4.4.6) for different
parameter values between parallel processors of the SHARCnet cluster Idra using Message
Passing Interface [30].

We implement a numerical discretization of the linearized coupled-mode system
(4.4.6) using the Chebyshev interpolation method [109]. Given a function defined on the
Chebyshev points; = cos(jn/N),j = 0,1...N we obtain a discrete first derivative as a
multiplication by an(/V + 1) x (/N + 1) matrix, which we shell denote b@](\}). Let’s the

rows and columns of the differentiation matrﬂ)évl) be indexed frond to N. The entries

of this matrix are:

2N? 41
6 Y

2N? +1

(D)oo = (DY) vy = — e

_V .
——32), j=1,.,N—1,

27&]7 Z.aj:Oa"'an

where
co=cy =2 and =1 1i=1,..N —1.

To transform the Chebyshev grid frgm1, 1] to the infinite domain—oo, +o00] we
will use the mapf(v) = Ltanh ' v,2; = f(1;). This is the most efficient map for our
case because the solitons decay exponentially. Decaying also implies the zero boundary
conditions on the truncated interval. The constansets the length scale of the map.
Differentiation inx is carried out using the chain rule so that

(iT,) = Kafé—yi)pw) u(ui)} = Dyyii,  i=0..N.

Denote ad/ ., the identity matrix withNV + 1 elements. Finally we have a dis-
cretized eigenvalue problem for the operatbr

wilnyr —1Dyg Flni ,
Hy = . + diagV4(z;
= < Fins wlni1 + 1Dy gV (i)

The main advantage of the Chebyshev grid is the clustering distribution of the grid
points and for theV = 2500 this clustering prevents the appearance of spurious complex
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eigenvalues from the discretized continuous spectrum up to the acduiacy 10~ on
the interval[—2, 2].

Chebyshev points inf Im A\[—2, 2] | inf Im A[—10, 10]
100 0.085 0.75
200 0.0095 0.52
400 0.0053 0.21
800 7.12-1074 0.12
1200 2.34-1074 0.09
2500 3.91-1075 0.06

In general, using higher number of polynomials the interval can be expanded al-
though for the numerical analysis of the edge bifurcations of the continuous spectrum the
number of Chebyshev polynomials mentioned above is sufficient.

If the eigenvector is analytic in a strip near the interpolation interval, the corre-
sponding Chebyshev spectral derivatives converge geometrically, with an asymptotic con-
vergence factor determined by the size of the largest ellipse in the domain of analyticity.
[109]. As a result the accuracy of the numerical eigenvalues depends on the patameter
and on the degree of the nonlinearity.

The continuous spectrum for the linearized coupled-mode system (4.4.6) can be
found from the no-potential ca3é(x) = 0. It consists of two pairs of symmetric branches
on the imaginary axis. € (R for [Im(\)| > 1 — w and|Im(\)| > 1 + w [9, 41]. In the
potential casé&’(x) # 0, the continuous spectrum does not move, but the discrete spectrum
appears. The discrete spectrum is represented by symmetric pairs or quartets of isolated
non-zero eigenvalues and zero eigenvalue of algebraic multiplicity four for the generalized
kernel ofc H,, [9, 41]. We note that symmetries of the Chebyshev grid preserve symmetries
of the linearized coupled-mode system (4.4.6).

We shall study eigenvalues of the energy operatprin connection to eigenvalues
of the linearized operatarH,,. It is well known [108, 109] that Hermitian matrices have
condition number one, while non-Hermitian matrices may have large condition number.
As a result, numerical computations for eigenvalues and eigenvectors have better accu-
racy and faster convergence for self-adjoint operators [108, 109]. We will use the block-
diagonalizations (4.4.11) and (4.4.12) and compute eigenvalugs pf/_, andL. The
block-diagonalized matrix can be stored in a special compressed format which requires
twice less memory than a full matrix and as it can be derived from the table below (cpu
time is given in seconds ) this representation accelerates computations of eigenvalues ap-
proximately in two times.
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Chebyshev points cpu time (full matrix)| cpu time (block-diag. matrix
100 1.656 1.984
200 11.219 12.921
400 130.953 207.134
800 997.843 1.583 - 10?
1200 3.608 - 103 6.167 - 10°
2500 7.252 - 103 12.723 - 103

4.6 Application: gap solitons

Example 1: gap solitons in nonlinear optics

In nonlinear optics, the coupled-mode system describes counter-propagating light
waves. A pulse of light moving through a periodic medium consists of coupled back-
ward and forward electric field components. A gap soliton emerges from the balance of
the strong photonic band dispersion with the nonlinear effects present at sufficiently high
intensities.

Define parameters ag = 1, as = p, andas = a4, = 0. We find the decaying
solutionuy(z) in the explicit form:

2(1 —w) 1
14+ p (cosh Bz +i,/psinh fzx)’
Whenw — 1 (such thafx — 0 ands — 0), the decaying solution (4.6.1) becomes
small in absolute value and approaches the limideofi-solutionssech(5z). Whenw —

—1 (such thafu — oo andg — 0), the decaying solution (4.6.1) remains finite in absolute
value and approaches the limit of the algebraically decaying solution:

2
Ug = .
O VT + (1 + 2ix)

Potential matriced’, (z) in the Dirac operatorg/. in (4.4.13)—(4.4.14) can be
written in the explicit form:

Ve=(1+p) (2‘?3’2 ug ) : V. — <( 20uo* (1 - p)ug) . (4.6.2)

(4.6.1)

Uy =

ug  2|ugl? 1—p)ag  2lugl

Figure 4.1displays the pattern of eigenvalues and instability bifurcations for the
symmetric quadric potential (4.2.5) with = 1 anday = a3 = a4, = 0. The decaying
solutionuy(x) and the potential matricds. (x) are given by (4.6.1) and (4.6.2) with= 0.
Parametew of the decaying solutiom(x) is defined in the interval1 < w < 1. Six
pictures of Fig. 4.1 shows the entire spectruni.pf/, and H _ for different values ofv.
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Whenw is close tol (the gap soliton is close to a small-amplitude sech-soliton),
there exists a single non-zero eigenvaluefiforand H_ and a single pair of purely imag-
inary eigenvalues of. (see subplot (1) on Fig. 4.1). The first set of arrays on the subplot
(1) indicates that the pair of eigenvalueslobecomes visible at the same valueuofs
the eigenvalue of{,. This correlation between eigenvalues/obind H, can be traced
throughout the entire parameter domain on the subplots (1)—(6).

Whenw decreases, the operatdr acquires another non-zero eigenvalue by means
of the edge bifurcation [73], with no changes in the number of isolated eigenvalues of
(see subplot (2)). The first complex instability occurs neae —0.18, when the pair of
purely imaginary eigenvalues @f collides with the continuous spectrum and emerge as a
guartet of complex eigenvalues, with no changes in the number of isolated eigenvalues for
H, andH _ (see subplot (3)).

The second complex instability occurswat~ —0.54, when the operatof/ _ ac-
quires a third non-zero eigenvalue and the linearized opefataquires another quartet
of complex eigenvalues (see subplot (4)). The second set of arrays on the subplots (4)—(6)
indicates a correlation between these eigenvaludsanfd H _.

Whenw decreases further, the operatdfs and H_ acquires one more isolated
eigenvalue, with no change in the spectruni.dfee subplot (5)). Finally, whenis close
to —1 (the gap soliton is close to the large-amplitude algebraic soliton), the third complex
instability occurs, correlated with another edge bifurcation in the opefatqisee subplot
(6)). The third set of arrays on subplot (6) indicates this correlation. The third complex
instability was missed in the previous numerical studies of the example under consideration
[9, 41]. In a narrow domain near = —1, the operator{, has two non-zero eigenvalues,
the operator/{_ has five non-zero eigenvalues and the operatdras three quartets of
complex eigenvalues.

Example 2: gap solitons in photonic crystals

In photonics, the coupled-mode system is derived for coupled resonant waves in
stop bands of a low-contrast three-dimensional photonic crystal. Spatial soliton solutions
is proved to exist in photonic crystal fibers. These guided localized nonlinear waves appear
as a result of the balance between the linear and nonlinear diffraction properties of the
inhomogeneous photonic crystal cladding.

Define the parameters ag = a, = 0,a3 = 1 anday = s. The decaying solution
up(z) exists in two sub-domains: > 0, s > —1 andw < 0, s < 1. Whenw > 0, s > —1,
the solution takes the form:

o = /1 g w (cosh Bz —Ai\/(z)sinh Bx)’ (4.6.3)
+
where

Ay =[(s—1)p? —2su+ (s + 1) cosh?(Bz) + 2[sp — (5 — 1)p?] cosh?(Bz) + (s — 1)
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Whenw < 0, s < 1, the solution takes the form:

o /1 — w (sinh Bx — i/ cosh Bx) (4.6.4)
0 2 A_(I_) . V.

A =[(s+1)—2su— (s —1)p? cosh*(Bx) 4 2[s + 1 — su] cosh?(Bx) — (s + 1).

where

In both limitsw — 1 andw — —1, the decaying solutions (4.6.3) and (4.6.4) approach the
small-amplitudeech-solutionsech(/5z). In the limitw — 0, the decaying solutions (4.6.3)
and (4.6.4) degenerate into a non-decaying bounded solutionwyith)|? = %

The potential matrice¥’. () in the Dirac operatorg/.. in (4.4.13)—(4.4.14) take

the form: ) - o 2
Vi=3 < 2|ug? u%+ﬂ(2)> +s <ﬂ§—|—3u§ 2|ug|? ; (4.6.5)

2 —2 2 9 L

~(ug +ug —2lul 0 E @
- (_2|u0‘2 U% + ﬂ% TS —ug — ag 0 . (4.6.6)

Figure 4.2displays the pattern of eigenvalues and instability bifurcations for the
symmetric quadric potential (4.2.5) with = ay, = a4 = 0 andas = 1. The decaying
solutionuy(x) and the potential matricd$, (x) are given by (4.6.3) and (4.6.5) with> 0
ands = 0. Eigenvalues in the other case< 0 can be found from those in the case> 0
by reflections.

Whenw is close tol (the gap soliton is close to a small-amplitude sech-soliton),
there exists one non-zero eigenvalughf and no non-zero eigenvaluesband H, (see
subplot (1) on Fig. 4.2 ). Whea increases, two more non-zero eigenvalues bifurcate in
H_ from the left and right branches of the continuous spectrum, with no change in non-
zero eigenvalues af (see subplot (2)). The first complex bifurcation occurs at 0.45,
when a quartet of complex eigenvalues occurd.jnin correlation with two symmetric
edge bifurcations off/, from the left and right branches of the continuous spectrum (see
subplot (3)). The first and only set of arrays on the subplots (3)-(6) indicates a correlation
between eigenvalues afandH, , which is traced through the remaining parameter domain
of w. The inverse complex bifurcation occurswat~ 0.15, when the quartet of complex
eigenvalues merge at the edge of the continuous spectrum into a pair of purely imaginary
eigenvalues (see subplot (5)). No new eigenvalue emerge for smaller valwed/iihen
w is close ta) (the gap soliton is close to the non-decaying solution), the opefatdras
two non-zero eigenvalues, the operatbr has three non-zero eigenvalues and the operator
L has one pair of purely imaginary eigenvalues (see subplot (6)).

We mention two other limiting cases of the symmetric quadric potential (4.2.5).
Whena; = a3 = a4, = 0 anday, = 1, the coupled-mode system is an integrable model
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and no non-zero eigenvalues biexist, according to the exact solution of the linearization
problem [76, 77]. Whewn; = as; = a3 = 0 anda, = +1, one branch of decaying solutions
uo(z) exists for either sign, according to (4.6.3) and (4.6.4). The pattern of eigenvalues and
instability bifurcations repeats that of Fig. 4.2.

Example 3: gap solitons in relativity theory

Nuclear physics provides a unique laboratory for investigating the Dirac picture of
vacuum. The basis for this is given by relativistic mean-field models. Within this approach
nucleons are described by the Dirac equation coupled to scalar and vector meson fields. The
potential function (4.2.5) witly; = a; = a3 = 0, ay = 1 represents a standard nonlinear
Dirac equation that is used as a model of vacuum. The existence of standing waves in the
nonlinear Dirac equation was proved in [23].

We find the decaying solutiom,(x) in the explicit form:

(1 = w)((u + 1) cosh?(Bzx) — pu)
(12 — 2 + 1) cosh*(Bx) — (=2 + 2u2) cosh? B + p2’

(4.6.7)

Ug =

Whenw belongs to the interval-1, 0] the Q(x) blows up to infinity in two sym-
metric pointstanh? fz = i These two points are getting separated to plus and minus
infinity and Q(z) tends tol/2 cosh(2z) asw goes to0 as a conclusion we do not have a
soliton type solution for this interval of.

Whenw belongs to the open intervé).5, 1) theQ(z) is one pulse soliton solution
with max(Q(z)) = 1 — w asw goes tol theQ(z) tends ta.

Whenw belongs to the intervdb, 0.5) the Q(z) is two pulse soliton solution with
min(Q(z)) = 1 — w at the origin andnax(Q(z)) = - at two pointscosh(2z) = =2
(see Fig. 4.3 (b)). In the limib goes to O the pulses are getting more and more separated
and the amplitude of the pulses tends to infinity. The two pulse soliton solutions in the
coupled mode system were also discovered but for the different type of the nonlinearity in
the problem of the light propagation through deep nonlinear grating.

We can also find the exact analytical expression forQke) (4.3.4) as

B —/psinh(Bx)
V/cosh? Bz + psinh? ﬁZL‘.

cosh Gz
V/cosh? Bz + psinh? ﬁx7

cos© = sin(O©)

This gives

(14 w) cosh? Bz — (1 — w) sinh® Bz 1+ wcosh(287)

9O — (O _ «in2(O) — —
€08 26 = cos™(8) —sin’(6) (1 +w)cosh® Bz + (1 — w)sinh? Bz cosh(20z) + w

The spectral stability of the gap solitons follows from the linearization (4.4.1) and
diagonal blockd7.. of the linearized energy operator (4.4.13) can be written as
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w—10; 1—u2—1u?
- = [1 - wiid 01 (4.6:8)
CJw—id 20wl wi+3a2-1 ]
Hy = { WH3ui—-1 w +0ti —|—02 |u0|2} N (4.6.9)
The subspaces
v _ _f(x)] :{ f(z) ]
a [f(—x) SR
are invariant under the action éf.. So are the spaces
xi= 0] o= -0 atw) = gt-o)
Xo= [T Fo = —f-a). gt = gt
Denote
X =X"nXj, j=1,2.
The kernel ofH _ is
ker H :span<[ ¢1_i¢2}>c){‘ (4.6.10)
- —61 — iy | >
The kernel ofH . is
ker H, = span < [ii ;zzzb c Xt (4.6.11)
—0p¢2 = —wor + g(d1 — $3)61 = 9y, 1(9),
AR L e 1) (4642
where |
w
W) = =5 (67 +63) + 5 G(61 — 6)). (4.6.13)

This could be verified by taking the-derivative of (4.6.12) and using the relations
¢ = 2Q cos®> © = Q(1 + cos 20), ¢3 = 2Qsin” © = Q(1 — cos 20).
The essential spectrum &f  consists of two intervals:

Oess(H_) = (—o0, =1 + w| U [1 + w, 00).
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Lemma 4.6.1 The spectrum off _ is symmetric with respect tb= w. Moreover, If{fl}

f2

2 } is an eigenvector

S

is an eigenvector off _ that corresponds to an eigenvaligthen { -

of H_ that corresponds to an eigenvalie= 2w — \.

Proof. The relation\ Hl] - H_ [?] can be written as
2 2

O fr = —i(w =N fi tia(z)fo,  Oufo=—ia(z)fi +i(w—A)fo, (4.6.14)

2,2 =2 _ 2 H H
wherea(z, w) = uf + a5 — 1 = 1 — 225, We can rewrite these equations as

Oufr = ilw =N fo+ia(z)(=f1),  Oul—f1) = —ia(z)fz —i(w = A)(=f1). (4.6.15)
Taking into account that — A = —(w — \'), we get:

Oufr = —i(w=XN)fatia(z)(=f1),  Ou(=f1) = —ia(z) foti(w=X)(=f1), (4.6.16)
which finishes the proof. O

1+2¢2}
1— g |

Corollary 4.6.2 2w € o4(H_), with the corresponding eigenvect%i
Lemma4.6.3w ¢ o4(H_).

Proof. If w were an eigenvalue with an eigenvecH‘rt1 } , then, by Lemma 4.6.1, the vector
2

{ f2 } corresponds to the same eigenvalue, and so does the vector

—f1
{fl}_i_i{fz}:[fl-f—iﬁ]:[ fi+ifo 1
fa —fi fa—1fi —i(fi+ifs) |

Thus, we may assume that the eigenvector that corresponds to has the form{ —ch'lfl } .
It follows that f, satisfies), fi = ({(x) — 1) f1, hencefi(z) ~ cye” for x — fo00, which
does not allowf; € L*(R). O
The continuous spectrum for the linearized coupled-mode system can be found
from the no-potential casgé(x) = 0. It consists of two pairs of symmetric branches on
the imaginary axis with positive and negative Krein signatures. The branches can be found
analytically as\ € iR for the|Im(\)| > 1 4+ w and|Im()\)| > 1 — w. By perturbation the-
ory in the nonzero potential case the continuous spectrum does not move but the additional
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discrete spectrum appears. Eigenvalues of the operatals, and H_ are detected nu-
merically for two values of the parameteiby the Chebyshev interpolation method and are
displayed in Figures 4.3(a) and 4.4. The ends of the branch of the continuous spectrum with
the negative Krein signatuteare|Ilm \| = 1.2 for w = 0.2 and|Im A\| = 1.7 for w = 0.7,
the zero eigenvaluél of the operatot. is of the multiplicity 4 and for thew = 0.2 we
can see a quadruplet of complex eigenvallilet We can see a correlation to the discrete
spectrum of the operatots.. for thew = 0.7 the discrete spectrum df. consist only
of the kernell and positive eigenvalug/, while forw = 0.2 the discrete spectrum of the
operatorH , has also two negative eigenvalugs.

Whenw is close to the double pulse bifurcation threshald~ 0.5), the operator
L has a four-dimensional kernel at= 0 and a quadruplet of small complex eigenvalilies
bifurcating from the continuous spectrum bfwith the correlation to the edge bifurcation
of the operatoi/, atw ~ 0.5. The bifurcated eigenvalues of the operatanoves toward
the origin and away from the real line aggoes from0.5 to 0 (see Fig: 4.5).

Within the numerical accuracy we can conclude that for the intesval [0.5, 1)
the one pulse soliton solution are spectrally stable while for the interval (0, 0.5) the
double pulse soliton solutions are spectrally unstable, because of the oscillations related to
small complex eigenvalues.
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Figure 4.1: Eigenvalues and instability bifurcations for the symmetric quadric potential
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Figure 4.2: Eigenvalues and instability bifurcations for the symmetric quadric potential
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CHAPTER 5

SPECTRAL PROPERTIES OF THE NON-SELF-ADJOINT
OPERATOR ASSOCIATED WITH THE PERIODIC HEAT
EQUATION

5.1 Introduction

We address the Cauchy problem for the periodic heat equation

{ h=—hy— €(sinbhg)g, t >0, (5.1.1)

h(o) = hOa

subject to the periodic boundary conditions ére [—7,x]. This model was derived in

the context of the dynamics of a thin viscous fluid film on the inside surface of a cylinder
rotating around its axis in [11]. Extension of the model to the three-dimensional motion of
the film was reported in [12].

The parameteris small for applications in fluid dynamics [11] and our main results
correspond to the intervaéd| < 2 in accordance to these applications. For any 0, the
Cauchy problem for the heat equation (5.1.1) on the half-integhval [0, 7] is generally
ill-posed [82] and it is naturally to expect that the Cauchy problem remains ill-posed on
the entire intervab € [—x, 7|. The authors of the pioneer work [11] used a heuristic
asymptotic solution to suggest that the growth of "explosive instabilities” might occur in
the time evolution of the Cauchy problem (5.1.1).

Nevertheless, in a contradiction with the picture of explosive instabilities, only
purely imaginary eigenvalues were discovered in the discrete spectrum of the associated

linear operator
o (. ,0 0
L= —6% <S1H6%) — %, (512)

acting on sufficiently smooth periodic functiorf$f) on ¢ € [—m, 7]. Various approxi-
mations of eigenvalues were obtained in [11] by two asymptotic methods (expansions in
powers ofe and the WKB method) and by three numerical methods (the Fourier series
approximations, the pseudospectral method, and the Newton—Raphson iterations). The re-
sults of the pseudospectral method were checked independently in [120] (see pp. 124-125
and 406-408). Itis seen both in [11] and [120] that the level sets of the resohent) !

95
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form divergent curves to the left and right half-planes and, while true eigenvalues lie on the
imaginary axis, eigenvalues of the truncated Fourier series may occur in the left and right
half-planes of the spectral plane. This distinctive feature was interpreted in [11] towards
the picture of growth of disturbances and the phenomenon of explosive instability.

One more question raised in [11] was about the validity of the series of eigenfunc-
tions associated to the purely imaginary eigenvalues of the opdrdtore £ 0. Although
various initial conditiong, were decomposed into a finite sum of eigenfunctions and the
error decreased with a larger number of terms in the finite sum, the authors of [11] conjec-
tured that the convergence of the series depended on the time variable and "even though
the series converges at= 0, it may diverge later”. This conjecture would imply that the
eigenfunctions of_ for ¢ # 0 do not form a basis of functions in the spalié(|—x, 7|)
with s > % unlike the harmonics of the complex Fourier series associated with the operator
L fore = 0.

In this chapter, we prove that the operafois closed inL?_ ([—r, 7]) with a do-

per

main in /! ([—=,n]) for |e| < 2, such that the spectrum of the eigenvalue problem

per

—6% (sinQ %) - % =\, feH ([-m ), (5.1.3)
is well-defined. Here and henceforth, we denote
Hyo([=m, 7)) = {f e H'([=m, 7)) f(x) = f(=m)}. (5.1.4)

Furthermore, we prove that the residual and continuous spectra of the spectral problem
(5.1.3) are empty and the eigenvalues of the discrete spectrum accumulate at infinity along
the imaginary axis. We further prove completeness of the series of eigenfunctions as-
sociated to all eigenvalues of the purely discrete spectruih iquf)er([—w, 7]). Using
the numerical approximations of eigenvalues and eigenfunctions of the spectral problem
(5.1.3), we show that all eigenvalues bfare simple, located at the imaginary axis, and
the angle between two subsequent eigenfunctions tends to zero for larger eigenvalues. As
a result, the complete set of linearly independent eigenfunctions does not form a basis in
L2..([-m,7]) and hence it cannot be used to solve the Cauchy problem associated with the
heat equation (5.1.1).

This chapter is structured as follows. Properties of the operaeme analyzed in
Section 5.2 Eigenvalues of the operatdr are characterized iSection 5.3 Sections 5.4
— 5.5present numerical approximations of eigenvalues and eigenfunctions of the spectral

problem (5.1.3).

5.2 General properties of the linear operatorL

Itis obvious that the operatdr is densely defined ii? ([, 7]) on the space of smooth

functions with periodic boundary conditions. However, the operatds not closed in
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L2..([-m, 7)) if the functions are infinitely smooth. We therefore prove in Lemma 5.2.1 that

the operato. admits a closure ii.? ([—, 7]) with a domain inH},.([-,7]). Eigen-
functions and eigenvalues of the spectral problem (5.1.3) are studied in Lemmas 5.2.4 and
3.4.7. The absence of the residual and continuous spectra of opkrnatproved in Lem-

mas 5.2.6 and 5.2.7.

Lemma 5.2.1 The operatorL admits a closure in.?
C Hpop([=m, 7).

per

([=m,m]) for |e| < 2 with Dom(L)

per

Proof. According to Lemma 1.1.2 in [38], if an operator has a non-empty spectrum in a
proper subset of a complex plane, then it must be closed. The opérhts a non-empty
spectruminL? ([—,7]) sincel = 0 is an eigenvalue with the eigenfunctigig(d) = 1 €

L2, (|-, 7]). We should show that there exists at least one regular pgiatC, such that

per
\V/f € per([ 7T77TD : H(L >\0 )fHLl%er ([=m,7]) > kOHfHL%er ([=m,7]) (521)

for somek, > 0. In particular, we show that any, € R is a regular point ofL in
Hy C H}..([-m,7]), where

{fe L (l=m,7)) : /:f(e)de:o}. (5.2.2)

By using straightforward computations, we obtain

(f,Lf)=— /7r (14 ecosf) | f'|*do — e/7r sin @ f' f"de, (5.2.3)

—T

where(g, f) = ["_g(0)f(0)d0d is a standard inner product i&°. If f € H! (|-, 7)),
then

Re(f,f)=0,  Re(f,Lf)=— /ﬂ (1 + gcos 9) |f'[2d8, (5.2.4)

—Tr

such that for any, € R it is true that

Re(/", (L — Mol)f)| (1 - '—') T

By using the Cauchy—Schwarz inequality, we estimate the left-hand-side term from above

[Re(f", (L = X)) A < [(f's (L = XD )] < 1 N ez, = 1L = Mo D) fll 22—,

such that

12 = 20D ey = (1= ) 17 e (5.25)
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According to the Neumann—Poincare inequalityfoa [—, 7|, we have

112 mmy < 4720 B rn +_( / 10 d9>. (5.2.6)

If f € Hy C Hp,.([—,7]), we continue the right-hand-side of the inequality (5.2.5) and
recover the inequality (5.2.1) for any € R with

1 I
k —— ] >0.
T or < 2 )
The estimate holds jt| < 2. O

Corollary 5.2.2 X € R\{0} is not in the spectrum df in L?_.([—7, 7).

Remark 5.2.3 The formal adjoint ofZ in L7, ([, ]) is L* = —€0p (sin 00) + Jp. Ac-
cording to Lemma 1.2.1 in [38], the operatof also admits a closure ib? ([, 71]) with
Dom(L*) C H},.([—m,]) for |¢| < 2.

per

Lemma 5.2.4 Let \ be an eigenvalue of the spectral probléni = A f with an eigenfunc-
tion f € H}.([-=,7]). Then,

(i) =X\, Aand—\ are also eigenvalues of the spectral problégh= A f with the eigen-
functionsf(—0), f(0) and f(—0) in H! ([—7,7]).

per

(i) X is also an eigenvalue of the adjoint spectral probléfrf* = X\ f* with the eigen-
functionf* = f(r — 0) in H!_ ([—m, 7).

per

(ili) X is a simple isolated eigenvalue bff = \f if and only if(f*, f) # 0

Proof. (i) Due to inversiord — —¢@, the spectral problem (5.1.3) transforms to itself with
the transformatiol. — —\. Due to the complex conjugation, it transforms to itself with
A — \. (i) Due to the transformatiod — 7 — 6, the spectral problem (5.1.3) transforms
to the adjoint probleni* f = A f with the same eigenvalue. (iii) The assertion follows by
the Fredholm Alternative Theorem for isolated eigenvalues. O

Lemma 5.2.5 Let A\ be an eigenvalue of the spectral problem (5.1.3) with the eigenfunction
f e Hl ([-n,n]). Then,

(.0

andIm(\) # 0 except for a simple zero eigenvalie- 0.

Re()) = ¢ () = L) (5.2.7)
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Proof. By constructing the quadratic form fgre H; . ([—m, 7]), we obtain

(f,Lf) = e/j sin 0| f'|2d6 — /_w Ffde, (5.2.8)

where the second term is purely imaginary since

f e Hly([—m 7)) /ffde—lﬂ Ple=r . — /ffde— /f’fd9 (5.2.9)

Moreover, the equality (5.2.4) can be rewritten in the form

() = R 1) = = [ (14 Feost) £ @Pas <~ (1= ) 1712,
" (5.2.10)
where the right-hand side is negativedf < 2 and f(6) is not constant od € [—m, .
Therefore,(f’, f) # 0 andIm(\) # 0. Finally, the constant eigenfunctiof(f) = 1
corresponds to the eigenvalie= 0 and it is a simple eigenvalue sin¢g*, f) # 0, where
f*(0) = f(m—0) = 1is an eigenfunction of the adjoint operaforfor the same eigenvalue
A =0. O

Lemma 5.2.6 The residual spectrum of the operatbiis empty.

Proof. By a contradiction, assume thatbelongs to the residual part of the spectrum of
L such thatKer(L — M) = & but Range(L — AI) is not dense i’ ([—m,7]). Let
g € L2.([-~,n]) be orthogonal t&kange(L — AI), such that

Vi€ LX([-mn]): 0=(g,(L—A)f)=((L" =)y, f).

Therefore,(L* — M\ )g = 0, that is) is an eigenvalue of.*. By Lemma 5.2.4(ii)\ is an
eigenvalue ofl, and by Lemma 5.2.4(i)) is also an eigenvalue di. Hence\ can not be
in the residual part of the spectrum bf O

Lemma 5.2.7 The continuous spectrum of the operafois empty.

Proof. According to Theorem 4 on p.1438 in [43],ifis a differential operator defined on
the intervab € (—m,7) = (—m,0)U(0, 7) andL.. are restrictions of. on# € (—=,0) and
0 € (0,m), theno.(L) = o.(Ly) Uo.(L_), whereo.(L) denotes the continuous spectrum
of L. By the symmetry of the two intervals, it is sufficient to prove that the operatdras
no continuous spectrum ahe (0, ) (independently of the boundary conditiongat 0
andd = ). Itis also sufficient to carry out the proof fer> 0. Let f,(¢t) = f(6) on
¢ € [0,7] and

cosf = tanht, sinf = secht, teR,
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such that the intervdD, 7] for 6 is mapped to the infinite lin& for ¢. The functionf. (¢)
satisfies the spectral problem

—efV(t) + fiL(t) = Asecht fi(t). (5.2.11)

With a transformationf, (t) = e'/?g,(t), the spectral problem (5.2.11) is written in the
symmetric form

1
—eg't (t) + 4—€g+(t) = Asecht g, (). (5.2.12)

Thus, our operator is extended to a symmetric operator with an exponentially decaying
weight p(t) = sech(t). According to Corollary 3 on p. 1437 in [43], i is a symmetric
operator on an open intervéd, b) and L is a self-adjoint extension af with respect to
some boundary conditions at= a andz = b, theno.(L) = o.(Ly). Herea = —o0,

b = oo, and we need to show that the continuous spectrum of the symmetric problem
(5.2.12) is empty in.%(R). This follows by Theorem 7 on p.93 in [51]: since the weight
function p(t) of the problem—y”(t) — A\p(t)y(t) = 0 ont € R decays faster thah/t? as

|t| — oo, the spectrum of-y"(t) — A\p(t)y(t) = 0 is purely discreté O]

5.3 Eigenvalues of the linear operatotl.

By results of Lemmas 5.2.4,5.2.5, 5.2.6, and 5.2.7, the spectral problem (5.13)<£a2

may have only two types of eigenvalues in addition to the simple zero eigenvalue: either
pairs of purely imaginary eigenvalues or quartets of symmetric complex eigenvalues. We
prove in Lemmas 5.3.1 and 5.3.4 that there exists an infinite sequence of eigenvalues
which accumulate to infinity along the imaginary axis. Furthermore, we prove in Theorem
5.3.6 that the eigenfunctions associated to all eigenvalues of the spectral problem (5.1.3)
form a complete dense set ity ([—7,7]). In the end of this section, Theorem 5.3.9
gives a necessary and sufficient condition that the set of eigenfunctions forms a basis in
Lger([_ﬂ—7 ﬂ-])

Lemma5.3.1Let0 < € < 2 ande # % n € N. For A € C, the spectral problem (5.1.3)
admits three sets of two linearly independent solutions in the form of the Frobenius series

—r<f<m: fi=1+) b, fr=07"" (1 + Zdnen) : (5.3.1)

neN neN

1Although the spectral problem (5.2.12) has an additional ©gtt) with C' > 0, this term only makes
better the inequality (30) on p.93 in the proof of Theorem 7 of [51].
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and

O<Hb<m: fE=1+) af(xF0)", fif=EF0)" <1+be(w¢9)”),

neN neN
(5.3.2)
where all coefficients are uniquely defined. The solufigi#) is an analytic function of
A € C uniformly onf € [—m, 7).

Proof. Existence of two linearly independent solutions-en < 6 < « in the form (5.3.1)

and on0 < +6 < 7 in the form (5.3.2) follows by the ODE analysis near the regular
singular points [31]. The difference between the two indices of the indicial equation is
% and it is non-integer foe # % n € N2, Since the spectral problem (5.1.3) depends
analytically on\ and the Frobenius series converges absolutely and uniformly in between
two regular singular points, the solutigh(#) is analytic inA € C for any fixedd €

(—m, 7). Due to uniqueness of the solutions of the ODE (5.1.3), the soltfii@) can be
equivalently represented by the other solutions

fi(0) = AXf5(0) + BEf (), 0< 40 <, (5.3.3)

where A* and B* are some constants, while the functiofis6) and f;-(6) are analytic
in A € C for any fixed+6 € (0, 7]. By matching analytic solutions for anyf € (0, ),
we find thatA* and B* are analytic functions ok € C, the Frobenius series fgf; (6)
converges absolutely and uniformly énc [—=, 7], and the solutiory; (¢) is an analytic
function in\ € C uniformly oné € [—m, 7]. O

Corollary 5.3.2 There exists an analytic functiafi(A) onImA > 0, roots of which give
isolated eigenvalues of the spectral problem (5.1.3) with the account of their multiplicity.
The only accumulation point of isolated eigenvalues inXfane may occur at infinity.

Proof. The functionf € H'([—,n]) satisfies the spectral problem (5.1.3) if and only if
f(0) =Cof1(0) on6 € [—m, ], whereCy = 1 thanks to the scaling invariance of homoge-
neous equations. By using the representation (5.3.3), we can finAﬂEhatahril f1(0) are

uniquely defined analytic functions ke C. The functionF,(\) = AT — A~ is analytic
function of A € C by construction and zeros &t (\) onImA > 0 coincide with the eigen-
values) of the spectral problem (5.1.3) with the account of their multiplicity#if\,) = 0
for some)\, € C, the corresponding eigenfunctigitd) lies in 4. ([—=,7]), i.e. it sat-

isfies the periodic boundary conditioffér) = f(—m). By analytic function theory, the
sequence of roots df.(\) can not accumulate at a finite point are C. O

2An additional logarithmic terniog(7 — ) may need to be included into the Frobeneus serie&if%,
n € 7.
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Remark 5.3.3 We will use the method involving the analytic functidh(A) on A € C for

a numerical shooting method which enables us to approximate eigenvalues of the spectral
problem (5.1.3). This method involves less computations than the shooting method de-
scribed in Appendix C of [11]. Nevertheless, it is essentially the same shooting method
and it uses the ODE analysis near the regular singular point (Lemma 5.3.1), which repeats
the arguments in Appendix B of [11].

Lemma5.3.4Fix 0 < ¢ < 2 and let{\,},cn be a set of eigenvalues of the spectral
problem (5.1.3) witim,, > 0, ordered in the ascending order ¥, |. There exists a finite
numberN > 1, such that for alln > N, A\, = iw, € iR, and

wp = Cn? + o(n?) as n — oo, (5.3.4)
for someC' > 0.

Proof. We reduce the spectral problem (5.1.3) to two uncoupled $dmger equations
on an infinite line. Letf(#) be represented on two interval®) < [0, 7] by using the
transformations

cos ) = tanht, sin # = +secht, (5.3.5)

wheret € R. Then, the functiong.(t) = f(¢) on +60 € [0, x| satisfy the uncoupled
spectral problems

—efi(t) + fi(t) = £Asecht fL(t), tER, (5.3.6)

The normalization conditiotf(0) = 1 is equivalent to the conditiotﬂim fe(t) = 1. The
periodic boundary conditioi(7) = f(—n) is equivalent to the conditiotnlir_n f-(t) =
tlim f+(t). The linear problems (5.3.6) are reformulated as the quadratic Ricatti equations
by using the new variables

fe(t) = eloc S g (S}, + S3) = +Asecht. (5.3.7)

We choose a negative root of the quadratic equation in the form

11— \/1 F dedsecht — 4e2 Ry
a 2¢ ’
The representation (5.3.8) becomes the chain fraction if the derivative (of is defined

recursively from the same expression (5.3.8). By using the theory of chain fractions, we

claim thatRy = O(y/|A]) as|\| — oo uniformly ont € R. The functionF.(\) of
Corollary 5.3.2 is now expressed by

S.(t) R = SL(b). (5.3.8)

F.(\) = Lim [fi(t) — f_(t)] = ef o S+t _ ]2 S-(dt (5.3.9)

t——o0
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Zeros of [ (\) are equivalent to zeros of the infinite set of functions

1
4mie

Gn(N) = / [\/1 + dedsecht — 4€2R_(t) — /1 — dedsecht — 4€2R, (t)| dt — n,

) (5.3.10)
wheren € N. If R.(t) = 0, the function7,, (w) = G(iw), n € Nis real-valued and strictly
increasing onw € R, with G,,(0) = —n. By performing asymptotic analysis, we compute
that

1 [e.9]
42 _ — 4e2
Tric /_OO [\/1 + diewsecht — 4€2R_(t) — /1 — diewsecht — 42 R (1 )] dt
R e 2iwsecht + €(R+ R_) it
0 J o /1 + dicwsecht — 4e2R_(t) + /1 — diewsecht — 4€2 R, (t)
< dt
+o(Vo), 5.3.11
T /_oo Vcosht (\/_) ( )

such thatlim G,(w) = co. Therefore, there exists exactly one raot= w, of G, (w)

wW—00

for eachn. SinceR_ = R, for A\ = iw € iR, each simple root of7,(w) persists for
non-zero values of?:(t) = O(y/w) uniformly on¢ € R asw — oco. According to the
asymptotic result (5.3.11), the roats of G, (w) satisfy the asymptotic distribution (5.3.4)
with ¢ = — 2 O

(P vte)
—00 V/cosht

Remark 5.3.5 Analysis of Lemma 5.3.4 extends the formal WKB approach proposed in
Section 3 of [11]. In particular, the equation (5.3.10) with = 0 has been obtained in Eq.
(3.11) of [11].

Theorem 5.3.6 Let{ f,, }.en be the set of eigenfunctions corresponding to the set of eigen-
values{\, },en in Lemma 5.3.4 withm)\,, > 0. The set of eigenfunctions is complete in
Xo € L. ([-m,7]), where

{feLper :/f 6—0}

Proof. By Corollary 5.3.2, eigenvalues df with ImA > 0 accumulate to infinity, such
that the operatof/ = L~! acting on elements iX, is compact. By Lemma 5.3.4, there
are infinitely many eigenvalues d@f and large eigenvalues are all purely imaginary, such
that |\, = O(n?) asn — co. These two facts satisfy two sufficient conditions of the
Lidskii's Completeness Theorem. According to Theorem 6.1 on p. 302 in [52], the set of
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eigenvectors and generalized eigenvectors of a compact opéfatoa Hilbert spaceX,
is complete if there exists > 0 such that

su(M) = o(n7), asn— oo, (5.3.12)
wheres, is a singular number of the operatf, and the set

Wy ={(Mf,f): feXo, [flx =1} (5.3.13)

lies in a closed anglé,; with vertex at) and opening;—. Since the singular numbess are

eigenvalues of the positive self-adjoint operatbf1/*)'/? and the eigenvalues @f grow

like O(n?) asn — oo, we haves, (M) = O(n~?) asn — oo, such that the first condition
(5.3.12) is verified witlp = 1. Since alllm),, > 0 for the set of eigenvalueg\, },,cn Of
Lemma 5.3.4, the spectrum of lies in the lower half plane, such that the second condition
(5.3.13) is also verified with = 1 (05, = 7). O

Corollary 5.3.7 The set of eigenfunctiods,, }.cz with fy = 1and f_,, = f.,Vn € Nis
complete inL?, ([—=, 7).

per

Remark 5.3.8 Due to linear independence of eigenfunctions for distinct eigenvalues, the
set of eigenfunctiong f,,}..cz is also minimal if all eigenvalues are simplelf the set

{fa}nez is complete and minimal, any functioh € LZ.([—=,7]) can be approximated
N

by a finite linear combinatiorfy = > ¢, f, in the following sense: for any fixed >
n=—N

0, there existsV > 1 and the set of coefficients:, }_y<,<n, such that the inequality

If = fxllza,.(-mm) < € holds. This approximation does not imply that the £6f},cz

forms a Schauder basis in the Hilbert sp@cg ([—, 7]), in which case there would exist

a unique series representatipa= > ¢, f, forany f € L2 ([-7, 7).
nez

Theorem 5.3.9 Let{ f, }.cz be a complete and minimal set of eigenfunctions of the spec-
tral problem (5.1.3) for the set of eigenvalugs, },.cz in Theorem 5.3.6. The set of eigen-

functions forms a basis in Hilbert spaéé_ ([, «]) if and only if lim Cos(f:fn\ﬂ) < L.

Proof. According to Theorem 2 on page 31 in [87], the complete and minimal set of
eigenfunctions{ f,, },.cz forms a basis in Hilbert spack = L2 ([—,]) if and only if

per

sup || Py|| < oo, wherePy is the projector of the linear spdty,, } - n<.<n in the direction
N

of the linear spar f,, }>~+1. Since the Hilbert spack is a direct sum of the two lin-
ear spans above, the norm of the parallel projeétpmas the geometrical representation

3By Lemma 5.3.4, all eigenvalues are simple starting with serae N.
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| Pnl| = SmlaN, whereay is the angle between the two linear spans [4]. This implies that
the set{ f,,} .cz is a basis in the Hilbert spac€ if and only if
e |(fn7 fn+1)|
coS(fn, frni1) = 0 < 1, (5.3.14)
Al il
for sufficiently largen € Z [53]. O

5.4 Numerical shooting method

We approximate isolated eigenvalues of the spectral problem (5.1.8) 4o < 2 nu-
merically. In agreement with numerical results in [11], we show that all eigenvalues in the
set{\, }.cz are simple and purely imaginary. Therefore, the{set},z can be ordered

in the ascending order, such that = 0, A\, = —A_,,, Vn € N, Im)\, < ImA\,; and

lim |\,| = co. We also show that the angle between two subsequent eigenfungtions

n—o0

andf,.1(0) in the set{ f,,(0) },.cz tends to zero as — oc.

The numerical shooting method is based on the ODE formulation of the spectral
problem (5.1.3). By Lemma 5.3.1 and Corollary 5.3.2, complex eigenvaluesC are
determined by roots of the analytic functiéi(\) in the A-plane. The number of complex
eigenvalues can be computed with the winding number theory. The number and location of
purely imaginary eigenvalues can be found from real-valued roots of a scalar real-valued
function.

Proposition 5.4.1 Let the eigenfunctiori(¢) of the spectral problem (5.1.3) for< e < 2
be normalized by the conditiof{0) = 1. The eigenvalue is purely imaginary if and only
if £(6) = f(—0) onf € [—, ).

Proof. If A € iR and f(¢) satisfies the second-order ODE (5.1.3) brne [—m, ],
then f(—0) satisfies the same ODE (5.1.3) 8nc [, «]. By Corollary 5.3.2, iff €
H} . ([-m,7]), f(0) = 1and0 < e < 2, the solutionf(#) is uniquely defined. By unique-

ness of solutionsf(¢) = f(—0) ond € [—x, x|.

If f(0) = f(—0)oné € [—=, ], then,

/ﬂ sin 0] £/ (6)[2d0 /W sin 0] f/(6)[2d0 — / sin 0] f'(—0)2d6 = 0,
T 0 0

such thaRe\ = 0 according to the equality (5.2.7) in Lemma 5.2.5. OJ

Corollary 5.4.2 Let f(0) be an eigenfunction of the spectral problem (5.1.3)Xor iR,
suchthatf € H..([-m,7])andf(0) = 1. Then,f(r) = f(—)is equivalenttgf () € R.
The eigenvalue € (R is simple if and only if

(f*, f) = 2Re /07r fO) f(m —0)do # 0. (5.4.1)
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Proof. The first assertion follows by the symmetry relatip(@) = f(—0) evaluated at
0 = =. The second asserion follows by Lemma 5.2.4 with the use of the symifigtty—
f(m—0). O
By Lemma 5.3.1, the functiori(d) with f(0) = 1 is represented uniquely by the
Frobenius series
FO)=f1(0) =1+ ", (5.4.2)

neN

where the coefficientéc, } .« are uniquely defined by the recursion relation

1 (-1)2"m
Cp = ——) <)\Cn_1 +€en Z m0m> s n € N, (543)

wherec, = 1 andN' is a set of integers in the interval, n — 2] such that, — m is even.
For instance,
A A2 AA? + €(1 + 2¢))
_ Co — _
1+e 2141 +2¢) 3114 €)(1+2€)(1+ 3¢)’

C1 = C3 = —
and so on. We truncate the power series expansiofy oa 100 terms and approximate
the initial value[f (6,), f'(6o)] atf, = 10~8. By using the fourth-order Runge—Kutta ODE
solver with time stegh = 10~%, we obtain a numerical approximation ¢f= £, (9) on

0 € [0y, m — bp] for Xandf = f_(0) on the same interval for \. By Lemma 5.2.4(i), the
numerical approximation of the functiari(\) of Corollary 5.3.2 is

Fe()‘) = fi(m = bo) — f-(m — o). (5.4.4)

If \ € iR, the functionF,()\) is simplified by using Corollary 5.4.2 d&(\) = 2iIm f, (7 —
6y). Table 1 represents the numerical approximations of the first four non-zero eigenvalues
A € iR for e = 0.5, 1.0, 1.5% with the error computed from the residual

(f, Lf)
(f, /)

We can see from Table 1 that the accuracy drops with larger valuesuwod for larger
eigenvalues, but the eigenvalues persist inside the intgifval2.

Figure 5.1shows the profiles of eigenfunctiorf$d) on ¢ < [0, 7] for the first two
eigenvalues\ = iw; » € iR, for e = 0.5 (left) ande = 1.5 (right). We can see from Fig.

R:‘ —)\‘.

4We note that the Frobenius series (5.4.2) is not affected by the logarithmic terms fas ande = 1.0,
since0 is the largest index of the indicial equationdat 0.
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1 that the derivative of (/) becomes singular & — 7~ for e > 1. We can also see that
the real part of the eigenfunctiof{¢) has one zero ofi € (0, ) for the first eigenvalue
and two zeros for the second eigenvalue, while the imaginary part of the eigenfunction
f(6) has a fewer number of zeros by one. The numerical approximations of the eigenvalue
and eigenfunctions of the spectral problem (5.1.3) are structurally stable with respect to
variations indy, N andh.

Figure 5.2shows the complex plane of = F.()\) (left) and the argument af
(right) when\ traverses along the first quadrant of the complex plare A; U Ay U A3
fore = 0.5. HereA; = x + ir with = € [r, R], Ay = Re’” with ¢ € [po, 5 — o] and
A3 =71 +iywithy € [r, R], wherer = 0.1, R = 10, andy, = arctan(r/R). It is obvious
that the winding number of.(\) across the closed contour is zero. Therefore, no zeros
of 131()\) occurs in the first quadrant of the complex plane C. The numerical result is
structurally stable with respect to variations-ink ande.

€ | wy R, Ry

%)

0.5

1.167342

0.000051

2.968852

0.000405

1.0

1.449323

0.000837

4.319645

0.007069

1.5

1.757278

0.002691

5.719671

0.018412

€

w3

Ry

Wy

Ry

0.5

5.483680

0.001436

8.715534

0.003653

1.0

8.631474

0.024964

14.382886

0.061881

1.5

11.846709

0.054271

20.138824

0.113834

Table 1: Numerical approximations of the first four eigenvalues= iw, of the
spectral problem (5.1.3) and the residuRls- R,, for three values of.

5.5 Numerical spectral method

The numerical spectral method is based on the reformulation of the second-order ODE
(5.1.3) as the second-order difference equation and the subsequent truncation of the differ-
ence eigenvalue problem. It is found in [119] that the truncation procedure lead to spurious
complex eigenvalues which bifurcate off the imaginary axis.

Let f € H]} ([—m,n]) be an eigenfunction of the spectral problem (5.1.3). This
eigenfunction is equivalently represented by the Fourier series

FO) =3 fe, fu= % / F(O)e™dp,

ne’

(5.5.1)

where the infinite-dimensional vectér= (..., f_o, f_1, fo, f1, fo, --
13(Z) equipped with the nornﬂle?%

.) is defined inf €
= 3 es(1+0?)|ful?> < co. The spectral problem
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Figure 5.1: The real part (blue) and imaginary part (green) of the eigenfunttiyron
¢ € [0, x| for the first (solid) and second (dashed) eigenvaluesiw, » € iR fore = 0.5
(left) ande = 1.5 (right).

A
ol A s 05
/ /\1

-05F

argw
°

-150

~"~10000 0 6000

Figure 5.2: The image of the curve = FE()\), when \ traverses along the contouks
(blue), A, (green) and\; (magenta) foe = 0.5: the image curve on the-plane (left) and
the argument ofv (right).
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(5.1.3) for|e| < 2 is equivalent to the difference eigenvalue problem

nf -+ %n (4 1) fosr — (0= Dfu)] = —iNfn, neZ (5.5.2)

The difference eigenvalue problem (5.5.2) splits into three parts
Af, = —iNf, Af - =M, Ao =0, (5.5.3)

wheref, = (f11, f1o,...) andA is an infinite-dimensional matrix

1 € 0 0]
— 2 3 0 -

A=| 0 =3¢ 3 6e--- (5.5.4)
0 0 —6ec4 .-

SinceA = D —iS, whereD is a diagonal matrix anfl is a self-adjoint tri-diagonal matrix,
one can define the discrete counterpart of Lemma 5.2.5

f., Df,) _ > nen M fnl® Re)\ — (£, Sty)
(f+7f+) ZneN |fn|2 ’ (f+7f+)

wherelmA > 0. The adjoint eigenfunctiorf*(¢) = f(m — ) is recovered from the
eigenvectof by f* = Jf, where

Im)\:(

Jo

J = 0
0

Soo
o = O

and.J, is a diagonal operator with entriés 1,1, —1,1,...).

According to Theorem 5.3.6, rewritten from the set of eigenfunctiofig,.cz to
the set of eigenvectord, },.cz, the inverse matrix operatot— is of the Hilbert-Schmidt
type, and hence compact. Ldt' = PyA~!Py denote the truncation of the matrix op-
eratorA~! at the firstV rows and columns, wherBy is an orthogonal projector from an
infinite-dimensional vector to th& -dimensional vector of the firs¥ components.

Proposition 5.5.1 Operator sequencel,' converges uniformly to the compact operator
A~'as N — oo. Eigenvalues of the matrices,' converge to the eigenvalues of the
compact operatord~! asN — oo.
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Proof. It follows from the Finite Rank Approximation Theorem thBt;, A~! converges
uniformly to the compact operatot—!. Therefore, for any > 0, there exists a number
N; > 1 such that )

5.

Because the adjoint operator is also compact and the orthogonal projéctsra self-
adjoint operator, the sequeng A~'* is uniformly converges tel~'*. Therefore, for any
e > 0, there exists a numbeé¥, > 1 such that

VN >N;: ||[PyA'—A7Y <

YN > Ny:  ||PRA™Y — A7 < g

Let Ny = max(Ny, N2). For anyN > N,, we have

|47 = PyAT Py]| = [[(A7 = PyA™) + Py(A7" = PRA™™)'|
< A7 = PeAT)| + [ PYllI(A7 = PR AT
< A7 = PyAT Py + | (A7 = PyAT) < e

Thereforelimy .., Ay' = A7

Let \o # 0 belongs to the spectrum of the operatbr'. Because all eigenvalues
are isolated, there exists an open b}l € Dom(A~!) with the boundary D, passing
though regular points of operatdrsuch that\, is the only point ofD, in the spectrum set
of A~1. It follows from the compactness 6D, that the sef (Ay" — A\I)™': A€ 9D}
is uniformly bounded by and by\. Therefore, the sequence of the Riesz projectors

_ 1 -1 -1
Ry = —5— ¢ (A3 = A1) A

I'p,

strongly converges to the limiting projector

1
R=—— AP — X))t
271 ( )
FDO
If all Ry = 0, then the limiting projectoR? = 0. OJ

Remark 5.5.2 The distance between eigenvalues/gf and A~* may not be small for
fixed NV, but it becomes small in the limit of larg¥. The convergence of eigenvalues is
not uniform in\.

The smallest eigenvalues of the truncated matri¥ are found with the parallel
Krylov subspace iteration algorithm [4@figure 5.3shows the distance between eigenval-
ues of the shooting method and eigenvalues of the Krylov spectral methee-forl. The
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Figure 5.3: The distance between eigenvalues computed by the shooting and spectral meth-
ods fore = 0.1.

difference between two eigenvalues is small of the ofdlgi0—3) but the advantage of the
parallel algorithm is that the calculating time of 20 largest eigenvalueisbfor N = 10°

takes less than one minute on a network of 16 processors while finding the same set of
eigenvalues by the shooting method with the time étep10~° takes about one hour.

Figure 5.4shows symmetric pairs of eigenvalues of the mattix for ¢ = 0.3
at N = 128 (left) and N = 1024 (right). We confirm the numerical result of [119] that
the truncation of the matrix operater always produces splitting of large eigenvalues off
the imaginary axis. Moreover, starting with some numbgthe eigenvalues ofly are
real-valued. This feature is an artifact of the truncation, which contradicts to Lemmas
5.2.5 and 5.3.4 as well as to results of the shooting method. However, the lafyer is
the more eigenvalues remain on the purely imaginary axis. Therefore, the corresponding
eigenvectors can be used to compute the angle in Theorem 5.3.9.

Figure 5.5(left) show the values of the cosine of the angle (5.3.14) for theJirst
purely imaginary eigenvalues fer= 0.1. As we can see from the figure, the angle between
two eigenvectors tends to zero for larger eigenvalues up to the numerical acdtigacg.

5.5 (right) and Table 2 show that the angle drops to zero faster with larger values of the
parametet.
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Figure 5.4: Spectrum of the truncated difference eigenvalue problem (5.5.2)=dr.3:
N = 128 (left) and N = 1024 (right).
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Figure 5.5: Left: the values obs(f:f,:g for the first 20 purely imaginary eigenvalues
for e = 0.1. Right: the values ofos( fi, f2) versuse.
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eigenvectors ¢ = 0.1 e=03 | e=05
1-2 0.120166| 0.325116| 0.431987
2-3 0.461330| 0.716192| 0.780641
3-4 0.680709| 0.838889| 0.878055
4-5 0.799235| 0.890440| 0.914622
5-6 0.858944| 0.921498| 0.940306
6-7 0.892869| 0.940395| 0.955239
7-8 0.914745| 0.953124| 0.965235
8-9 0.930023| 0.962120| 0.972204
9-10 0.941262| 0.968732| 0.977265
10-11 0.949843| 0.973741| 0.981057
11-12 0.956580| 0.977629| 0.983988
12-13 0.961987| 0.980702| 0.986072
13-14 0.966407| 0.983297| 0.989617
14-15 0.970073| 0.983459| 0.990547
15-16 0.973153| 0.995335| 0.999101
16-17 0.975764| 0.998749| 0.999601

Table 2: Numerical values oéos(f:ﬂl) for the first 16 purely imaginary eigen-
values for three values ef
The angle between two subsequent eigenvectors is closely related to the condition
number [108]
_ Al

cond(\,) = —|(fm 5k

By Lemma 5.2.4(iii), the condition number is infinite for multiple eigenvalues Siricef) =

0. From the point of numerical accuracy, the larger is the condition number, the poorer is
the structural stability of the numerically obtained eigenvalues to the truncation and round-
off errors.

Figure 5.6 shows the condition number (5.5.5) computed for the fitspurely
imaginary eigenvalues fer= 0.001 ande = 0.002. We can see that the condition number
grows for larger eigenvalues which indicate their structural instability. Indeed, starting with
some numben, all eigenvalues are no longer purely imaginary, according to the numerical
approximations offrigure 5.4 The condition numbers become extremely large with larger
values ofe.

We finally illustrate that all true eigenvalues of the spectral problem (5.1.3) are
purely imaginary and simple. To do so, we construct numerically the sign-definite imagi-
nary type function and obtain the interlacing property of eigenvalues of the spectral prob-
lem (5.1.3) for two values = ¢, ande = €, where|e; — €| is small. We say that the
eigenvalues exhibit the interlacing property if there exists an eigenvaldefaer between
each pair of eigenvalues fer= ¢, and vice verse.

(5.5.5)
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Figure 5.6: The condition number for the firgl purely imaginary eigenvalues fer =
0.001 (red) ande = 0.002 (blue).

A meromorphic functionZ(\) is called a sign-definite imaginary type function if
ImG(N) < 0(ImG(N) > 0)onIm(A) < 0(Im(A) > 0) [6]. We construct the meromorphic

functionG(w) inthe formG()\) = ?0&; , WwhereF.(\) is an analytical function of Corollary

5.3.2. The numerical approximation of the meromorphic funafion) is given by@(/\) =

?0—8;. According to Theorems [1.2.1 - 11.3.1 on p. 437-439 in [6], the funct'(a(v\)

is @ meromorphic function of sign-definite imaginary type if and only if it has the form
G(\) = % where P(\) andQ(\) are polynomials with real coefficients, with real and
simple zeros, which are interlacing.

Table 3 shows this interlacing property of eigenvalues§or 0.48 ande; = 0.5.

The remainder tern?, = W measures the numerical error of computations. We

have also computed numerically the valuesﬁlg’r)\) on the grid0.1 < ImA < 100 and

0.1 < ReA < 100 with step sizé).1 in both directions (not shown). Based on the numerical
data, we have confirmed that the functi@ii\) does indeed belongs to the class of sign-
definite imaginary type functions while the eigenvalyes },.cz exhibit the interlacing
property. This computation gives a numerical verification that all eigenvalues of the spectral
problem (5.1.3) are simple and purely imaginary.
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ImA,

R,

ImA,

R,

1.063112
2.970880
5.414789
8.471510
12.312548
16.816692
22.014084
27.899896
34.474785
41.738699
49.691673
08.333258
67.665387
77.957871
89.484519

2.3244e — 10
2.1967e — 10
2.2024e — 10
2.0904e — 10
2.0079e — 10
1.9765e — 10
1.9617e — 10
1.9527e — 10
1.9501e — 10
1.9558e — 10
1.9671e — 10
1.9796e — 10
1.9904¢ — 10
1.9989%¢ — 10
2.6566e — 10

1.068314
3.024428
5.542829
8.693066
12.665485
17.327038
22.711070
28.812177
35.631088
43.167733
51.422281
60.391382
70.140636
79.828287
91.544035

2.4073e — 10
2.2531e — 10
2.2683e — 10
2.1572e — 10
2.0601e — 10
2.0288e — 10
2.0197e — 10
2.0157e — 10
2.0190e — 10
2.0313e — 10
2.0476e — 10
2.0623e — 10
2.0725e — 10
2.0782e — 10
2.0821e — 10

Table 3: The interlacing property of the firdb purely imaginary eigenvalues fer= 0.48

ande = 0.5.
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CHAPTER 6

SUMMARY OF RESULTS AND OPEN QUESTIONS

The four main new results of my doctoral research are represented as separate chapters of
the thesis.

The first result is a proof that spectral stability problems for Hamiltonian systems
with semi-bounded energy can be reformulated in terms of self-adjoint operators acting on a
space with indefinite metric. This allows deriving the criteria for stability and instability of
solitons in terms of sign-definite invariant subspaces using Pontryagin dpacdgcom-
position method. Three major spectral theorems resulted from this approach : the number
of unstable and potentially unstable eigenvalues equals the number of negative eigenvalues
of the self-adjoint operator ifi,;, the total number of isolated eigenvalues is bounded from
above by the total number of isolated eigenvalues of the self-adjoint operalihy, ithe
subspace that related to the absolute continuous spectrum is positive sign-definite. This de-
composition method is used to determine the stability of solitary waves in various classes
of nonlinear PDEs: the NLS, Klein - Gordon and KdV equations.

One of the interesting open questions is an extension of the Pontryagin subspace
theorems to operators acting on exponentially weighted spaces. This is relevant for stability
problems of multi-pulse solitary wave solutions in the 5-th order KdV equation. Potential
applications for this research are magneto-acoustic waves in plasma and capillary-gravity
water waves. It is also an open question how to apply indefinite metric space approach to
spectral analysis of the quadratic pencils of the differential operators. This is relevant for
the spectral stability problems associated with the linearized sine Gordon equation.

The second result is numerical calculations of two-pulse solutions for the fifth-
order KdV equation. Two-pulse solutions are bound states of two solitary waves which
travel together as a single coherent structure with a fixed peak-to-peak separation. We
applied a new numerical method which is a modification of the Petviashvili method of
successive iterations for numerical approximations of pulses. The successive iterations of
the original Petviashvili method do not converge for two-pulse solutions. The iterative
sequence with two pulses leads either to a single pulse or to a spurious solution with two
pulses located at an arbitrary distance. This numerical problem arises due to the presence
of small and negative eigenvalues of the linearized energy operator. We found that this
nearly singular quasi-translational eigenmode does not create any serious problems for
our numerical algorithm. Modification and a proof of the convergence of iterations in a
neighborhood of two-pulse solutions are based on the Lyapunov—Schmidt reduction. It
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is also shown that the embedded eigenvalues of negative Krein signature are structurally
stable in a linearized KdV equation. Combined with stability analysis in Pontryagin spaces,
this result completes the proof of spectral stability of the corresponding two-pulse solutions.

Although one-dimensional models are very useful for conceptual purposes the real
world is not made that way. An open question is: can this method or its modification be
applied in two or three dimensions ? Another question is to see if this algorithm can be
used theV—pulse solutions withV > 2.

The third result is a construction of the canonical transformation of the linearized
coupled-mode system to the block anti—-diagonal form, when the spectral problem reduces
to two coupled two-by-two Dirac systems. This block-diagonalization is used in numerical
computations of eigenvalues that determine stability of gap solitons. This transformation is
significant for numerical approximations of eigenvalues of the linearized Hamiltonian sys-
tems, because the block-diagonalized matrix can be stored in a special compressed format
which requires twice less memory than a full matrix. Spectral analysis of Dirac systems can
be done in terms of self-adjoint operators acting on Krein space (which is a generalization
of Pontryagin space with index= oo). Potential applications for this research are optical
solitons in fibres and photonic crystals which provide an efficient (reliable and fast) means
of long-distance communication.

The last new result is a proof that the operataassociated with the heat equation
(5.1.1) admits a closure ih? . ([—,7]) with a domain inH,.([—, 7]) for |¢| < 2. The
spectrum ofL consists of eigenvalues of finite multiplicities. Using the analytic function
theory and the Fourier series, we have approximated eigenvalues numerically and showed
that all eigenvalues of the spectral problem (5.1.3) are purely imaginary. Furthermore, we
have proved with the assistance of numerical computations that the set of eigenfunctions
of the spectral problem (5.1.3) is complete but does not form a basis in the Hilbert space
Lger([_ﬂ-7 ﬂ—])

We think that there is a relation between these properties of the linear opérator
and ill-posedness of the Cauchy problem for the periodic heat equation (5.1.1). According
to the Hille-Yosida Theorem (see Section IX.7 in [125])[ifs a linear operator with a
dense domain in a Banach spa€eand the resolvent operatof — A\~!L)~! exists for any
ReA > 0, thenL is the infinitesimal generator of a strongly continuous semigroup if and
only if

(7 = AL) M xex < C, (6.0.1)

for someC > 0 uniformly in ReA > 0. Moreover, ifC' < 1, then the semi-group is a
contraction. When the conditions of the Hille—Yosida Theorem are satisfied, the Cauchy
problem associated with the operafois well-posed, whereas it is ill-posed if these con-
ditions are not met.

According to the numerical results on pseudo-spectra in [11] and [119], the level
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set of the resolvent norm

R(A) = (M = L) Ml 2., (- E2er ()

per

extends to the right half-plane, such that\) does not decay along the level set curves
with ReX > 0. This numerical fact serves as an indication that the conditions of the Hille—
Yosida Theorem are not satisfied and the Cauchy problem for the heat equation is ill-posed.
Furthermore, our work in progress is to prove that the ill-posedness of the periodic heat
equation (5.1.1) follows from the fact that the set of eigenfunctions of the opdratoes

not form a basis in the Hilbert spacé = L2 .([-,7]).

Although the series of eigenfunctions of operaiocan not be used to solve the
Cauchy problem for the periodic heat equation, conditional convergence of the series of
eigenfunctions can sometimes be achieved at least for finite times, as illustrated in [12].
Therefore, more detailed studies of applicability of the series of eigenfunctions and its

dependence from the initial dakg are opened for further work.
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