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Abstract

Partial differential equations that conserve energy can often be written as infinite-

dimensional hamiltonian systems of the following general form:du
dt

= JE ′(u(t)), u(t) ∈
X where:J : X → X is a symplectic matrix andE : X → R is aC2 functional defined

on some Hilbert spaceX. A critical point of this equation is a pointφ ∈ X such that

E ′(φ) = 0.

We investigate the spectral stability of solutions in a neighborhood of the critical

point by using the linearized Hamiltonian systemdv
dt

= JE ′′(φ)v. The main objective of

this thesis is to develop analysis of the spectral properties of the non-self-adjoint operator

JE ′′(φ) using the Pontryagin space decomposition. We adopt parallel computations on

Sharcnet clusters to study eigenvalues and eigenvectors ofJE ′′(φ) numerically.

The structure of the thesis is as follows. The brief introduction to the spectral

stability theory is given in Chapter 1. Count of spectrally unstable eigenvalues of the lin-

earized Hamiltonian system using the indefinite metric approach is given in Chapter 2.

This chapter with general theory is followed by case study of three particular problems

where applications of analysis are interwinded with numerical approximations. In Chapter

3, we analyze spectral stability of double-hump solitary wave solutions of the fifth-th or-

der Korteweg–de Vries equation. In Chapter 4, we deal with the coupled-mode system of

the Dirac type, where the linearized operators can be block-diagonalized for analytical and

numerical studies. In Chapter 5, we study the spectrum of the singular differential operator

L = ∂θ + ε∂θ(sin θ∂θ) subject to the periodic boundary conditions onθ ∈ [−π, π]. We

prove that the set of linearly independent eigenfunctions for isolated simple purely imagi-

nary eigenvalues is complete but does not form a basis inH1
per([−π, π]). In the concluding

Chapter 6, we summarize all our results and formulate a list of open questions for further

research.
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CHAPTER 1

INTRODUCTION

1.1 The organization of the thesis

Chapter 1gives a brief introduction to solitary wave solutions of nonlinear PDEs, to the
spectral stability theory and a review of different numerical approaches.

Chapter 2develops the count of isolated and embedded eigenvalues in a gener-
alized eigenvalue problem defined by two self-adjoint operators with a positive essential
spectrum and a finite number of isolated eigenvalues. This generalized eigenvalue problem
determines spectral stability of nonlinear waves in a Hamiltonian dynamical system. The
theory is based on Pontryagin’s Invariant Subspace theorem in an indefinite inner product
space but it extends beyond the scope of earlier papers of Pontryagin, Krein, Grillakis, and
others. In particular, we prove the following three main original results:

(i) the number of unstable and potentially unstable eigenvalues of the generalized eigen-
value problemAu = γKu equalsthe number of negative eigenvalues of the self-
adjoint operatorsA andK−1,

(ii) the total number of isolated eigenvalues of the generalized eigenvalue problemAu =
γKu is bounded from aboveby the total number of isolated eigenvalues of the self-
adjoint operatorsA andK−1,

(iii) the quadratic forms defined by the two self-adjoint operatorsA andK−1 arestrictly
positiveon the subspace related to the continuous spectrum of the generalized eigen-
value problemAu = γKu.

Applications of general theory are developed for three examples: solitons and vortices of
the nonlinear Schrödinger equations and solitons of the Korteweg–De Vries equations.

Chapter 3deals with the existence and stability of two–pulse solutions in the fifth-
order Korteweg–de Vries (KdV) equation. Two new results are obtained:

(i) the Petviashvili method of successive iterations is developed for numerical (spectral)
approximations of the two-pulse solitons and convergence of the iterations is proved
in a neighborhood of the solutions,

1



2 PHD THESIS– M. CHUGUNOVA MCMASTER – MATHEMATICS & STATISTICS

(ii) structural stability of embedded eigenvalues of negative Krein signature is proved in
a context of a linearized KdV equation.

Combined with stability analysis in Pontryagin spaces from the second chapter, the new
results complete the proof of spectral stability of the corresponding two-pulse solutions.
Eigenvalues of the linearized problem are approximated numerically in exponentially weighted
spaces where embedded eigenvalues are isolated from the continuous spectrum. Approx-
imations of eigenvalues and full numerical simulations of the fifth-order KdV equation
confirm stability of two-pulse solutions related to the minima of the effective interaction
potential and instability of two-pulse solutions related to the maxima points.

Chapter 4considers the Hamiltonian coupled-mode system that occur in nonlinear
optics, photonics, atomic physics, and general relativity. Spectral stability of gap solitons is
determined by eigenvalues of the linearized coupled-mode equations, which are equivalent
to a four-by-four Dirac system with sign-indefinite metric. Our main result is:

(i) the block-diagonal representation of the linearized coupled-mode equations is con-
structed to reduce the spectral problem to two coupled two-by-two Dirac systems.

This block-diagonalization is used in numerical computations of eigenvalues that determine
stability of gap solitons.

Chapter 5studies the spectrum of the linear operatorL = −∂θ − ε∂θ(sin θ∂θ)
subject to the periodic boundary conditions on[−π, π]. Our three main results are:

(i) the operatorL admits the closure inL2([−π, π]) with the domain inH1
per([−π, π])

for |ε| < 2,

(ii) the spectrum of the operatorL consists of an infinite sequence of isolated eigenvalues
with accumulation point at infinity,

(iii) the set of eigenfunctions of the operatorL is complete inL2
per([−π, π]).

By using numerical approximations of eigenvalues and eigenfunctions, we show that all
eigenvalues are simple, located on the imaginary axis and the angle between two subse-
quent eigenfunctions tends to zero for larger eigenvalues. As a result, the complete set of
linearly independent eigenfunctions does not form a basis inL2

per([−π, π]).
Chapter 6summarizes the main results and states open questions for further re-

search.

1.2 Nonlinear waves and solitons

Solitary waves or solitons are localized travelling wave solutions of nonlinear PDEs, re-
sulting from a certain balance of dispersive and nonlinear effects. A variety of examples
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exists in the natural science. A solitary wave was first observed by J. Scott Russell in 1834
while riding on horseback beside the narrow Union canal near Edinburgh, Scotland. He
described his observation as follows:

”I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped - not so the mass of water in
the channel which it had put in motion; it accumulates round the prow of the vessel in a
state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and well defined heap
of water, which continued its course along the channel apparently without change of form
or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate
of some eight or nine miles an hour, preserving its original figure some thirty feet long and
a foot to a foot and a half in height. Its height gradually diminished, and after a chase of
one or two miles I lost it in the windings of the channel. Such, in month of August 1834,
was my first chance interview with that rare and beautiful phenomenon which I have called
the Wave of Translation... ”

Further investigations were undertaken by G.B. Airy [1845], G.G. Stokes [1847],
J.V. Boussinesq [1871] and B. Rayleigh [1876] in an attempt to understand this phenom-
enon. J.V. Boussinesq derived a one-dimensional nonlinear evolution equation, which now
bears his name, in order to obtain an approximate description of the solitary wave.

Soliton collisions were studied by the computer experimentation in the 1960s by M.
Kruskal and N. Zabusky [126]. The experiment can be described as follows. If we start with
two solitons, the faster one will overtake the slower one and, after a complicated nonlinear
interaction, the two solitons will emerge unchanged as they move, except for a slight delay.
This kind of behaviour is expected for linear problems since each eigenfunction evolves
separately, but that it could happen for a nonlinear problem was a complete surprise at that
time.

The development of the mathematical theory of solitons started from the works of
P. Lax [83], V. Zakharov and A. Shabat [127], M.J. Ablowitz, D.J. Kaup, A.C. Newell and
H. Segur [1]. In parallel, optical solitons were independently predicted and experimentally
realized in 1980 [90].

The easiest way to describe an optical soliton is using the spatial domain, where
it is simply a self-guided wave. Consider an optical beam as narrow as 5 microns. If
such a beam propagates in a linear medium it diffracts and broadens after even a short
1mm distance. In a nonlinear material light actually changes the index of refraction of the
medium in which it propagates, leading to self-focusing. This self-focusing competes with
diffractive effects, and at sufficient intensities can lead to the development of a structure for
which diffraction and self-focusing exactly balance to create a soliton. The field of optical
solitons has greatly developed over the past decade, and they have become a promising
candidate for optical communication networks.

Typical examples of nonlinear partial differential equations that have soliton so-
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lutions include the Korteweg-de Vries equation, the nonlinear Schrödinger equation, the
coupled-mode Dirac equations, and the sine-Gordon equation. Soliton solutions of nonlin-
ear partial differential equations have arisen in a number of physical contexts: water waves,
collision-free hydromagnetic waves, plasma physics, non-linear optics, lattice dynamics,
ion-acoustic waves (for details and further references see, for example: M.J. Ablowitz and
H. Segur [2]; S.P. Novikov, S.V. Manakov, L.P. Pitaevskii and V.E. Zakharov [91])

1.3 Spectral stability problems

Partial differential equations that conserve energy can often be written as infinite-dimensio-
nal Hamiltonian systems. We investigate the spectral stability of critical points of such
systems by using the linearization. We call the critical point spectrally stable if the whole
spectrum of the linearized energy operator lies in the closed left complex half plane. Spec-
tral stability is the necessary condition for the Lyapunov stability.

Spectral stability of solitary waves has been studied extensively in the recent past.
The first stability instability theorem for a scalar NLS equation was proved by J. Shatah,
W. Strauss [59] and M. Weinstein [122]. Their result was restricted to the case when the
linearized energy operator had not more than one negative eigenvalue and method was
based on the variational structure of the problem. More general approach (for the case of a
finite number of negative eigenvalues) was developed in [60]. This work was followed by
the work of M. Grillakis [62] who derived existence criteria of an eigenvalue of linearized
energy operator with strictly positive real part in terms of the difference in the number
of negative eigenvalues of two self-adjoint operatorsL+ andL− which diagonalize this
operator.

In many problems, stability of equilibrium points in a finite–dimensional Hamil-
tonian system of finitely many interacting particles is determined by the eigenvalues of
some generalized eigenvalue problem [49],

Au = γKu, u ∈ Rn, (1.1)

whereA and K are symmetric matrices inRn×n which define the quadratic forms for
potential and kinetic energies, respectively. The eigenvalueγ corresponds to the normal
frequencyλ = iω of the normal mode of the linearized Hamiltonian system near the equi-
librium point, such thatγ = −λ2 = ω2. The equilibrium point is unstable if there exists
an eigenvalueγ such thatγ < 0 or =(γ) 6= 0. Otherwise, the system is spectrally sta-
ble. Moreover, the equilibrium point is a minimizer of the Hamiltonian if all eigenvalues
γ are positive and semi-simple and the quadratic forms for potential and kinetic energies
evaluated at eigenvectors ofAu = γKu are strictly positive.

The eigenspace corresponding to a given eigenvalue is the vector space of all its
eigenvectors. The geometric multiplicity of an eigenvalue is the dimension of the associ-
ated eigenspace. The generalized eigenspace is the vector space of all eigenvectors and
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generalized eigenvectors corresponding to the eigenvalue. The algebraic multiplicity is the
dimension of the associated generalized eigenspace. When the matrixK is positive definite,
all eigenvaluesγ are real and semi-simple (that is the geometric and algebraic multiplici-
ties coincide). By the Sylvester’s Inertia Law theorem [50], the numbers of positive, zero
and negative eigenvalues of the generalized eigenvalue problemAu = γKu equal tothe
numbers of positive, zero and negative eigenvalues of the matrixA.

In our context, the Hamiltonian system is infinite dimensional as it represents a
nonlinear PDE, while the critical points of the system are solitary wave solutions. In many
PDE problems, a linearization of the nonlinear system at the spatially localized solution
results in the generalized eigenvalue problem of the formAu = γKu, whereA andK−1

are self-adjoint operators on a complete infinite-dimensional metric space (Hilbert space).
This generalized eigenvalue problem can be studied using the Pontryagin spaceΠκ where
the indexκ equals to the number of negative eigenvalues of the operatorsA or K−1 .

The indefinite metric spaceΠ1 (that is with the indexκ = 1) was first introduced
by S.L. Sobolev in 1940’s when he studied the rotating shallow water model. S.L. Sobolev
sparked the interest of L.S. Pontryagin who wrote a pioneer article ”Hermitian operators in
spaces with indefinite metric” in 1944. This Pontryagin’s result started the new branch of
the functional analysis - theory of linear operators in indefinite metric space.

Most of fundamental results in this theory were obtained by M.G. Krein in 1960’s:
axiomatic approach to the Pontryagin spaceΠκ, spectral theory of unitary and self-adjoint
operators acting in Pontryagin space, sign definite invariant subspaces of these operators,
bifurcation theory. M.G. Krein also described application of this indefinite matric spectral
analysis to the problem of oscillations of heavy viscous fluid in the open motionless vessel
(the most complete list of references can be found in [8, 67]). The spectral properties
and sign definite invariant subspaces of dissipative and contractive operators acting in the
spaces with indefinite metric were studied in 1980’s by T. Azizov and I.S. Iohvidov [8].

There has been recently a rapidly growing sequence of publications on mathemati-
cal analysis of the spectral stability problem in the context of nonlinear Schrödinger equa-
tions [37, 70, 97]. Besides predictions of spectral stability or instability of spatially lo-
calized solutions in Hamiltonian dynamical systems, linearized Hamiltonian systems are
important in analysis of orbital stability [59, 60, 33], asymptotic stability [105, 107, 36],
stable manifolds [32, 112], and blow-up of solutions in nonlinear equations [104, 80].

1.4 Numerical methods in nonlinear PDEs.

Both spectral and nonlinear stability of a critical point in a dynamical system can be inves-
tigated numerically.

To solve a spectral stability problem, the eigenvalues of the operatorJE ′′(φ) can
be found by the Fourier basis decomposition and the Galerkin approximation. Although
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this is a very robust numerical method it may also result in spurious unstable eigenvalues
originated from the continuous spectrum as it was found for the coupled mode Dirac sys-
tem in [9, 10]. A delicate but time-consuming implementation of the continuous Newton
method was developed to identify the ”right” unstable eigenvalues from the spurious ones
[9, 10]. Similar problems were discovered in the variational method [76, 77] and in the nu-
merical finite-difference method [114, 115]. To analyse the bifurcations from the edge of
the continuous spectrum, however the more accurate method of the discretization should be
applied. A new progress on computations of eigenvalues in the coupled-mode system was
made with the use of exterior algebra in the numerical computations of the Evans function
[41].

Another approach is the discretization of the linear differential operatorJE ′′(φ)
using approximation of derivatives by the differentiation matrices. It is a very useful tool to
convert a two-point boundary eigenvalue problem to a matrix eigenvalue problem [22, 44].
Differentiation matrices are derived from a spectral collocation method. In this method,
an unknown solution to the differential equation is expanded as a global interpolant, such
as trigonometric or polynomial functions [45, 58]. In other methods, such as finite ele-
ments or finite differences, the underlying expansions involves local interpolants such as
piecewise polynomials. In practice that means that the accuracy of the spectral methods is
superior: for problems with smooth solutions convergence rates ofO(e−cn) or O(e−c

√
n)

are routinely achieved, wheren is the number of grid nodes. In contrast, finite difference
or finite elements yield convergence rates that are only algebraic inn, typically O(n−2) or
O(n−4).

The negative side of using spectral methods instead of finite differences or finite el-
ements is replacing sparse matrices by full matrices that leads to the significant increase of
the computational time. Partially this long-computational-time problem can be solved by
means of parallel software libraries (Scalapack) which were recently developed for com-
putations of large eigenvalue problems [54]. Distribution of computations of eigenvalues
for different parameter values between parallel processors can be implemented by using
Message Passing Interface [30].

To solve a nonlinear stability problem, a slightly perturbed spectrally stable critical
point φ can be used as an initial value of the nonlinear dynamical problem. A split-step
method can be used to discretize the time variable of the partial differential equation and
the finite-difference or Fourier methods can be used to discretize space variable [121].
Although this method is robust and widely used, it does not solve the stiffness problem,
which arises in the higher-order weakly nonlinear partial differential equations such as the
fifth-order KdV equation with cubic nonlinearity. The reason why the problem is stiff
can be explained by different scales associated with linear and nonlinear components of
the equation. The linear part involves a huge range of scales from the very slow to the
very fast, while the effects of nonlinearity are significant only over long time intervals and
couple the various linear modes. The problem can be eliminated by numerical pseudo-
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spectral method which is described in details in [89]. The method is based on the explicit
analytical integration of the linear part of the equation, through an integrating factor. The
fourth-order Runge-Kutta method can be used to integrate the evolution equation in time.
The greatest advantage of this numerical method is that no stability restriction arising from
the linear part of the partial differential equation is posed on the timestep of the numerical
integration scheme.
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CHAPTER 2

SPECTRAL ANALYSIS OF LINEARIZED HAMILTONIAN
SYSTEMS USING THE PONTRYAGIN SPACE

DECOMPOSITION.

2.1 Introduction

Nonlinear partial differential equations that conserve energy can often be written as infinite-
dimensional Hamiltonian systems in the following general form:

du

dt
= JE ′(u(t)), u(t) ∈ X , (2.1.1)

whereJ : X → X is a symplectic operator with the propertyJ∗ = −J andE : X →
R is a C2 functional defined on some Hilbert spaceX . A critical point φ ∈ X of the
Hamiltonian functionalE, such thatE ′(φ) = 0, represents a localized solution of the
nonlinear partial differential equation. The spectral stability of a localized solutionφ is
defined by the spectrum of the non-self-adjoint eigenvalue problem

JE ′′(φ)v = λv, v ∈ X , (2.1.2)

which is obtained after a linearization of the Hamiltonian system (4.2.6). Although the
operatorJE ′′(φ) is non-self-adjoint, it is related to the self-adjoint operatorE ′′(φ) by mul-
tiplication of the symplectic operatorJ . In many specific examples, such as the nonlinear
Schr̈odinger and Korteweg–de Vries equations, the non-self-adjoint eigenvalue problem
(2.1.2) can be rewritten as the generalized eigenvalue problem

Aw = γKw, w ∈ X , (2.1.3)

whereA andK are self-adjoint operators in the Hilbert spaceX andγ = −λ2. The critical
point φ is said to have an unstable eigenvalueγ if γ < 0 or Im(γ) 6= 0. Otherwise, the
critical point is weakly spectrally stable. Moreover, it is a minimizer of the Hamiltonian
functionalE(φ) if all eigenvaluesγ are positive and the quadratic forms(A·, ·) and(K·, ·)
evaluated at the eigenvectors of the generalized eigenvalue problem (2.1.3), are strictly
positive.

9
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The main purpose of this chapter to develop analysis of the generalized eigenvalue
problem 2.1.3 in infinite dimensions by using the Pontryagin space decomposition [106].
The theory of Pontryagin spaces was developed by M.D. Krein and his students (see books
[8, 53, 67]) and partly used in the context of spectral stability of solitary waves by R.
MacKay [86], M. Grillakis [62], and V. Buslaev & G. Perelman [21] (see also a recent
application in [64]). We shall give an elegant geometric proof of the Pontryagin’s Invari-
ant Subspace theorem.We shall give an elegant geometric proof of Pontryagin’s Invariant
Subspace Theorem and then apply this theorem to establish our main results:

(i) the number of unstable and potentially unstable eigenvalues of the generalized eigen-
value problem (2.1.3)equalsthe number of negative eigenvalues of the self-adjoint
operatorsA andK−1,

(ii) the total number of isolated eigenvalues of the generalized eigenvalue problem (2.1.3)
is bounded from aboveby the total number of isolated eigenvalues of the self-adjoint
operatorsA andK−1,

(iii) the quadratic forms defined by the two self-adjoint operatorsA andK−1 arestrictly
positiveon the subspace related to the continuous spectrum of the generalized eigen-
value problem (2.1.3).

The first result is a remake of the main results obtained in [37, 70, 97], although the
method of proof presented therein is quite different than that given here. The second result
gives a new inequality on the number of isolated eigenvalues of the generalized eigenvalue
problem (2.1.3), which can be useful to control the number of neutrally stable eigenvalues
in the gap of the continuous spectrum of the linearized operator associated with the stable
localized solutions. The third result has a technical significance since it establishes a simi-
larity between Sylvester’s Inertial Law used in [97] and Pontryagin’s space decomposition
used here. With this construction, one can bypass the topological theory developed in [62]
and used in [70].

The structure of this chapter is as follows. Main formalism of the generalized eigen-
value problem is described inSection 2.2. The Pontryagin Invariant Subspace theorem is
proved inSection 2.3. Spectral properties of self adjoint operators acting in the Pontryagin
space are studied in theSection 2.4. Main results on eigenvalues of the generalized eigen-
value problem are formulated and proved inSection 2.5. Sections 2.6, 2.7 and 2.8contain
applications of the main results to solitons and vortices of the nonlinear Schrodinger equa-
tions and solitons of the Korteweg–De Vries equations.
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2.2 Formalism and review of results

Let L+ andL− be two real-valued self-adjoint operators defined on a Hilbert spaceX with
the inner product(·, ·). Our two assumptions on operatorsL+ andL− are listed here:

P1 The essential spectrumσe(L±) includes the absolute continuous part bounded from
below byω+ ≥ 0 andω− > 0 and finitely many embedded eigenvalues of finite
multiplicities.

P2 The discrete spectrumσd(L±) in X includes finitely many isolated eigenvalues of
finite multiplicities with p(L±) positive,z(L±) zero, andn(L±) negative eigenval-
ues1.

We consider the linear eigenvalue problem defined by the self-adjoint operatorsL± in the
form

L+u = −λw, L−w = λu, u, w ∈ X , (2.2.1)

whereλ ∈ C. Under the assumptions P1–P2 the kernelker L− of the operatorL− is finite
dimensional, the eigenvalueλ = 0 of this operator is isolated. It follows from above that
the range of the operatorran L− =: H is closed. LetP be the orthogonal projection from
X toH, whereH is the constrained Hilbert space

H = {u ∈ X : u ⊥ Ker(L−)} . (2.2.2)

SincePu ∈ range(L−), thenPw = λPL−1
− Pu and

PL+Pu = −λ2PL−1
− Pu, u ∈ H.

Therefore, the linear eigenvalue problem (2.2.1) in the Hilbert spaceX is rewritten as the
generalized eigenvalue problem in the constrained spaceH as follows

Au = γKu, u ∈ H, (2.2.3)

whereA = PL+P, K = PL−1
− P, andγ = −λ2. We note thatK is a bounded invertible

self-adjoint operator onH, while A is a generally unbounded non-invertible self-adjoint
operator onH. Finitely many isolated eigenvalues of the operatorsA andK−1 inH are dis-
tributed between negative, zero and positive eigenvalues away from the essential spectrum.
By the spectral theory of self-adjoint operators, the Hilbert spaceH can be equivalently

1These indices can be zero and the corresponding subspaces can be empty. For instance, ifω+ = 0, then
p(L+) = z(L+) = 0.
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decomposed into two orthogonal sums of subspaces which are invariant with respect to the
operatorsK andA:

H = H−
K ⊕H+

K ⊕Hσe(K)
K , (2.2.4)

H = H−
A ⊕H0

A ⊕H+
A ⊕Hσe(A)

A , (2.2.5)

where notation−(+) stands for negative (positive) isolated eigenvalues,0 for the isolated
kernel, andσe for the essential spectrum that includes the absolute continuous part and
embedded eigenvalues. The subspacesH+

A andH0
A are empty ifω+ = 0, while σe(A)

belongs to the interval[ω+,∞). SinceP is a projection defined by eigenspaces ofL−
while K = PL−1

− P, it is obvious thatdim(H−
K) = n(L−), dim(H+

K) = p(L−), andσe(K)
belongs to the interval(0, ω−1

− ]. The eigenvalues ofA are related to the eigenvalues ofL+

according to the standard variational theory in constrained Hilbert spaces [60, 37]. The
main result of this theory is formulated in the following proposition.

Proposition 2.1 Letω+ > 0, Ker(L−) = Span{v1, v2, ..., vn} ∈ X , and define the matrix-
valued functionM(µ):

∀µ /∈ σ(L+) : Mij(µ) = ((µ− L+)−1vi, vj), 1 ≤ i, j ≤ n. (2.2.6)

Let n0, z0, and p0 be the number of negative, zero and positive eigenvalues ofM0 =
limµ↑0 M(µ)2. Then,

dim(H−
A) = n(L+)− p0 − z0, dim(H0

A) = z(A) + z0,

dim(H+
A) ≤ p(L+) + p0 + z(L+)− z(A). (2.2.7)

Proof. According to the results of [37], alln eigenvalues ofM(µ) are strictly decreasing
functions ofµ on the intervals(−∞, ω+)\σd(L+). These functions may have infinite jump
discontinuities from minus infinity to plus infinity across the points ofσd(L+) and have a
uniform limit to minus zero asµ → −∞. The count of jumps of the eigenvalues ofM(µ)
gives the count of eigenvalues of the constrained variational problem

(µ− L+)v =
n∑

j=1

νjvj, v ∈ H, µ ∈ (−∞, ω+), (2.2.8)

where(ν1, ν2, ..., νn) are Lagrange multipliers. The first two equalities (2.2.7) are proved in
Lemma 3.4 of [37] for the casez(L+) = z(A) = 0 and in Theorem 2.9 of [37] for the case
z(L+) 6= 0. The last inequality (2.2.7) follows from the count of positive eigenvalues of

2SinceL+ is generally non-invertible, some eigenvalues ofM0 can be infinite ifz(A) 6= z(L+) that is if
Ker(L+) /∈ H. The numbersn0, z0, andp0 denotefiniteeigenvalues ofM0, such thatn0 + z+ + p0 ≤ n.
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the constrained variational problem (2.2.8), which originate from jumps of eigenvalues of
M(µ) on 0 < µ < ω at p(L+) positive eigenvalues ofL+, from p0 positive eigenvalues of
M0, and from(z(L+)−z(A)) eigenvalues ofM(µ) which have infinite jump discontinuities
acrossµ = 0. The upper bound in the last inequality is achieved if all limiting eigenvalues
of M+ = limµ↑ω+ M(µ) are either negative or diverge to negative infinity.

SinceA has finitely many negative eigenvalues andK has no kernel inH, there
exists a small numberδ > 0 in the gap0 < δ < |σ−1|, whereσ−1 is the smallest (in absolute
value) negative eigenvalue ofK−1A. The operatorA + δK is continuously invertible inH
and the generalized eigenvalue problem (2.2.3) is rewritten in the shifted form,

(A + δK)u = (γ + δ)Ku, u ∈ H. (2.2.9)

By the spectral theory, an alternative decomposition of the Hilbert spaceH exists for0 <
δ < |σ−1|:

H = H−
A+δK ⊕H+

A+δK ⊕Hσe(A+δK)
A+δK , (2.2.10)

whereσe(A + δK) belongs to the interval[ωA+δK ,∞) and ωA+δK is the minimum of
σe(A + δK). If ω+ > 0, thenωA+δK > 0 for sufficiently smallδ 6= 0. If ω+ = 0, we shall
add the following assumption:

P3 If ω+ = 0, thenωA+δK > 0 for sufficiently smallδ > 03. Moreover,dim(Ker(A)) ≤
1 and there exists at most one small negative eigenvalueµ(δ) of A + δK, such that
limδ↑0 µ(δ) = 0.

We shall now introduce notations for particular eigenvalues of the generalized eigen-
value problem (2.2.3) and formulate our main results proved in this chapter. LetN−

p (N−
n ),

N0
p (N0

n), andN+
p (N+

n ) be respectively the numbers of negative, zero, and positive eigen-
valuesγ of the generalized eigenvalue problem (2.2.3) with the account of their algebraic
multiplicities whose eigenvectors are associated to the non-negative (non-positive) values
of the quadratic form(K·, ·). The positive eigenvaluesγ with γ ≥ ω+ω− are embedded
into the continuous spectrum of the generalized eigenvalue problem (2.2.3). Finally, let
Nc+ (Nc−) be the number of complex eigenvalues in the upper (lower) half-planeγ ∈ C,
Im(γ) > 0 (Im(γ) < 0). BecauseA andK are real-valued operators, it is obvious that
Nc+ = Nc−.

Theorem 1 Let assumptions P1–P3 be satisfied. Eigenvalues of the generalized eigenvalue
problem (2.2.3) satisfy the following two equalities:

N−
p + N0

n + N+
n + Nc+ = dim(H−

A+δK) (2.2.11)

N−
n + N0

n + N+
n + Nc+ = dim(H−

K) (2.2.12)

3The first statement of assumption P3 was recently proved for abstract operatorsA andK in [7].
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Proof. The theorem is proved in Section 5.

Corollary 2.2 Let Nneg = dim(H−
A+δK) + dim(H−

K) be the total negative index of the
shifted generalized eigenvalue problem (2.2.9). LetNunst = N−

p + N−
n + 2Nc+ be the total

number of unstable eigenvalues that includesN− = N−
p + N−

n negative eigenvaluesγ < 0
andNc = Nc+ + Nc− complex eigenvalues withIm(γ) 6= 0. Then,

∆N = Nneg −Nunst = 2N+
n + 2N0

n ≥ 0. (2.2.13)

Proof. The equality (2.2.13) follows by the sum of (2.2.11) and (2.2.12).

Theorem 2 Let assumptions P1–P2 be satisfied andω+ > 0. LetNA = dim(H−
A ⊕H0

A ⊕
H+

A) be the total number of isolated eigenvalues ofA. Let NK = dim(H−
K ⊕ H+

K) be
the total number of isolated eigenvalues ofK. Isolated eigenvalues of the generalized
eigenvalue problem (2.2.3) satisfy the inequality:

N−
p + N0

p + N+
p + Nc+ ≤ NA + NK , (2.2.14)

whereN+
p is counted from isolated positive eigenvaluesγ < ω+ω−.

Proof. This theorem is proved in Section 5.

Corollary 2.3 LetNtotal = NA + NK be the total number of isolated eigenvalues of oper-
atorsA andK. LetNisol = N−

p + N−
n + N0

p + N0
n + N+

p + N+
n + Nc+ + Nc− be the total

number of isolated eigenvalues of the generalized eigenvalue problem (2.2.3). Then,

Nisol ≤ Ntotal + dim(H−
K), (2.2.15)

whereN+
p andN+

n are counted from isolated positive eigenvaluesγ < ω+ω−.

Proof. The inequality (2.2.15) follows by the sum of (2.2.12) and (2.2.14).

To prove Theorems 1 and 2, we shall prove Pontryagin’s Invariant Subspace The-
orem and apply this theorem to the count of isolated and embedded eigenvalues for the
non-self-adjoint operatorK−1A.

2.3 Pontryagin’s Invariant Subspace Theorem

We develop here an abstract theory of Pontryagin spaces with sign-indefinite metric, where
the main result is Pontryagin’s Invariant Subspace Theorem.
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Definition 3.1 Let H be a Hilbert space equipped with the inner product(·, ·) and the
sesquilinear form[·, ·]4. The Hilbert spaceH is called the Pontryagin space (denoted as
Πκ) if it can be decomposed into the sum, which is orthogonal with respect to[·, ·],

H .
= Πκ = Π+ ⊕ Π−, (2.3.1)

whereΠ+ is a Hilbert space with the inner product(·, ·) = [·, ·], Π− is a Hilbert space with
the inner product(·, ·) = −[·, ·], andκ = dim(Π−) < ∞.

Remark 3.2 We shall write components of an elementx in the Pontryagin spaceΠκ as a
vectorx = {x−, x+}. The orthogonal sum (2.3.1) implies that any non-zero elementx 6= 0
is represented by two terms,

∀x ∈ Πκ : x = x+ + x−, (2.3.2)

such that
[x+, x−] = 0, [x+, x+] > 0, [x−, x−] < 0, (2.3.3)

andΠ+ ∩ Π− = ∅.

Definition 3.3 We say thatΠ is a non-positive subspace ofΠκ if [x, x] ≤ 0 ∀x ∈ Π. We say
thatΠ is a maximal non-positive subspace if any subspace ofΠκ of dimension higher than
dim(Π) is not a non-positive subspace ofΠκ. Similarly, we say thatΠ is a non-negative
(neutral) subspace ofΠκ if [x, x] ≥ 0 ([x, x] = 0) ∀x ∈ Π.

Lemma 3.4 The dimension of the maximal non-positive subspace ofΠκ is κ.

Proof. By contradiction, we assume that there exists a(κ + 1)-dimensional non-positive
subspacẽΠ. Let {e1, e2, ..., eκ} be a basis inΠ− in the canonical decomposition (2.3.2).
We fix two elementsy1, y2 ∈ Π̃ with the same projections to{e1, e2, ..., eκ}, such that

y1 = α1e1 + α2e2 + ... + ακeκ + y1p,

y2 = α1e1 + α2e2 + ... + ακeκ + y2p,

wherey1p, y2p ∈ Π+. It is clear thaty1−y2 = y1p−y2p ∈ Π+ such that[y1p−y2p, y1p−y2p] >
0. On the other hand,y1 − y2 ∈ Π̃, such that[y1 − y2, y1 − y2] ≤ 0. Hence, we have a
contradiction, which is resolved only ify1p = y2p = 0. Therefore,̃Π is still aκ-dimensional
non-positive subspace ofΠκ.

4We say that a complex-valued form[u, v] on the product spaceH×H is a sesquilinear form if it is linear
in u for each fixedv and linear with complex conjugate inv for each fixedu.
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Lemma 3.5 (Cauchy-Schwartz)Let Π be either non-positive or non-negative subspace
of Πκ. Then,

∀f, g ∈ Π : |[f, g]|2 ≤ [f, f ][g, g]. (2.3.4)

Proof. The proof resembles that of the standard Cauchy–Schwartz inequality. LetΠ be a
non-positive subspace ofΠκ, Then, for anyf, g ∈ Π and anyα, β ∈ C, we have

0 ≥ [αf + βg, αf + βg] = [f, f ]|α|2 + [f, g]αβ̄ + [g, f ]ᾱβ + [g, g]|β|2. (2.3.5)

If [f, g] = 0, then inequality (2.3.4) is satisfied since[f, f ] ≤ 0 and[g, g] ≤ 0. If [f, g] 6= 0,
then we choose

α ∈ R, β =
[f, g]

|[f, g]| ,

such that inequality (2.3.5) becomes

0 ≥ [f, f ]α2 + 2α|[f, g]|+ [g, g].

The inequality is satisfied if the discriminant of the quadratic equation is non-positive such
that4|[f, g]|2−4[f, f ][g, g] ≤ 0, that is inequality (2.3.4). LetΠ be a non-negative subspace
of Πκ. Then, for anyf, g ∈ Π and anyα, β ∈ C, we have[αf + βg, αf + βg] ≥ 0 and the
same arguments result in the same inequality (2.3.4).

Corollary 3.6 Let Π be either non-positive or non-negative subspace ofΠκ. Let f ∈ Π
such that[f, f ] = 0. Then[f, g] = 0, ∀g ∈ Π.

Proof. The proof follows from inequality (2.3.4) since0 ≤ |[f, g]|2 ≤ 0.

Lemma 3.7 Let Π be an invariant subspace ofΠκ with respect to operatorT andΠ⊥ be
the orthogonal compliment ofΠ in Πκ with respect to[·, ·]. Then,Π⊥ is also invariant with
respect toT .

Proof. For all f ∈ Dom(T ) ∩ Π, we haveTf ∈ Π. Let g ∈ Dom(T ) ∩ Π⊥. Then
[g, Tf ] = [Tg, f ] = 0.

Theorem 3 (Pontryagin) LetT be a self-adjoint bounded operator inΠκ, such that[T ·, ·] =
[·, T ·]. There exists aκ-dimensional, maximal non-positive,T -invariant subspace ofΠκ.

Remark 3.8 There are historically two completely different approaches to the proof of this
theorem. A proof based on theory of analytic functions was given by L.S. Pontryagin [106]
while a proof based on angular operators was given by M.G. Krein [53] and later developed
by students of M.G. Krein [8, 67]. Theorem 3 was rediscovered by M. Grillakis [62] with
the use of topology. We describe a geometric proof of Theorem 3 based on Shauder’s
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Fixed Point Theorem. The proof uses the Cayley transformation of a self-adjoint operator
in Πκ to a unitary operator inΠκ (Lemma 3.9) and the Krein representation of the maximal
non-positive subspace ofΠκ in terms of a graph of the contraction map (Lemma 3.11).
While many statements of our analysis are available in the literature, details of the proofs
are missing. Our presentation gives full details of the proof of Theorem 3 (see [64] for a
similar treatment in the case of compact operators).

Lemma 3.9 Let T be a linear operator inΠκ and z ∈ C, Im(z) > 0 be a regular point
of the operatorT , such thatz ∈ ρ(T ). Let U be the Cayley transform ofT defined by
U = (T − z̄)(T − z)−1. The operatorsT andU have the same invariant subspaces inΠκ.

Proof. Let Π be a finite-dimensional invariant subspace of the operatorT in Πκ. It follows
from z ∈ ρ(T ) that(T − z)Π = Π then(T − z)−1Π = Π and(T − z̄)(T − z)−1Π ⊆ Π,
i.e UΠ ⊆ Π. Conversely, letΠ be an invariant subspace of the operatorU . It follows from
U − I = (z − z̄)(T − z)−1 that1 ∈ ρ(U) thereforeΠ = (U − I)Π = (T − z)−1Π. From
there,Π ⊆ dom(T ) and(T − z)Π = Π soTΠ ⊆ Π.

Corollary 3.10 If T is a self-adjoint operator inΠκ, thenU is a unitary operator inΠκ.

Proof. We shall prove that[Ug, Ug] = [g, g], whereg ∈ dom(U), by the explicit compu-
tation:

[Ug, Ug] = [(T − z̄)f, (T − z̄)f ] = [Tf, Tf ]− z̄[f, Tf ]− z[Tf, f ] + |z|2[f, f ],

[g, g] = [(T − z)f, (T − z)f ] = [Tf, Tf ]− z̄[f, Tf ]− z[Tf, f ] + |z|2[f, f ],

where we have introducedf ∈ dom(T ) such thatf = (T − z)−1g.

Lemma 3.11 A linear subspaceΠ ⊆ Πκ is a κ-dimensional non-positive subspace ofΠκ

if and only if it is a graph of the contraction mapK : Π− → Π+, such thatΠ = {x−,Kx−}
and‖Kx−‖ ≤ ‖x−‖.

Proof. Let Π = {x−, x+} be aκ-dimensional non-positive subspace ofΠκ. We will show
that there exist a contraction mapK : Π− 7→ Π+ such thatΠ is a graph ofK. Indeed, the
subspaceΠ is a graph of a linear operatorK if and only if it follows from{0, x+} ∈ Π that
x+ = 0. SinceΠ is non-positive with respect to[·, ·], then[x, x] = ‖x+‖2 − ‖x−‖2 ≤ 0,
where‖ · ‖ is a norm inH. As a result,0 ≤ ‖x+‖ ≤ ‖x−‖ and if x− = 0 thenx+ = 0.
Moreover, for anyx− ∈ Π−, it is true that‖Kx−‖ ≤ ‖x−‖ such thatK is a contraction
map. Conversely, letK be a contraction mapK : Π− 7→ Π+. The graph ofK belongs to
the non-positive subspace ofΠκ as

[x, x] = ‖x+‖2 − ‖x−‖2 = ‖Kx−‖2 − ‖x−‖2 ≤ 0.
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Let Π = {x−,Kx−}. Sincedim(Π−) = κ, thendim(Π) = κ. 5

Proof of Theorem 3. Let z ∈ C, Im(z) > 0 be a regular point of the self-adjoint operator
T in Πκ. LetU = (T − z̄)(T − z)−1 be the Cayley transform ofT . By Corollary 3.10,U is
a unitary operator inΠκ. By Lemma 3.9,T andU have the same invariant subspaces inΠκ.
Therefore, the existence of the maximal non-positive invariant subspace for the self-adjoint
operatorT can be proved from the existence of such a subspace for the unitary operatorU .
Let x = {x−, x+} and

U =

[
U11 U12

U21 U22

]

be the matrix representation of the operatorU with respect to the decomposition (2.3.1).
Let Π denote aκ-dimensional non-positive subspace inΠκ. SinceU has a trivial kernel
in Πκ andU is unitary inΠκ such that[Ux, Ux] = [x, x] ≤ 0, thenΠ̃ = UΠ is also a
κ-dimensional non-positive subspace ofΠκ. By Lemma 3.11, there exist two contraction
mappingsK andK̃ for subspacesΠ andΠ̃, respectively. Therefore, the assignmentΠ̃ =
UΠ is equivalent to the system,

(
x̃−
K̃x̃−

)
=

[
U11 U12

U21 U22

](
x−
Kx−

)
=

(
(U11 + U12K)x−
(U21 + U22K)x−

)
,

and it follows from the mappingΠ− 7→ Π− that

U21 + U22K = K̃(U11 + U12K).

We shall prove that the operator(U11 + U12K) is invertible. By contradiction, we assume
that there existsx− 6= 0 such that̃x− = (U11 + U12K)x− = 0. Sincex̃− = 0 implies that
x̃+ = K̃x̃− = 0, we obtain that{x−,Kx−} is an eigenvector in the kernel ofU . However,
U has a trivial kernel inΠκ so thatx− = 0. LetF (K) be an operator-valued function in the
form,

F (K) = (U21 + U22K)(U11 + U12K)−1,

such thatK̃ = F (K). This function is defined for any contraction operatorK. By Lemma
3.11, the operatorF (K) maps the operator unit ball‖K‖ ≤ 1 to itself. SinceU is a con-
tinuous operator andU12 is a finite-dimensional operator, thenU12 is a compact operator.
Hence the operator ball‖K‖ ≤ 1 is a weakly compact set and the functionF (K) is con-
tinuous with respect to weak topology. By Schauder’s Fixed-Point Principle, there exists
a fixed pointK0 such thatF (K0) = K0 and‖K0‖ ≤ 1. By Lemma 3.11, the graph of
K0 defines theκ-dimensional non-positive subspaceΠ, which is invariant with respect to
U . By Lemma 3.4, theκ-dimensional non-positive subspaceΠ is a maximal non-positive
subspace ofΠκ.

5Extending arguments of Lemma 3.11, one can prove that the subspaceΠ is strictly negative with respect
to [·, ·] if and only if it is a graph of the strictly contraction mapK : Π− 7→ Π+, such thatΠ = {x−,Kx−}
and‖Kx−‖ < ‖x−‖.
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2.4 Spectrum of a self-adjoint operator in Pontryagin space

We apply here Pontryagin’s Invariant Subspace Theorem (Theorem 3) to the product of
two bounded invertible self-adjoint operatorsT = BC in Pontryagin spaceΠκ, where
κ = dim(H−

C). In the context of the shifted generalized eigenvalue problem (2.2.9), we
shall consider two operatorsT in two different Pontryagin spacesΠκ. In the first setting,
B = (A + δK)−1 andC = K with κ = dim(H−

K), while in the second setting,B = K
andC = (A + δK)−1 with κ = dim(H−

A+δK). With a slight abuse of notations, we shall
denote eigenvalues of the operatorT = BC by λ6. In the context of the shifted generalized
eigenvalue problem (2.2.9),λ = (γ + δ)−1 in the first setting andλ = (γ + δ) in the second
setting.

Lemma 4.1 LetH be a Hilbert space with the inner product(·, ·) andB,C : H → H be
bounded invertible self-adjoint operators inH. Define the sesquilinear form

[·, ·] = (C·, ·) (2.4.1)

and extendH to the Pontryagin spaceΠκ, whereκ is the finite number of negative eigenval-
ues ofC counted with their algebraic multiplicities. The operatorT = BC is self-adjoint
in Πκ and there exists aκ-dimensional maximal non-positive subspace ofΠκ which is in-
variant with respect toT .

Proof. It follows from the orthogonal sum decomposition in the Hilbert spaceH that the
quadratic form(C·, ·) is strictly negative on theκ-dimensional subspaceH−

C and strictly
positive on the infinite-dimensional subspaceH+

C ⊕ Hσe(C)
C . By continuity and Gram–

Schmidt orthogonalization, the Hilbert spaceH is extended to the Pontryagin spaceΠκ

with respect to the sesquilinear form (2.4.1). The bounded operatorT = BC is self-adjoint
in Πκ, sinceB andC are self-adjoint inH and

[T ·, ·] = (CBC·, ·) = (C·, BC·) = [·, T ·].

Existence of theκ-dimensional maximal non-positiveT -invariant subspace ofΠκ follows
from Pontryagin’s Invariant Subspace Theorem (Theorem 3).

Remark 4.2 The decomposition (2.3.1) of the Pontryagin spaceΠκ is canonical in the
sense thatΠ+ ∩ Π− = ∅. We consider now various sign-definite subspaces ofΠκ which
are invariant with respect to the operatorT = BC. In general, these invariant sign-definite
subspaces do not provide a canonical decomposition ofΠκ.

6Spectral parameterλ here does not correspond to parameterλ used in the linear eigenvalue problem
(2.2.1).
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LetHc+ (Hc−) denote theT -invariant subspace associated with complex eigenval-
uesλ in the upper (lower) half-plane andHn(Hp) denote the non-positive (non-negative)
T -invariant subspace associated with real eigenvaluesλ. Spectrum ofT consists of three
disjoint sets: isolated and embedded eigenvalues, continuous spectrum, and residual spec-
trum (see Definitions 4.3 and 4.4). We will show that the maximal non-positiveT -invariant
subspace in Lemma 4.1 does not include the residual and continuous spectra but may in-
clude isolated and embedded eigenvalues of finite multiplicities.

Definition 4.3 We say thatλ is a point of the residual spectrum ofT if

Ker(T − λI) = ∅, Range(T − λI) 6= Πκ

andλ is a point of the continuous spectrum ofT if

Ker(T − λI) = ∅, Range(T − λI) 6= Range(T − λI) = Πκ.

Definition 4.4 We say thatλ is a point of the discrete spectrum ofT (an eigenvalue) if
Ker(T − λI) 6= ∅. The eigenvalue is said to be multiple if

dim
(∩k∈NKer(T − λI)k

)
> 1.

Letλ0 be a multiple eigenvalue with

dim (Ker(T − λI)) = 1, dim
(∩k∈NKer(T − λI)k

)
= n < ∞.

The canonical basis for the corresponding eigenspace is defined by the Jordan block of
generalized eigenvectors

fj ∈ Πκ : Tfj = λ0fj + fj−1, j = 1, ..., n, (2.4.2)

wheref0 = 0. If n = ∞, the eigenvalueλ0 is said to have an infinite multiplicity. If
dim (Ker(T − λ0I)) > 1, the eigenspace associated with the eigenvalueλ0 can be repre-
sented by the union of the Jordan blocks.

Lemma 4.5 The residual spectrum ofT is empty.

Proof. By a contradiction, assume thatλ belongs to the residual part of the spectrum of
T such thatKer(T − λI) = ∅ but Range(T − λI) is not dense inΠκ. Let g ∈ Πκ be
orthogonal toRange(T − λI), such that

∀f ∈ Πκ : 0 = [(T − λI)f, g] = [f, (T − λ̄I)g].

Therefore,(T − λ̄I)g = 0, that isλ̄ is an eigenvalue ofT . SinceT is real-valued operator,
λ is also an eigenvalue ofT and hence it can not be in the residual part of the spectrum of
T .
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Lemma 4.6 The continuous spectrum ofT is real.

Proof. Let P+ andP− be orthogonal projectors toΠ+ andΠ− respectively, such that
I = P+ + P−. SinceΠ± are defined by the quadratic form (2.4.1), the self-adjoint op-
eratorC admits the polar decompositionC = J |C|, whereJ = P+ − P− and |C| is a
positive operator. SinceJ2 = I andC is self-adjoint, we haveJ |C|J = |C|. As a result,
J |C|1/2J = |C|1/2 and the operatorT = BC is similar to the operator

|C|1/2BJ |C|1/2 = |C|1/2BJ |C|1/2(J + 2P−) = |C|1/2B|C|1/2 + 2|C|1/2BJ |C|1/2P−.

SinceP− is a projection to a finite-dimensional subspace, the operator|C|1/2BJ |C|1/2 is a
finite-rank perturbation of the self-adjoint operator|C|1/2B|C|1/2. By Theorem 18 on p.22
in [51], the continuous part of the self-adjoint operator|C|1/2B|C|1/2 is the same as that of
|C|1/2BJ |C|1/2. By similarity transformation, it is the same as that ofT .

Theorem 4 Let Πc be an invariant subspace associated with the continuous spectrum of
T . Then,[f, f ] > 0, ∀f ∈ Πc.

Proof. By Lemma 4.1, the operatorT has aκ-dimensional maximal non-positive invariant
subspace ofΠκ. Let us denote this subspace byΠ. Because spectrum ofT is decomposed
into disjoint sets of eigenvalues and the continuous spectrum, any finite-dimensional invari-
ant subspace ofT cannot be a part ofΠc. Therefore,Π andΠc do not intersect. Assume
now that there existsf0 ∈ Πc such that[f0, f0] ≤ 0. Sincef0 /∈ Π, the subspace spanned
by f0 and the basis vectors inΠ is a (κ + 1)-dimensional non-positive subspace ofΠκ.
However, by Lemma 3.4, the maximal dimension of any non-positive subspace ofΠκ is κ.
Therefore,[f0, f0] > 0 for anyf0 ∈ Πc.

2.5 Eigenvalues of the generalized eigenvalue problem

We count here isolated and embedded eigenvalues for the product operatorT = BC. This
operator is self-adjoint in the Pontryagin spaceΠκ, which is defined by the sesquilinear
form (2.4.1) withκ = dim(H−

C). This count is used in the proofs of our main Theorems
1 and 2. We assume that the eigenspaces associated with eigenvalues ofT are represented
by the union of the Jordan blocks, according to Definition 4.4. Each Jordan block of gen-
eralized eigenvectors (2.4.2) is associated with a single eigenvector ofT . We start with an
elementary result about the generalization of the Fredholm theory in the Hilbert spaceH
to that in the Pontryagin spaceΠκ.

Proposition 5.1 Let λ0 be an isolated eigenvalue ofT = BC associated with a one-
dimensional eigenspaceHλ0 = Span{f0}. Then,λ0 = λ̄0 is algebraically simple if and
only if [f0, f0] 6= 0, whileλ0 6= λ̄0 is algebraically simple if and only if[f0, f̄0] 6= 0.
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Proof. SinceB andC are bounded invertible self-adjoint operators in the Hilbert spaceH,
the eigenvalue problemTf = λf in the Pontryagin spaceΠκ is rewritten as the generalized
eigenvalue problemCf = λB−1f in the Hilbert spaceH. Sinceλ0 is an isolated eigen-
value, the Fredholm theory for the generalized eigenvalue problem implies thatλ0 = λ̄0

is algebraically simple if and only if(B−1f0, f0) 6= 0, while λ0 6= λ̄0 is algebraically
simple if and only if(B−1f0, f̄0) 6= 0. Sinceλ0 6= 0 (otherwise,C would not be invert-
ible), the condition of the Fredholm theory is equivalent to the condition that(Cf0, f0) 6= 0
and(Cf0, f̄0) 6= 0, respectively. The assertion is proved due to definition (2.4.1) of the
sesquilinear form.

Lemma 5.2 (Pontryagin) LetHλ andHµ be eigenspaces associated with eigenvaluesλ
andµ of the operatorT in Πκ andλ 6= µ̄. ThenHλ is orthogonal toHµ with respect to
[·, ·].

Proof. Let n andm be dimensions ofHλ andHµ, respectively, such thatn ≥ 1 and
m ≥ 1. By Definition 4.4, it is clear that

f ∈ Hλ ⇐⇒ (T − λI)nf = 0, (2.5.1)

g ∈ Hµ ⇐⇒ (T − µI)mg = 0. (2.5.2)

We should prove that[f, g] = 0 by induction forn + m ≥ 2. If n + m = 2 (n = m = 1),
then it follows from system (2.5.1)–(2.5.2) that

(λ− µ̄)[f, g] = 0, f ∈ Hλ, g ∈ Hµ,

such that[f, g] = 0 for λ 6= µ̄. Let us assume that subspacesHλ andHµ are orthogonal
for 2 ≤ n + m ≤ k and prove that an extended subspaceH̃λ with ñ = n + 1 remains
orthogonal toHµ. To do so, we definẽf = (T − λI)f and verify that

f ∈ H̃λ ⇐⇒ (T − λI)ñf = (T − λI)nf̃ = 0.

By the inductive assumption, we have[f̃ , g] = 0, such that

[(T − λI)f, g] = 0. (2.5.3)

By using system (2.5.1)–(2.5.2) and relation (2.5.3), we obtain that

(λ− µ̄)[f, g] = 0, f ∈ H̃λ, g ∈ Hµ.

Using the same analysis, one can prove that an extended subspaceH̃µ with m̃ = m + 1
remains orthogonal toHλ. As a result, the assertion of the lemma follows by the induction
method.
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Lemma 5.3 Let Hλ0 be an eigenspace associated with a multiple real isolated eigen-
valueλ0 of T in Πκ and {f1, f2, ...fn} be the Jordan chain of eigenvectors. LetH0 =
Span{f1, f2, ..., fk} ⊂ Hλ0, wherek = n

2
if n is even andk = n−1

2
if n is odd, and

H̃0 = Span{f1, f2, ..., fk, fk+1} ⊂ Hλ0.

• If n is even (n = 2k), the neutral subspaceH0 is the maximal sign-definite subspace
ofHλ0.

• If n is odd (n = 2k + 1), the subspacẽH0 is the maximal non-negative subspace
of Hλ0 if [f1, fn] > 0 and the maximal non-positive subspace ofHλ0 if [f1, fn] <
0, while the neutral subspaceH0 is the maximal non-positive subspace ofHλ0 if
[f1, fn] > 0 and the maximal non-negative subspace ofHλ0 if [f1, fn] < 0.

Proof. Without loss of generality we will consider the caseλ0 = 0 (if λ0 6= 0 the same
argument is applied to the shifted self-adjoint operatorT̃ = T − λ0I). We will show that
[f, f ] = 0, ∀f ∈ H0. By a decomposition over the basis inH0, we obtain

∀f =
k∑

i=1

αifi : [f, f ] =
k∑

i=1

k∑
j=1

αiᾱj [fi, fj] . (2.5.4)

We use that

[fi, fj] = [Tfi+1, T fj+1] = ... =
[
T kfi+k, T

kfj+k

]
=

[
T 2kfi+k, fj+k

]
,

for any1 ≤ i, j ≤ k. In the case of evenn = 2k, we have[fi, fj] = [T nfi+k, fj+k] = 0 for
all 1 ≤ i, j ≤ k. In the case of oddn = 2k+1, we have[fi, fj] = [T n+1fi+k+1, fj+k+1] = 0
for all 1 ≤ i, j ≤ k. Therefore,H0 is a neutral subspace ofHλ0. To show that it is
the maximal neutral subspace ofHλ0, letH′

0 = Span{f1, f2, ..., fk, fk0}, wherek + 1 ≤
k0 ≤ n. Sincefn+1 does not exist in the Jordan chain (2.4.2) (otherwise, the algebraic
multiplicity is n + 1) andλ0 is an isolated eigenvalue, then[f1, fn] 6= 0 by Proposition 5.1.
It follows from the Jordan chain (2.4.2) that

[f1, fn] = [Tm−1fm, fn] = [fm, Tm−1fn] = [fm, fn−m+1] 6= 0. (2.5.5)

When n = 2k, we have1 ≤ n − k0 + 1 ≤ k, such that[fk0 , fn−k0+1] 6= 0 and the
subspaceH′

0 is sign-indefinite in the decomposition (2.5.4). Whenn = 2k + 1, we have
1 ≤ n − k0 + 1 ≤ k for k0 ≥ k + 2 andn − k0 + 1 = k + 1 for k0 = k + 1. In
either case,[fk0 , fn−k0+1] 6= 0 and the subspaceH′

0 is sign-indefinite in the decomposition
(2.5.4) unlessk0 = k + 1. In the latter case, we have[fk+1, fk+1] = [f1, fn] 6= 0 and
[fj, fk+1] = [T 2kfj+k, fn] = 0 for 1 ≤ j ≤ k, such that this subspacẽH0 ≡ H′

0 with
k0 = k + 1 is non-negative for[f1, fn] > 0 and non-positive for[f1, fn] < 0.
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Remark 5.4 If λ0 is a real embedded eigenvalue ofT , the Jordan chain (2.4.2) can be trun-
cated atfn even if[f1, fn] = 0. Indeed, the Fredholm theory for the generalized eigenvalue
problem (used in Proposition 5.1) gives a necessary but not a sufficient condition for exis-
tence of the solutionfn+1 in the Jordan chain (2.4.2) if the eigenvalueλ0 is embedded into
the continuous spectrum. If[f1, fn] = 0 butfn+1 does not exist inΠκ, the neutral subspaces
H0 for n = 2k andH̃0 for n = 2k + 1 in Lemma 5.3 do not have to be the maximal non-
positive or non-negative subspaces. The construction of a maximal non-positive subspace
for embedded eigenvalues depends on the computations of the projection matrix[fi, fj] in
the eigenspaceHλ = Span{f1, ..., fn}. For instance, ifλ0 is an algebraically simple em-
bedded eigenvalue, then the corresponding eigenspaceHλ0 = Span{f1} is either positive
or negative or neutral depending on the value of[f1, f1].

Lemma 5.5 Letλ0 ∈ C, Im(λ0) > 0 be an eigenvalue ofT in Πκ,Hλ0 be the correspond-
ing eigenspace, and̃Hλ0 = {Hλ0 ,Hλ̄0

} ⊂ Πκ. Then, the neutral subspaceHλ0 is the
maximal sign-definite subspace ofH̃λ0, such that[f, f ] = 0, ∀f ∈ Hλ0.

Proof. By Lemma 5.2 withλ = µ = λ0, the eigenspaceHλ0 is orthogonal to itself
with respect to[·, ·], such thatHλ0 is a neutral subspace of̃Hλ0. It remains to prove that
Hλ0 is the maximal sign-definite subspace iñHλ. LetHλ0 = Span{f1, f2, ..., fn}, where
{f1, f2, ..., fn} is the Jordan chain of eigenvectors (2.4.2). Consider a subspaceH̃′

λ0
=

Span{f1, f2, ..., fn, f̄j} for any 1 ≤ j ≤ n and construct a linear combination offn+1−j

andf̄j:

∀α ∈ C : [fn+1−j + αf̄j, fn+1−j + αf̄j] = 2Re
(
α[f̄j, fn+1−j]

)
. (2.5.6)

By Proposition 5.1, we have[fn, f̄1] 6= 0 and, by virtue of the chain (2.5.5), we obtain
[f̄j, fn+1−j] 6= 0. As a result, the linear combinationfn+1−j + αf̄j in equality (2.5.6) is
sign-indefinite with respect to[·, ·].

We shall summarize the count of the dimensions of the maximal non-positive and
non-negative subspaces associated with eigenspaces ofT in Πκ. Let Nn(λ0) (Np(λ0))
denote the dimension of the maximal non-positive (non-negative) subspace ofΠκ corre-
sponding to the eigenvalueλ0. By Lemma 5.3, ifλ0 is a real isolated eigenvalue, then the
sum of dimensions of the maximal non-positive and non-negative subspaces ofHλ0 equals
the dimension ofHλ0 (although the intersection of the two subspaces can be non-empty).
For each Jordan block of generalized eigenvectors, we have

(i) If n = 2k, thenNp(λ0) = Nn(λ0) = k.

(ii) If n = 2k + 1 and[f1, fn] > 0, thenNp(λ0) = k + 1 andNn(λ0) = k.

(iii) If n = 2k + 1 and[f1, fn] < 0, thenNp(λ0) = k andNn(λ0) = k + 1.
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By Remark 5.4, ifλ0 is a simple embedded eigenvalue, then

(i) If [f1, f1] > 0, thenNp(λ0) = 1, Nn(λ0) = 0.

(ii) If [f1, f1] < 0, thenNp(λ0) = 0, Nn(λ0) = 1.

(iii) If [f1, f1] = 0, thenNp(λ0) = Nn(λ0) = 1.

We note that the sum of dimensions of the maximal non-positive and non-negative sub-
spaces ofHλ0, that isNp(λ0) + Nn(λ0), exceeds the dimension ofHλ0 in the case (iii).
If λ0 is a multiple embedded eigenvalue, computations of the projection matrix[fi, fj] is
needed to find the dimensionsNp(λ0) andNn(λ0). Finally, by Lemma 5.5, ifλ0 is a com-
plex eigenvalue, thenNp(λ0) = Nn(λ0) = dim(Hλ0) = 1

2
dim(H̃λ0).

Before proofs of Theorems 1 and 2, we have to deal with one more complication,
which is the presence of zero eigenvalues of operatorA. OperatorA determines eitherB
or C in the product operatorT = BC. Since we shiftA to A + δK for sufficiently small
δ > 0, all zero eigenvalues ofA become small non-zero eigenvalues ofA + δK, whereK
is a bounded invertible self-adjoint operator that also determines eitherB or C. Therefore,
we need to know how many zero eigenvalues ofA becomes small positive and negative
eigenvalues ofA + δK. This splitting is described by the following result.

Lemma 5.6 LetH0 be an eigenspace associated with a multiple zero eigenvalue of opera-
tor K−1A inH and{f1, ..., fn} be the Jordan chain of eigenvectors, such thatf1 ∈ Ker(A).
Let ω+ > 0 and0 < δ < |σ−1|, whereσ−1 is the smallest negative eigenvalue ofK−1A.
Then(Kf1, fn) 6= 0 and

• If n is odd, the subspaceH0 corresponds to a positive eigenvalue of the operator
(A + δK) if (Kf1, fn) > 0 and to a negative eigenvalue if(Kf1, fn) < 0.

• If n is even, the subspaceH0 corresponds to a positive eigenvalue of the operator
(A + δK) if (Kf1, fn) < 0 and to a negative eigenvalue if(Kf1, fn) > 0.

Proof. Letµ(δ) be an eigenvalue of the self-adjoint operatorA+δK related to the subspace
H0. By analytic perturbation theory for isolated eigenvalues of self-adjoint operators (see
Chapters VII.3 in [75]), eigenvalueµj(δ) is a continuous function ofδ and

lim
δ→0+

µ(δ)

δn
= (−1)n+1 (Kf1, fn)

(f1, f1)
. (2.5.7)

Sinceω+ > 0, the zero eigenvalue ofA is isolated from the continuous spectrum ofK−1A,
such that(Kf1, fn) 6= 0 by the Fredholm theory for the generalized eigenvalue problem
(2.2.3). The assertion of the lemma follows from the limiting relation (2.5.7). Since no
eigenvalues ofK−1A exists in(−|σ−1|, 0), the eigenvalueµ(δ) remains sign-definite for
0 < δ < |σ−1|.
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Remark 5.7 If ω+ = 0 and assumption P3 is satisfied withKer(A) = Span{f1}, then the
eigenvalueµ(δ) is negative only if(Kf1, f1) ≤ 0. If (Kf1, f1) > 0, the eigenvalueµ(δ)
is either positive or does not exist7. All other small eigenvalues, which may bifurcate from
the end points of the essential spectrum ofA by means of the edge bifurcations [74], are
positive, according to assumption P3.

Proof of Theorem 1. We use the shifted generalized eigenvalue problem (2.2.9) for suf-
ficiently small δ > 0 and consider the bounded operatorT = (A + δK)−1K, that is
B = (A+δK)−1 andC = K. By Lemma 4.1, the operatorT is self-adjoint with respect to
[·, ·] = (K·, ·) and it has aκ-dimensional maximal non-positive invariant subspace, where
κ = dim(H−

K). Counting all eigenvalues of the shifted generalized eigenvalue problem
(2.2.9) with the use of notations of Section 2, we establish equality (2.2.12).
Now, let B = K andC = (A + δK)−1 and consider the bounded operatorT̃ = K(A +
δK)−1 which is self-adjoint with respect to[·, ·] = ((A + δK)−1·, ·). The self-adjoint
operator(A + δK)−1 defines the indefinite metric in the Pontryagin spaceΠ̃κ̃, whereκ̃ =
dim(H−

A+δK). For any simple eigenvalueγ0 of the shifted eigenvalue problem (2.2.9), we
have

∀f, g ∈ Hγ0 : ((A + δK)f, g) = (γ0 + δ)(Kf, g).

If γ0 ≥ 0 or Im(γ0) 6= 0, the maximal non-positive eigenspace ofT̃ in Π̃κ̃ associated with
γ0 coincides with the maximal non-positive eigenspace ofT in Πκ. If γ0 < 0, the maximal
non-positive eigenspace of̃T in Π̃κ̃ coincides with the maximal non-negative eigenspace
of T in Πκ. The same statement can be proved for the case of multiple eigenvaluesγ0.
Threrefore, the dimension of the maximal non-positive eigenspace ofT̃ in Π̃κ̃ is N−

p +
N0

n + N+
n + Nc+, such that equality (2.2.11) follows by Lemma 4.1.

Proof of Theorem 2. We prove this theorem by contradiction and explicit computations.
First, we introduceT andΠκ according to the choiceB = (A + δK)−1 andC = K.
Let Π be a non-negative invariant subspace inΠκ, which is spanned by eigenvectors of
the generalized eigenvalue problem (2.2.3) forN−

p negative eigenvaluesγ < 0, N0
p zero

eigenvaluesγ = 0, N+
p positive isolated eigenvaluesγ > 0, andNc+ complex eigenvalues

with Im(γ) > 0. Let us assume thatN−
p + N0

p + N+
p + Nc+ > NA + NK and derive a

contradiction.
By Gram–Schmidt orthogonalization with respect to the inner product in the Hilbert

spaceH, if N−
p + N0

p + N+
p + Nc+ > NA + NK , then there exist a vectorh ∈ Π such that

(h, f) = 0 and(h, g) = 0 for anyf ∈ H−
A ⊕ H0

A ⊕ H+
A andg ∈ H−

K ⊕ H+
K . Therefore,

h ∈ Hσe(A)
A ∩Hσe(K)

K , such that

(Ah, h) ≥ ω+(h, h), (Kh, h) ≤ ω−1
− (h, h),

7Positive eigenvalues can disappear in the essential spectrum ofA+δK if µ(δ) > ωA+δK for sufficiently
smallδ > 0.
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and
(Ah, h) ≥ ω+ω−(Kh, h).

On the other hand, sinceh ∈ Π, then it can be represented byh =
∑N−

p +N0
p+N+

p +Nc+

i=1 αihi,
where(h1, h2, ..., hN−

p +N0
p+N+

p +Nc+
) is a basis inΠ associated with the eigenspaces of the

generalized eigenvalue problem (2.2.3). By Lemmas 5.2 and 5.5, we obtain

(Ah, h) =
∑
i,j

αiᾱj(Ahi, hj)

=
∑

γi=γj<0

αiᾱj(Ahi, hj) +
∑

γi=γj=0

αiᾱj(Ahi, hj) +
∑

γi=γj>0

αiᾱj(Ahi, hj).

By Lemma 5.3, the non-zero values in(Ahi, hj) for isolated eigenvalues occur only for
(Afk+1, fk+1), wherefk+1 is the generalized eigenvector for a multiple eigenvalue with
odd algebraic multiplicityn = 2k + 1. Since all these cases are similar to the case of
simple eigenvalues, we can write the representation above in the simplified form

(Ah, h) =
∑
γj<0

|αj|2(Ahj, hj) +
∑
γj=0

|αj|2(Ahj, hj) +
∑
γj>0

|αj|2(Ahj, hj)

=
∑
γj<0

γj|αj|2(Khj, hj) +
∑
γj>0

γj|αj|2(Khj, hj)

< ω+ω−
∑
γj>0

|αj|2(Khj, hj),

where we have used the fact that(Khj, hj) ≥ 0 for any eigenvectorhj ∈ Π and that
γj < ω+ω− for any isolated eigenvalueγj. On the other hand,

(Kh, h) =
∑
i,j

αiᾱj(Khi, hj)

=
∑
γj<0

|αj|2(Khj, hj) +
∑
γj=0

|αj|2(Khj, hj) +
∑
γj>0

|αj|2(Khj, hj)

≥
∑
γj>0

|αj|2(Khj, hj).

Therefore,(Ah, h) < ω+ω−(Kh, h), which is a contradiction. As a result,N−
p + N0

p +
N+

p + Nc+ ≤ NA + NK .

Remark 5.8 Isolated eigenvalues of infinite multiplicities are excluded by the counts of
Theorems 1 and 2. Embedded eigenvalues of infinite multiplicity are possible but they may
only correspond to finitely many Jordan blocks of finite length, according to Theorem 1. In
the Jordan block decomposition, one can not exclude an infinite number of simple Jordan
blocks corresponding to the same embedded eigenvalue with infinitely many eigenvectors
in the positive invariant subspace ofΠκ.
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2.6 Application: NLS solitons

Consider a nonlinear Schrödinger (NLS) equation in multi dimensions,

iψt = −∆ψ + F (|ψ|2)ψ, ∆ = ∂2
x1x1

+ ... + ∂2
xdxd

, (2.6.1)

where(x, t) ∈ Rd × R andψ ∈ C. For a suitable nonlinear functionF (|ψ|2), whereF
is C∞ andF (0) = 0, the NLS equation (2.6.1) possesses a solitary wave solutionψ =
φ(x)eiωt, whereω > 0 andφ : Rd → R is an exponentially decayingC∞ function. See
[88] for existence and uniqueness of ground state solutions to the NLS equation (2.6.1).
Linearization of the NLS equation (2.6.1) with the ansatz,

ψ =
(
φ(x) + [u(x) + iw(x)]eλt + [ū(x) + iw̄(x)]eλ̄t

)
eiωt, (2.6.2)

whereλ ∈ C and(u(x), w(x)) ∈ C2, results in the linear eigenvalue problem (2.2.1)(after
neglecting all terms withu andw with the order higher than one), whereL± are Schr̈odinger
operators given by

L+ = −∆ + ω + F (φ2) + 2φ2F ′(φ2), (2.6.3)

L− = −∆ + ω + F (φ2). (2.6.4)

We note thatL± are unbounded operators andσe(L±) = [ω±,∞) with ω+ = ω− = ω > 0.
The kernel ofL− includes at least one eigenvectorφ(x) and the kernel ofL+ includes at
leastd eigenvectors∂xj

φ(x), j = 1, ..., d. The Hilbert space is defined asX = L2(Rd,C)
and the main assumptions P1-P2 are satisfied due to the exponential decay of the functions
F (φ2) andφ2F ′(φ2). Theorems 1 and 2 give precise count of eigenvalues of the stability
problemL−L+u = −λ2u, provided that the numbersdim(H−

K), dim(H−
A+δK), NK andNA

can be computed from the count of isolated eigenvalues ofA = PL+P andK = PL−1
− P,

whereP is the orthogonal projection to the complement ofKer(L−). We illustrate these
computations with two examples.

Example 1. Let φ(x) be the ground state solution such thatφ(x) > 0 on x ∈ Rd.
By spectral theory,Ker(L−) = {φ} is one-dimensional and the subspaceH−

K is empty.

• It follows by equality (2.2.12) thatN−
n = N0

n = N+
n = Nc+ = 0. Therefore,

the spectrum of the generalized eigenvalue problem (2.2.3) is real-valued and all
eigenvaluesγ are semi-simple.

• SinceKer(L−) /∈ Ker(L+) andH−
K is empty, eigenvectors ofKer(A) are in the

positive subspace ofK, such thatN0
p = z(L+). By Lemma 5.6, zero eigenvalues of

A become positive eigenvalues ofA + δK for anyδ > 0, such thatdim(H−
A+δK) =

dim(H−
A).
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• It follows by equality (2.2.11) thatN−
p = dim(H−

A+δK). By Proposition 2.1, we have
dim(H−

A) = n(L+) − p0 − z0, wherep0 andz0 are the number of positive and zero
values of a scalar functionM0 = −(L−1

+ φ, φ). SinceL+∂ωφ(x) = −φ(x), we have
M0 = 1

2
d

dω
‖φ‖2

L2.

• It follows by inequality (2.2.14) thatN−
p + N0

p + N+
p ≤ dim(H−

A) + dim(H0
A) +

dim(H+
A)+dim(H+

K). By Proposition 2.1 and the previous counts, we obtainN+
p ≤

p(L+) + p(L−) + p0 + z0.

Remark 6.1 If n(L+) = n ∈ N and d
dω
‖φ‖2

L2 > 0, the count above givesN−
p = n(L+)−

1, which coincides with Theorem 2.1 of [61] (the casen = 1 is known as the Stability
Theorem in [59]). Ifn(L+) = 1, z(L+) = d, p(L+) = p(L−) = 0 and d

dω
‖φ‖2

L2 < 0, the
count above givesN−

p = 1, N0
p = d, andN+

p = 0, which is proved, with a direct variational
method, in Proposition 2.1.2 [104] and Proposition 9.2 [80] ford = 1 and in Lemma 1.8
[112] for d = 3, in the context of the super-critical power NLS equation withF = |ψ|q and
q > 2

d
.

Remark 6.2 Stability of vector solitons in the coupled NLS equations, which generalize
the scalar NLS equation (2.6.1), is defined by the same linear eigenvalue problem (2.2.1),
whereL± are matrix Schr̈odinger operators. General results for non-ground state solu-
tions are obtained in [70, 97] ford = 1 and in [37] ford = 3. Multiple and embedded
eigenvalues were either excluded from analysis by an assumption [97, 37] or were treated
implicitly [70]. The present work generalizes these results with a precise count of multiple
and embedded eigenvalues.

Example 2. Let the cubic NLS equation (2.6.1) withF = |ψ|2 be discretized
so that∆ ≡ ε∆disc, where∆disc is the second-order discrete Laplacian andε is a small
parameter. We note that∆disc is a bounded operator andσc(−∆disc) ∈ [0, 4d]. The Hilbert
space is defined asX = l2(Zd,C). By the Lyapunov–Schmidt reduction method, the
solutionψ = φeiωt with ω > 0 andφ ∈ l2(Zd) bifurcates from the limiting solution with
N non-zero lattice nodes atε = 0. It is proved in [98] ford = 1 and [99] ford = 2 that
d

dω
‖φ‖2

l2 > 0, Ker(L+) = ∅, andKer(L−) = {φ} for sufficiently smallε 6= 0. It follows
by equalities (2.2.11) and (2.2.12) that

N−
p + N+

n + Nc+ = n(L+)− 1,

N−
n + N+

n + Nc+ = n(L−),

where it is found in [98, 99] thatn(L+) = N andn(L−) ≤ N − 1. Lyapunov–Schmidt
reductions give, however, more precise information than the general count above, since
Corollary 3.5 in [98] ford = 1 predicts thatN+

n = n(L−), N−
n = Nc+ = 0, andN−

p =
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N − 1− n(L−)8. Similarly, it follows by inequality (2.2.14) and the above count that

N+
p ≤ 2n(L−) + dim(H+

A) + dim(H+
K).

If the solutionφ is a ground state, thenN = 1 andn(L−) = 0. In this case, the above
inequality shows that the number of edge bifurcations from the continuous spectrum of
K−1A (given byN+

p ) is bounded from above by the number of edge bifurcations from the
essential spectrum ofA (given bydim(H+

A)) and the numbers of edge bifurcations from
the essential spectrum ofK−1 (given bydim(H+

K)). The bound above becomes less useful
if N > 1 andn(L−) 6= 0.

Remark 6.3 The Lyapunov–Schmidt reduction method was also used for continuous cou-
pled NLS equations with and without external potentials. See [71, 103] for various results
on the count of unstable eigenvalues in parameter continuations of the NLS equations.

2.7 Application: NLS vortices

Consider the two-dimensional NLS equation (2.6.1) in polar coordinates(r, θ):

iψt = −∆ψ + F (|ψ|2)ψ, ∆ = ∂2
rr +

1

r
∂r +

1

r2
∂2

θθ, (2.7.1)

wherer > 0 andθ ∈ [0, 2π]. Assume that the NLS equation (2.7.1) possesses a charge-
m vortex solutionψ = φ(r)eimθ+iωt, whereω > 0, m ∈ N, andφ : R+ → R is an
exponentially decayingC∞ function with φ(0) = 0. See [94] for existence results of
charge-m vortices in the cubic-quintic NLS equation withF = −|ψ|2 + |ψ|4. Linearization
of the NLS equation (2.7.1) with the ansatz,

ψ =
(
φ(r)eimθ + ϕ+(r, θ)eλt + ϕ̄−(r, θ)eλ̄t

)
eiωt, (2.7.2)

whereλ ∈ C and(ϕ+(r, θ), ϕ−(r, θ)) ∈ C2, results in the stability problem,

σ3Hϕ = iλϕ, (2.7.3)

whereϕ = (ϕ+, ϕ−)T , σ3 = diag(1,−1), and

H =

(−∆ + ω + F (φ2) + φ2F ′(φ2) φ2F ′(φ2)e2imθ

φ2F ′(φ2)e−2imθ −∆ + ω + F (φ2) + φ2F ′(φ2)

)
.

8Corollary 3.5 in [98] is valid only when small positive eigenvalues ofL− are simple. It is shown in [99]
for d = 2 that the case of multiple small positive eigenvalues ofL− leads to splitting of real eigenvalues
N−

p of the generalized eigenvalue problem (2.2.3) to complex eigenvaluesNc+ beyond the leading-order
Lyapunov–Schmidt reduction.
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Expandϕ(r, θ) in the Fourier series

ϕ =
∑

n∈Z
ϕ(n)(r)einθ

and reduce the problem to a sequence of spectral problems for ODEs:

σ3Hnϕn = iλϕn, n ∈ Z, (2.7.4)

whereϕn = (ϕ
(n+m)
+ , ϕ

(n−m)
− )T , and

Hn =

(
Ar + ω + F (φ2) + φ2F ′(φ2) φ2F ′(φ2)

φ2F ′(φ2) Ar + ω + F (φ2) + φ2F ′(φ2)

)
.

The operatorAr is given by expression

Ar = −∂2
rr −

1

r
∂r +

(n + m)2

r2
.

Whenn = 0, the stability problem (2.7.4) transforms to the linear eigenvalue problem
(2.2.1), whereL± is given by (2.6.3)–(2.6.4) with∆ = ∂2

rr + 1
r
∂r − m2

r2 and (u,w) are

given byu = ϕ
(m)
+ + ϕ

(−m)
− andw = −i(ϕ

(m)
+ − ϕ

(−m)
− ). Whenn ∈ N, the stability

problem (2.7.4) transforms to the linear eigenvalue problem (2.2.1) withL+ = Hn and
L− = σ3Hnσ3, where

L+ = L− + 2φ2F ′(φ2)σ1, σ1 =

(
0 1
1 0

)
,

and(u,w) are given byu = ϕn andw = −iσ3ϕn. When−n ∈ N, the stability problem
(2.7.4) admits a transformation withH−n = σ1Hnσ1 andσ3σ1 = −σ1σ3 to the stability
problem withn ∈ N. Let us introduce the weighted inner product for functions onr ≥ 0:

(f, g)r =

∫ ∞

0

f(r)g(r)rdr.

In all casesn = 0, n ∈ N and−n ∈ N, L± are unbounded self-adjoint differential operators
andσe(L±) = [ω±,∞) with ω+ = ω− = ω > 0. The kernel of the linearized operators
includes at least three eigenvectors:

n = ±1 : φ±1 = φ′(r)1∓ m

r
φ(r)σ31, n = 0 : φ0 = φ(r)σ31,

where1 = (1, 1)T . The Hilbert space is defined asX = L2
r(R+,C) for n = 0 and

X = L2
r(R+,C2) for ±n ∈ N. In all cases, the main assumptions P1-P2 are satisfied due

to exponential decay of the functionsF (φ2) andφ2F ′(φ2).
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The casen = 0 is the same as for solitons (see Section 5.1). We shall hence
consider adjustments in the count of eigenvalues in the case±n ∈ N, when the stability
problem (2.7.4) is rewritten in the form,

{
σ3Hnϕn = iλϕn

σ3H−nϕ−n = iλϕ−n
n ∈ N. (2.7.5)

Let L+ = diag(Hn, H−n) andL− = diag(σ3Hnσ3, σ3H−nσ3).

Lemma 7.1 Let λ be an eigenvalue of the stability problem (2.7.5) with the eigenvector
(ϕn,0). Then there exists another eigenvalue−λ with the linearly independent eigen-
vector(0, σ1ϕn). If Re(λ) > 0, there exist two more eigenvaluesλ̄,−λ̄ with the linearly
independent eigenvectors(0, σ1ϕ̄n), (ϕ̄n,0).

Proof. We note thatσ1σ3 = −σ3σ1 andσ2
1 = σ2

3 = σ0, whereσ0 = diag(1, 1). Therefore,
each eigenvalueλ of Hn with the eigenvectorϕn generates eigenvalue−λ of H−n with
the eigenvectorϕ−n = σ1ϕn. WhenRe(λ) 6= 0, each eigenvalueλ of Hn generates also
eigenvalue−λ̄ of Hn with the eigenvector̄ϕn and eigenvaluēλ of H−n with the eigenvector
ϕ−n = σ1ϕ̄n.

Theorem 5 LetNreal be the number of real eigenvalues in the stability problem (2.7.5) with
Re(λ) > 0, Ncomp be the number of complex eigenvalues withRe(λ) > 0 andIm(λ) > 0,
N−

imag be the number of purely imaginary eigenvalues withIm(λ) > 0 and(ϕn, Hnϕn) ≤
0, andN−

zero be the algebraic multiplicity of the zero eigenvalue ofσ3Hnϕn = iλϕn with
(ϕn, Hnϕn) ≤ 0. Then,

1

2
Nreal + Ncomp = n(Hn)−N−

zero −N−
imag, (2.7.6)

whereNreal is even.

Proof. By Lemma 7.1, a pair of real eigenvalues ofσ3Hnϕn = iλϕn corresponds to
two linearly independent eigenvectorsϕn andϕ̄n. Because(Hnϕn,ϕn) is real-valued and
hence zero forλ ∈ R, we have

(Hn(ϕn ± ϕ̄n), (ϕn ± ϕ̄n)) = ±2Re(Hnϕn, ϕ̄n).

By counting multiplicities of the real negative and complex eigenvalues of the general-
ized eigenvalue problem (2.2.3) associated with the stability problem (2.7.5), we have
N−

n = N−
p = Nreal andNc+ = 2Ncomp. By Lemma 7.1, a pair of purely imaginary and zero

eigenvalues of the stability problem (2.7.5) corresponds to two linearly independent eigen-
vectors(ϕn,0) and(0,ϕ−n), whereϕ−n = σ1ϕn and(H−nϕ−n,ϕ−n) = (Hnϕn,ϕn). By
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counting multiplicities of the real positive and zero eigenvalues of the generalized eigen-
value problem (2.2.3) associated with the stability problem (2.7.5), we haveN0

n = 2N−
zero

and N+
n = 2N−

imag. Since the spectra ofHn, σ1Hnσ1, andσ3Hnσ3 coincide, we have
n(L−) = 2n(Hn). As a result, equality (2.7.6) follows by equality (2.2.12) of Theorem 1.
By Lemma 7.1, the multiplicity ofNreal is even in the stability problem (2.7.5).

Corollary 7.2 LetA = PL+P andK = PL−1
− P, whereP is an orthogonal projection to

the complement ofKer(L−) = Span{v1, ..., vn}. The number of small negative eigenvalues
of A + δK for sufficiently smallδ > 0 equals the number of non-negative eigenvalues of
M0 = limµ↑0 M(µ), whereMij(µ) = ((µ− L+)−1vi, vj).

Proof. The same count (2.7.6) follows by equality (2.2.11) of Theorem 1 if and only
if dim(H−

A+δK) = dim(H−
K) = n(L−). Since the zero eigenvalue ofA is isolated from

the essential spectrum andn(L+) = n(L−), the number of small negative eigenvalues of
A + δK for sufficiently smallδ 6= 0 must be equal to

dim(H−
A+δK)− dim(H−

A) = n(L+)− dim(H−
A).

By Proposition 2.1, this number is given by the numberp0 +z0 of non-negative eigenvalues
of matrixM0.

Example 3.Letφ(r) be the fundamental charge-m vortex solution such thatφ(r) >
0 for r > 0 andφ(0) = 0. By spectral theory,Ker(H0) = Span{φ0} and the analysis for
n = 0 becomes similar to Example 1. In the casen ∈ N, let us assume thatKer(H1) =
Span{φ1} andKer(Hn) = ∅ for n ≥ 2.

• By direct computation, we obtain(σ3H1σ3)
−1φ1 = −1

2
rφ(r)1 and

((σ3H1σ3)
−1φ1,φ1) =

∫ ∞

0

rφ2(r)dr > 0.

By Lemma 5.6, we haveN0
n = 0 for n = 1 (N0

n = 0 holds also forn ≥ 2). By
Proposition 2.1, we have thenM0 < 0 such thatp0 = z0 = 0 for all n ∈ N.
Corollary 7.2 is hence confirmed.

• Since(σ3φ1,φ1) = 0 andKer(σ3H1σ3) = {σ3φ1}, thenφ1 ⊥ Ker(σ3H1σ3). By
Proposition 2.1, we havez(A) = z(L+) = 1 for n = 1 andz(A) = z(L+) = 0 for
n ≥ 2.

• By Theorem 5, we have

Nreal + 2Ncomp = 2n(Hn)− 2N−
imag, (2.7.7)

whereN−
imag gives the total number of eigenvalues in the stability problem (2.7.5)

with Re(λ) = 0, Im(λ) > 0, and(Hnϕn, ϕn) < 0, while N−
zero = N0

n = 0.
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Remark 7.3 Stability of vortices was considered numerically in [94], where Lemma 7.1
was also obtained. The closure relation (2.7.7) was also discussed in [70] in a more gen-
eral context. Vortices in the discretized scalar NLS equation were considered with the
Lyapunov–Schmidt reduction method in [99]. Although the reduced eigenvalue problems
were found in a much more complicated form compared to the reduced eigenvalue problem
for solitons, equality (2.7.7) was confirmed for all vortex configurations considered in [99].

2.8 Application: KdV solitons

Consider a general fifth-order KdV equation,

vt = a1vx − a2vxxx + a3vxxxxx + 3b1vvx − b2 (vvxxx + 2vxvxx) + 6b3v
2vx, (2.8.1)

where(a1, a2, a3) and(b1, b2, b3) are real-valued coefficients for linear and nonlinear terms,
respectively. Without loss of generality, we assume thata3 > 0 and

cwave(k) = a1 + a2k
2 + a3k

4 ≥ 0, k ∈ R. (2.8.2)

For suitable values of parameters, there exists a traveling wave solutionv(x, t) = φ(x−ct),
wherec > 0 andφ : R 7→ R is an even and exponentially decaying function. Existence
of traveling waves was established in [128, 65, 5] forb2 = b3 = 0, in [25] for b3 = 0, in
[68] for b1 = −b2 = b3 = 1, and in [84] forb3 = 0 or b1 = b2 = 0. Linearization of the
fifth-order KdV equation (2.8.1) with the ansatz

v(x, t) = φ(x− ct) + w(x− ct)eλt

results in the stability problem
∂xL−w = λw, (2.8.3)

whereL− is an unbounded fourth-order operator,

L− = a3
d4

dx4
− a2

d2

dx2
+ a1 + c + 3b1φ(x)− b2

d

dx
φ(x)

d

dx
− b2φ

′′(x) + 6b3φ
2(x). (2.8.4)

Due to the condition (2.8.2), we haveσe(L−) ∈ [c,∞), such thatω− = c > 0. The kernel
of L− includes at least one eigenvectorφ′(x). Since the image ofL− is in L2(R), the
eigenfunctionw(x) ∈ L1(R) for λ 6= 0 satisfies the constraint:

(1, w) =

∫

R
w(x)dx = 0. (2.8.5)

Let w = u′(x), whereu(x) → 0 as|x| → ∞ and defineL+ = −∂xL−∂x. The essential
spectrum ofL+ is located atσe(L+) ∈ [0,∞), such thatω+ = 0. The kernel ofL+ includes
at least one eigenvectorφ(x).
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Let the Hilbert spaceX be defined asX = L2(R,C). The main assumptions P1-P2
for L− andL+ are satisfied due to exponential decay of the functionφ(x). Sinceω+ = 0,
the kernel ofL+ is embedded into the endpoint of the essential spectrum ofL+. This
introduces a technical complication in computations of the inverse ofL+ [79], which we
avoid here with the use of the shifted generalized eigenvalue problem (2.2.9) withδ > 0.
We still need to check assumption P3. It is easy to see that

ωA+δK = inf
k∈R

[
k2(c + cwave(k)) +

δ

c + cwave(k)

]
≥ δ

c
> 0,

such that the first part of assumption P3 is satisfied. Since new eigenvalues ofA+δK bifur-
cating from the end points of the essential spectrum ofA + δK with the edge bifurcations
are quadratic with respect toδ [74], while the end points are linear with respect toδ, all new
eigenvalues are positive for sufficiently smallδ > 0. Therefore, assumption P3 is satisfied
if we assume that the kernel ofL+ is one-dimensional, that isKer(L+) = Span{φ}.

We shall apply Theorem 1 after the count of isolated and embedded eigenvalues in
the stability problem (2.8.3). Sinceω+ = 0, the continuous spectrum of∂xL− covers the
entire imaginary axis ofλ. Therefore, all real and complex eigenvalues are isolated, while
all purely imaginary eigenvalues including the zero eigenvalue are embedded.

Lemma 8.1 Letλj be a real eigenvalue of the stability problem (2.8.3) with the real-valued
eigenvectorwj(x), such thatRe(λj) > 0 and Im(λj) = 0. Then there exists another
eigenvalue−λj in problem (2.8.3) with the linearly independent eigenvectorwj(−x). The
linear combinationsw±

j (x) = wj(x)±wj(−x) are orthogonal with respect to the operator
L−,

(
L−w±

j , w±
j

)
= ±2 (L−wj(−x), wj(x)) ,

(
L−w∓

j , w±
j

)
= 0. (2.8.6)

Proof. Sinceφ(−x) = φ(x), the self-adjoint operatorL− is invariant with respect to the
transformationx 7→ −x. The functionswj(x) andwj(−x) are linearly independent since
wj(x) has both symmetric and anti-symmetric parts provided thatλj 6= 0. Under the same
constraint,

(L−wj(±x), wj(±x)) = ±λ−1
j (L−wj(±x), ∂xL−wj(±x)) = 0,

and the orthogonality relations (2.8.6) hold by direct computations.

Corollary 8.2 Let λj be a complex eigenvalue of the stability problem (2.8.3) with the
complex-valued eigenvectorwj(x), such thatRe(λj) > 0 andIm(λj) > 0. Then there exist
eigenvalues̄λj,−λj, and−λ̄j in problem (2.8.3) with the linearly independent eigenvectors
w̄j(x), wj(−x), andw̄j(−x), respectively.
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Lemma 8.3 Let λj be a purely imaginary embedded eigenvalue of the stability problem
(2.8.3) with the complex-valued eigenvectorwj(x), such thatRe(λj) = 0 and Im(λj) >
0. Then there exists another eigenvalue−λj = λ̄j in problem (2.8.3) with the linearly
independent eigenvectorwj(−x) = w̄j(x). The linear combinationsw±

j (x) = wj(x) ±
w̄j(x) are orthogonal with respect to the operatorL−,

(
L−w±

j , w±
j

)
= 2Re (L−wj(x), wj(x)) ,

(
L−w∓

j , w±
j

)
= 0. (2.8.7)

Proof. Since operatorL− is real-valued, the eigenvectorwj(x) of problem (2.8.3) with
Im(λj) > 0 has both real and imaginary parts, which are linearly independent. Under the
constraintλj 6= 0,

(L−wj, w̄j) = λ−1
j (L−wj, ∂xL−w̄j) = 0,

and the orthogonality equations (2.8.7) follow by direct computations.

Theorem 6 Let Nreal be the number of real eigenvalues of the stability problem (2.8.3)
with Re(λ) > 0, Ncomp be the number of complex eigenvalues withRe(λ) > 0 and
Im(λ) > 0, and N−

imag be the number of imaginary eigenvalues withIm(λ) > 0 and
Re (L−wj(x), wj(x)) ≤ 0 for the corresponding eigenvectorswj. Assume thatKer(L+) =
Span{φ} ∈ H and d

dc
‖φ‖2

L2 6= 0. Then,

Nreal + 2Ncomp + 2N−
imag = n(L−)− p0, (2.8.8)

wherep0 = 1 if d
dc
‖φ‖2

L2 > 0 andp0 = 0 if d
dc
‖φ‖2

L2 < 0.

Proof. Each isolated and embedded eigenvalueγj = −λ2
j of the generalized eigenvalue

problem (2.2.3) is at least double with two linearly independent eigenvectorsu±j (x) defined
by w±

j = ∂xu
±
j . By Lemma 8.1 and Corollary 8.2, the dimension of the maximal non-

positive invariant eigenspace for isolated (real and complex) eigenvalues coincide with the
algebraic multiplicities of isolated eigenvalues, such thatN−

n = N−
p = Nreal andNc+ =

2Ncomp. By Lemma 8.3 and the relation for eigenvectors of the stability problem (2.8.3),

(L+u, u) = (L−u′, u′) = (L−w, w), (2.8.9)

we haveN+
n = 2N−

imag. By Remark 5.7 and the assumption thatKer(L+) = Span{φ} ∈ H
and d

dc
‖φ‖2

L2 6= 0, we haveN0
n = p0, wherep0 = 1 if (L−1

− φ, φ) ≤ 0 andp0 = 0 if
(L−1

− φ, φ) < 0. SinceL−∂cφ(x) = −φ(x), we obtain that(L−1
− φ, φ) = −(∂cφ, φ) =

−1
2

d
dc
‖φ‖2

L2. The count (2.8.8) follows by equality (2.2.12) of Theorem 1.

Remark 8.4 Sincedim(H−
A+δK) = dim(H−

A) + N0
n and N−

p = Nreal, the same count
(2.8.8) also follows by equality (2.2.11) of Theorem 1:

Nreal + 2Ncomp + 2N−
imag = dim(H−

A+δK)−N0
n = dim(H−

A), (2.8.10)
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provided thatdim(H−
A) = m(L−) − p0. By Proposition 2.1, we havez0 = 0 (since

d
dc
‖φ‖2

L2 6= 0 by assumption) anddim(H−
A) = n(L+) − p0, wherep0 is the same as in

Theorem 6 since(L−1
+ φ′, φ′) = (L−1

− φ, φ). Similarly, because of relation (2.8.9), we have
n(L+) = n(L−) and equality (2.8.10) is identical to equality (2.8.8).

Remark 8.5 If n(L−) = 1, Theorem 6 predicts stability ford
dc
‖φ‖2

L2 > 0 and instability
with Nreal = 1 andNcomp = 0 for d

dc
‖φ‖2

L2 < 0. This result coincides with the Stability–
Instability Theorems in [13, 116]. By a different method, Lyapunov stability of positive
traveling wavesφ(x) was considered in [122]. Specific studies of stability for the fifth-
order KdV equation (2.8.1) were reported in [66, 42] with the energy-momentum methods.
Extension of the Stability–Instability Theorems of [13, 122] with no assumption on a sim-
ple negative eigenvalue ofL− was developed in [84, 93] with a variational method. The
variational theory is limited however to the case of homogeneous nonlinearities, e.g.b3 = 0
or b1 = b2 = 0. Our treatment of stability in the fifth-order KdV equation (2.8.1) is novel
as it exploits a similarity between stability problems for KdV and NLS equations. The first
application of this theory to stability of N-solitons in the KdV hierarchy was reported in
[79]. Another treatment of the coupled Klein–Gordon–Boussinesq system, which satisfies
propertiesω+ = 0 andn(L−) = 1, is reported in [81]. The cased

dc
‖φ‖2

L2 = 0 was recently
considered in [32] for the generalized KdV equation.

Remark 8.6 Theorem 6 can be generalized to any KdV-type evolution equation, when the
linearized operatorL− is invariant with respect to the transformationx 7→ −x. When
N−

imag = 0, the relation (2.8.8) extends the Morse index theory from gradient dynamical
systems to the KdV-type Hamiltonian systems. For gradient dynamical systems, all nega-
tive eigenvalues ofL− are related to real unstable eigenvalues of the stability problem. For
the KdV-type Hamiltonian system, negative eigenvalues ofL− may generate both real and
complex unstable eigenvalues in the stability problem (2.8.3).
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CHAPTER 3

SPECTRAL STABILITY OF TWO-PULSE SOLUTIONS IN
THE FIFTH-ORDER KDV EQUATION.

3.1 Introduction

One-pulse solutions (solitons) are commonly met in many nonlinear evolution equations
where dispersive terms (represented by unbounded differential operators) and nonlinear
terms (represented by power functions) are taken in a certain balance. Typical examples
of such nonlinear evolution equations with one-pulse solutions are given by the NLS (non-
linear Schr̈odinger) equation, the Klein-Gordon (nonlinear wave) equation and the KdV
(Korteweg-de Vries) equation, as well as their countless generalizations.

One-pulse solutions are the only stationary (traveling) localized solutions of the
simplest nonlinear evolution equations. However, uniqueness is not a generic property
and bound states of spatially separated pulses can represent other stationary (traveling)
localized solutions of the same evolution equation. For instance, two-pulse, three-pulse,
and generallyN -pulse solutions exist in nonlinear evolution equations with a higher-order
dispersion (represented by a higher-order differential operator). The prototypical example
of such situation is the fifth-order KdV equation in the form,

ut + uxxx − uxxxxx + 2uux = 0, x ∈ R, t ∈ R+, (3.1.1)

whereu : R × R+ 7→ R and all coefficients of the nonlinear PDE are normalized by
a scaling transformation. The more general 5th order KdV equation has been used by
W. Craig and M. Groves [35] to describe weakly nonlinear long waves on the surface of
a fluid with surface tension. See T.J. Bridges & G. Derks [16] for a review of history and
applications of the fifth-order KdV equation (3.1.1) to magneto-acoustic waves in plasma
and capillary-gravity water waves.

Traveling localized solutionsu(x, t) = φ(x − ct) of the fifth-order KdV equation
(3.1.1) satisfies the fourth-order ODE

φ(iv) − φ′′ + cφ = φ2, z ∈ R, (3.1.2)

wherez = x− ct is the traveling coordinate and one integration of the fifth-order ODE in
z is performed subject to zero boundary conditions onφ(z) and its derivatives as|z| → ∞.

39
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Existence of localized solutions (homoclinic orbits) to the fourth-order ODE (3.1.2) was
considered by methods of the dynamical system theory. See A.R. Champneys [24] for a
review of various results on existence of homoclinic orbits in the ODE (3.1.2).

In particular, it is proved with the variational method by B. Buffoni & E. Sere [19]
and M. Groves [63] (see references to earlier works in [24]) that the fourth-order ODE
(3.1.2) has the one-pulse solutionφ(z) for c > 0, which is the only localized solution of
the ODE (3.1.2) for0 < c < 1

4
up to the translationφ(z − s) for anys ∈ R. The analytical

expression for the one-pulse solution is only available forc = 36
169

< 1
4

with

φ(z) =
105

338
sech4

(
z

2
√

13

)
. (3.1.3)

For c > 1
4
, the fourth-order ODE (3.1.2) has infinitely many multi-pulse solutions in addi-

tion to the one-pulse solution [19, 63]. The multi-pulse solutions look like multiple copies
of the one-pulse solutions separated by finitely many oscillations close to the zero equilib-
rium φ = 0. Stability and evolution of multi-pulse solutions are beyond the framework of
the fourth-order ODE (3.1.2) and these questions were considered by two theories in the
recent past.

The pioneer work of K.A. Gorshkov & L.A. Ostrovsky explains multi-pulse solu-
tions of the fifth-order KdV equation (3.1.1) from the effective interaction potential com-
puted from the one-pulse solution [56, 57]. When the interaction potential has an alternat-
ing sequence of maxima and minima (which corresponds to the case when the one-pulse
solutionφ(z) has oscillatory decaying tails at infinity), an infinite countable sequence of
two-pulse solutions emerge with the property that the distance between the pulses occurs
near the extremal points of the interaction potential. Three-pulse solutions can be con-
structed as a bi-infinite countable sequence of three one-pulse solutions where each pair of
two adjacent pulses is located approximately at a distance defined by the two-pulse solu-
tion. Similarly,N -pulse solutions can be formed by a(N − 1)-infinite countable sequence
of N copies of one-pulse solutions. The perturbative procedure in [56] has the advan-
tages that both the linear and nonlinear stability of multi-pulse solutions can be predicted
from analysis of the approximate ODE system derived for distances between the individual
pulses. Numerical evidences of validity of this procedure in the context of the fifth-order
KdV equation are reported in [20].

A different theory was developed by B. Sandstede [110] who extended the X.B.
Lin’s work on the Lyapunov–Schmidt reductions for nonlinear evolution equations [85].
In this method, a linear superposition ofN one-pulse solutionsφ(z) =

∑N
j=1 Φ(z − sj)

is a solution of the ODE (3.1.2) in the case when the distances between pulses are infinite
(i.e. |sj+1 − sj| = ∞, ∀j). The Jacobian of the nonlinear ODE (3.1.2) defines a linear
self-adjoint operator fromH4(R) to L2(R):

H = c− ∂2
z + ∂4

z − 2φ(z), c > 0, (3.1.4)
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where the unbounded differential partc− ∂2
z + ∂4

z is positive and bounded away from zero
while the exponentially decaying potential term−2φ(z) is a relatively compact perturba-
tion. Whenφ(z) is a linear superposition ofN infinitely-separated one-pulse solutions
Φ(z − sj), the JacobianH hasN zero eigenvalues related to the eigenfunctionsΦ′(z − sj)
due to the translational invariance of the ODE (3.1.2). The Lyapunov–Schmidt method
leads to a system of bifurcation equations for the distances between individual pulses.
Whenφ(z) is theN -pulse solution with finitely separated pulses (i.e.|sj+1 − sj| < ∞,
∀j), one zero eigenvalue of the Jacobian operatorH survives beyond the reductive pro-
cedure due to the translational invariance of theN -pulse solutionφ(z), while N − 1 real
eigenvalues bifurcate from zero. The reduction method may give not only information
about existence of multi-pulse solutions but also prediction of their spectral stability in the
linearized time-evolution problem [110]. The linearized problem for the fifth-order KdV
equation takes the form

∂zHv = λv, z ∈ R, (3.1.5)

wherev : R 7→ C is an eigenfunction for a small perturbation ofφ(z) in the reference
framez = x − ct andλ ∈ C is an eigenvalue. We say that the eigenvalueλ is unstable
if Re(λ) > 0. We say that the eigenvalueλ is of negative Krein signatureif Re(λ) = 0,
Im(λ) > 0, v ∈ H2(R) and(Hv, v) < 0.

Our interest to this well-studied problem is revived by the recent progress in the
spectral theory of non-self-adjoint operators arising from linearizations of nonlinear evolu-
tion equations [29]. These operators can be defined as self-adjoint operators into Pontrya-
gin space where they have a finite-dimensional negative invariant subspace. Two physically
relevant problems for the fifth-order KdV equation (3.1.1) have been solved recently by us-
ing the formalism of operators in Pontryagin spaces. First, convergence of the numerical
iteration method (known as the Petviashvili method) for one-pulse solutions of the ODE
(3.1.2) was proved using the contraction mapping principle in a weighted Hilbert space
(which is equivalent to Pontryagin space with zero index) [101]. Second, eigenvalues of
the spectral stability problem in a linearization of the fifth-order KdV equation (3.1.1) were
characterized in Pontryagin space with a non-zero index defined by the finite number of
negative eigenvalues ofH using the invariant subspace theorem [79, 29].

Both recent works rise some open problems when the methods are applied to the
N -pulse solutions in the fifth-order KdV equation (3.1.1), even in the case of two-pulse
solutions (N = 2). The successive iterations of the Petviashvili’s method do not converge
for two-pulse solutions. The iterative sequence with two pulses leads either to a single pulse
or to a spurious solution with two pulses located at an arbitrary distance (see Remark 6.5 in
[101]). This numerical problem arises due to the presence of small and negative eigenvalues
of H. A modification of the Petviashvili’s method is needed to suppress these eigenvalues
similarly to the work of L. Demanet & W. Schlag [40] where the zero eigenvalue associated
to the translational invariance of the three-dimensional NLS equation is suppressed. We
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shall present the modification of the iterative Petviashvili’s method in this chapter. See also
[26, 92] and [14, 15] for alternative numerical techniques for approximations of multi-pulse
solutions of the fifth-order KdV equation.

Another open question arises when spectral stability of multi-pulse solutions is con-
sidered within the linear eigenvalue problem (3.1.5). By either the Gorshkov–Ostrovsky
perturbative procedure or the Sandstede–Lin reduction method, the small eigenvalues of
the Jacobian operatorH result in small eigenvalues of the linearized operator∂zH, which
are either pairs of real eigenvalues (one of which is unstable) or pairs of purely imaginary
eigenvalues of negative Krein signature (which are neutrally stable but potentially unsta-
ble). Both cases are possible in the fifth-order KdV equation in agreement with the count
of unstable eigenvalues in Pontryagin spaces (see Theorem 6 in [29]). (Similar count of
unstable eigenvalues and eigenvalues of negative Krein signatures was developed for the
NLS equations in recent papers [70, 97].) Since the real eigenvalues are isolated from the
continuous spectrum of the eigenvalue problem (3.1.5), they are structurally stable and per-
sist with respect to parameter continuations. However, the purely imaginary eigenvalues
are embedded into the continuous spectrum of the eigenvalue problem (3.1.5) and their
destiny remains unclear within the reduction methods. It is well known for the NLS-type
and Klein–Gordon-type equations that embedded eigenvalues are structurally unstable to
the parameter continuations [62]. If a certain Fermi golden rule related to the perturba-
tion term is nonzero, the embedded eigenvalues of negative Krein signature bifurcate off
the imaginary axis to complex eigenvalues inducing instabilities of pulse solutions [37].
(The embedded eigenvalues of positive Krein signature simply disappear upon a generic
perturbation [37].) This bifurcation does not contradict the count of unstable eigenvalues
[70, 97] and it is indeed observed in numerical approximations of various pulse solutions
of the coupled NLS equations [103].

From a heuristic point of view, we would expect that the time evolution of an en-
ergetically stable superposition of stable one-pulse solutions remains stable. (Stability of
one-pulse solutions in the fifth-order KdV equation (3.1.1) was established with the vari-
ational theory [84] and the multi-symplectic Evans function method [16, 17].) According
to the Gorshkov-Ostrovsky perturbative procedure, dynamics of well-separated pulses is
represented by the Newton law for particle dynamics which describes nonlinear stability
of oscillations near the minima of the effective interaction potential [57]. Therefore, we
would rather expect (on the contrary to embedded eigenvalues in the linearized NLS and
Klein–Gordon equations) that the embedded eigenvalues of negative Krein signature are
structurally stable in the linear eigenvalue problem (3.1.5) and persist beyond the leading
order of the perturbative procedure. (Multi-pulse solutions of the NLS and Klein–Gordon
equations with well-separated individual pulses are always linearly stable since the small
purely imaginary eigenvalues of the Lyapunov–Schmidt reductions are isolated from the
continuous spectrum of the corresponding linearized problems [124].)

Since the count of unstable eigenvalues in [29] does not allow us to prove structural
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stability of embedded eigenvalues of negative Krein signature, we address this problem
separately by using different analytical and numerical techniques. In particular, we present
an analytical proof of persistence (structural stability) of embedded eigenvalues of nega-
tive Krein signature in the linearized problem (3.1.5). We also apply the Fourier spectral
method and illustrate the linearized stability of the corresponding two-pulse solutions nu-
merically. Our analytical and numerical methods are based on the construction of expo-
nentially weighted spaces for the linear eigenvalue problem (3.1.5). (See [96] for analysis
of exponentially weighted spaces in the context of the generalized KdV equation.) See
[28] for computations of the Maslov index for two-pulse solutions of the fifth-order KdV
equation (3.1.1) and [123] for stability analysis of two-pulse solutions of the coupled KdV
equations.

This chapter is structured as follows.Section 3.2contains a summary of avail-
able results on existence and stability of one-pulse and two-pulse solutions of the fifth-
order KdV equation (3.1.1).Section 3.3presents a modification of the iterative Petviashvili
method for convergent numerical approximations of the two-pulse solutions in the fourth-
order ODE (3.1.2). Section 3.4develops the proof of structural stability of embedded
eigenvalues in the eigenvalue problem (3.1.5) and numerical approximations of unstable
and stable eigenvalues in an exponentially weighted space.Section 3.5describes full nu-
merical simulations of the fifth-order KdV equation (3.1.1) to study nonlinear dynamics of
two-pulse solutions.

3.2 Review of available results

Linearization of the ODE (3.1.2) at the critical point(0, 0, 0, 0) leads to the eigenvaluesκ
given by roots of the quartic equation,

κ4 − κ2 + c = 0. (3.2.1)

Whenc < 0, one pair of rootsκ is purely imaginary and the other pair is purely real. When
0 < c < 1

4
, two pairs of rootsκ are real-valued. Whenc > 1

4
, the four complex-valued

rootsκ are located symmetric about the axes. We will use notationsk0 = Im(κ) > 0 and
κ0 = Re(κ) > 0 for a complex root of (3.2.1) in the first quadrant forc > 1

4
. The following

two theorems summarize known results on existence of one-pulse and two-pulse solutions
of the ODE (3.1.2).

Theorem 3.2.1 (One-pulse solutions)

(i) There exists a one-pulse solutionφ(z) of the ODE (3.1.2) forc > 0 such thatφ ∈
H2(R)∩C5(R), φ(−z) = φ(z), andφ(z) → 0 exponentially as|z| → ∞. Moreover,
φ(z) is Cm(R) for anym ≥ 0.
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(ii) The Jacobian operatorH in (3.1.4) associated with the one-pulse solutionφ(z) has
exactly one negative eigenvalue with an even eigenfunction and a simple kernel with
the odd eigenfunctionφ′(z).

(iii) Assume that the mapφ(z) fromc > 0 to H2(R) is C1(R+) and thatP ′(c) > 0, where
P (c) = ‖φ‖2

L2. The linearized operator∂zH has a two-dimensional algebraic kernel
in L2(R) and no unstable eigenvalues withRe(λ) > 0.

Proof. (i) Existence of a symmetric solutionφ(z) in H2(R) follows by the mountain-pass
lemma and the concentration-compactness principle (see Theorem 8 in [63] and Theorem
2.3 in [84]). The equivalence between weak solutions of the variational theory and strong
solutions of the ODE (3.1.2) is established in Lemma 1 of [63] and Lemma 2.4 of [84].
The exponential decay ofφ(z) follows from the Stable Manifold Theorem in Appendix A
of [19]. Finally, the smoothness of the functionφ(z) is proved from the ODE (3.1.2) by the
bootstrapping principle [32].

(ii) The Jacobian operatorH coincides with the Hessian of the energy functional
J(u) used in the constrained variational problem in [63]. By Proposition 16 in [63], the
one-pulse solutionφ(z) is a global minimizer ofJ(u) subject to the constraintK(u) = K0,
whereK(u) =

∫
R u3dx. By Lemma 2.3 in [101],φ is a minimizer of the constrained

variational problem ifH has exactly one negative eigenvalue. Since the negative eigenvalue
corresponds to the ground state ofH, the corresponding eigenfunction is even. The kernel
of H includes an eigenvalue with the odd eigenfunctionφ′(z) due to the space translation.
The one-pulse solution is isolated, and the kernel ofH is hence simple, due to the duality
principle in Theorem 4.1 of [19]. If it is not simple, then global two-dimensional stable
and unstable manifolds coincide and the time for a homoclinic orbit to go from the local
unstable manifold to the local stable manifold is uniformly bounded. However, a sequence
of homoclinic solutions{un}n∈N was constructed in [18] such that the time between local
manifolds grows linearly inn. By the duality principle, no second even eigenfunction exists
in the kernel ofH.

(iii) Smoothness of the mapφ(z) from c > 0 to H2(R) is a standard assumption
(see Assumption 5.1 in [84]). IfP ′(c) > 0, the one-pulse solution is stable, according
to Theorem 4.1 of [84] and Theorem 8.1 of [16]. Therefore, no eigenvalues of∂zH with
Re(λ) > 0 exist. The two-dimensional algebraic kernel of∂zH follows from the derivatives
of the ODE (3.1.2) inz andc:

Hφ′(z) = 0, H∂cφ(z) = −φ(z). (3.2.2)

The algebraic kernel of∂zH is exactly two-dimensional under the conditionP ′(c) 6= 0
[95]. ¤
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Theorem 3.2.2 (Two-pulse solutions)There exists an infinite countable set of two-pulse
solutionsφ(z) of the ODE (3.1.2) forc > 1

4
such thatφ ∈ H2(R)∩C5(R), φ(−z) = φ(z),

φ(z) → 0 exponentially as|x| → ∞, and φ(z) resembles two copies of the one-pulse
solutions described in Theorem 3.2.1 which are separated by small-amplitude oscillatory
tails. The members of the set are distinguished by the distanceL between individual pulses
which takes the discrete values{Ln}n∈N. Moreover, for any smallδ > 0 there existsγ > 0
such that ∣∣∣∣Ln − 2πn

k0

− γ

∣∣∣∣ < δ, n ∈ N. (3.2.3)

Proof. Existence of an infinite sequence of geometrically distinct two-pulse solutions with
the distances distributed by (3.2.3) follows by the variational theory in Theorem 1.1 of
[19] under the assumption that the single-pulse solutionφ(z) is isolated (up to the space
translations). This assumption is satisfied by Theorem 3.2.1(ii). ¤

The following theorem describes an asymptotic construction of the two-pulse solu-
tions, which is used in the rest of this chapter.

Theorem 3.2.3 Let c > 1
4

andΦ(z) denote the one-pulse solution described by Theorem
3.2.1. LetL = 2s be the distance between two copies of the one-pulse solutions of the ODE
(3.1.2) in the decomposition

φ(z) = Φ(z − s) + Φ(z + s) + ϕ(z), (3.2.4)

whereϕ(z) is a remainder term. LetW (L) beC2(R+) function defined by

W (L) =

∫

R
Φ2(z)Φ(z + L)dz. (3.2.5)

There exists an infinite countable set of extrema ofW (L), which is denoted by{Ln}n∈N.

(i) Assume thatW ′′(Ln) 6= 0 for a givenn ∈ N. There exists a unique symmetric
two-pulse solutionφ(z) described by Theorem 3.2.2, such that

|L− Ln| ≤ Cne
−κ0L, ‖ϕ‖H2(R) ≤ C̃ne

−κ0L, (3.2.6)

for someCn, C̃n > 0.

(ii) The JacobianH associated with the two-pulse solutionφ(z) has exactly two finite
negative eigenvalues with even and odd eigenfunctions, a simple kernel with the odd
eigenfunctionφ′(z) and a small eigenvalueµ with an even eigenfunction, such that

∣∣∣∣µ +
2W ′′(Ln)

Q(c)

∣∣∣∣ ≤ Dne
−2κ0L (3.2.7)

for someDn > 0, whereQ(c) = ‖Φ′‖2
L2 > 0. In particular, the small eigenvalueµ

is negative whenW ′′(Ln) > 0 and positive whenW ′′(Ln) < 0.
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(iii) There exists a pair of small eigenvaluesλ of the linearized operator∂zH associated
with the two-pulse solutionφ(z), such that

∣∣∣∣λ2 +
4W ′′(Ln)

P ′(c)

∣∣∣∣ ≤ D̃ne−2κ0L, (3.2.8)

for someD̃n > 0, whereP (c) = ‖Φ‖2
L2 andP ′(c) > 0. In particular, the pair is

real whenW ′′(Ln) < 0 and purely imaginary (up to the leading order) with negative
Krein signature whenW ′′(Ln) > 0.

Proof. When the tails of the one-pulse solutionΦ(z) are decaying and oscillatory (i.e. when
c > 1

4
), the functionW (L) in (3.2.5) is decaying and oscillatory inL and an infinite set of

extrema{Ln}n∈N exists. Let us pickLn for a fixed value ofn ∈ N such thatW ′(Ln) = 0
andW ′′(Ln) 6= 0.

(i) When the decomposition (3.2.4) is substituted into the ODE (3.1.2), we find the
ODE forϕ(z):

(
c− ∂2

z + ∂4
z − 2Φ(z − s)− 2Φ(z + s)

)
ϕ− ϕ2 = 2Φ(z − s)Φ(z + s). (3.2.9)

Let ε = e−κ0L be a small parameter that measures theL∞-norm of the overlapping term
Φ(z− s)Φ(z + s) in the sense that for eachε > 0 there exist constantsC0, s0 > 0 such that

‖Φ(z − s)Φ(z + s)‖L∞ ≤ C0ε ∀s ≥ s0. (3.2.10)

DenoteL = 2s andεΨ(z; L) = 2Φ(z)Φ(z + L) and rewrite the ODE (3.2.9) for̃ϕ(z) =
ϕ(z + s):

(
c− ∂2

z + ∂4
z − 2Φ(z)

)
ϕ̃− 2Φ(z + L)ϕ̃− ϕ̃2 = εΨ(z; L). (3.2.11)

The vector field of the ODE (3.2.11) is closed in function spaceH2(R), while the Jacobian
for the one-pulse solution

H = c− ∂2
z + ∂4

z − 2Φ(z)

has a simple kernel with the odd eigenfunctionΦ′(z) by Theorem 3.2.1(ii). By the Lyapunov–
Schmidt reduction method (see [55]), there exists a unique solutionϕ̃ = ϕ̃ε(z; L) ∈
H2(R) : (Φ′, ϕ̃) = 0, such thatϕ̃0(z; L) = 0 and ϕ̃ε(z; L) is smooth inε, providedL
solves the bifurcation equationFε(L) = 0, where

Fε(L) = ε (Φ′(z), Ψ(z; L)) + 2 (Φ′(z), Φ(z + L)ϕ̃ε(z; L)) +
(
Φ′(z), ϕ̃2

ε(z; L)
)

= ε (Φ′(z), Ψ(z; L))− ε (∂LΨ(z; L), ϕ̃ε(z; L))− ε (Ψ(z; L), ∂zϕ̃ε(z; L))

+
(
Φ′(z), ϕ̃2

ε(z; L)
)
.
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Sinceϕ̃ε(z; L) is smooth inε and ϕ̃0(z; L) = 0, then‖ϕ̃ε(z; L)‖H2(R) ≤ Cε for
someC > 0 such that

Fε(L) = −W ′(L) + F̃ε(L),

where|W ′(L)| ≤ C1ε and |F̃ε(L)| ≤ C2ε
2 for someC1, C2 > 0. The statement follows

by the Implicit Function Theorem applied to the scalar equation1
ε
Fε(L) = 0 under the

assumption that the rootLn of W ′(L) is simple.
(ii) The JacobianH associated with the two-pulse solutionφ(z) in (3.2.4) has the

form:
H = c− ∂2

z + ∂4
z − 2Φ(z − s)− 2Φ(z + s)− 2ϕ(z).

In the limit s → ∞, the JacobianH has a double negative eigenvalue and a double zero
eigenvalue. By a linear combination of eigenfunctions, one can construct one even and
one odd eigenfunctions for each of the double eigenvalues. By continuity of eigenvalues
of self-adjoint operators, the double negative eigenvalue splits and the two simple eigen-
values remain negative for sufficiently larges. By reversibility of the system, eigenfunc-
tions for simple eigenvalues are either even or odd and by continuity of eigenfunctions,
there is exactly one even and one odd eigenfunctions for the two negative eigenvalues. By
the translation invariance, the double zero eigenvalue splits into a simple zero eigenvalue
which corresponds to the odd eigenfunctionφ′(z) and a small non-zero eigenvalue that
corresponds to an even eigenfunction. The splitting of the double zero eigenvalue in the
problemHv = µv is considered by the perturbation theory,

v(z) = α1Φ
′(z − s) + α2Φ

′(z + s) + V (z), (3.2.12)

where(α1, α2) are coordinates of the projections to the kernel ofH in the limit s →∞ and
V (z) is the remainder term. By projecting the eigenvalue problemHv = µv to the kernel
of H and neglecting the higher-order terms, we obtain a reduced eigenvalue problem:

µQ(c)α1 = −W̃α1 + W ′′(Ln)α2, µQ(c)α2 = W ′′(Ln)α1 − W̃α2,

whereQ(c) = ‖Φ′‖2
L2 > 0, W ′′(Ln) is computed from (3.2.5) and

W̃ = 2
(
[Φ′(z − s)]2, ϕ(z) + Φ(z + s)

)
= 2

(
[Φ′(z)]2, ϕ̃(z) + Φ(z + L)

)
.

Since one eigenvalue must be zero with the odd eigenfunctionφ′(z), the zero eigenvalue
corresponds to the eigenfunction (3.2.12) withα1 = α2 up to the leading order. By looking
at the linear system, we find that the zero eigenvalue corresponding toα1 = α2 exists
only if W̃ = W ′′(Ln). The other eigenvalue at the leading order isµ = −2W ′′(Ln)/Q(c)
and it corresponds to the even eigenfunction (3.2.12) withα1 = −α2. By continuity of
isolated eigenvaluesH with respect to perturbation terms and estimates of Theorem 2.3(i),
we obtain the result (3.2.7).
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(iii) In the limit s → ∞, the linearized operator∂zH for the two-pulse solution
φ(z) has a four-dimensional algebraic kernel according to the two-dimensional kernel of
the one-pulse solution (3.2.2). By the translation invariance, the two-dimensional algebraic
kernel survives for anys with the eigenfunctions{φ′(z), ∂cφ(z)}. Two eigenvaluesλ of the
operator∂zH may bifurcate from the zero eigenvalue. The splitting of the zero eigenvalue
in the problem∂zHv = λv is considered by the perturbation theory,

v(z) = −α1Φ
′(z − s)− α2Φ

′(z + s) + β1∂cΦ(z − s) + β2∂cΦ(z + s) + V (z), (3.2.13)

where(α1, α2, β1, β2) are coordinates of the projections to the algebraic kernel of∂zH in
the limit s → ∞ andV (z) is the remainder term. By projecting the eigenvalue problem
∂zHv = λv to the algebraic kernel of the adjoint operator−H∂z and neglecting the higher-
order terms, we find at the leading order thatβj = λαj, j = 1, 2 and(α1, α2) satisfy a
reduced eigenvalue problem:

1

2
λ2P ′(c)α1 = −W̃α1 + W ′′(Ln)α2,

1

2
λ2P ′(c)α2 = W ′′(Ln)α1 − W̃α2,

whereP (c) = ‖Φ‖2
L2 and W̃ = W ′′(Ln). The non-zero squared eigenvalueλ2 at the

leading order is

λ2 =
2Q(c)µ

P ′(c)
= −4W ′′(Ln)

P ′(c)
.

Isolated eigenvalues∂zH are continuous with respect to perturbation terms, so that we
immediately obtain the result (3.2.8) forλ ∈ R whenW ′′(Ln) < 0. In order to prove
(3.2.8) for λ ∈ iR when W ′′(Ln) > 0, we compute the energy quadratic form at the
leading order

(Hv, v) = −4W ′′(Ln)− P ′(c)|λ|2,
wherev(z) is given by the eigenfunction (3.2.13) withα1 = −α2 = 1 andβj = λαj, j =
1, 2. Whenλ ∈ iR andW ′′(Ln) > 0, we have(Hv, v) < 0 up to the leading order, such
that λ ∈ iR is an eigenvalue of negative Krein signature. Persistence of the eigenvalues
of negative Krein signature (even although the eigenvaluesλ ∈ iR are embedded into
the continuous spectrum of∂zH) follows from the invariant subspace theorem (Theorem
1 in [29]). In the exponentially weighted spaces [96], the eigenvalues of negative Krein
signature are isolated and hence continuous, such that they satisfy the bound (3.2.8).¤

Remark 3.2.4 Theorem 3.2.3 is a modification of more general Theorems 1 and 2 in [110]
(see also [85]). We note that the persistence of eigenvalues (3.2.8) on the imaginary axis for
W ′′(Ln) > 0 cannot be proved with the Lyapunov–Schmidt reduction method since the es-
sential spectrum of∂zH occurs on the imaginary axis (contrary to the standard assumption
of Theorem 2 in [110] that the essential spectrum is located in the left half-plane.)
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The following conjecture from the Gorshkov–Ostrovsky perturbative procedure
[56, 57] illustrates the role ofW (L) as the effective interaction potential for the slow dy-
namics of a two-pulse solution:
Conjecture: Let C1, C2 be some positive constants. For the initial time interval0 ≤ t ≤
C1e

κ0L/2 and up to the leading orderO(e−κ0L), the two-pulse solutions of the fifth-order
KdV equation (3.1.1) can be written as the decomposition

u(x, t) = Φ(x− ct− s(t)) + Φ(x− ct + s(t)) + U(x, t),

where‖U‖L∞ ≤ C2e
−κ0L and the slow dynamics ofL(t) = 2s(t) is represented by the

Newton law:
P ′(c)L̈ = −4W ′(L). (3.2.14)

Although rigorous bounds on the time interval and the truncation error of the Newton law
were recently found in the context of NLS solitons in external potentials (see [47]), the
above conjecture was not proved yet in the context of two-pulse solutions of the fifth-order
KdV equation (3.1.1). We note that perturbation analysis that leads to the Newton law
(3.2.14) cannot be used to claim persistence and topological equivalence of dynamics of
the second-order ODE (3.2.14) to the full dynamics of two-pulse solutions in the fifth-order
KdV equation (3.1.1).

According to Theorem 3.2.3, an infinite set of extrema ofW (L) generates a se-
quence of equilibrium configurations for the two-pulse solutions in Theorem 3.2.2. Since
P ′(c) > 0 by Theorem 3.2.1(iii), the maxima points ofW (L) correspond to a pair of real
eigenvaluesλ of the spectral problem (3.1.5), while the minima points ofW (L) corre-
spond to a pair of purely imaginary eigenvaluesλ. The two-pulse solutions at the maxima
points are thus expected to be linearly and nonlinearly unstable. The two-pulse solutions
at the minima points are stable within the leading-order approximation (3.2.8) and within
the Newton law (3.2.14) (a particle with the coordinateL(t) performs a periodic oscilla-
tion in the potential well). Correspondence of these predictions to the original PDE (3.1.1)
is a subject of the present chapter. We will compute the interaction potentialW (L) and
the sequence of its extrema points{Ln}n∈N, as well as the numerical approximations of
the two-pulse solutions of the ODE (3.1.2) and of the eigenvalues of the operator∂zH in
(3.1.5).

3.3 Modification of the Petviashvili method

We address the Petviashvili method for numerical approximations of solutions of the fourth-
order ODE (3.1.2) withc > 0. See review of literature on the Petviashvili’s method in
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[101]. By using the standard Fourier transform

φ̂(k) =

∫

R
φ(z)e−ikzdz, k ∈ R,

we reformulate the ODE (3.1.2) as a fixed-point problem in the Sobolev spaceH2(R):

φ̂(k) =
φ̂2(k)

(c + k2 + k4)
, k ∈ R, (3.3.1)

where φ̂2(k) can be represented by the convolution integral ofφ̂(k) to itself. An even
real-valued solutionφ(−z) = φ(z) of the ODE (3.1.2) inH2(R) is equivalent to the even
real-valued solution̂φ(−k) = φ̂(k) of the fixed-point problem (3.3.1). Let us denote the
space of all even functions inH2(R) by H2

ev(R) and consider solutions of the fixed-point
problem (3.3.1) inH2

ev(R).
Let {ûn(k)}∞n=0 be a sequence of Fourier transforms inH2

ev(R) defined recursively
by

ûn+1(k) = M2
n

û2
n(k)

(c + k2 + k4)
, (3.3.2)

whereû0(k) ∈ H2
ev(R) is a starting approximation andMn ≡ M [ûn] is the Petviashvili

factor defined by

M [û] =

∫
R(c + k2 + k4) [û(k)]2 dk∫

R û(k)û2(k)dk
. (3.3.3)

If un ∈ H2(R), thenu ∈ L3(R) due to the Sovolev embedding theorem, and both the
nominator and denominator ofM [û] are bounded. It follows from the fixed-point problem
(3.3.1) thatM [φ̂] = 1 for any solutionφ̂ ∈ H2

ev(R). The following theorem was proved in
[101] and reviewed in [40].

Theorem 3.3.1 Let φ̂(k) be a solution of the fixed-point problem (3.3.1) inH2
ev(R). LetH

be the Jacobian operator (3.1.4) evaluated at the corresponding solutionφ(z) of the ODE
(3.1.2). IfH has exactly one negative eigenvalue and a simple zero eigenvalue and if

either φ(z) ≥ 0 or

∣∣∣∣inf
z∈R

φ(z)

∣∣∣∣ <
c

2
, (3.3.4)

then there exists an open neighborhood ofφ̂ in H2
ev(R), in whichφ̂ is the unique fixed point

and the sequence of iterations{ûn(k)}∞n=0 in (3.3.2)–(3.3.3) converges tôφ.

Proof. We review the basic steps of the proof, which is based on the contraction mapping
principle in a local neighborhood of̂φ in H2

ev(R). The linearization of the iteration map
(3.3.2) at the solutionφ is rewritten in the physical spacez ∈ R as follows:

vn+1(z) = −2αnφ(z) + vn(z)− (c− ∂2
z + ∂4

z )
−1Hvn(z), (3.3.5)
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whereαn is a projection ofvn ontoφ2 in L2(R):

αn =
(φ2, vn)

(φ2, φ)
,

such thatun = φ + vn andMn = 1− αn to the linear order. The operatorT = (c− ∂2
z +

∂4
z )
−1H is a self-adjoint operator in Pontryagin spaceΠ0 defined by the inner product

∀f, g ∈ Π0 : [f, g] = ((c− ∂2
z + ∂4

z )f, g).

See [29] for review of Pontryagin spaces and the invariant subspace theorem. Sincec > 0,
the Pontryagin spaceΠ0 has zero index and, by the invariant subspace theorem, the operator
T in Π0 has exactly one negative eigenvalue, a simple kernel and infinitely many positive
eigenvalues. (SinceT is an identity operator with a compact perturbation, the spectrum of
T is purely discrete.) The eigenfunctions for the negative and zero eigenvalues are known
exactly as

T φ = −φ, T φ′(z) = 0.

Due to orthogonality of the eigenfunctions in the Pontryagin spaceΠ0 and the relation

φ2 = (c− ∂2
z + ∂4

z )φ,

we observe thatαn is a projection ofvn to φ in Π0, which satisfies the trivial iteration map:

αn+1 = 0, n ≥ 1,

no matter what the value ofα0 is. In addition, projection ofvn to φ′ in Π0 is zero since
vn ∈ H2

ev(R). As a result, the linearized iteration map (3.3.5) defines a contraction map if
the maximal positive eigenvalue ofT in L2(R) is smaller than2. However,

σ
(
T

∣∣∣
L2

)
− 1 ≤ −2 inf

‖u‖L2=1

(
u, (c− ∂2

z + ∂4
z )
−1φ(z)u

)
. (3.3.6)

If φ(z) ≥ 0 onz ∈ R, the right-hand-side of (3.3.6) is zero. Otherwise, the right-hand-side
of (3.3.6) is bounded from above by2

c
|infz∈R φ(z)|, which leads to the condition (3.3.4).

¤

Corollary 3.3.2 Let φ(z) be a one-pulse solution of the ODE (3.1.2) withc > 0 defined
by Theorem 3.2.1. Then, the iteration method (3.3.2)–(3.3.3) converges toφ(z) in a local
neighborhood ofφ in H2

ev(R) provided that the condition (3.3.4) is met.

The condition (3.3.4) is satisfied for the positive exact solution (3.1.3) forc = 36
169

.
Since the one-pulse solution is positive definite for0 < c < 1

4
[5], it is also satisfied for
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all values ofc ∈ (
0, 1

4

)
. However, the solution is sign-indefinite forc ≥ 1

4
, such that

the condition (3.3.4) must be checkeda posteriori, after a numerical approximation of the
solution is obtained.

Besides the convergence criterion described in Theorem 3.3.1, there are additional
factors in the numerical approximation of the one-pulse solution of the ODE (3.1.2) which
comes from the discretization of the Fourier transform, truncation of the resulting Fourier
series, and termination of iterations within the given tolerance bound. These three numeri-
cal factors are accounted by three numerical parameters:

(i) d - the half-period of the computational intervalz ∈ [−d, d] where the solutionφ(z)
is represented by the Fourier series for periodic functions;

(ii) N - the number of terms in the partial sum for the truncated Fourier series such that
the grid sizeh of the discretization ish = 2d/N ;

(iii) ε - the small tolerance distance that measures deviation ofMn from1 and the distance
between two successive approximations, such that the method can be terminated at
the iterationn if

EM ≡ |Mn − 1| < ε and E∞ ≡ ‖un+1 − un‖L∞ < ε.

andφ̃ ≡ un(z) can be taken as the numerical approximation of the solutionφ(z).

The numerical approximation depends weakly of the three numerical parameters,
provided (i)d is much larger than the half-width of the one-pulse solution, (ii)N is suf-
ficiently large for convergence of the Fourier series, and (iii)ε is sufficiently small above
the level of the round-off error. Indeed, the constraint (i) ensures that the truncation error
is exponentially small when the one-pulse solution is replaced by the periodic sequence
of one-pulse solutions in the trigonometric approximation [111]. The constraint (ii) en-
sures that the remainder of the Fourier partial sum is smaller than any inverse power of
N (by Theorem 3.2.1(i), all derivatives of the functionφ(z) are continuous) [119]. The
constraint (iii) specifies the level of accuracy achieved when the iterations of the method
(3.3.2)–(3.3.3) are terminated. While we do not proceed with formal analysis of the three
numerical factors (see [40] for an example of this analysis), we illustrate the weak depen-
dence of three numerical factors on the example of the numerical approximationφ̃(z) of
the exact one-pulse solution (3.1.3), which exists forc = 36

169
. Numerical implementation

of the iteration method (3.3.2)–(3.3.3) was performed in MATLAB according to a standard
toolbox of the spectral methods [119].

Figure 3.1displays the distanceE = ‖φ̃ − φ‖L∞ versus the three numerical fac-
tors d, h, andε described above. The left panel shows that the errorE converges to the
numerical zero, which isO(10−15) in MATLAB under the Windows platform, when the
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Figure 3.1: The distanceE = ‖φ̃ − φ‖L∞ for the ODE (3.1.2) withc = 36
169

versus the
half-periodd of the computational interval, the step sizeh of the discretization, and the
tolerance boundε.

step sizeh is reduced, whiled = 50 andε = 10−15 are fixed. The middle panel computed
for h = 1 andε = 10−15 shows that the errorE converges to the levelO(10−13) when the
half-width d is enlarged. The numerical zero is not reached in this case, because the step
sizeh is not sufficiently small. The right panel computed forh = 1 andd = 50 shows that
the errorE converges to the same levelO(10−13) as the tolerance boundε is reduced. In
all approximations that follow, we will specifyh = 0.01, d = 50 andε = 10−15 to ensure
that the error of the iteration method (3.3.2)–(3.3.3) for one-pulse solutions is on the level
of the numerical zeroO(10−15).

Figure 3.2 (left) shows the numerical approximation of the one-pulse solutions
for c = 4, where the small-amplitude oscillations of the exponentially decaying tail are
visible. We check a posteriori the condition (3.3.4) for non-positive one-pulse solutions
|infz∈R φ(z)| < 2 for c = 4. Figure 3.2(right) displays convergence of the errorsEM =
|Mn − 1| andE∞ = ‖un+1 − un‖L∞ computed dynamically at eachn asn increases. We
can see that the errorEM converges to zero much faster than the errorE∞, in agreement
with the decomposition of the linearized iterative map (3.3.5) into the one-dimensional pro-
jectionαn and the infinite-dimensional orthogonal compliment (see the proof of Theorem
3.3.1). In all further approximations, we will use the errorE∞ for termination of iterations
and detecting its minimal values sinceE∞ is more sensitive compared toEM .

Figure 3.3shows the dependence of̃P (c) = ‖φ̃‖2
L2(R) on c > 0. Since the de-

pendence ofP̃ (c) is strictly increasing and the approximation error is controlled in the
numerical method, the assumption of Theorem 2.1(iii) thatP ′(c) > 0 is verified.
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Figure 3.2: One-pulse solutions of the ODE (3.1.2) withc = 4 (left) and convergence of
the errorsEM andE∞ to zero versus the number of iterationsn.
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Figure 3.3: The squaredL2-norm of the one-pulse solutions of the ODE (3.1.2) versusc.
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Since the numerical approximationsφ̃(z) of one-pulse solutions can be computed
for any value ofc > 0, one can usẽφ(z) for a givenc and compute the effective interaction
potential (3.2.5), which defines the extremal values{Ln}n∈N. Theorem 3.2.3 guarantees
that the two-pulse solutionφ(z) consists of two copies of the one-pulse solutions separated
by the distanceL near the pointLn whereW ′(Ln) = 0 andW ′′(Ln) 6= 0. Table 1 shows the
first four values of the sequence{Ln}∞n=1 for c = 1 (wheresn = Ln/2 is the half-distance
between the pulses). It also shows the corresponding values from the first four numerical
approximations of two-pulse solutionsφ(z) (obtained below) and the computational error
computed from the difference of the two numerical approximations. We can see that the
error decreases for larger indicesn in the sequence{Ln}n∈N since the Lyapunov–Schmidt
reductions of Theorem 3.2.3 become more and more accurate in this limit.

solution effective potential root finding error
s = s1 5.058733328146916 5.079717398028492 0.02098406988158
s = s2 8.196800619090793 8.196620796452045 1.798226387474955 · 10−4

s = s3 11.338414567609066 11.338406246900558 8.320708507980612 · 10−6

s = s4 14.479997655627219 14.479996635578457 1.020048761901649 · 10−6

Table 1: The first four members of the sequence of two-pulse solutions forc = 1.

By Theorem 3.2.3(ii), the Jacobian operatorH associated with a two-pulse solu-
tion φ(z) has one finite negative eigenvalue in the space of even functions and one small
eigenvalue which is either negative or positive depending on the sign ofW ′′(Ln). This
small eigenvalue leads to either weak divergence or weak convergence of the Petviashvili
method in a local neighborhood ofφ in H2

ev(R). Even if the small eigenvalue is positive and
the algorithm is weakly convergent, the truncation error from the numerical discretization
may push the small eigenvalue to a negative value and lead thus to weak divergence of the
iterations.

Figure 3.4illustrates typical behaviors of the errorsEM andE∞ versusn for the
starting approximation

u0(z) = U0(z − s) + U0(z + s), (3.3.7)

whereU0(z) is a starting approximation of a sequence{un(z)}n∈N which converges to the
one-pulse solutionΦ(z) ands is a parameter defined nearLn/2 for the two-pulse solution
φ(z). The left panel shows iterations fors nears1 and the right panel shows iterations fors
nears2. SinceW ′′(L1) > 0 andW ′′(L2) < 0, the iteration method (3.3.2)–(3.3.3) diverges
weakly near the former solution, while it converges weakly near the latter solution.

At the initial stage of iterations, both errorsEM andE∞ quickly drops to small
values, since the starting iterationsU0(z ∓ s) converge to the one-pulse solutionsΦ(z ∓ s)
while the contribution from the overlapping tails ofΦ(z ∓ s) is negligible. However, at
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the later stage of iterations, both errors either start to grow (the left panel ofFigure 3.4)
or stop to decrease (the right panel). As it is explained above, this phenomenon is related
to the presence of zero eigenvalue ofH in the space of even functions which bifurcates
to either positive or negative values due to overlapping tails ofΦ(z ∓ s) and due to the
truncation error. At the final stage of iterations on the left panel ofFigure 3.4, the numerical
approximationun(z) converges to the one-pulse solutionΦ(z) centered atz = 0 and both
errors quickly drop to the numerical zero, which occurs similarly to the right panel of
Figure 3.2. No transformation of the solution shape occurs for largen on the right panel of
Figure 3.4.

The following theorem defines an effective numerical algorithm, which enables
us to compute the two-pulse solutions from the weakly divergent iterations of the Petvi-
ashvili’s method (3.3.2)–(3.3.3).

Theorem 3.3.3 Letφ(z) be the two-pulse solution of the ODE (3.1.2) defined by Theorems
3.2.2 and 3.2.3. There existss = s∗ nears = Ln/2 such that the iteration method (3.3.2)–
(3.3.3) with the starting approximationu0(z) = Φ(z − s) + Φ(z + s) converges toφ(z) in
H2

ev(R).

Proof. The iteration operator (3.3.2)–(3.3.3) in a neighborhood of the two-pulse solution
φ(z) in H2

ev(R) can be represented into an abstract form

vn+1 = M(ε)vn + N(vn, ε), n ∈ N,

where the linear operatorM(ε) has a unit eigenvalue atε = 0 and the nonlinear vector field
N(vn, ε) is C∞ in vn ∈ H2

ev andε ∈ R, such thatN(0, 0) = DvN(0, 0) = 0. Herevn is
a perturbation ofun to the fixed pointφ andε is a small parameter for two-pulse solutions
defined in Theorem 3.2.3. By the Center Manifold Reduction for quasi-linear discrete
systems (Theorem 1 in [48]), there exists a one-dimensional smooth center manifold in a
local neighborhood ofφ in H2

ev(R). Let ξ be a coordinate of the center manifold such that
ξ ∈ R, ξ = 0 corresponds tov = 0, and the dynamics on the center manifold is

ξn+1 = µ(ε)ξn + f(ξn, ε), n ∈ N,

whereµ(ε) satisfiesµ(0) = 1 andf(ξn, ε) is C∞ in ξ ∈ R andε ∈ R, such thatf(0, 0) =
∂ξf(0, 0) = 0. Consider the one-parameter starting approximationu0(z) = Φ(z − s) +
Φ(z + s) in a neighborhood ofφ in H2

ev(R), wheres is close to the values = sn defined in
Theorem 3.2.3. By the time evolution of the hyperbolic component ofvn (see Lemma 2 in
[48]), the sequencevn approaches to the center manifold with the coordinateξn. Iterations
of ξn are sign-definite in a neighborhood ofξ = 0. Moreover, there existss1 < sn and
s2 > sn, such that the sequences{ξn(s1)}n∈N and{ξn(s2)}n∈N are of opposite signs. By
smoothness ofvn andξn from parameters, there exists a roots∗ in betweens1 < s∗ < s2

such thatξn(s∗) = 0 for all n ∈ N. ¤
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Remark 3.3.4 The proof of Theorem 3.3.3 does not require that the roots∗ be unique for
the one-parameter starting approximationu0(z) = Φ(z − s) + Φ(z + s). Our numerical
computations starting with a more general approximation (3.3.7) show, however, that the
roots∗ is unique nears = sn.

To capture the two-pulse solutions according to Theorem 3.3.3, we compute the
minimum of the errorE∞ for different values ofs and find numerically a roots = s∗ of
the function

f(s) = min
0≤n≤n0

(E∞),

wheren0 is the first iterations after which the value ofEinfty increases (in case of the left
panel ofFigure 3.4) or remains unchanged (in case of the right panel ofFigure 3.4). The
numerical roots = s∗ is found by using the secant method:

sk =
sk−2f(sk−1)− sk−1f(sk−2)

f(sk−1)− f(sk−2)
. (3.3.8)

The Petviashvili method (3.3.2)–(3.3.3) with the starting approximation (3.3.7) wheres is
close to the roots = s∗ near the points = sn converges to the two-pulse solutionφ(z)
within the accuracy of the round-off error.

Figure 3.5shows the graph off(s) near the values = s1 for c = 1. (The graph of
f(s) nears = s2 as well as other values ofsn look similar toFigure 3.5.) The left panel
shows uniqueness of the root, while the right panel shows the linear behavior off(s) near
s = s∗ which indicates that the root is simple. Numerical approximations for the first four
values of the sequence{sn}n∈N obtained in this root finding algorithm are shown in Table
1. We note that the number of iterationsNh of the secant method (3.3.8) decreases with
larger values ofn, such thatNh = 14 for n = 1, Nh = 12 for n = 2, Nh = 10 for n = 3
andNh = 9 for n = 4, while the number of iterations of the Petviashili method for each
computation does not exceed100 iterations.

Figure 3.6shows numerical approximations of the two-pulse solutions forc = 1
andc = 4. We can see from the right panel that two-pulse solutions withc = 4 resemble
the two copies of the one-pulse solutions from the left panel ofFigure 3.2, separated by the
small-amplitude oscillatory tails.

Finally, the three-pulse and multi-pulse solutions of the fixed-point problem (3.1.2)
cannot be approximated numerically with the use of the Petviashili method (3.3.2). The
Jacobian operatorH associated with the three-pulse solution has two finite negative eigen-
values and one small eigenvalue in the space of even functions, while the stabilizing factor
of Theorem 3.3.1 and the root finding algorithm of Theorem 3.3.3 can only be useful for
one finite negative eigenvalue and one zero eigenvalue. The additional finite negative eigen-
value introduces astrongdivergence of the iterative method (3.3.2) which leads to failure
of numerical approximations for three-pulse solutions. This numerical problem remains
open for further analysis.
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Figure 3.4: ErrorsEM andE∞ versus the number of iterationsn for the starting approxima-
tion (3.3.7) withs = 5.079 (left panel) ands = 8.190 (right panel). The other parameters
are:c = 1, d = 50, h = 0.01 andε = 10−15.
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Figure 3.5: Minimal value ofE∞ versuss nears1 = 5.080 (left panel) and the zoom of the
graph, which shows the linear behavior off(s) near the root (right panel).
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Figure 3.6: Numerical approximation of the first four two-pulse solutions of the ODE
(3.1.2) forc = 1 (left) andc = 4 (right).

3.4 Application: KdV two-pulse solitons

We address spectral stability of the two-pulse solution by analyzing the linearized problem
(3.1.5), where the operatorH : H4(R) 7→ L2(R) is the Jacobian operator (3.1.4) evaluated
at the two-pulse solutionφ(z).

By Theorem 3.2.3(ii), operatorH has two finite negative eigenvalue, a simple ker-
nel and one small eigenvalue, which is negative whenW ′′(Ln) > 0 and positive when
W ′′(Ln) < 0. Persistence (structural stability) of these isolated eigenvalues beyond the
leading order (3.2.7) is a standard property of perturbation theory of self-adjoint operators
in Hilbert spaces (see Section IV.3.5 in [75]).

By Theorem 3.2.3(iii), operator∂zH has a pair of small eigenvalues, which are
purely imaginary whenW ′′(Ln) > 0 and real whenW ′′(Ln) < 0. We first prove that no
other eigenvalues may induce instability of two-pulse solutions (i.e. no other bifurcations
of eigenvalues of∂zH with Re(λ) > 0 may occur). We then prove persistence (structural
stability) of the purely imaginary eigenvalues beyond the leading order (3.2.8). Combined
together, these two results lead to the theorem on spectral stability of the two-pulse solution
φ(z) that corresponds toLn with W ′′(Ln) > 0.

Theorem 3.4.1 LetNreal be the number of real positive eigenvalues of the linearized prob-
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lem (3.1.5),Ncomp be the number of complex eigenvalues in the first open quadrant, and
N−

imag be the number of simple positive imaginary eigenvalues with(Hv, v) ≤ 0, where
v(x) is the corresponding eigenfunction forλ ∈ iR+. Assume that no multiple imaginary
eigenvalues exist, the kernel ofH is simple andP ′(c) > 0, whereP = ‖φ‖2

L2. Then,

Nreal + 2Ncomp + 2N−
imag = n(H)− 1, (3.4.1)

wheren(H) is the number of negative eigenvalues ofH.

Proof. The statement is equivalent to Theorem 6 in [29] in the case(H−1φ, φ) = −(∂cφ, φ) =
−1

2
P ′(c) < 0. The result follows from the invariant subspace theorem in the Pontryagin

spaceΠκ, whereκ = n(H). ¤

Corollary 3.4.2 Letφ(z) ≡ Φ(z) be a one-pulse solution defined by Theorem 3.2.1. Then,
it is a spectrally stable ground state in the sense thatNreal = Ncomp = N−

imag = 0.

Remark 3.4.3 Figure 3.3 confirms thatP ′(c) > 0 for the one-pulse solution. In addition,
it is shown in Lemma 4.12 and Remark 4.14 in [29] that multiple imaginary eigenvalues
may only occur if(Hv, v) = 0 such thatn(H) ≥ 2 is a necessary condition for existence
of multiple eigenvalues (withP ′(c) > 0). No multiple imaginary eigenvalues exists for the
one-pulse solutionΦ(z).

Corollary 3.4.4 Letφ(z) be a two-pulse solution defined by Theorem 3.2.3. Then,

(i) the solution corresponding toLn withW ′′(Ln) < 0 is spectrally unstable in the sense
thatNreal = 1 andNcomp = N−

imag = 0 for sufficiently largeLn

(ii) the solution corresponding toLn with W ′′(Ln) > 0 satisfiesNreal = 0 andNcomp +
N−

imag = 1 for sufficiently largeLn.

Proof. It follows from Theorems 3.2.1 and 3.2.3 for sufficiently largeLn that the kernel of
H is simple forW ′′(Ln) 6= 0 and the only pair of imaginary eigenvalues with(Hv, v) < 0
in the caseW ′′

n (Ln) > 0 is simple. Therefore, assumptions of Theorem 3.4.1 are satisfied
for the two-pulse solutionsφ(z) with W ′′(Ln) 6= 0. By the count of Theorem 3.2.3(ii),
n(H) = 3 for W ′′(Ln) > 0 andn(H) = 2 for W ′′(Ln) < 0. Furthermore, persistence
(structural stability) of simple real eigenvalues of the operator∂zH follows from the per-
turbation theory of isolated eigenvalues of non-self-adjoint operators (see Section VIII.2.3
in [75]). ¤

There exists one uncertainty in Corollary 3.4.4(ii) since it is not clear if the eigen-
value of negative Krein signature in Theorem 3.2.3(iii) remains imaginary inN−

imag or bi-
furcates to a complex eigenvalue inNcomp. This question is important for spectral stability
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of the corresponding two-pulse solutions since the former case implies stability while the
latter case implies instability of solutions. We will remove the uncertainty and prove that
N−

imag = 1 andNcomp = 0 for sufficiently largeLn. To do so, we rewrite the linearized
problem (3.1.5) in the exponentially weighted space [96]:

L2
α =

{
v ∈ L2

loc(R) : eαzv(z) ∈ L2(R)
}

. (3.4.2)

The linearized operator∂zH transforms to the form

Lα = (∂z − α)
(
c− (∂z − α)2 + (∂z − α)4 − 2φ(z)

)
, (3.4.3)

which acts on the eigenfunctionvα(z) = eαzv(z) ∈ L2(R). The absolute continuous part
of the spectrum ofLα is located atλ = λα(k), where

λα(k) = (ik − α)(c− (ik − α)2 + (ik − α)4), k ∈ R. (3.4.4)

A simple analysis shows that

d

dk
Re(λα(k)) = −2αk(10k2 − 10α2 + 3),

d

dk
Im(λα(k)) = c− 3α2 + 5α4 + 3k2(1− 10α2) + 5k4.

The following lemma gives a precise location of the dispersion relationλ = λα(k) on
λ ∈ C.

Lemma 3.4.5 The dispersion relationλ = λα(k) is a simply-connected curve located in
the left half-plane ofλ ∈ C if

0 < α <
1√
10

, c >
1

4
. (3.4.5)

Proof. The mappingk 7→ Im(λα) is one-to-one provided thatc − 3α2 + 5α4 > 0 and

1−10α2 > 0. Sincec−3α2 +5α4 reaches the minimum value onα ∈
[
0, 1√

10

]
at the right

endα = 1√
10

and the minimum value is positive ifc > 1
4
, the first inequality is satisfied

under (3.4.5). The second inequality is obviously satisfied if|α| < 1√
10

. The mapping
k 7→ Re(λα) has a single extremal point atk = 0 provided3−10α2 > 0, which is satisfied
if |α| < 1√

10
. The extremal point is the point of maximum and the entire curve is located in

the left half-plane ofλ ∈ C if 0 < α < 1√
10

. ¤
The following two lemmas postulate properties of eigenfunctions corresponding to

embedded eigenvalues of negative Krein signature.
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Lemma 3.4.6 Let v0(z) be an eigenfunction of∂zH for a simple eigenvalueλ0 ∈ iR+ in
L2(R). Then,λ0 ∈ iR+ is also an eigenvalue inL2

α(R) for sufficiently smallα.

Proof. Let k = k0 ∈ R be the unique real root of the dispersion relationλ0(k) = λ0

(with α = 0) for a given eigenvalueλ0 ∈ iR+. The other four rootsk = k1,2,3,4 for
a givenλ0 ∈ iR+ are complex with|Re(kj)| ≥ κ0 > 0. By the Stable and Unstable
Manifolds Theorem in linearized ODEs [31], the decaying eigenfunctionv0(z) ∈ L2(R) is
exponentially decaying with the decay rate greater thanκ0 > 0 and it does not include the
bounded termeik0z asz → ±∞. By construction,vα(z) = eαzv0(z) is also exponentially
decaying asz → ±∞ for sufficiently small|α| < κ0. Sincev0 ∈ L2(R) and due to the
exponential decay ofvα(z) as|z| → ∞, we havevα ∈ L2(R) for any smallα. ¤

Lemma 3.4.7 Let v0(z) ∈ H2(R) be an eigenfunction of∂zH for a simple eigenvalue
λ0 ∈ iR+ with (Hv0, v0) < 0. Then, there existsw0 ∈ H2(R), such thatv0 = w′

0(x) and
w0(z) is an eigenfunction ofH∂z for the same eigenvalueλ0. Moreover,(w0, v0) ∈ iR+.

Proof. SinceH : H4(R) 7→ L2(R), the eigenfunctionv0(z) of the eigenvalue problem
∂zHv0 = λ0v0 for any λ0 6= 0 must satisfy the constraint

∫
R v0(z)dz = 0. Let v0 =

w′
0(z). Sincev0(z) decays exponentially as|z| → ∞ and(1, v0) = 0, thenw0(z) decays

exponentially as|z| → ∞, so thatw0 ∈ H2(R). By construction,H∂zw0 = Hv0 =
λ0

∫
v0(z)dz = λw0. The values of(w0, v0) are purely imaginary as

(w0, v0) =

∫

R
w̄0v0dz =

∫

R
w̄0∂zw0dz = −

∫

R
w0∂zw̄0dz = −

∫

R
w0v̄0dz = −(w0, v0).

SinceHv0 = λ0w0 with λ0 ∈ iR+ and (Hv0, v0) < 0, we have(w0, v0)

= λ−1
0 (Hv0, v0) ∈ iR+. ¤

The following theorem states that the embedded eigenvalues of negative Krein sig-
nature are structurally stable in the linearized problem (3.1.5).

Theorem 3.4.8 Let λ0 ∈ iR+ be a simple eigenvalue of∂zH with the eigenfunctionv0 ∈
H2(R) such that(Hv0, v0) < 0. Then, it is structurally stable to parameter continuations,
e.g. for anyV ∈ L∞(R) and sufficiently smallδ, there exists an eigenvalueλδ ∈ iR+ of
∂z (H + δV (z)) in H2(R), such that|λδ − λ0| ≤ Cδ for someC > 0.

Proof. By Lemma 3.4.6,λ0 is also an eigenvalue ofLα in L2(R) for sufficiently small
α. Let α be fixed in the bound (3.4.5). There exists a small neighborhood ofλ0, which
is isolated from the absolute continuous part of the spectrum ofLα. By the perturbation
theory of isolated eigenvalues of non-self-adjoint operators (see Section VIII.2.3 in [75]),
there exists a simple eigenvalueλδ of ∂z(H + δV (z)) in L2

α(R) for the same value ofα
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and sufficiently smallδ in a local neighborhood ofλ0, such that|λδ − λ0| ≤ Cδ for some
C > 0.

It remains to show that the simple eigenvalueλδ is purely imaginary for the same
value ofα > 0. Denote the eigenfunction of∂z(H + δV (z)) in H2

α(R) for the eigenvalue
λδ by vδ(z), such thateαzvδ ∈ H2(R). If vδ /∈ H2(R), then the count of eigenvalues (3.4.1)
is discontinuous atδ = 0: the eigenvalueλ0 in the numberN−

imag at δ = 0 disappears from
the count forδ 6= 0. If vδ ∈ H2(R), then(1, vδ) = 0 and sincevδ(z) is exponentially
decaying as|z| → ∞, there existswδ(z) ∈ H2(R) such thatvδ = w′

δ(z). The 2-form
(wδ, vδ) is invariant with respect to the weightα since if eαzvδ(z) is an eigenfunction of
∂z(H+δV (z)) for the eigenvalueλδ (i.e. vδ ∈ H2

α(R)), thene−αzwδ(z) is an eigenfunction
of (H + δV (z))∂z for the same eigenvalueλδ (i.e. wδ ∈ H2

−α(R)). Computing(wδ, vδ) at
α = 0, we have

λδ(wδ, vδ) = (Hvδ, vδ) ∈ R.

Since(wδ, vδ) is continuous inδ and(wδ, vδ) ∈ iR by Lemma 3.4.7, thenλδ ∈ iR for any
δ 6= 0. ¤

Corollary 3.4.9 Let φ(z) be a two-pulse solution defined by Theorem 3.2.3 that corre-
sponds toLn with W ′′(Ln) > 0. Then, it is spectrally stable in the sense thatNreal =
Ncomp = 0 andN−

imag = 1 for sufficiently largeLn.

Remark 3.4.10 Using perturbation theory in exponentially weighted spaces for a fixed
valueα > 0, one cannot a priori exclude the shift of eigenvalueλ0 to λδ with Re(λδ) > 0.
Even if v0(z) for λ0 contains no termeik0z asz → −∞ (see Lemma 3.4.6), the eigen-
function vδ(z) for λδ may contain the termeikδz as z → −∞ with Im(kδ) < 0 and
limδ→0 kδ = k0 ∈ R. However, when Theorem 3.4.8 holds (that is under the assumptions
thatv0 ∈ H2(R) and(Hv0, v0) < 0), the eigenvalueλδ remains oniR and the eigenfunc-
tion vδ(z) must have no termeikδz with kδ ∈ R asz → −∞ for any sufficiently smallδ.
The hypothetical bifurcation above can however occur ifv0 /∈ H2(R) butv0 ∈ H2

α(R) with
α > 0. We do not know any example of such a bifurcation.

Remark 3.4.11 When the potential is symmetric (i.e.φ(−z) = φ(z)), the stability prob-
lem ∂zHv = λv admits a symmetry reduction: ifv(z) is an eigenfunction forλ, then
v(−z) is the eigenfunction for−λ̄. If λ0 ∈ iR is a simple eigenvalue andv0 ∈ H2

α(R) with
α ≥ 0, the above symmetry shows thatv0 ∈ H2

−α(R) with −α ≤ 0. If Re(λδ) > 0 and
vδ ∈ H2

α(R), then−vδ(−z) ∈ H2
−α(R) is an eigenfunction of the same operator for eigen-

valueRe(−λδ) = −Re(λδ) andIm(−λδ) = Im(λδ). Thus, the hypothetical bifurcation in
Remark 3.4.10 implies that the embedded eigenvalueλ0 ∈ iR may split into two isolated
eigenvaluesλδ and−λδ asδ 6= 0. Theorem 3.4.8 shows that such splitting is impossible if
v0 ∈ H2(R) and(Hv0, v0) < 0.
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We confirm results of Corollaries 3.4.4 and 3.4.9 with numerical computations of
eigenvalues in the linearized problem (3.1.5). Throughout computations, we use the values
α = 0.04 andc = 1, which satisfy the constraint (3.4.5). The spectra of the operatorsH in
L2(R) and∂zH in L2

α(R) are computed by using the Fourier spectral method. This method
is an obvious choice since the solutionφ(z) is obtained by using the spectral approxima-
tions in the iterative scheme (3.3.2)–(3.3.3). As in the previous section, we use numerical
parametersd = 100, h = 0.01 andε = 10−15 for the Petviashvili method (3.3.2)–(3.3.3).

Eigenvalues of the discretized versions of the operatorsH andLα are obtained
with the MATLAB eigenvalue solvereig . The spectra are shown onFigure 3.7for the
two-pulse solutionφ1(z) and onFigure 3.8for the two-pulse solutionφ2(z). The inserts
show zoomed eigenvalues around the origin and the dotted line connects eigenvalues of the
discretized operators that belong to the absolutely continuous part of the spectra.Figures
3.7and3.8clearly illustrate that the small eigenvalue ofH is negative forφ1(z) and positive
for φ2(z), while the pair of small eigenvalues ofLα is purely imaginary forφ1(z) and
purely real forφ2(z). This result is in agreement with Corollaries 3.4.4 and 3.4.9. We
have observed the same alternation of small eigenvalues for two-pulse solutionsφ3(z) and
φ4(z), as well as for other values of parametersc andα.

The numerical discretization based on the Fourier spectral method shifts eigenval-
ues of the operatorsH andLα. In order to measure the numerical error introduced by the
discretization, we compute the numerical value for the “zero” eigenvalue corresponding to
the simple kernel ofH and the double zero eigenvalue ofLα. Table II shows numerical val-
ues for the “zero” and small eigenvalues for two-pulse solutionsφn(z) with n = 1, 2, 3, 4.
It is obvious from the numerical data that the small eigenvalues are still distinguished (sev-
eral orders higher) than the numerical approximations for zero eigenvalues forn = 1, 2, 3
but they become comparable for higher-order two-pulse solutionsn ≥ 4. This behavior is
understood from Theorem 3.2.3 since the small eigenvalues becomes exponentially small
for larger values ofs (largern) in the two-pulse solution (3.2.4) and the exponentially small
contribution is negligible compared to the numerical error of discretization.

φ1(z) φ2(z) φ3(z) φ4(z)
”Zero” EV of H 1.216 · 10−9 2.668 · 10−9 1.474 · 10−9 1.894 · 10−9

Small EV ofH 1.785 · 10−2 7.664 · 10−5 3.334 · 10−7 2.921 · 10−9

”Zero” EVs ofLα 0.365 · 10−5 0.532 · 10−5 0.783 · 10−5 1.237 · 10−5

Re of small EVs ofLα 4.529 · 10−6 3.285 · 10−3 6.326 · 10−5 1.652 · 10−5

Im of small EVs ofLα 0.502 · 10−1 1.152 · 10−8 2.167 · 10−4 5.444 · 10−6

Table II: Numerical approximations of the zero and small eigenvalues (EVs) of operators
H andLα for the first four two-pulse solutions withc = 1, α = 0.04, d = 100, h = 0.01

andε = 10−15. The absolute values are shown.
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Figure 3.7: Numerical approximations of the spectra of operatorsH andLα for the two-
pulse solutionφ1(z) with c = 1 andα = 0.04. The insert shows zoom of small eigenvalues
and the dotted curve connects eigenvalues of the continuous spectrum ofLα.

Figure 3.8: The same as Figure 3.7 but for the two-pulse solutionφ2(z).
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We have confirmed numerically the analytical predictions that all two-pulse solu-
tions corresponding to the pointsLn with W ′′(Ln) < 0 (which are maxima of the effective
interaction potential) are unstable with a simple real positive eigenvalue, while all two-
pulse solutions corresponding to the pointsLn with W ′′(Ln) > 0 (which are minima of the
effective interaction potential) are spectrally stable. The stable two-pulse solutions are not
however ground states since the corresponding linearized problem has a pair of eigenvalues
of negative Krein signature.

3.5 Nonlinear dynamics of two-pulse solution

The Newton law (3.2.14) is a useful qualitative tool to understand the main results of this
chapter. Existence of an infinite countable sequence of two-pulse solution{φn(z)}n∈N is
related to existence of extremal points{Ln}n∈N of the effective potential functionW (L),
while alternation of stability and instability of the two-pulse solutions is related to the al-
ternation of minima and maxima points ofW (L). It is natural to ask if the Newton law
(3.2.14) extends beyond the existence and spectral stability analysis of two-pulse solutions
in the fifth-order KdV equation (3.1.1). In particular, one can ask if the purely imaginary
(embedded) eigenvalues of the linearized problem (3.1.5) lead to nonlinear asymptotic sta-
bility of two-pulse solutions or at least to their nonlinear stability in the sense of Lyapunov.
From a more technical point of view, one can ask whether the Newton law (3.2.14) serves
as the center manifold reduction for slow nonlinear dynamics of two-pulse solutions in
the PDE (3.1.1) and whether solutions of the full problem are topologically equivalent to
solutions of the Newton law. While we do not attempt to develop mathematical analysis
of these questions, we illustrate nonlinear dynamics of two-pulse solutions with explicit
numerical simulations.

The numerical pseudo-spectral method for solutions of the fifth-order KdV equa-
tion (3.1.1) is described in details in [89]. The main idea of this method is to compute
analytically the linear part of the PDE (3.1.1) by using the Fourier transform and to com-
pute numerically its nonlinear part by using an ODE solver. Letû(k, t) denote the Fourier
transform ofu(x, t) and rewrite the PDE (3.1.1) in the Fourier domain (since the solution
decays exponentially, the Fourier domain can be applied as a substitution for the unbounded
domain):

ût = i(k3 + k5)û− ikû2. (3.5.1)

In order to computêu2(k, t) we evaluateu2(x, t) on x ∈ R and apply the discrete Fourier
transform. Substitution̂u = s(k, t)ei(k3+k5)t transforms the evolution equation (3.5.1) to
the form:

st = −ike−i(k3+k5)tû2(k, t). (3.5.2)

The fourth-order Runge-Kutta method is used to integrate the evolution equation (3.5.2) in
time with time step4t. To avoid large variations of the exponent for large values ofk and
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t, the substitution above is updated afterm time steps as follows:

û = sm(k, t)ei(k3+k5)(t−m4t), m4t ≤ t ≤ (m + 1)4t. (3.5.3)

The greatest advantage of this numerical method is that no stability restriction arising from
the linear part of (3.5.1) is posed on the timestep of numerical integration. On contrast, the
standard explicit method for the fifth-order KdV equation (3.1.1) has a serious limitation
on the timestep of the numerical integration since the fifth-order derivative term brings
stiffness to the evolution problem. The small timestep would be an obstacle for the long
time integration of the evolution problem due to accumulation of computational errors.

Numerical simulations of the PDE (3.5.1) are started with the initial condition:

u(x, 0) = Φ(x− s) + Φ(x + s), (3.5.4)

whereΦ(x) is the one-pulse solution and2s is the initial separation between the two pulses.
The one-pulse solutionΦ(x) is constructed with the iteration method (3.3.2)–(3.3.3) for
c = 4. The numerical factors of the spectral approximation areL = 100, N = 212,
ε = 10−15, while the timestep is set to4t = 10−4.

Figure 3.9shows six individual simulations of the initial-value problem (3.5.1) and
(3.5.4) withs = 2.3, s = 2.8, s = 3.6, s = 4.2, s = 4.5 ands = 4.7. Figure 3.10
brings these six individual simulations on the effective phase plane(L, L̇) computed from
the distanceL(t) between two local maxima (humps) of the two-pulse solutions.

When the initial distance(s = 2.3) is taken far to the left from the stable equilib-
rium point (which corresponds to the two-pulse solutionφ1(x)), the two pulses repel and
diverge from each other (trajectory 1). When the initial distance(s = 2.8) is taken close
to the left from the stable equilibrium point, we observe small-amplitude oscillations of
two pulses relative to each other (trajectory 2). When the initial distances(s = 3.6) and
(s = 4.2) are taken to the right from the stable equilibrium point, we continue observing
stable oscillations of larger amplitudes and larger period (trajectories 3 and 4). The oscil-
lations are destroyed when the initial distances are taken close to the unstable equilibrium
point (which corresponds to the two-pulse solutionφ2(x)) from either left(s = 4.5) or right
(s = 4.7). In either case, the two pulses repel and diverge from each other (trajectories 5
and 6). Ripples in the pictures are due to radiation effect and the numerical integration does
not make sense aftert ≈ 500, because the ripples reach the left end of the computational
interval and appear from the right end due to periodic boundary conditions.

The numerical simulations of the full PDE problem (3.1.1) indicate the validity of
the Newton law (3.2.14). Due to the energy conservation, all equilibrium points in the New-
ton law are either centers or saddle points and the center points are surrounded by closed
periodic orbits in the interior of homoclinic loops from the stable and unstable manifolds
of the saddle points. Trajectories 2,3, and 4 are taken inside the homoclinic orbit from the
saddle point corresponding toφ2(x) and these trajectories represent periodic oscillations
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Figure 3.9: Individual simulations of the initial data (3.5.4) withs = 2.3 (top left),s = 2.8
(top right), s = 3.6 (middle left), s = 4.2 (middle right),s = 4.5 (bottom left) and4.7
(bottom right).

of two-pulse solutions near the center point corresponding toφ1(x). Trajectories 1 and
6 are taken outside the homoclinic orbit and correspond to unbounded dynamics of two-
pulse solutions. The only exception from the Newton law (3.2.14) is trajectory 5, which
is supposed to occur inside the homoclinic loop but turns out to occur outside the loop.
This discrepancy can be explained by the fact that the Newton law (3.2.14) does notexactly
represent the dynamics of the PDE (3.5.1) generated by the initial condition (3.5.4) but it
corresponds to anasymptoticsolution after the full solution is projected into the discrete
and continuous parts and the projection equations are truncated (see details in [47] in the
context of the NLS equations).

Summarizing, we have studied existence, spectral stability and nonlinear dynamics
of two-pulse solutions of the fifth-order KdV equation. We have proved that the two-pulse
solutions can be numerically approximated by the Petviashili method supplemented with a
root finding algorithm. We have also proved structural stability of embedded eigenvalues
with negative Krein signature and this result completes the proof of spectral stability of
two-pulse solutions related to the minima points of the effective interaction potential. The
validity of the Newton law is illustrated by the full numerical simulations of the fifth-order
KdV equation (3.1.1).
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Figure 3.10: The effective phase plane(L, L̇) for six simulations on Figure 3.9, whereL
is the distance between two pulses. The black dots denote stable and unstable equilibrium
points which correspond to the two-pulse solutionsφ1(x) andφ2(x).
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CHAPTER 4

BLOCK DIAGONALIZATION OF THE COUPLED-MODE
SYSTEM

4.1 Introduction

Various applications in nonlinear optics [118], photonics band-gap engineering [69] and
atomic physics [34] call for systematic studies of thecoupled-mode system, which is ex-
pressed by two first-order semi-linear PDEs in one space and one time dimensions. In non-
linear optics, the coupled-mode system describes counter-propagating light waves, which
interact with a linear grating in an optical waveguide [117]. In photonics, the coupled-
mode system is derived for coupled resonant waves in stop bands of a low-contrast three-
dimensional photonic crystal [3]. In atomic physics, the coupled-mode system describes
matter-wave Bose-Einstein condensates trapped in an optical lattice [102]. Existence, sta-
bility and nonlinear dynamics ofgap solitons, which are localized solutions of the coupled-
mode system, are fundamental problems for interest in the aforementioned physical disci-
plines.

In the context of spectral stability of gap solitons, it has been discovered that the
linearized coupled-mode equations are equivalent to a four-by-four Dirac system with sign-
indefinite metric, where numerical computations of eigenvalues represent a difficult numer-
ical task. The pioneer work in [9, 10] showed that spurious unstable eigenvalues originate
from the continuous spectrum in the Fourier basis decomposition and the Galerkin approx-
imation. A delicate but time-consuming implementation of the continuous Newton method
was developed to identify the ”right” unstable eigenvalues from the spurious ones [9, 10].
Similar problems were discovered in the variational method [76, 77] and in the numerical
finite-difference method [114, 115].

While some conclusions on instability bifurcations of gap solitons in the coupled-
mode equations can be drawn on the basis of perturbation theory [9] and Evans function
methods [73, 100], the numerical approximation of eigenvalues was an open problem until
recently. A new progress was made with the use of exterior algebra in the numerical com-
putations of the Evans function [41], when the same results on instability bifurcations of
gap solitons as in [9] were recovered. Similar shooting method was also applied to gap soli-
tons in a more general model of a nonlinear Schrödinger equation with a periodic potential
[102].

71
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Our work addresses the problem of numerical approximations of eigenvalues of the
linearized coupled-mode system with a different objective. We will show that the linearized
coupled-mode system with a symmetric potential function can be block-diagonalized into
two coupled two-by-two Dirac systems. The two Dirac systems represent the linearized
Hamiltonian of the coupled-mode equations and determine instability bifurcations and un-
stable eigenvalues of gap solitons.

The purpose of block-diagonalization is twofold. First, the number of unstable
eigenvalues can be estimated analytically from the number of non-zero isolated eigenval-
ues of the linearized Hamiltonian. This analysis will be reported elsewhere. Second, a
numerical algorithm can be developed to compute efficiently the entire spectrum of the lin-
earized coupled-mode system. These numerical results are reported here for an example of
symmetric quadric potential functions.

The chapter is organized as follows.Section 4.2describes the model and its symme-
tries.Section 4.3gives construction and properties of gap solitons in the nonlinear coupled-
mode system.Section 4.4presents block-diagonalization of the linearized coupled-mode
system.Section 4.5contains numerical computations of the spectrum of the block-diago-
nalized system.Section 4.6presents examples of gap solitons for various models.

4.2 Coupled-mode system

We consider the Hamiltonian coupled-mode system in the form:
{

i(ut + ux) + v = ∂ūW (u, ū, v, v̄)
i(vt − vx) + u = ∂v̄W (u, ū, v, v̄)

(4.2.1)

where(u, v) ∈ C2, x ∈ R, t ≥ 0, andW (u, ū, v, v̄) is real-valued. We assume that the
potential function satisfies the following three conditions:

(i) W is invariant with respect to the gauge transformation:(u, v) 7→ eiα(u, v), for all
α ∈ R

(ii) W is symmetric with respect to the interchange:(u, v) 7→ (v, u)

(iii) W is analytic in its variables nearu = v = 0, such thatW = O(4).

The first property is justified by the standard derivation of the coupled-mode sys-
tem (4.2.1) with an envelope approximation [3]. The second property defines a class of
symmetric nonlinear potentials. Although it is somewhat restrictive, symmetric nonlin-
ear potentials are commonly met in physical applications of the system (4.2.1). The third
property is related to the normal form analysis [113], where the nonlinear functions are
approximated by Taylor polynomials. Since the quadratic part of the potential function
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is written in the left-hand-side of the system (4.2.1) and the cubic part violates the gauge
transformation and analyticity assumptions, the Taylor polynomials ofW start with quadric
terms, denoted asO(4).

We find a general representation of the functionW (u, ū, v, v̄) that satisfies the con-
ditions (1)-(3) and list all possible (four-parameter) quadric terms ofW .

Lemma 4.2.1 If W ∈ C and property (1) is satisfied, such that

W (u, ū, v, v̄) = W
(
ueiα, ūe−iα, veiα, v̄e−iα

)
, ∀α ∈ R, (4.2.2)

thenW = W (|u|2, |v|2, uv̄).

Proof. By differentiating (4.2.2) inα and settingα = 0, we have the differential identity:

DW ≡ i

(
u

∂

∂u
− ū

∂

∂ū
+ v

∂

∂v
− v̄

∂

∂v̄

)
W (u, ū, v, v̄) = 0. (4.2.3)

Consider the set of quadratic variables

z1 = |u|2, z2 = |v|2, z3 = ūv, z4 = u2,

which is independent for anyu 6= 0 andv 6= 0 in the sense that the Jacobian is non-zero.
It is clear thatDz1,2,3 = 0 andDz4 = 2z4. Therefore,DW = 2z4∂z4W = 0, such that
W = W (z1, z2, z3). ¤

Corollary 4.2.2 If W ∈ R and property (1) is met, then

W = W (|u|2, |v|2, uv̄ + vū).

Lemma 4.2.3 If W ∈ R and properies (1)-(3) are satisfied, then

W = W (|u|2 + |v|2, |u|2|v|2, uv̄ + vū).

Proof. By Corollary 4.2.2 and property (2), we can re-order the arguments ofW asW =
W (|u| + |v|, |u||v|, uv̄ + vū). By analyticity in property (3),W may depend only on|u|2
and|v|2 rather than on|u| and|v|. ¤

Corollary 4.2.4 If W ∈ R and properties (1)-(3) are satisfied, then
(

u
∂

∂u
+ ū

∂

∂ū
− v

∂

∂v
− v̄

∂

∂v̄

)
W (u, ū, v, v̄)

∣∣∣
|u|2=|v|2

= 0 (4.2.4)
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Corollary 4.2.5 The only quadric potential functionW ∈ R that satisfies properties (1)-
(3) is given by

W =
a1

2
(|u|4 + |v|4) + a2|u|2|v|2 + a3(|u|2 + |v|2)(vū + v̄u) +

a4

2
(vū + v̄u)2, (4.2.5)

where(a1, a2, a3, a4) are real-valued parameters. It follows then that
{

∂uW = a1|u|2u + a2u|v|2 + a3 [(2|u|2 + |v|2)v + u2v̄] + a4 [v2ū + |v|2u]
∂vW = a1|v|2v + a2v|u|2 + a3 [(2|v|2 + |u|2)u + v2ū] + a4 [u2v̄ + |u|2v]

The potential function (4.2.5) witha1, a2 6= 0 and a3 = a4 = 0 represents a
standard coupled-mode system for a sub-harmonic resonance, e.g. in the context of optical
gratings with constant Kerr nonlinearity [118]. Whena1 = a3 = a4 = 0, this system
is integrable with inverse scattering and is referred to as the massive Thirring model [78].
Whena1 = a2 = 0 anda3, a4 6= 0, the coupled-mode system corresponds to an optical
grating with varying, mean-zero Kerr nonlinearity, wherea3 is the Fourier coefficient of
the resonant sub-harmonic anda4 is the Fourier coefficient of the non-resonant harmonic
[3] (see also [110]).

We rewrite the coupled-mode system (4.2.1) as a Hamiltonian system in complex-
valued matrix-vector notations:

du

dt
= J∇H(u), (4.2.6)

whereu = (u, ū, v, v̄)T ,

J =




0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0


 = −JT ,

andH(u, ū, v, v̄) =
∫
R h(u, ū, v, v̄)dx is the Hamiltonian functional with the density:

h = W (u, ū, v, v̄)− (vū + uv̄) +
i

2
(uūx − uxū)− i

2
(vv̄x − vxv̄).

The HamiltonianH(u, ū, v, v̄) is constant in timet ≥ 0. Due to the gauge invariance, the
coupled-mode system (4.2.1) has another constant of motionQ(u, ū, v, v̄), where

Q =

∫

R

(|u|2 + |v|2) dx. (4.2.7)

Conservation ofQ can be checked by direct computation:

∂

∂t
(|u|2 + |v|2) +

∂

∂x
(|u|2 − |v|2) = DW = 0, (4.2.8)
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where the operatorD is defined in (4.2.3). Due to the translational invariance, the coupled-
mode system (4.2.1) has yet another constant of motionP (u, ū, v, v̄), where

P =
i

2

∫

R
(uūx − uxū + vv̄x − vxv̄) dx. (4.2.9)

In applications, the quantitiesQ andP are referred to as the power and momentum of the
coupled-mode system.

4.3 Existence of gap solitons

Stationarysolutions of the coupled-mode system (4.2.1) take the form:
{

ust(x, t) = u0(x + s)eiωt+iθ

vst(x, t) = v0(x + s)eiωt+iθ (4.3.1)

where(s, θ) ∈ R2 are arbitrary parameters, while the solution(u0, v0) ∈ C2 onx ∈ R and
the domain for parameterω ∈ R are to be found from the nonlinear ODE system:

{
iu′0 = ωu0 − v0 + ∂ū0W (u0, ū0, v0, v̄0)
−iv′0 = ωv0 − u0 + ∂v̄0W (u0, ū0, v0, v̄0)

(4.3.2)

Stationary solutions are critical points of the Lyapunov functional:

Λ = H(u, ū, v, v̄) + ωQ(u, ū, v, v̄), (4.3.3)

such that variations ofΛ produce the nonlinear ODE system (4.3.2).

Lemma 4.3.1 Assume that there exists a decaying solution(u0, v0) of the system (4.3.2) on
x ∈ R. If W ∈ R satisfies properties (1)-(3), thenu0 = v̄0 (module to an arbitrary phase).

Proof. It follows from the balance equation (4.2.8) for the stationary solutions (4.3.1) that

|u0|2 − |v0|2 = C0 = 0, ∀x ∈ R,

where the constantC0 = 0 is found from decaying conditions at infinity. Let us represent
the solutions(u0, v0) in the form:

{
u0(x) =

√
Q(x)eiΘ(x)+iΦ(x)

v0(x) =
√

Q(x)e−iΘ(x)+iΦ(x) (4.3.4)

such that
{

iQ′ − 2Q(Θ′ + Φ′) = 2ωQ− 2Qe−2iΘ + 2ū0∂ū0W (u0, ū0, v0, v̄0)
−iQ′ − 2Q(Θ′ − Φ′) = 2ωQ− 2Qe2iΘ + 2v̄0∂v̄0W (u0, ū0, v0, v̄0)

(4.3.5)
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Separating the real parts, we obtain
{

Q(cos(2Θ)− ω −Θ′ − Φ′) = Re [ū0∂ū0W (u0, ū0, v0, v̄0)]
Q(cos(2Θ)− ω −Θ′ + Φ′) = Re [v̄0∂v̄0W (u0, ū0, v0, v̄0)]

(4.3.6)

By Corollary 4.2.4, we haveΦ′ ≡ 0, such thatΦ(x) = Φ0. ¤

Corollary 4.3.2 Let u0 = v̄0. The ODE system (4.3.2) reduces to the planar Hamiltonian
form:

d

dx

(
p
q

)
=

(
0 −1

+1 0

)
∇h(p, q), (4.3.7)

wherep = 2Θ, q = Q, and

h = W̃ (p, q)− 2q cos p + 2ωq, W̃ (p, q) = W (u0, ū0, v0, v̄0). (4.3.8)

Proof. In variables(Q, Θ) defined by (4.3.4) withΦ(x) = Φ0 = 0, we rewrite the ODE
system (4.3.5) as follows:

{
Q′ = 2Q sin(2Θ) + 2Im [ū0∂ū0W (u0, ū0, v0, v̄0)]

QΘ′ = −ωQ + Q cos(2Θ)− Re [ū0∂ū0W (u0, ū0, v0, v̄0)]
(4.3.9)

The system (4.3.9) is equivalent to the Hamiltonian system (4.3.7) and (4.3.8) if
{

∂pW̃ (p, q) = i [u0∂u0 − ū0∂ū0 ] W (u0, ū0, v0, v̄0)

q∂qW̃ (p, q) = [u0∂u0 + ū0∂ū0 ] W (u0, ū0, v0, v̄0)
(4.3.10)

The latter equations follows from (4.2.3), (4.2.4), and (4.3.4) with the chain rule. ¤

Corollary 4.3.3 Letu0 = v̄0. Then,

∂2
u0ū0

W = ∂2
v0v̄0

W, ∂2
ū2
0
W = ∂2

v2
0
W, ∂2

u0v0
W = ∂2

ū0v̄0
W. (4.3.11)

The only homogeneous potential functionW ∈ R of the order2n that satisfies
properties (1)-(3) is given by:

W =
n∑

k=0

ak,0[|u|2n−2k|v|2k]+
n−1∑
s=1

([usv̄s+ūsvs]
n−s∑

k=0

ak,s[|u|2n−2k−2s|v|2k])+An(unv̄n+ūnvn).

(4.3.12)
Where(ak,s, An) are real-valued coefficients which are subject to the symmetry

conditions:ak1,s = ak2,s if k1 + k2 = n− s for s = 0..n− 1.
Let’s introduce new parameters (s = 0, 1...n− 1 ):
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As =

n−s−1
2∑

k=0

ak,s if n− s is odd

As =

n−s−2
2∑

k=0

ak,s +
1

2
an−s

2
,s if n− s is even

Using the variables(Q, Θ) defined in (4.3.4) withΦ(x) = Φ0 = 0, we rewrite the
ODE system (4.3.9) in the explicit form:

{
Q′ = 2Q sin(2Θ)− 4Qn

∑n−1
s=0 sAs sin(2sΘ)− 2nAnQn sin(2nΘ)

Θ′ = −ω + cos(2Θ)− nA0Q
n−1 − 2Qn−1n

∑n−1
s=1 As cos(2sΘ)− nAnQ

n−1 cos(2nΘ)
(4.3.13)

First integral

−ω + cos(2Θ)− A0Q
n−1 − 2Qn−1

n−1∑
s=1

As cos(2sΘ)− AnQn−1 cos(2nΘ) = 0.

subject to the zero conditionsQ(x) → 0 as|x| → ∞, reduces the second-order system to
the first-order ODE

Θ′(x) = (n− 1)(ω − cos(2Θ)), (4.3.14)

while the functionQ(x) can be found fromΘ(x) as follows:

Qn−1 =
(cos(2Θ)− ω)

A0 + 2
∑n−1

s=1 As cos(2sΘ) + An cos(2nΘ)
; Q ≥ 0 (4.3.15)

We introduce two auxiliary parameters:

µ =
1− ω

1 + ω
, β =

√
1− ω2, (4.3.16)

such that0 < µ < ∞ and0 < β ≤ 1. In general case we will have two branches of
solutions forΘ(x):

cos(Θ+) =
cosh((n− 1)βx)√

cosh2((n− 1)βx) + µ sinh2((n− 1)βx)

sin(Θ+) =
−√µ sinh((n− 1)βx)√

cosh2((n− 1)βx) + µ sinh2((n− 1)βx)
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and

cos(Θ−) =
sinh((n− 1)βx)√

sinh2((n− 1)βx) + µ cosh2((n− 1)βx)

sin(Θ−) =
−√µ cosh((n− 1)βx)√

sinh2((n− 1)βx) + µ cosh2((n− 1)βx)

Choice of the branch depends on the conditionQ(x) ≥ 0.
In more general case for the non-homogeneous symmetric potential solutions of the

ODE do not exist in the explicit form, because the elliptic integrals which will be naturally
originated by the ODE system do not have explicit solutions in the general case.

We will illustrate decaying solutions of the system (4.3.2) for the quadric potential
function (4.2.5). Decaying solutions may exist in the gap of continuous spectrum of the
coupled-mode system (4.2.1) forω ∈ (−1, 1). We will derive explicit conditions on exis-
tence of gap solitons for the general quadric potential functionW given by (4.2.5). Using
(4.3.14) and (4.3.15)for the casen = 2 we obtain:

Θ′(x) = ω − cos(2Θ), (4.3.17)

Q =
(t− ω)

φ(t)
; Q ≥ 0 (4.3.18)

where
t = cos(2Θ), φ(t) = a4t

2 + 2a3t +
a1 + a2

2
,

such thatt ∈ [−1, 1]. Let’s consider two cases:
{

t ≥ ω; φ(t) ≥ 0 ⇒ Q+

t ≤ ω; φ(t) ≤ 0 ⇒ Q− (4.3.19)

We can solve the first-order ODE (4.3.17) using the substitutionz = tan(Θ), such that

t =
1− z2

1 + z2
z2 =

1− t

1 + t
.

After integration with the symmetry constraintΘ(0) = 0, we obtain the solution
∣∣∣∣
(z −√µ)

(z +
√

µ)

∣∣∣∣ = e2βx, (4.3.20)

where

β =
√

1− ω2, µ =
1− ω

1 + ω
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and−1 < ω < 1. Two separate cases are considered:

|z| ≤ √
µ z = −√µ

sinh(βx)

cosh(βx)
t =

cosh2(βx)− µ sinh2(βx)

cosh2(βx) + µ sinh2(βx)
, (4.3.21)

wheret ≥ ω, and

|z| ≥ √
µ z = −√µ

cosh(βx)

sinh(βx)
t =

sinh2(βx)− µ cosh2(βx)

sinh2(βx) + µ cosh2(βx)
, (4.3.22)

wheret ≤ ω. Let’s introduce new parameters

A = −2a3 + a4 +
a1 + a2

2
, (4.3.23)

B = −2a4 + a1 + a2,

C = 2a3 + a4 +
a1 + a2

2
.

It is clear thatA = φ(−1) andC = φ(1). If t ≥ ω andφ(t) ≥ 0, it follows from (4.3.19)
and (4.3.21) that

Q+(x) =
(1− ω)((µ + 1) cosh2(βx)− µ)

(Aµ2 + Bµ + C) cosh4(βx)− (Bµ + 2Aµ2) cosh2(βx) + Aµ2
. (4.3.24)

If t ≤ ω andφ(t) ≤ 0, it follows from (4.3.19) and (4.3.22) that

Q−(x) =
(ω − 1)((µ + 1) cosh2(βx)− 1)

(Aµ2 + Bµ + C) cosh4(βx)− (Bµ + 2C) cosh2(βx) + C
. (4.3.25)

The asymptotic behavior of theQ(x) at infinity depends on the location of the zeros of the
functionψ(µ) = Aµ2 + Bµ + C. The functionψ(µ) is related to the functionφ(t), such
that if ψ(µ) = 0 thenφ(ω) = 0.

Case:A < 0, C > 0
In this case the quadratic polynomialφ(t) has exactly one rootφ(t1) = 0 such that

t1 ∈ [−1, 1]. We have two branches of decaying solutions with the positive amplitude
Q(x). One branch occurs fort1 < ω ≤ 1 with Q(x) = Q+(x) and the other one occurs
for −1 ≤ ω < t1 with Q(x) = Q−(x). At the pointω = t1, the solution is bounded and
decaying.

Case:A > 0, C > 0
In this case the quadratic polynomialφ(t) has no roots or has exactly two roots on

[−1, 1]. We have a decaying solution with the positive amplitudeQ(x) for any−1 < ω < 1
with Q(x) = Q+(x) if φ(t) does not have any roots on[−1, 1]. If φ(t) has two roots
φ(t1) = 0 andφ(t2) = 0 such thatt1, t2 ∈ [−1, 1] then we have a decaying solution with
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Q(x) = Q+(x) only on the intervalmax(t1, t2) < ω ≤ 1. At the pointω = max(t1, t2),
the solution becomes unbounded.

Case:A < 0, C < 0
In this case the quadratic polynomialφ(t) has no roots or has exactly two roots on

[−1, 1]. We have a decaying solution with the positive amplitudeQ(x) for any−1 < ω < 1
with Q(x) = Q−(x) if φ(t) does not have any roots on[−1, 1]. If φ(t) has two roots
φ(t1) = 0 andφ(t2) = 0 such thatt1, t2 ∈ [−1, 1] then we have a decaying solution with
Q(x) = Q−(x) only on the interval−1 ≤ ω < min(t1, t2). At the pointω = min(t1, t2),
the solution becomes unbounded.

Case:A > 0, C < 0
In this case no decaying solutions with positive amplitudeQ(x) exist.
Other cases
Two special cases occur whenφ(1) = 0 or φ(−1) = 0. If φ(1) = 0, thenQ+(x)

has a singularity atx = 0 for any−1 < ω < 1. If φ(−1) = 0, thenQ−(x) has a singularity
atx = 0 for any−1 < ω < 1.

4.4 Block-diagonalization of the linearized couple-mode system

Linearization of the coupled-mode system (4.2.1) at the stationary solutions (4.3.1) with
s = θ = 0 is defined as follows:





u(x, t) = eiωt
(
u0(x) + U1(x)eλt

)
ū(x, t) = e−iωt

(
ū0(x) + U2(x)eλt

)
v(x, t) = eiωt

(
v0(x) + U3(x)eλt

)
v̄(x, t) = e−iωt

(
v̄0(x) + U4(x)eλt

)
(4.4.1)

wherev0 = ū0, according to Lemma 4.3.1. Let(f ,g) be a standard inner product for
f ,g ∈ L2(R,C4). Expanding the Lyapunov functional (4.3.3) into Taylor series nearu0 =
(u0, ū0, v0, v̄0)

T , we have:

Λ = Λ(u0) + (U,∇Λ|u0) +
1

2
(U, HωU) + . . . , (4.4.2)

whereU = (U1, U2, U3, U4)
T andHω is the the linearized energy operator in the explicit

form
Hω = D(∂x) + V (x), (4.4.3)

where

D =




ω − i∂x 0 −1 0
0 ω + i∂x 0 −1
−1 0 ω + i∂x 0
0 −1 0 ω − i∂x


 (4.4.4)
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and

V =




∂2
ū0u0

∂2
ū2
0

∂2
ū0v0

∂2
ū0v̄0

∂2
u2
0

∂2
u0ū0

∂2
u0v0

∂2
u0v̄0

∂2
v̄0u0

∂2
v̄0ū0

∂2
v̄0v0

∂2
v̄2
0

∂2
v0u0

∂2
v0ū0

∂2
v2
0

∂2
v0v̄0


 W (u0, ū0, v0, v̄0). (4.4.5)

The linearization (4.4.1) of the nonlinear coupled-mode system (4.2.1) results in the lin-
earized coupled-mode system in the form:

HωU = iλσU, (4.4.6)

whereσ is a diagonal matrix of(1,−1, 1,−1). Due to the gauge and translational symme-
tries, the energy operatorHω has a non-empty kernel which includes two eigenvectors:

U1 = σu0(x), U2 = u′0(x). (4.4.7)

The eigenvectorsU1,2 represent derivatives of the stationary solutions (4.3.1) with respect
to parameters(θ, s).

Due to the Hamiltonian structure, the linearized operatorσHω has at least four-
dimensional generalized kernel with the eigenvectors (4.4.7) and two generalized eigen-
vectors (see [97] for details). The eigenvectors of the linearized operatorσHω satisfy the
σ-orthogonality constraints:

(u0,U) =

∫

R
(ū0U1 + u0U2 + v̄0U3 + v0U4) dx = 0, (4.4.8)

(u′0, σU) =

∫

R
(ū′0U1 − u′0U2 + v̄′0U3 − v′0U4) dx = 0. (4.4.9)

The constraints (4.4.8) and (4.4.9) represent zero variations of the conserved quantitiesQ
andP in (4.2.7) and (4.2.9) at the linearization (4.4.1).

It follows from the explicit form ofHω and from Corollary 4.3.3 that the eigenvalue
problemHωU = µU has two reductions:

(i) U1 = U4, U2 = U3, (ii) U1 = −U4, U2 = −U3. (4.4.10)

Our main result on the block-diagonalization of the energy operatorHω and the linearized
coupled-mode system (4.4.6) is based on the reductions (4.4.10).

Theorem 4.4.1 Let W ∈ R satisfy properties (1)-(3). Let(u0, v0) be a decaying solution
of the system (4.3.2) onx ∈ R, wherev0 = ū0. There exists an orthogonal similarity
transformationS, such thatS−1 = ST , where

S =
1√
2




1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0


 ,
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that simultaneously block-diagonalizes the energy operatorHω,

S−1HωS =

(
H+ 0
0 H−

)
≡ H, (4.4.11)

and the linearized operatorσHω

S−1σHωS = σ

(
0 H−

H+ 0

)
≡ iL, (4.4.12)

whereH± are two-by-two Dirac operators:

H± =

(
ω − i∂x ∓1
∓1 ω + i∂x

)
+ V±(x), (4.4.13)

and

V± =

(
∂2

ū0u0
± ∂2

ū0v̄0
∂2

ū2
0
± ∂2

ū0v0

∂2
u2
0
± ∂2

u0v̄0
∂2

ū0u0
± ∂2

u0v0

)
W (u0, ū0, v0, v̄0). (4.4.14)

Proof. Applying the similarity transformation to the operatorD(∂x) in (4.4.4), we have the
first terms in Dirac operatorsH±. Applying the same transformation to the potentialV (x)
in (4.4.5) and using Corollary 4.3.3, we have the second term in the Dirac operatorsH±.
The same transformation is applied similarly to the linearized operatorσHω with the result
(4.4.12). ¤

Corollary 4.4.2 The linearized coupled-mode system (4.4.6) is equivalent to the block-
diagonalized eigenvalue problems

σ3H−σ3H+V1 = γV1, σ3H+σ3H−V2 = γV2, γ = −λ2, (4.4.15)

whereV1,2 ∈ C2 andσ3 is the Pauli’s diagonal matrix of(1,−1).

Corollary 4.4.3 Letu0 = (u0, ū0) ∈ C2 and(f ,g) be a standard inner product forf ,g ∈
L2(R,C2). Dirac operatorsH± have simple kernels with the eigenvectors

H+u′0 = 0, H−σ3u0 = 0, (4.4.16)

while the vectorsV1,2 satisfy the constraints

(u0,V1) = 0, (u′0, σ3V2) = 0. (4.4.17)

Remark 4.4.4 Block-diagonalization described in Theorem 4.4.1 has nothing in common
with explicit diagonalization used in reduction (9.2) of [100] for the particular potential
function (4.2.5) witha1 = a2 = a4 = 0 anda3 = 1. Moreover, the reduction (9.2) of [100]
does not work forω 6= 0, while gap solitons do not exist in this particular model forω = 0.
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4.5 Numerical computations

Numerical discretization and truncation of the linearized coupled-mode system (4.4.6)
leads to an eigenvalue problem for large matrices [108]. Parallel software libraries were
recently developed for computations of large eigenvalue problems [54]. We shall use Scala-
pack library and distribute computations of eigenvalues of the system (4.4.6) for different
parameter values between parallel processors of the SHARCnet cluster Idra using Message
Passing Interface [30].

We implement a numerical discretization of the linearized coupled-mode system
(4.4.6) using the Chebyshev interpolation method [109]. Given a function defined on the
Chebyshev pointsνj = cos(jπ/N), j = 0, 1...N we obtain a discrete first derivative as a
multiplication by an(N + 1) × (N + 1) matrix, which we shell denote byD(1)

N . Let’s the
rows and columns of the differentiation matrixD

(1)
N be indexed from0 to N . The entries

of this matrix are:

(D
(1)
N )00 =

2N2 + 1

6
, (D

(1)
N )NN = −2N2 + 1

6
,

(D
(1)
N )jj =

−νj

2(1− ν2
j )

, j = 1, ..., N − 1,

(D
(1)
N )ij =

ci

cj

(−1)i+j

(νi − νj)
, i 6= j, i, j = 0, ..., N,

where
c0 = cN = 2 and ci = 1, i = 1, ...N − 1.

To transform the Chebyshev grid from[−1, 1] to the infinite domain[−∞, +∞] we
will use the mapf(ν) = L tanh−1 ν, xi = f(νi). This is the most efficient map for our
case because the solitons decay exponentially. Decaying also implies the zero boundary
conditions on the truncated interval. The constantL sets the length scale of the map.
Differentiation inx is carried out using the chain rule so that

(~ux) =

[(
∂f−1(xi)

∂x
D

(1)
N

)
u(νi)

]
≡ DN+1~u, i = 0...N.

Denote asIN+1 the identity matrix withN + 1 elements. Finally we have a dis-
cretized eigenvalue problem for the operatorH:

H± =

(
ωIN+1 − iDN+1 ∓IN+1

∓IN+1 ωIN+1 + iDN+1

)
+ diagV±(xi)

The main advantage of the Chebyshev grid is the clustering distribution of the grid
points and for theN = 2500 this clustering prevents the appearance of spurious complex



84 PHD THESIS– M. CHUGUNOVA MCMASTER – MATHEMATICS & STATISTICS

eigenvalues from the discretized continuous spectrum up to the accuracyIm λ ≤ 10−5 on
the interval[−2, 2].

Chebyshev points inf Im λ[−2, 2] inf Im λ[−10, 10]
100 0.085 0.75
200 0.0095 0.52
400 0.0053 0.21
800 7.12 · 10−4 0.12
1200 2.34 · 10−4 0.09
2500 3.91 · 10−5 0.06

In general, using higher number of polynomials the interval can be expanded al-
though for the numerical analysis of the edge bifurcations of the continuous spectrum the
number of Chebyshev polynomials mentioned above is sufficient.

If the eigenvector is analytic in a strip near the interpolation interval, the corre-
sponding Chebyshev spectral derivatives converge geometrically, with an asymptotic con-
vergence factor determined by the size of the largest ellipse in the domain of analyticity.
[109]. As a result the accuracy of the numerical eigenvalues depends on the parameterω
and on the degree of the nonlinearity.

The continuous spectrum for the linearized coupled-mode system (4.4.6) can be
found from the no-potential caseV (x) ≡ 0. It consists of two pairs of symmetric branches
on the imaginary axisλ ∈ iR for |Im(λ)| > 1 − ω and|Im(λ)| > 1 + ω [9, 41]. In the
potential caseV (x) 6= 0, the continuous spectrum does not move, but the discrete spectrum
appears. The discrete spectrum is represented by symmetric pairs or quartets of isolated
non-zero eigenvalues and zero eigenvalue of algebraic multiplicity four for the generalized
kernel ofσHω [9, 41]. We note that symmetries of the Chebyshev grid preserve symmetries
of the linearized coupled-mode system (4.4.6).

We shall study eigenvalues of the energy operatorHω, in connection to eigenvalues
of the linearized operatorσHω. It is well known [108, 109] that Hermitian matrices have
condition number one, while non-Hermitian matrices may have large condition number.
As a result, numerical computations for eigenvalues and eigenvectors have better accu-
racy and faster convergence for self-adjoint operators [108, 109]. We will use the block-
diagonalizations (4.4.11) and (4.4.12) and compute eigenvalues ofH+, H−, andL. The
block-diagonalized matrix can be stored in a special compressed format which requires
twice less memory than a full matrix and as it can be derived from the table below (cpu
time is given in seconds ) this representation accelerates computations of eigenvalues ap-
proximately in two times.
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Chebyshev points cpu time (full matrix) cpu time (block-diag. matrix)
100 1.656 1.984
200 11.219 12.921
400 130.953 207.134
800 997.843 1.583 · 103

1200 3.608 · 103 6.167 · 103

2500 7.252 · 103 12.723 · 103

4.6 Application: gap solitons

Example 1: gap solitons in nonlinear optics

In nonlinear optics, the coupled-mode system describes counter-propagating light
waves. A pulse of light moving through a periodic medium consists of coupled back-
ward and forward electric field components. A gap soliton emerges from the balance of
the strong photonic band dispersion with the nonlinear effects present at sufficiently high
intensities.

Define parameters asa1 = 1, a2 = ρ, anda3 = a4 = 0. We find the decaying
solutionu0(x) in the explicit form:

u0 =

√
2(1− ω)

1 + ρ

1

(cosh βx + i
√

µ sinh βx)
. (4.6.1)

Whenω → 1 (such thatµ → 0 andβ → 0), the decaying solution (4.6.1) becomes
small in absolute value and approaches the limit ofsech-solutionssech(βx). Whenω →
−1 (such thatµ →∞ andβ → 0), the decaying solution (4.6.1) remains finite in absolute
value and approaches the limit of the algebraically decaying solution:

u0 =
2√

1 + ρ(1 + 2ix)
.

Potential matricesV±(x) in the Dirac operatorsH± in (4.4.13)–(4.4.14) can be
written in the explicit form:

V+ = (1 + ρ)

(
2|u0|2 u2

0

ū2
0 2|u0|2

)
, V− =

(
2|u0|2 (1− ρ)u2

0

(1− ρ)ū2
0 2|u0|2

)
. (4.6.2)

Figure 4.1displays the pattern of eigenvalues and instability bifurcations for the
symmetric quadric potential (4.2.5) witha1 = 1 anda2 = a3 = a4 = 0. The decaying
solutionu0(x) and the potential matricesV±(x) are given by (4.6.1) and (4.6.2) withρ = 0.
Parameterω of the decaying solutionu0(x) is defined in the interval−1 < ω < 1. Six
pictures of Fig. 4.1 shows the entire spectrum ofL, H+ andH− for different values ofω.
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Whenω is close to1 (the gap soliton is close to a small-amplitude sech-soliton),
there exists a single non-zero eigenvalue forH+ andH− and a single pair of purely imag-
inary eigenvalues ofL (see subplot (1) on Fig. 4.1). The first set of arrays on the subplot
(1) indicates that the pair of eigenvalues ofL becomes visible at the same value ofω as
the eigenvalue ofH+. This correlation between eigenvalues ofL andH+ can be traced
throughout the entire parameter domain on the subplots (1)–(6).

Whenω decreases, the operatorH− acquires another non-zero eigenvalue by means
of the edge bifurcation [73], with no changes in the number of isolated eigenvalues ofL
(see subplot (2)). The first complex instability occurs nearω ≈ −0.18, when the pair of
purely imaginary eigenvalues ofL collides with the continuous spectrum and emerge as a
quartet of complex eigenvalues, with no changes in the number of isolated eigenvalues for
H+ andH− (see subplot (3)).

The second complex instability occurs atω ≈ −0.54, when the operatorH− ac-
quires a third non-zero eigenvalue and the linearized operatorL acquires another quartet
of complex eigenvalues (see subplot (4)). The second set of arrays on the subplots (4)–(6)
indicates a correlation between these eigenvalues ofL andH−.

Whenω decreases further, the operatorsH+ andH− acquires one more isolated
eigenvalue, with no change in the spectrum ofL (see subplot (5)). Finally, whenω is close
to−1 (the gap soliton is close to the large-amplitude algebraic soliton), the third complex
instability occurs, correlated with another edge bifurcation in the operatorH− (see subplot
(6)). The third set of arrays on subplot (6) indicates this correlation. The third complex
instability was missed in the previous numerical studies of the example under consideration
[9, 41]. In a narrow domain nearω = −1, the operatorH+ has two non-zero eigenvalues,
the operatorH− has five non-zero eigenvalues and the operatorL has three quartets of
complex eigenvalues.

Example 2: gap solitons in photonic crystals

In photonics, the coupled-mode system is derived for coupled resonant waves in
stop bands of a low-contrast three-dimensional photonic crystal. Spatial soliton solutions
is proved to exist in photonic crystal fibers. These guided localized nonlinear waves appear
as a result of the balance between the linear and nonlinear diffraction properties of the
inhomogeneous photonic crystal cladding.

Define the parameters asa1 = a2 = 0, a3 = 1 anda4 = s. The decaying solution
u0(x) exists in two sub-domains:ω > 0, s > −1 andω < 0, s < 1. Whenω > 0, s > −1,
the solution takes the form:

u0 =

√
1− ω

2

(cosh βx− i
√

µ sinh βx)√
∆+(x)

, (4.6.3)

where

∆+ = [(s− 1)µ2 − 2sµ + (s + 1)] cosh4(βx) + 2[sµ− (s− 1)µ2] cosh2(βx) + (s− 1)µ2.
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Whenω < 0, s < 1, the solution takes the form:

u0 =

√
1− ω

2

(sinh βx− i
√

µ cosh βx)√
∆−(x)

. (4.6.4)

where

∆− = [(s + 1)− 2sµ− (s− 1)µ2] cosh4(βx) + 2[s + 1− sµ] cosh2(βx)− (s + 1).

In both limitsω → 1 andω → −1, the decaying solutions (4.6.3) and (4.6.4) approach the
small-amplitudesech-solutionsech(βx). In the limitω → 0, the decaying solutions (4.6.3)
and (4.6.4) degenerate into a non-decaying bounded solution with|u0(x)|2 = 1

2
.

The potential matricesV±(x) in the Dirac operatorsH± in (4.4.13)–(4.4.14) take
the form:

V+ = 3

(
u2

0 + ū2
0 2|u0|2

2|u0|2 u2
0 + ū2

0

)
+ s

(
2|u0|2 u2

0 + 3ū2
0

ū2
0 + 3u2

0 2|u0|2
)

, (4.6.5)

V− =

(
u2

0 + ū2
0 −2|u0|2

−2|u0|2 u2
0 + ū2

0

)
+ s

(
0 −u2

0 − ū2
0

−u2
0 − ū2

0 0

)
. (4.6.6)

Figure 4.2displays the pattern of eigenvalues and instability bifurcations for the
symmetric quadric potential (4.2.5) witha1 = a2 = a4 = 0 anda3 = 1. The decaying
solutionu0(x) and the potential matricesV±(x) are given by (4.6.3) and (4.6.5) withω > 0
ands = 0. Eigenvalues in the other caseω < 0 can be found from those in the caseω > 0
by reflections.

Whenω is close to1 (the gap soliton is close to a small-amplitude sech-soliton),
there exists one non-zero eigenvalue ofH− and no non-zero eigenvalues ofL andH+ (see
subplot (1) on Fig. 4.2 ). Whenω increases, two more non-zero eigenvalues bifurcate in
H− from the left and right branches of the continuous spectrum, with no change in non-
zero eigenvalues ofL (see subplot (2)). The first complex bifurcation occurs atω ≈ 0.45,
when a quartet of complex eigenvalues occurs inL, in correlation with two symmetric
edge bifurcations ofH+ from the left and right branches of the continuous spectrum (see
subplot (3)). The first and only set of arrays on the subplots (3)-(6) indicates a correlation
between eigenvalues ofL andH+, which is traced through the remaining parameter domain
of ω. The inverse complex bifurcation occurs atω ≈ 0.15, when the quartet of complex
eigenvalues merge at the edge of the continuous spectrum into a pair of purely imaginary
eigenvalues (see subplot (5)). No new eigenvalue emerge for smaller values ofω. When
ω is close to0 (the gap soliton is close to the non-decaying solution), the operatorH+ has
two non-zero eigenvalues, the operatorH− has three non-zero eigenvalues and the operator
L has one pair of purely imaginary eigenvalues (see subplot (6)).

We mention two other limiting cases of the symmetric quadric potential (4.2.5).
Whena1 = a3 = a4 = 0 anda2 = 1, the coupled-mode system is an integrable model
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and no non-zero eigenvalues ofL exist, according to the exact solution of the linearization
problem [76, 77]. Whena1 = a2 = a3 = 0 anda4 = ±1, one branch of decaying solutions
u0(x) exists for either sign, according to (4.6.3) and (4.6.4). The pattern of eigenvalues and
instability bifurcations repeats that of Fig. 4.2.

Example 3: gap solitons in relativity theory

Nuclear physics provides a unique laboratory for investigating the Dirac picture of
vacuum. The basis for this is given by relativistic mean-field models. Within this approach
nucleons are described by the Dirac equation coupled to scalar and vector meson fields. The
potential function (4.2.5) witha1 = a2 = a3 = 0, a4 = 1 represents a standard nonlinear
Dirac equation that is used as a model of vacuum. The existence of standing waves in the
nonlinear Dirac equation was proved in [23].

We find the decaying solutionu0(x) in the explicit form:

u0 =
(1− ω)((µ + 1) cosh2(βx)− µ)

(µ2 − 2µ + 1) cosh4(βx)− (−2µ + 2µ2) cosh2 βx + µ2
. (4.6.7)

Whenω belongs to the interval(−1, 0] theQ(x) blows up to infinity in two sym-
metric pointstanh2 βx = 1

µ
. These two points are getting separated to plus and minus

infinity andQ(x) tends to1/2 cosh(2x) asω goes to0 as a conclusion we do not have a
soliton type solution for this interval ofω.

Whenω belongs to the open interval(0.5, 1) theQ(x) is one pulse soliton solution
with max(Q(x)) = 1− ω asω goes to1 theQ(x) tends to0.

Whenω belongs to the interval(0, 0.5) theQ(x) is two pulse soliton solution with
min(Q(x)) = 1 − ω at the origin andmax(Q(x)) = 1

4ω
at two pointscosh(2βx) = 1−2ω2

ω

(see Fig. 4.3 (b)). In the limitω goes to 0 the pulses are getting more and more separated
and the amplitude of the pulses tends to infinity. The two pulse soliton solutions in the
coupled mode system were also discovered but for the different type of the nonlinearity in
the problem of the light propagation through deep nonlinear grating.

We can also find the exact analytical expression for theΘ(x) (4.3.4) as

cos Θ =
cosh βx√

cosh2 βx + µ sinh2 βx
, sin(Θ) =

−√µ sinh(βx)√
cosh2 βx + µ sinh2 βx

.

This gives

cos 2Θ = cos2(Θ)− sin2(Θ) =
(1 + ω) cosh2 βx− (1− ω) sinh2 βx

(1 + ω) cosh2 βx + (1− ω) sinh2 βx
=

1 + ω cosh(2βx)

cosh(2βx) + ω

The spectral stability of the gap solitons follows from the linearization (4.4.1) and
diagonal blocksH± of the linearized energy operator (4.4.13) can be written as
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H− =

[
ω − i∂x 1− u2

0 − ū2
0

1− u2
0 − ū2

0 ω + i∂x

]
(4.6.8)

H+ =

[
ω − i∂x + 2 |u0|2 u2

0 + 3ū2
0 − 1

ū2
0 + 3u2

0 − 1 ω + i∂x + 2 |u0|2
]

= (4.6.9)

The subspaces

X+ =

[
f(x)

f̄(−x)

]
, X− =

[
f(x)

−f̄(−x)

]

are invariant under the action ofH±. So are the spaces

X1 =

[
f(x)
g(x)

]
, f̄(x) = f(−x), ḡ(x) = g(−x);

X2 =

[
f(x)
g(x)

]
, f̄(x) = −f(−x), ḡ(x) = −g(−x).

Denote
X±

j = X± ∩Xj, j = 1, 2.

The kernel ofH− is

ker H− = span

〈[
φ1 − iφ2

−φ1 − iφ2

]〉
⊂ X−. (4.6.10)

The kernel ofH+ is

ker H+ = span

〈[
φ1 − iφ2

φ1 + iφ2

]〉
⊂ X+. (4.6.11)

{−∂xφ2 = −ωφ1 + g(φ2
1 − φ2

2)φ1 = ∂φ1h(φ),
∂xφ1 = −ωφ2 − g(φ2

1 − φ2
2)φ2 = ∂φ2h(φ),

(4.6.12)

where

h(φ) = −ω

2
(φ2

1 + φ2
2) +

1

2
G(φ2

1 − φ2
2). (4.6.13)

This could be verified by taking thex-derivative of (4.6.12) and using the relations

φ2
1 = 2Q cos2 Θ = Q(1 + cos 2Θ), φ2

2 = 2Q sin2 Θ = Q(1− cos 2Θ).

The essential spectrum ofH− consists of two intervals:

σess(H−) = (−∞,−1 + ω] ∪ [1 + ω,∞).
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Lemma 4.6.1 The spectrum ofH− is symmetric with respect toλ = ω. Moreover, If

[
f1

f2

]

is an eigenvector ofH− that corresponds to an eigenvalueλ, then

[
f2

−f1

]
is an eigenvector

of H− that corresponds to an eigenvalueλ′ = 2ω − λ.

Proof. The relationλ

[
f1

f2

]
= H−

[
f1

f2

]
can be written as

∂xf1 = −i(ω − λ)f1 + iα(x)f2, ∂xf2 = −iα(x)f1 + i(ω − λ)f2, (4.6.14)

whereα(x, ω) = u2
0 + ū2

0 − 1 = 1− 2ω
cos 2Θ

. We can rewrite these equations as

∂xf2 = i(ω − λ)f2 + iα(x)(−f1), ∂x(−f1) = −iα(x)f2 − i(ω − λ)(−f1). (4.6.15)

Taking into account thatω − λ = −(ω − λ′), we get:

∂xf2 = −i(ω−λ′)f2+iα(x)(−f1), ∂x(−f1) = −iα(x)f2+i(ω−λ′)(−f1), (4.6.16)

which finishes the proof. ¤

Corollary 4.6.2 2ω ∈ σd(H−), with the corresponding eigenvector

[
φ1 + iφ2

φ1 − iφ2

]
.

Lemma 4.6.3 ω /∈ σd(H−).

Proof. If ω were an eigenvalue with an eigenvector

[
f1

f2

]
, then, by Lemma 4.6.1, the vector

[
f2

−f1

]
corresponds to the same eigenvalue, and so does the vector

[
f1

f2

]
+ i

[
f2

−f1

]
=

[
f1 + if2

f2 − if1

]
=

[
f1 + if2

−i(f1 + if2)

]
.

Thus, we may assume that the eigenvector that corresponds toλ = ω has the form

[
f1

−if1

]
.

It follows thatf1 satisfies∂xf1 = (ξ(x)− 1)f1, hencef1(x) ∼ c±e−x for x → ±∞, which
does not allowf1 ∈ L2(R). ¤

The continuous spectrum for the linearized coupled-mode system can be found
from the no-potential caseV (x) = 0. It consists of two pairs of symmetric branches on
the imaginary axis with positive and negative Krein signatures. The branches can be found
analytically asλ ∈ iR for the |Im(λ)| > 1 + ω and|Im(λ)| > 1− ω. By perturbation the-
ory in the nonzero potential case the continuous spectrum does not move but the additional
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discrete spectrum appears. Eigenvalues of the operatorsL, H+ andH− are detected nu-
merically for two values of the parameterω by the Chebyshev interpolation method and are
displayed in Figures 4.3(a) and 4.4. The ends of the branch of the continuous spectrum with
the negative Krein signatureI are|Im λ| = 1.2 for ω = 0.2 and|Im λ| = 1.7 for ω = 0.7,
the zero eigenvalueII of the operatorL is of the multiplicity 4 and for theω = 0.2 we
can see a quadruplet of complex eigenvaluesIII. We can see a correlation to the discrete
spectrum of the operatorsH± for the ω = 0.7 the discrete spectrum ofH± consist only
of the kernelI and positive eigenvalueII, while for ω = 0.2 the discrete spectrum of the
operatorH+ has also two negative eigenvaluesIV .

Whenω is close to the double pulse bifurcation threshold (ω ≈ 0.5), the operator
L has a four-dimensional kernel atλ = 0 and a quadruplet of small complex eigenvaluesI
bifurcating from the continuous spectrum ofL with the correlation to the edge bifurcation
of the operatorH+ atω ≈ 0.5. The bifurcated eigenvalues of the operatorL moves toward
the origin and away from the real line asω goes from0.5 to 0 (see Fig: 4.5).

Within the numerical accuracy we can conclude that for the intervalω ∈ [0.5, 1)
the one pulse soliton solution are spectrally stable while for the intervalω ∈ (0, 0.5) the
double pulse soliton solutions are spectrally unstable, because of the oscillations related to
small complex eigenvalues.
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Figure 4.1: Eigenvalues and instability bifurcations for the symmetric quadric potential
(4.2.5) witha1 = 1 anda2 = a3 = a4 = 0.
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Figure 4.2: Eigenvalues and instability bifurcations for the symmetric quadric potential
(4.2.5) witha3 = 1 anda1 = a2 = a4 = 0.
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Figure 4.3: (a)σ(L) atω = 0.2 andω = 0.7. (b) Plot ofQ(x) for ω = 0.2 andω = 0.7.
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CHAPTER 5

SPECTRAL PROPERTIES OF THE NON-SELF-ADJOINT
OPERATOR ASSOCIATED WITH THE PERIODIC HEAT

EQUATION

5.1 Introduction

We address the Cauchy problem for the periodic heat equation
{

ḣ = −hθ − ε(sin θhθ)θ, t > 0,
h(0) = h0,

(5.1.1)

subject to the periodic boundary conditions onθ ∈ [−π, π]. This model was derived in
the context of the dynamics of a thin viscous fluid film on the inside surface of a cylinder
rotating around its axis in [11]. Extension of the model to the three-dimensional motion of
the film was reported in [12].

The parameterε is small for applications in fluid dynamics [11] and our main results
correspond to the interval|ε| < 2 in accordance to these applications. For anyε > 0, the
Cauchy problem for the heat equation (5.1.1) on the half-intervalθ ∈ [0, π] is generally
ill-posed [82] and it is naturally to expect that the Cauchy problem remains ill-posed on
the entire intervalθ ∈ [−π, π]. The authors of the pioneer work [11] used a heuristic
asymptotic solution to suggest that the growth of ”explosive instabilities” might occur in
the time evolution of the Cauchy problem (5.1.1).

Nevertheless, in a contradiction with the picture of explosive instabilities, only
purely imaginary eigenvalues were discovered in the discrete spectrum of the associated
linear operator

L = −ε
∂

∂θ

(
sin θ

∂

∂θ

)
− ∂

∂θ
, (5.1.2)

acting on sufficiently smooth periodic functionsf(θ) on θ ∈ [−π, π]. Various approxi-
mations of eigenvalues were obtained in [11] by two asymptotic methods (expansions in
powers ofε and the WKB method) and by three numerical methods (the Fourier series
approximations, the pseudospectral method, and the Newton–Raphson iterations). The re-
sults of the pseudospectral method were checked independently in [120] (see pp. 124–125
and 406–408). It is seen both in [11] and [120] that the level sets of the resolvent(λ−L)−1

95
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form divergent curves to the left and right half-planes and, while true eigenvalues lie on the
imaginary axis, eigenvalues of the truncated Fourier series may occur in the left and right
half-planes of the spectral plane. This distinctive feature was interpreted in [11] towards
the picture of growth of disturbances and the phenomenon of explosive instability.

One more question raised in [11] was about the validity of the series of eigenfunc-
tions associated to the purely imaginary eigenvalues of the operatorL for ε 6= 0. Although
various initial conditionsh0 were decomposed into a finite sum of eigenfunctions and the
error decreased with a larger number of terms in the finite sum, the authors of [11] conjec-
tured that the convergence of the series depended on the time variable and ”even though
the series converges att = 0, it may diverge later”. This conjecture would imply that the
eigenfunctions ofL for ε 6= 0 do not form a basis of functions in the spaceHs([−π, π])
with s > 1

2
unlike the harmonics of the complex Fourier series associated with the operator

L for ε = 0.
In this chapter, we prove that the operatorL is closed inL2

per([−π, π]) with a do-
main inH1

per([−π, π]) for |ε| < 2, such that the spectrum of the eigenvalue problem

−ε
d

dθ

(
sin θ

df

dθ

)
− df

dθ
= λf, f ∈ H1

per([−π, π]), (5.1.3)

is well-defined. Here and henceforth, we denote

H1
per([−π, π]) =

{
f ∈ H1([−π, π]) : f(π) = f(−π)

}
. (5.1.4)

Furthermore, we prove that the residual and continuous spectra of the spectral problem
(5.1.3) are empty and the eigenvalues of the discrete spectrum accumulate at infinity along
the imaginary axis. We further prove completeness of the series of eigenfunctions as-
sociated to all eigenvalues of the purely discrete spectrum ofL in L2

per([−π, π]). Using
the numerical approximations of eigenvalues and eigenfunctions of the spectral problem
(5.1.3), we show that all eigenvalues ofL are simple, located at the imaginary axis, and
the angle between two subsequent eigenfunctions tends to zero for larger eigenvalues. As
a result, the complete set of linearly independent eigenfunctions does not form a basis in
L2

per([−π, π]) and hence it cannot be used to solve the Cauchy problem associated with the
heat equation (5.1.1).

This chapter is structured as follows. Properties of the operatorL are analyzed in
Section 5.2. Eigenvalues of the operatorL are characterized inSection 5.3. Sections 5.4
– 5.5present numerical approximations of eigenvalues and eigenfunctions of the spectral
problem (5.1.3).

5.2 General properties of the linear operatorL

It is obvious that the operatorL is densely defined inL2
per([−π, π]) on the space of smooth

functions with periodic boundary conditions. However, the operatorL is not closed in
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L2
per([−π, π]) if the functions are infinitely smooth. We therefore prove in Lemma 5.2.1 that

the operatorL admits a closure inL2
per([−π, π]) with a domain inH1

per([−π, π]). Eigen-
functions and eigenvalues of the spectral problem (5.1.3) are studied in Lemmas 5.2.4 and
3.4.7. The absence of the residual and continuous spectra of operatorL is proved in Lem-
mas 5.2.6 and 5.2.7.

Lemma 5.2.1 The operatorL admits a closure inL2
per([−π, π]) for |ε| < 2 with Dom(L)

⊂ H1
per([−π, π]).

Proof. According to Lemma 1.1.2 in [38], if an operator has a non-empty spectrum in a
proper subset of a complex plane, then it must be closed. The operatorL has a non-empty
spectrum inL2

per([−π, π]) sinceλ = 0 is an eigenvalue with the eigenfunctionf0(θ) = 1 ∈
L2

per([−π, π]). We should show that there exists at least one regular pointλ0 ∈ C, such that

∀f ∈ H1
per([−π, π]) : ‖(L− λ0I)f‖L2

per([−π,π]) ≥ k0‖f‖L2
per([−π,π]) (5.2.1)

for somek0 > 0. In particular, we show that anyλ0 ∈ R is a regular point ofL in
H0 ⊂ H1

per([−π, π]), where

H0 =

{
f ∈ H1

per([−π, π]) :

∫ π

−π

f(θ)dθ = 0

}
. (5.2.2)

By using straightforward computations, we obtain

(f ′, Lf) = −
∫ π

−π

(1 + ε cos θ) |f ′|2dθ − ε

∫ π

−π

sin θf̄ ′f ′′dθ, (5.2.3)

where(g, f) =
∫ π

−π
ḡ(θ)f(θ)dθ is a standard inner product inL2. If f ∈ H1

per([−π, π]),
then

Re(f ′, f) = 0, Re(f ′, Lf) = −
∫ π

−π

(
1 +

ε

2
cos θ

)
|f ′|2dθ, (5.2.4)

such that for anyλ0 ∈ R it is true that

|Re(f ′, (L− λ0I)f)| ≥
(

1− |ε|
2

)
‖f ′‖2

L2
per([−π,π]).

By using the Cauchy–Schwarz inequality, we estimate the left-hand-side term from above

|Re(f ′, (L− λ0I)f)| ≤ |(f ′, (L− λ0I)f)| ≤ ‖f ′‖L2
per([−π,π])‖(L− λ0I)f‖L2

per([−π,π]),

such that

‖(L− λ0I)f‖L2
per([−π,π]) ≥

(
1− |ε|

2

)
‖f ′‖L2

per([−π,π]). (5.2.5)
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According to the Neumann–Poincare inequality onθ ∈ [−π, π], we have

‖f‖2
L2

per([−π,π]) ≤ 4π2‖f ′‖2
L2

per([−π,π]) +
1

2π

(∫ π

−π

f(θ)dθ

)2

. (5.2.6)

If f ∈ H0 ⊂ H1
per([−π, π]), we continue the right-hand-side of the inequality (5.2.5) and

recover the inequality (5.2.1) for anyλ0 ∈ R with

k0 =
1

2π

(
1− |ε|

2

)
> 0.

The estimate holds if|ε| < 2. ¤

Corollary 5.2.2 λ ∈ R\{0} is not in the spectrum ofL in L2
per([−π, π]).

Remark 5.2.3 The formal adjoint ofL in L2
per([−π, π]) is L∗ = −ε∂θ (sin θ∂θ) + ∂θ. Ac-

cording to Lemma 1.2.1 in [38], the operatorL∗ also admits a closure inL2
per([−π, π]) with

Dom(L∗) ⊂ H1
per([−π, π]) for |ε| < 2.

Lemma 5.2.4 Letλ be an eigenvalue of the spectral problemLf = λf with an eigenfunc-
tion f ∈ H1

per([−π, π]). Then,

(i) −λ, λ̄ and−λ̄ are also eigenvalues of the spectral problemLf = λf with the eigen-
functionsf(−θ), f̄(θ) and f̄(−θ) in H1

per([−π, π]).

(ii) λ is also an eigenvalue of the adjoint spectral problemL∗f ∗ = λf ∗ with the eigen-
functionf ∗ = f(π − θ) in H1

per([−π, π]).

(iii) λ is a simple isolated eigenvalue ofLf = λf if and only if(f ∗, f) 6= 0.

Proof. (i) Due to inversionθ → −θ, the spectral problem (5.1.3) transforms to itself with
the transformationλ → −λ. Due to the complex conjugation, it transforms to itself with
λ → λ̄. (ii) Due to the transformationθ → π − θ, the spectral problem (5.1.3) transforms
to the adjoint problemL∗f = λf with the same eigenvalue. (iii) The assertion follows by
the Fredholm Alternative Theorem for isolated eigenvalues. ¤

Lemma 5.2.5 Letλ be an eigenvalue of the spectral problem (5.1.3) with the eigenfunction
f ∈ H1

per([−π, π]). Then,

Re(λ) = ε
(f ′, sin θf ′)

(f, f)
, iIm(λ) =

(f ′, f)

(f, f)
, (5.2.7)

andIm(λ) 6= 0 except for a simple zero eigenvalueλ = 0.
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Proof. By constructing the quadratic form forf ∈ H1
per([−π, π]), we obtain

(f, Lf) = ε

∫ π

−π

sin θ|f ′|2dθ −
∫ π

−π

f̄f ′dθ, (5.2.8)

where the second term is purely imaginary since

f ∈ H1
per([−π, π]) :

∫ π

−π

f̄ ′fdθ = |f(θ)|2|θ=π
θ=−π −

∫ π

−π

f̄f ′dθ = −
∫ π

−π

f̄ ′fdθ. (5.2.9)

Moreover, the equality (5.2.4) can be rewritten in the form

iIm(λ)(f ′, f) = Re(f ′, Lf) = −
∫ π

−π

(
1 +

ε

2
cos θ

)
|f ′(θ)|2dθ ≤ −

(
1− |ε|

2

)
‖f ′‖2

L2 ,

(5.2.10)
where the right-hand side is negative if|ε| < 2 andf(θ) is not constant onθ ∈ [−π, π].
Therefore,(f ′, f) 6= 0 and Im(λ) 6= 0. Finally, the constant eigenfunctionf(θ) = 1
corresponds to the eigenvalueλ = 0 and it is a simple eigenvalue since(f ∗, f) 6= 0, where
f ∗(θ) = f(π−θ) = 1 is an eigenfunction of the adjoint operatorL∗ for the same eigenvalue
λ = 0. ¤

Lemma 5.2.6 The residual spectrum of the operatorL is empty.

Proof. By a contradiction, assume thatλ belongs to the residual part of the spectrum of
L such thatKer(L − λI) = ∅ but Range(L − λI) is not dense inL2

per([−π, π]). Let
g ∈ L2

per([−π, π]) be orthogonal toRange(L− λI), such that

∀f ∈ L2([−π, π]) : 0 = (g, (L− λI)f) = ((L∗ − λ̄I)g, f).

Therefore,(L∗ − λ̄I)g = 0, that isλ̄ is an eigenvalue ofL∗. By Lemma 5.2.4(ii),̄λ is an
eigenvalue ofL and by Lemma 5.2.4(i),λ is also an eigenvalue ofL. Henceλ can not be
in the residual part of the spectrum ofL. ¤

Lemma 5.2.7 The continuous spectrum of the operatorL is empty.

Proof. According to Theorem 4 on p.1438 in [43], ifL is a differential operator defined on
the intervalθ ∈ (−π, π) = (−π, 0)∪(0, π) andL± are restrictions ofL onθ ∈ (−π, 0) and
θ ∈ (0, π), thenσc(L) = σc(L+) ∪ σc(L−), whereσc(L) denotes the continuous spectrum
of L. By the symmetry of the two intervals, it is sufficient to prove that the operatorL+ has
no continuous spectrum onθ ∈ (0, π) (independently of the boundary conditions atθ = 0
andθ = π). It is also sufficient to carry out the proof forε > 0. Let f+(t) = f(θ) on
θ ∈ [0, π] and

cos θ = tanh t, sin θ = secht, t ∈ R,
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such that the interval[0, π] for θ is mapped to the infinite lineR for t. The functionf+(t)
satisfies the spectral problem

−εf ′′+(t) + f ′+(t) = λsecht f+(t). (5.2.11)

With a transformationf+(t) = et/2εg+(t), the spectral problem (5.2.11) is written in the
symmetric form

−εg′′+(t) +
1

4ε
g+(t) = λsecht g+(t). (5.2.12)

Thus, our operator is extended to a symmetric operator with an exponentially decaying
weightρ(t) = sech(t). According to Corollary 3 on p. 1437 in [43], ifL is a symmetric
operator on an open interval(a, b) andL0 is a self-adjoint extension ofL with respect to
some boundary conditions atx = a andx = b, thenσc(L) = σc(L0). Herea = −∞,
b = ∞, and we need to show that the continuous spectrum of the symmetric problem
(5.2.12) is empty inL2(R). This follows by Theorem 7 on p.93 in [51]: since the weight
functionρ(t) of the problem−y′′(t) − λρ(t)y(t) = 0 on t ∈ R decays faster than1/t2 as
|t| → ∞, the spectrum of−y′′(t)− λρ(t)y(t) = 0 is purely discrete1. ¤

5.3 Eigenvalues of the linear operatorL

By results of Lemmas 5.2.4, 5.2.5, 5.2.6, and 5.2.7, the spectral problem (5.1.3) for|ε| < 2
may have only two types of eigenvalues in addition to the simple zero eigenvalue: either
pairs of purely imaginary eigenvalues or quartets of symmetric complex eigenvalues. We
prove in Lemmas 5.3.1 and 5.3.4 that there exists an infinite sequence of eigenvaluesλ
which accumulate to infinity along the imaginary axis. Furthermore, we prove in Theorem
5.3.6 that the eigenfunctions associated to all eigenvalues of the spectral problem (5.1.3)
form a complete dense set inL2

per([−π, π]). In the end of this section, Theorem 5.3.9
gives a necessary and sufficient condition that the set of eigenfunctions forms a basis in
L2

per([−π, π]).

Lemma 5.3.1 Let 0 < ε < 2 andε 6= 1
n
, n ∈ N. For λ ∈ C, the spectral problem (5.1.3)

admits three sets of two linearly independent solutions in the form of the Frobenius series

−π < θ < π : f1 = 1 +
∑

n∈N
cnθn, f2 = θ−1/ε

(
1 +

∑

n∈N
dnθn

)
, (5.3.1)

1Although the spectral problem (5.2.12) has an additional termCy(t) with C > 0, this term only makes
better the inequality (30) on p.93 in the proof of Theorem 7 of [51].
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and

0 < ±θ < π : f±1 = 1 +
∑

n∈N
a±n (π ∓ θ)n, f±2 = (π ∓ θ)1/ε

(
1 +

∑

n∈N
b±n (π ∓ θ)n

)
,

(5.3.2)
where all coefficients are uniquely defined. The solutionf1(θ) is an analytic function of
λ ∈ C uniformly onθ ∈ [−π, π].

Proof. Existence of two linearly independent solutions on−π < θ < π in the form (5.3.1)
and on0 < ±θ < π in the form (5.3.2) follows by the ODE analysis near the regular
singular points [31]. The difference between the two indices of the indicial equation is
1
ε

and it is non-integer forε 6= 1
n
, n ∈ N2. Since the spectral problem (5.1.3) depends

analytically onλ and the Frobenius series converges absolutely and uniformly in between
two regular singular points, the solutionf1(θ) is analytic inλ ∈ C for any fixedθ ∈
(−π, π). Due to uniqueness of the solutions of the ODE (5.1.3), the solutionf1(θ) can be
equivalently represented by the other solutions

f1(θ) = A±f±1 (θ) + B±f±2 (θ), 0 < ±θ < π, (5.3.3)

whereA± andB± are some constants, while the functionsf±1 (θ) andf±2 (θ) are analytic
in λ ∈ C for any fixed±θ ∈ (0, π]. By matching analytic solutions for any±θ ∈ (0, π),
we find thatA± andB± are analytic functions ofλ ∈ C, the Frobenius series forf1(θ)
converges absolutely and uniformly onθ ∈ [−π, π], and the solutionf1(θ) is an analytic
function inλ ∈ C uniformly onθ ∈ [−π, π]. ¤

Corollary 5.3.2 There exists an analytic functionFε(λ) on Imλ > 0, roots of which give
isolated eigenvalues of the spectral problem (5.1.3) with the account of their multiplicity.
The only accumulation point of isolated eigenvalues in theλ-plane may occur at infinity.

Proof. The functionf ∈ H1([−π, π]) satisfies the spectral problem (5.1.3) if and only if
f(θ) = C0f1(θ) onθ ∈ [−π, π], whereC0 = 1 thanks to the scaling invariance of homoge-
neous equations. By using the representation (5.3.3), we can find thatA± = lim

θ→±π
f1(θ) are

uniquely defined analytic functions inλ ∈ C. The functionFε(λ) = A+ − A− is analytic
function ofλ ∈ C by construction and zeros ofFε(λ) on Imλ > 0 coincide with the eigen-
valuesλ of the spectral problem (5.1.3) with the account of their multiplicity. IfFε(λ0) = 0
for someλ0 ∈ C, the corresponding eigenfunctionf(θ) lies in H1

per([−π, π]), i.e. it sat-
isfies the periodic boundary conditionsf(π) = f(−π). By analytic function theory, the
sequence of roots ofFε(λ) can not accumulate at a finite point onλ ∈ C. ¤

2An additional logarithmic termlog(π − θ) may need to be included into the Frobeneus series ifε = 1
n ,

n ∈ Z.
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Remark 5.3.3 We will use the method involving the analytic functionFε(λ) onλ ∈ C for
a numerical shooting method which enables us to approximate eigenvalues of the spectral
problem (5.1.3). This method involves less computations than the shooting method de-
scribed in Appendix C of [11]. Nevertheless, it is essentially the same shooting method
and it uses the ODE analysis near the regular singular point (Lemma 5.3.1), which repeats
the arguments in Appendix B of [11].

Lemma 5.3.4 Fix 0 < ε < 2 and let {λn}n∈N be a set of eigenvalues of the spectral
problem (5.1.3) withImλn > 0, ordered in the ascending order of|λn|. There exists a finite
numberN ≥ 1, such that for alln ≥ N , λn = iωn ∈ iR+ and

ωn = Cn2 + o(n2) as n →∞, (5.3.4)

for someC > 0.

Proof. We reduce the spectral problem (5.1.3) to two uncoupled Schroödinger equations
on an infinite line. Letf(θ) be represented on two intervals±θ ∈ [0, π] by using the
transformations

cos θ = tanht, sin θ = ±secht, (5.3.5)

wheret ∈ R. Then, the functionsf±(t) = f(θ) on ±θ ∈ [0, π] satisfy the uncoupled
spectral problems

−εf ′′±(t) + f ′±(t) = ±λsecht f±(t), t ∈ R, (5.3.6)

The normalization conditionf(0) = 1 is equivalent to the conditionlim
t→∞

f±(t) = 1. The

periodic boundary conditionf(π) = f(−π) is equivalent to the conditionlim
t→−∞

f−(t) =

lim
t→−∞

f+(t). The linear problems (5.3.6) are reformulated as the quadratic Ricatti equations

by using the new variables

f±(t) = e
R t
∞ S±(t′)dt′ : S± − ε(S ′± + S2

±) = ±λsecht. (5.3.7)

We choose a negative root of the quadratic equation in the form

S±(t) =
1−

√
1∓ 4ελsecht− 4ε2R±

2ε
, R± = S ′±(t). (5.3.8)

The representation (5.3.8) becomes the chain fraction if the derivative ofS±(t) is defined
recursively from the same expression (5.3.8). By using the theory of chain fractions, we
claim thatR± = O(

√
|λ|) as |λ| → ∞ uniformly on t ∈ R. The functionFε(λ) of

Corollary 5.3.2 is now expressed by

Fε(λ) = lim
t→−∞

[f+(t)− f−(t)] = e
R∞
−∞ S+(t)dt − e

R∞
−∞ S−(t)dt. (5.3.9)
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Zeros ofFε(λ) are equivalent to zeros of the infinite set of functions

Gn(λ) =
1

4πiε

∫ ∞

−∞

[√
1 + 4ελsecht− 4ε2R−(t)−

√
1− 4ελsecht− 4ε2R+(t)

]
dt− n,

(5.3.10)
wheren ∈ N. If R±(t) ≡ 0, the functionG̃n(ω) = G(iω), n ∈ N is real-valued and strictly
increasing onω ∈ R+ with G̃n(0) = −n. By performing asymptotic analysis, we compute
that

1

4πiε

∫ ∞

−∞

[√
1 + 4iεωsecht− 4ε2R−(t)−

√
1− 4iεωsecht− 4ε2R+(t)

]
dt

=
1

πi

∫ ∞

−∞

2iωsecht + ε(R+ −R−)√
1 + 4iεωsecht− 4ε2R−(t) +

√
1− 4iεωsecht− 4ε2R+(t)

dt

=

√
ω√

2επ

∫ ∞

−∞

dt√
cosh t

+ o
(√

ω
)
, (5.3.11)

such that lim
ω→∞

G̃n(ω) = ∞. Therefore, there exists exactly one rootω = ωn of G̃n(ω)

for eachn. SinceR− = R̄+ for λ = iω ∈ iR, each simple root of̃Gn(ω) persists for
non-zero values ofR±(t) = O(

√
ω) uniformly on t ∈ R asω → ∞. According to the

asymptotic result (5.3.11), the rootsωn of G̃n(ω) satisfy the asymptotic distribution (5.3.4)
with C = 2επ2�R∞

−∞
dt√

cosh t

�2 . ¤

Remark 5.3.5 Analysis of Lemma 5.3.4 extends the formal WKB approach proposed in
Section 3 of [11]. In particular, the equation (5.3.10) withR± = 0 has been obtained in Eq.
(3.11) of [11].

Theorem 5.3.6 Let{fn}n∈N be the set of eigenfunctions corresponding to the set of eigen-
values{λn}n∈N in Lemma 5.3.4 withImλn > 0. The set of eigenfunctions is complete in
X0 ⊂ L2

per([−π, π]), where

X0 =

{
f ∈ L2

per([−π, π]) :

∫ π

−π

f(θ)dθ = 0

}
.

Proof. By Corollary 5.3.2, eigenvalues ofL with Imλ > 0 accumulate to infinity, such
that the operatorM = L−1 acting on elements inX0 is compact. By Lemma 5.3.4, there
are infinitely many eigenvalues ofL and large eigenvalues are all purely imaginary, such
that |λn| = O(n2) asn → ∞. These two facts satisfy two sufficient conditions of the
Lidskii’s Completeness Theorem. According to Theorem 6.1 on p. 302 in [52], the set of
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eigenvectors and generalized eigenvectors of a compact operatorM in a Hilbert spaceX0

is complete if there existsp > 0 such that

sn(M) = o(n
−1
p ), asn →∞, (5.3.12)

wheresn is a singular number of the operatorM , and the set

WM = {(Mf, f) : f ∈ X0, ‖f‖X0 = 1} (5.3.13)

lies in a closed angleθM with vertex at0 and openingπ
p
. Since the singular numberssn are

eigenvalues of the positive self-adjoint operator(MM∗)1/2 and the eigenvalues ofL grow
like O(n2) asn → ∞, we havesn(M) = O(n−2) asn → ∞, such that the first condition
(5.3.12) is verified withp = 1. Since allImλn > 0 for the set of eigenvalues{λn}n∈N of
Lemma 5.3.4, the spectrum ofM lies in the lower half plane, such that the second condition
(5.3.13) is also verified withp = 1 (θM = π). ¤

Corollary 5.3.7 The set of eigenfunctions{fn}n∈Z with f0 = 1 andf−n = f̄n, ∀n ∈ N is
complete inL2

per([−π, π]).

Remark 5.3.8 Due to linear independence of eigenfunctions for distinct eigenvalues, the
set of eigenfunctions{fn}n∈Z is also minimal if all eigenvalues are simple3. If the set
{fn}n∈Z is complete and minimal, any functionf ∈ L2

per([−π, π]) can be approximated

by a finite linear combinationfN =
N∑

n=−N

cnfn in the following sense: for any fixedε >

0, there existsN ≥ 1 and the set of coefficients{cn}−N≤n≤N , such that the inequality
‖f − fN‖L2

per([−π,π]) < ε holds. This approximation does not imply that the set{fn}n∈Z
forms a Schauder basis in the Hilbert spaceL2

per([−π, π]), in which case there would exist
a unique series representationf =

∑
n∈Z

cnfn for anyf ∈ L2
per([−π, π]).

Theorem 5.3.9 Let {fn}n∈Z be a complete and minimal set of eigenfunctions of the spec-
tral problem (5.1.3) for the set of eigenvalues{λn}n∈Z in Theorem 5.3.6. The set of eigen-

functions forms a basis in Hilbert spaceL2
per([−π, π]) if and only if lim

n→∞
cos( ̂fn, fn+1) < 1.

Proof. According to Theorem 2 on page 31 in [87], the complete and minimal set of
eigenfunctions{fn}n∈Z forms a basis in Hilbert spaceX = L2

per([−π, π]) if and only if
sup
N
‖PN‖ < ∞, wherePN is the projector of the linear span{fn}−N≤n≤N in the direction

of the linear span{fn}|n|≥N+1. Since the Hilbert spaceX is a direct sum of the two lin-
ear spans above, the norm of the parallel projectorPN has the geometrical representation

3By Lemma 5.3.4, all eigenvalues are simple starting with somen ≥ N .
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‖PN‖ = 1
sin αN

, whereαN is the angle between the two linear spans [4]. This implies that
the set{fn}n∈Z is a basis in the Hilbert spaceX if and only if

cos( ̂fn, fn+1) =
|(fn, fn+1)|
‖fn‖‖fn+1‖ < 1, (5.3.14)

for sufficiently largen ∈ Z [53]. ¤

5.4 Numerical shooting method

We approximate isolated eigenvalues of the spectral problem (5.1.3) for0 < ε < 2 nu-
merically. In agreement with numerical results in [11], we show that all eigenvalues in the
set{λn}n∈Z are simple and purely imaginary. Therefore, the set{λn}n∈Z can be ordered
in the ascending order, such thatλ0 = 0, λn = −λ−n, ∀n ∈ N, Imλn < Imλn+1 and
lim

n→∞
|λn| = ∞. We also show that the angle between two subsequent eigenfunctionsfn(θ)

andfn+1(θ) in the set{fn(θ)}n∈Z tends to zero asn →∞.
The numerical shooting method is based on the ODE formulation of the spectral

problem (5.1.3). By Lemma 5.3.1 and Corollary 5.3.2, complex eigenvaluesλ ∈ C are
determined by roots of the analytic functionFε(λ) in theλ-plane. The number of complex
eigenvalues can be computed with the winding number theory. The number and location of
purely imaginary eigenvalues can be found from real-valued roots of a scalar real-valued
function.

Proposition 5.4.1 Let the eigenfunctionf(θ) of the spectral problem (5.1.3) for0 < ε < 2
be normalized by the conditionf(0) = 1. The eigenvalueλ is purely imaginary if and only
if f(θ) = f(−θ) on θ ∈ [−π, π].

Proof. If λ ∈ iR and f(θ) satisfies the second-order ODE (5.1.3) onθ ∈ [−π, π],
then f̄(−θ) satisfies the same ODE (5.1.3) onθ ∈ [−π, π]. By Corollary 5.3.2, iff ∈
H1

per([−π, π]), f(0) = 1 and0 < ε < 2, the solutionf(θ) is uniquely defined. By unique-
ness of solutions,f(θ) = f(−θ) on θ ∈ [−π, π].

If f(θ) = f(−θ) on θ ∈ [−π, π], then,
∫ π

−π

sin θ|f ′(θ)|2dθ =

∫ π

0

sin θ|f ′(θ)|2dθ −
∫ π

0

sin θ|f ′(−θ)|2dθ = 0,

such thatReλ = 0 according to the equality (5.2.7) in Lemma 5.2.5. ¤
Corollary 5.4.2 Let f(θ) be an eigenfunction of the spectral problem (5.1.3) forλ ∈ iR,
such thatf ∈ H1

per([−π, π]) andf(0) = 1. Then,f(π) = f(−π) is equivalent tof(π) ∈ R.
The eigenvalueλ ∈ iR is simple if and only if

(f ∗, f) = 2Re

∫ π

0

f(θ)f̄(π − θ)dθ 6= 0. (5.4.1)
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Proof. The first assertion follows by the symmetry relationf(θ) = f̄(−θ) evaluated at
θ = π. The second asserion follows by Lemma 5.2.4 with the use of the symmetryf ∗(θ) =
f(π − θ). ¤

By Lemma 5.3.1, the functionf(θ) with f(0) = 1 is represented uniquely by the
Frobenius series

f(θ) = f1(θ) = 1 +
∑

n∈N
cnθn, (5.4.2)

where the coefficients{cn}n∈N are uniquely defined by the recursion relation

cn = − 1

n(1 + εn)

(
λcn−1 + εn

∑

m∈N′

(−1)
n−m

2 m

(n−m + 1)!
cm

)
, n ∈ N, (5.4.3)

wherec0 = 1 andN′ is a set of integers in the interval[1, n − 2] such thatn −m is even.
For instance,

c1 = − λ

1 + ε
, c2 =

λ2

2(1 + ε)(1 + 2ε)
, c3 = − λ(λ2 + ε(1 + 2ε))

3!(1 + ε)(1 + 2ε)(1 + 3ε)
,

and so on. We truncate the power series expansion onN = 100 terms and approximate
the initial value[f(θ0), f

′(θ0)] at θ0 = 10−8. By using the fourth-order Runge–Kutta ODE
solver with time steph = 10−4, we obtain a numerical approximation off ≡ f+(θ) on
θ ∈ [θ0, π − θ0] for λ andf ≡ f−(θ) on the same interval for−λ. By Lemma 5.2.4(i), the
numerical approximation of the functionFε(λ) of Corollary 5.3.2 is

F̂ε(λ) = f+(π − θ0)− f−(π − θ0). (5.4.4)

If λ ∈ iR, the functionF̂ε(λ) is simplified by using Corollary 5.4.2 aŝFε(λ) = 2iImf+(π−
θ0). Table 1 represents the numerical approximations of the first four non-zero eigenvalues
λ ∈ iR for ε = 0.5, 1.0, 1.54 with the error computed from the residual

R =

∣∣∣∣
(f, Lf)

(f, f)
− λ

∣∣∣∣ .

We can see from Table 1 that the accuracy drops with larger values ofε and for larger
eigenvalues, but the eigenvalues persist inside the interval|ε| < 2.

Figure 5.1shows the profiles of eigenfunctionsf(θ) on θ ∈ [0, π] for the first two
eigenvaluesλ = iω1,2 ∈ iR+ for ε = 0.5 (left) andε = 1.5 (right). We can see from Fig.

4We note that the Frobenius series (5.4.2) is not affected by the logarithmic terms forε = 0.5 andε = 1.0,
since0 is the largest index of the indicial equation atθ = 0.
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1 that the derivative off(θ) becomes singular asθ → π− for ε ≥ 1. We can also see that
the real part of the eigenfunctionf(θ) has one zero onθ ∈ (0, π) for the first eigenvalue
and two zeros for the second eigenvalue, while the imaginary part of the eigenfunction
f(θ) has a fewer number of zeros by one. The numerical approximations of the eigenvalue
and eigenfunctions of the spectral problem (5.1.3) are structurally stable with respect to
variations inθ0, N andh.

Figure 5.2shows the complex plane ofw = F̂ε(λ) (left) and the argument ofw
(right) whenλ traverses along the first quadrant of the complex planeλ ∈ Λ1 ∪ Λ2 ∪ Λ3

for ε = 0.5. HereΛ1 = x + ir with x ∈ [r, R], Λ2 = Reiϕ with ϕ ∈ [ϕ0,
π
2
− ϕ0] and

λ3 = r + iy with y ∈ [r,R], wherer = 0.1, R = 10, andϕ0 = arctan(r/R). It is obvious
that the winding number of̂Fε(λ) across the closed contour is zero. Therefore, no zeros
of F̂ε(λ) occurs in the first quadrant of the complex planeλ ∈ C. The numerical result is
structurally stable with respect to variations inr, R andε.

ε ω1 R1 ω2 R2

0.5 1.167342 0.000051 2.968852 0.000405
1.0 1.449323 0.000837 4.319645 0.007069
1.5 1.757278 0.002691 5.719671 0.018412

ε ω3 R3 ω4 R4

0.5 5.483680 0.001436 8.715534 0.003653
1.0 8.631474 0.024964 14.382886 0.061881
1.5 11.846709 0.054271 20.138824 0.113834

Table 1: Numerical approximations of the first four eigenvaluesλ = iωn of the
spectral problem (5.1.3) and the residualsR = Rn for three values ofε.

5.5 Numerical spectral method

The numerical spectral method is based on the reformulation of the second-order ODE
(5.1.3) as the second-order difference equation and the subsequent truncation of the differ-
ence eigenvalue problem. It is found in [119] that the truncation procedure lead to spurious
complex eigenvalues which bifurcate off the imaginary axis.

Let f ∈ H1
per([−π, π]) be an eigenfunction of the spectral problem (5.1.3). This

eigenfunction is equivalently represented by the Fourier series

f(θ) =
∑

n∈Z
fne

−inθ, fn =
1

2π

∫ π

−π

f(θ)einθdθ, (5.5.1)

where the infinite-dimensional vectorf = (..., f−2, f−1, f0, f1, f2, ...) is defined inf ∈
l21(Z) equipped with the norm‖f‖2

l21
=

∑
n∈Z(1 + n2)|fn|2 < ∞. The spectral problem
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Figure 5.1: The real part (blue) and imaginary part (green) of the eigenfunctionf(θ) on
θ ∈ [0, π] for the first (solid) and second (dashed) eigenvaluesλ = iω1,2 ∈ iR+ for ε = 0.5
(left) andε = 1.5 (right).
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(5.1.3) for|ε| < 2 is equivalent to the difference eigenvalue problem

nfn +
ε

2
n [(n + 1)fn+1 − (n− 1)fn−1)] = −iλfn, n ∈ Z. (5.5.2)

The difference eigenvalue problem (5.5.2) splits into three parts

Af+ = −iλf+, Af− = iλf−, λf0 = 0, (5.5.3)

wheref± = (f±1, f±2, ...) andA is an infinite-dimensional matrix

A =




1 ε 0 0 · · ·
−ε 2 3ε 0 · · ·
0 −3ε 3 6ε · · ·
0 0 −6ε 4 · · ·
...

...
...

...
.. .




(5.5.4)

SinceA = D− iS, whereD is a diagonal matrix andS is a self-adjoint tri-diagonal matrix,
one can define the discrete counterpart of Lemma 5.2.5

Imλ =
(f+, Df+)

(f+, f+)
=

∑
n∈N n|fn|2∑
n∈N |fn|2 , Reλ =

(f+, Sf+)

(f+, f+)
.

where Imλ > 0. The adjoint eigenfunctionf ∗(θ) = f(π − θ) is recovered from the
eigenvectorf by f∗ = Jf , where

J =




0 0 J0

0 1 0
J0 0 0




andJ0 is a diagonal operator with entries(−1, 1,−1, 1, ...).
According to Theorem 5.3.6, rewritten from the set of eigenfunctions{fn}n∈Z to

the set of eigenvectors{fn}n∈Z, the inverse matrix operatorA−1 is of the Hilbert-Schmidt
type, and hence compact. LetA−1

N = PNA−1PN denote the truncation of the matrix op-
eratorA−1 at the firstN rows and columns, wherePN is an orthogonal projector from an
infinite-dimensional vector to theN -dimensional vector of the firstN components.

Proposition 5.5.1 Operator sequenceA−1
N converges uniformly to the compact operator

A−1 as N → ∞. Eigenvalues of the matricesA−1
N converge to the eigenvalues of the

compact operatorA−1 asN →∞.
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Proof. It follows from the Finite Rank Approximation Theorem thatPNA−1 converges
uniformly to the compact operatorA−1. Therefore, for anyε > 0, there exists a number
N1 ≥ 1 such that

∀N > N1 : ‖PNA−1 − A−1‖ <
ε

2
.

Because the adjoint operator is also compact and the orthogonal projectorPN is a self-
adjoint operator, the sequenceP ∗

NA−1∗ is uniformly converges toA−1∗. Therefore, for any
ε > 0, there exists a numberN2 ≥ 1 such that

∀N > N2 : ‖P ∗
NA−1∗ − A−1∗‖ <

ε

2
.

Let N0 = max(N1, N2). For anyN > N0, we have

‖A−1 − PNA−1PN‖ = ‖(A−1 − PNA−1) + PN(A−1∗ − P ∗
NA−1∗)∗‖

≤ ‖(A−1 − PNA−1)‖+ ‖PN‖‖(A−1∗ − P ∗
NA−1∗)∗‖

≤ ‖A−1 − PNA−1PN‖+ ‖(A−1∗ − P ∗
NA−1∗)‖ ≤ ε.

Therefore,limN→∞ A−1
N = A−1.

Let λ0 6= 0 belongs to the spectrum of the operatorA−1. Because all eigenvalues
are isolated, there exists an open ballD0 ∈ Dom(A−1) with the boundary∂D0 passing
though regular points of operatorA such thatλ0 is the only point ofD0 in the spectrum set
of A−1. It follows from the compactness of∂D0 that the set

{
(A−1

N − λI)−1 : λ ∈ ∂D0

}
is uniformly bounded byN and byλ. Therefore, the sequence of the Riesz projectors

RN = − 1

2πi

∮

ΓD0

(A−1
N − λI)−1dλ

strongly converges to the limiting projector

R = − 1

2πi

∮

ΓD0

(A−1 − λI)−1dλ.

If all RN = 0, then the limiting projectorR = 0. ¤

Remark 5.5.2 The distance between eigenvalues ofA−1
N andA−1 may not be small for

fixed N , but it becomes small in the limit of largeN . The convergence of eigenvalues is
not uniform inλ.

The smallest eigenvalues of the truncated matrixA−1
N are found with the parallel

Krylov subspace iteration algorithm [46].Figure 5.3shows the distance between eigenval-
ues of the shooting method and eigenvalues of the Krylov spectral method forε = 0.1. The
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Figure 5.3: The distance between eigenvalues computed by the shooting and spectral meth-
ods forε = 0.1.

difference between two eigenvalues is small of the orderO(10−3) but the advantage of the
parallel algorithm is that the calculating time of 20 largest eigenvalues ofA−1

N for N = 106

takes less than one minute on a network of 16 processors while finding the same set of
eigenvalues by the shooting method with the time steph = 10−5 takes about one hour.

Figure 5.4shows symmetric pairs of eigenvalues of the matrixAN for ε = 0.3
at N = 128 (left) andN = 1024 (right). We confirm the numerical result of [119] that
the truncation of the matrix operatorA always produces splitting of large eigenvalues off
the imaginary axis. Moreover, starting with some numbern, the eigenvalues ofAN are
real-valued. This feature is an artifact of the truncation, which contradicts to Lemmas
5.2.5 and 5.3.4 as well as to results of the shooting method. However, the larger isN ,
the more eigenvalues remain on the purely imaginary axis. Therefore, the corresponding
eigenvectors can be used to compute the angle in Theorem 5.3.9.

Figure 5.5(left) show the values of the cosine of the angle (5.3.14) for the first20
purely imaginary eigenvalues forε = 0.1. As we can see from the figure, the angle between
two eigenvectors tends to zero for larger eigenvalues up to the numerical accuracy.Figure
5.5 (right) and Table 2 show that the angle drops to zero faster with larger values of the
parameterε.
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Figure 5.4: Spectrum of the truncated difference eigenvalue problem (5.5.2) forε = 0.3:
N = 128 (left) andN = 1024 (right).
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Figure 5.5: Left: the values ofcos( ̂fn, fn+1) for the first 20 purely imaginary eigenvalues
for ε = 0.1. Right: the values ofcos(f̂1, f2) versusε.
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eigenvectors ε = 0.1 ε = 0.3 ε = 0.5
1-2 0.120166 0.325116 0.431987
2-3 0.461330 0.716192 0.780641
3-4 0.680709 0.838889 0.878055
4-5 0.799235 0.890440 0.914622
5-6 0.858944 0.921498 0.940306
6-7 0.892869 0.940395 0.955239
7-8 0.914745 0.953124 0.965235
8-9 0.930023 0.962120 0.972204
9-10 0.941262 0.968732 0.977265
10-11 0.949843 0.973741 0.981057
11-12 0.956580 0.977629 0.983988
12-13 0.961987 0.980702 0.986072
13-14 0.966407 0.983297 0.989617
14-15 0.970073 0.983459 0.990547
15-16 0.973153 0.995335 0.999101
16-17 0.975764 0.998749 0.999601

Table 2: Numerical values ofcos( ̂fn, fn+1) for the first 16 purely imaginary eigen-
values for three values ofε.

The angle between two subsequent eigenvectors is closely related to the condition
number [108]

cond(λn) =
‖fn‖‖f ∗n‖
|(fn, f ∗n)| . (5.5.5)

By Lemma 5.2.4(iii), the condition number is infinite for multiple eigenvalues since(fn, f
∗
n) =

0. From the point of numerical accuracy, the larger is the condition number, the poorer is
the structural stability of the numerically obtained eigenvalues to the truncation and round-
off errors.

Figure 5.6shows the condition number (5.5.5) computed for the first40 purely
imaginary eigenvalues forε = 0.001 andε = 0.002. We can see that the condition number
grows for larger eigenvalues which indicate their structural instability. Indeed, starting with
some numbern, all eigenvalues are no longer purely imaginary, according to the numerical
approximations onFigure 5.4. The condition numbers become extremely large with larger
values ofε.

We finally illustrate that all true eigenvalues of the spectral problem (5.1.3) are
purely imaginary and simple. To do so, we construct numerically the sign-definite imagi-
nary type function and obtain the interlacing property of eigenvalues of the spectral prob-
lem (5.1.3) for two valuesε = ε0 andε = ε1, where|ε1 − ε0| is small. We say that the
eigenvalues exhibit the interlacing property if there exists an eigenvalue forε = ε1 between
each pair of eigenvalues forε = ε0 and vice verse.
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Figure 5.6: The condition number for the first40 purely imaginary eigenvalues forε =
0.001 (red) andε = 0.002 (blue).

A meromorphic functionG(λ) is called a sign-definite imaginary type function if
ImG(λ) ≤ 0 (ImG(λ) ≥ 0) onIm(λ) ≤ 0 (Im(λ) ≥ 0) [6]. We construct the meromorphic
functionG(ω) in the formG(λ) =

Fε0 (λ)

Fε1 (λ)
, whereFε(λ) is an analytical function of Corollary

5.3.2. The numerical approximation of the meromorphic functionG(λ) is given byĜ(λ) =bFε0 (λ)bFε1 (λ)
. According to Theorems II.2.1 - II.3.1 on p. 437-439 in [6], the functionĜ(λ)

is a meromorphic function of sign-definite imaginary type if and only if it has the form
Ĝ(λ) = P (λ)

Q(λ)
whereP (λ) andQ(λ) are polynomials with real coefficients, with real and

simple zeros, which are interlacing.
Table 3 shows this interlacing property of eigenvalues forε0 = 0.48 andε1 = 0.5.

The remainder termRε = ‖Lf−λf‖
‖λf‖ measures the numerical error of computations. We

have also computed numerically the values ofĜ(λ) on the grid0.1 < Imλ < 100 and
0.1 < Reλ < 100 with step size0.1 in both directions (not shown). Based on the numerical
data, we have confirmed that the functionĜ(λ) does indeed belongs to the class of sign-
definite imaginary type functions while the eigenvalues{λn}n∈Z exhibit the interlacing
property. This computation gives a numerical verification that all eigenvalues of the spectral
problem (5.1.3) are simple and purely imaginary.
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Imλε0 Rε0 Imλε1 Rε1

1.063112 2.3244e− 10 1.068314 2.4073e− 10
2.970880 2.1967e− 10 3.024428 2.2531e− 10
5.414789 2.2024e− 10 5.542829 2.2683e− 10
8.471510 2.0904e− 10 8.693066 2.1572e− 10
12.312548 2.0079e− 10 12.665485 2.0601e− 10
16.816692 1.9765e− 10 17.327038 2.0288e− 10
22.014084 1.9617e− 10 22.711070 2.0197e− 10
27.899896 1.9527e− 10 28.812177 2.0157e− 10
34.474785 1.9501e− 10 35.631088 2.0190e− 10
41.738699 1.9558e− 10 43.167733 2.0313e− 10
49.691673 1.9671e− 10 51.422281 2.0476e− 10
58.333258 1.9796e− 10 60.391382 2.0623e− 10
67.665387 1.9904e− 10 70.140636 2.0725e− 10
77.957871 1.9989e− 10 79.828287 2.0782e− 10
89.484519 2.6566e− 10 91.544035 2.0821e− 10

Table 3: The interlacing property of the first15 purely imaginary eigenvalues forε = 0.48
andε = 0.5.
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CHAPTER 6

SUMMARY OF RESULTS AND OPEN QUESTIONS

The four main new results of my doctoral research are represented as separate chapters of
the thesis.

The first result is a proof that spectral stability problems for Hamiltonian systems
with semi-bounded energy can be reformulated in terms of self-adjoint operators acting on a
space with indefinite metric. This allows deriving the criteria for stability and instability of
solitons in terms of sign-definite invariant subspaces using Pontryagin space (Πκ) decom-
position method. Three major spectral theorems resulted from this approach : the number
of unstable and potentially unstable eigenvalues equals the number of negative eigenvalues
of the self-adjoint operator inΠκ, the total number of isolated eigenvalues is bounded from
above by the total number of isolated eigenvalues of the self-adjoint operator inΠκ, the
subspace that related to the absolute continuous spectrum is positive sign-definite. This de-
composition method is used to determine the stability of solitary waves in various classes
of nonlinear PDEs: the NLS, Klein - Gordon and KdV equations.

One of the interesting open questions is an extension of the Pontryagin subspace
theorems to operators acting on exponentially weighted spaces. This is relevant for stability
problems of multi-pulse solitary wave solutions in the 5-th order KdV equation. Potential
applications for this research are magneto-acoustic waves in plasma and capillary-gravity
water waves. It is also an open question how to apply indefinite metric space approach to
spectral analysis of the quadratic pencils of the differential operators. This is relevant for
the spectral stability problems associated with the linearized sine Gordon equation.

The second result is numerical calculations of two-pulse solutions for the fifth-
order KdV equation. Two-pulse solutions are bound states of two solitary waves which
travel together as a single coherent structure with a fixed peak-to-peak separation. We
applied a new numerical method which is a modification of the Petviashvili method of
successive iterations for numerical approximations of pulses. The successive iterations of
the original Petviashvili method do not converge for two-pulse solutions. The iterative
sequence with two pulses leads either to a single pulse or to a spurious solution with two
pulses located at an arbitrary distance. This numerical problem arises due to the presence
of small and negative eigenvalues of the linearized energy operator. We found that this
nearly singular quasi-translational eigenmode does not create any serious problems for
our numerical algorithm. Modification and a proof of the convergence of iterations in a
neighborhood of two-pulse solutions are based on the Lyapunov–Schmidt reduction. It
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is also shown that the embedded eigenvalues of negative Krein signature are structurally
stable in a linearized KdV equation. Combined with stability analysis in Pontryagin spaces,
this result completes the proof of spectral stability of the corresponding two-pulse solutions.

Although one-dimensional models are very useful for conceptual purposes the real
world is not made that way. An open question is: can this method or its modification be
applied in two or three dimensions ? Another question is to see if this algorithm can be
used theN−pulse solutions withN > 2.

The third result is a construction of the canonical transformation of the linearized
coupled-mode system to the block anti–diagonal form, when the spectral problem reduces
to two coupled two-by-two Dirac systems. This block-diagonalization is used in numerical
computations of eigenvalues that determine stability of gap solitons. This transformation is
significant for numerical approximations of eigenvalues of the linearized Hamiltonian sys-
tems, because the block-diagonalized matrix can be stored in a special compressed format
which requires twice less memory than a full matrix. Spectral analysis of Dirac systems can
be done in terms of self-adjoint operators acting on Krein space (which is a generalization
of Pontryagin space with indexκ = ∞). Potential applications for this research are optical
solitons in fibres and photonic crystals which provide an efficient (reliable and fast) means
of long-distance communication.

The last new result is a proof that the operatorL associated with the heat equation
(5.1.1) admits a closure inL2

per([−π, π]) with a domain inH1
per([−π, π]) for |ε| < 2. The

spectrum ofL consists of eigenvalues of finite multiplicities. Using the analytic function
theory and the Fourier series, we have approximated eigenvalues numerically and showed
that all eigenvalues of the spectral problem (5.1.3) are purely imaginary. Furthermore, we
have proved with the assistance of numerical computations that the set of eigenfunctions
of the spectral problem (5.1.3) is complete but does not form a basis in the Hilbert space
L2

per([−π, π]).
We think that there is a relation between these properties of the linear operatorL

and ill-posedness of the Cauchy problem for the periodic heat equation (5.1.1). According
to the Hille–Yosida Theorem (see Section IX.7 in [125]), ifL is a linear operator with a
dense domain in a Banach spaceX and the resolvent operator(I − λ−1L)−1 exists for any
Reλ > 0, thenL is the infinitesimal generator of a strongly continuous semigroup if and
only if

‖(I − λ−1L)−1‖X 7→X ≤ C, (6.0.1)

for someC > 0 uniformly in Reλ > 0. Moreover, ifC ≤ 1, then the semi-group is a
contraction. When the conditions of the Hille–Yosida Theorem are satisfied, the Cauchy
problem associated with the operatorL is well-posed, whereas it is ill-posed if these con-
ditions are not met.

According to the numerical results on pseudo-spectra in [11] and [119], the level
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set of the resolvent norm

R(λ) = ‖(λI − L)−1‖L2
per([−π,π])7→L2

per([−π,π])

extends to the right half-plane, such thatR(λ) does not decay along the level set curves
with Reλ > 0. This numerical fact serves as an indication that the conditions of the Hille–
Yosida Theorem are not satisfied and the Cauchy problem for the heat equation is ill-posed.
Furthermore, our work in progress is to prove that the ill-posedness of the periodic heat
equation (5.1.1) follows from the fact that the set of eigenfunctions of the operatorL does
not form a basis in the Hilbert spaceX = L2

per([−π, π]).
Although the series of eigenfunctions of operatorL can not be used to solve the

Cauchy problem for the periodic heat equation, conditional convergence of the series of
eigenfunctions can sometimes be achieved at least for finite times, as illustrated in [12].
Therefore, more detailed studies of applicability of the series of eigenfunctions and its
dependence from the initial datah0 are opened for further work.
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