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Abstract. Two families of periodic traveling waves exist in the focusing mKdV (modified Korteweg-
de Vries) equation. Spectral stability of these waveforms with respect to co-periodic perturbations of
the same period has been previously explored by using spectral analysis and variational formulation.
By using tools of integrability such as a relation between squared eigenfunctions of the Lax pair and
eigenfunctions of the linearized stability problem, we revisit the spectral stability of these waveforms
with respect to perturbations of arbitrary periods. In agreement with previous works, we find that
one family is spectrally stable for all parameter configurations, whereas the other family is spectrally
unstable for all parameter configurations. We show that the onset of the co-periodic instability for
the latter family changes the instability bands from figure-8 (crossing at the imaginary axis) into
figure-∞ (crossing at the real axis).
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1. Introduction

Instabilities of steadily propagating waves on a fluid surface, called Stokes waves, have been
recently explored in many computational details due to advanced numerical algorithms with high
precision and accuracy [21, 25, 28, 29, 36]. As the Stokes wave gets a larger height and higher
steepness, the spectral problem for co-periodic perturbations admits more unstable eigenvalues
which bifurcate from the origin due to coalescence of pairs of purely imaginary eigenvalues and
splitting into pairs of real eigenvalues [28]. At the same time, the spectral problem for perturbations
of arbitrary periods display more complicated patterns of instability bands with multiple loops on
the purely imaginary and real axes [25, 29]. The figure-8 instability (crossing at the imaginary axis)
which is standard in the limit of small amplitudes [5–7, 19] transforms into the figure-∞ instability
(crossing at the real axis) with further exchanges between co-periodic and anti-periodic eigenvalues
as eigenvalues of the dominant instability [21]. It was conjectured that the recurrent exchange
between these patterns is universal near the limit to the periodic wave with the maximal height
and occur in other wave models such as the Whitham equation [11].

This motivating picture related to the Stokes waves in Euler’s equations calls for a more sys-
tematic investigation of the spectral instability of periodic traveling waves in the basic fluid models
such as the focusing mKdV (modified Korteweg-de Vries) equation. The spectral stability of peri-
odic traveling waves in this model has been studied in many details by using tools of integrability
[12, 13, 24, 30, 31, 38, 39] and functional analysis [3, 4, 8, 9, 22, 37, 40, 41]. The purpose of this
work is to give a complete picture of the spectral stability of the general periodic traveling waves
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to perturbations of all periods and to show that the onset of the co-periodic instability changes the
instability bands from figure-8 to figure-∞.

We will describe the state-of-the-art and present the main results by using the standard form of
the focusing mKdV equation,

ut + 6u2ux + uxxx = 0, (1.1)

where subscripts x and t represent the partial derivatives in the spatial and temporal variables
respectively and where u = u(x, t) is real. The initial-value problem for the mKdV equation (1.1) is
globally well-posed in the energy space H1 both on R and in the periodic domain [34]. It was further
proven in [18] that the global well-posedness can be extended to Sobolev spaces of low regularity
in Hs for s > 1

4
on R and Hs for s > 1

2
in the periodic domain. By using integrability, the global

well-posedness of the mKdV equation was extended to Hs for s > −1
2

on R [35].

The travelling wave of the mKdV equation (1.1) with the spatial profile U(x) : R→ R is given
by u(x, t) = U(x − ct), where c is the wave speed. The wave profile U satisfies the third-order
equation

U ′′′ + 6U2U ′ − cU ′ = 0, (1.2)

which is integrated into the second-order equation

U ′′ + 2U3 − cU = b, (1.3)

with the integration constant b. Two particular waveforms for the periodic traveling waves were
studied in many details:

U(x) = dn(x, k), c = 2− k2, b = 0 (1.4)

and

U(x) = kcn(x, k), c = 2k2 − 1, b = 0, (1.5)

where k is elliptic modulus, k ∈ (0, 1), and the Jacobi elliptic functions have been used. We shall
refer to (1.4) and (1.5) as to the dnoidal and cnoidal waves respectively. With the use of the scaling
transformation

u(x, t) 7→ αu(αx, α3t), α > 0

and the translational symmetries

u(x, t) 7→ u(x+ x0, t+ t0), x0, t0 ∈ R,

these two waveforms extend to all possible traveling periodic wave solutions of the second-order
equation (1.3) with b = 0.

It was shown in [3, 4, 22, 41] that

• the dnoidal wave (1.4) is spectrally stable to co-periodic perturbations for all k ∈ (0, 1),
• the cnoidal wave (1.5) is spectrally stable to co-periodic perturbations for k ∈ (0, k∗) and

spectrally unstable for k ∈ (k∗, 1), where k∗ ≈ 0.909.

Furthermore, it was shown in [8, 9] that

• the dnoidal wave (1.4) is modulationally stable to long periods for all k ∈ (0, 1),
• the cnoidal wave (1.5) is modulationally unstable to long periods for all k ∈ (0, 1).
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Regarding the periodic traveling waves with b 6= 0, stability of one particular solution was proven
in [2]. Two continuous families exist for b 6= 0 [13, 30] which extend the dnoidal and cnoidal waves
(1.4) and (1.5), see equations (2.3) and (2.4) below. Stability of these waveforms with respect to
co-periodic perturbations has been systematically studied in [37, 40] by using minimization of the
quadratic form ∮

[(u′)2 + cu2]dx

subject to fixed mean value
∮
udx = m and the fixed L4 norm

∮
u4dx = 1 (see review in [43]).

• Under the zero-mean constraint, m = 0, the cnoidal wave (1.5) is a minimizer of the con-
strained variational problem for k ∈ (0, k∗) and a saddle point for k ∈ (k∗, 1) with two
symmetric minimizers bifurcating at k = k∗ in the supercritical pitchfork bifurcation [40].

• Under a fixed nonzero mean value, m 6= 0, the imperfect pitchfork bifurcation breaks one
branch of global minimizers of the constrained variational problem away from the other
two branches, one of which is a saddle point and the other one is a local minimizer [37].
The local and global minimizers are spectrally stable to co-periodic perturbations and the
saddle points are spectrally unstable for all parameter values [37]. Furthermore, the local
and global minimizers are realized with both solution waveforms (2.3) and (2.4), whereas
the saddle points are only realized by the waveform (2.4) [37].

Next, we present the main results of this work in relation to the state-of-the-art.

• First, we show by using the relation between squared eigenfunctions satisfying the Lax pair
and eigenfunctions of the spectral stability problem that the solution waveform (2.3) gen-
eralizing dnoidal waves (1.4) is spectrally stable for all parameter configurations and the
solution waveform (2.4) generalizing cnoidal waves (1.5) is spectrally unstable for all param-
eter configurations. This agrees with Theorem 2 in [8] where modulational stability of the
solution waveforms was studied to perturbations of long periods.

• Second, we show that the spectral instability to co-periodic perturbations affects the in-
stability bands and triggers a transformation of figure-8 before the co-periodic instability
to figure-∞ after the co-periodic instability. This conclusion agrees with the modulational
stability theory and numerical approximations in [8] but has not been described in precise
details. The analytical study of the co-periodic stability in [22] was accompanied by some
relevant numerical approximations in their Figure 1, which showed some transformations of
figure-8 before figure-∞ was attained. The stability spectrum of the dnoidal and cnoidal
waves was computed numerically to in [24] for just one value of k ∈ (0, 1), for which only
figure-8 was obtained and the transformation to figure-∞ was missed.

The main phenomenon of the transformation of figure-8 to figure-∞ is shown on Figure 1 for
the cnoidal wave (1.5) with different values of k ∈ (0, 1). As k crosses k∗ ≈ 0.909, the co-periodic
instability arises [the corresponding eigenvalues are shown by red dots on panels (f) and (j)–(l)].
This leads to the transformation of the figure-8 [panels (d) and (e)] into a propeller [panel (f)],
which becomes a complicated figure with two loops extended along the horizontal direction and
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Figure 1. The Lax and stability spectra for the cnoidal wave (1.5) with different
values of k. (a)-(c) and (g)-(i): Lax spectrum in λ-plane. (d)-(f) and (j)-(l): stability
spectrum in Λ-plane.
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four loops extended in the vertical direction [panels (j) and (k)]. Finally, the four loops disappear
and the figure-∞ is formed [panel (l)]. The point k = k∗ corresponds to the marginal case when the
two bands of the Lax spectrum cross at the origin, separating their crossing at the pure imaginary
axis for k < k∗ [panels (a) and (b)] and at the real axis for k > k∗ [panels (c) and (g)–(i)]. Four end
points of the two complex bands of the Lax spectrum are shown by the magenta crosses, these are
roots of the characteristic polynomial for the periodic traveling waves, see equation (3.3) below.

Our analytical study and numerical computations of the spectral stability of the periodic travel-
ing waves of the mKdV equation (1.1) rely on a relation between squared eigenfunctions satisfying
the Lax pair and eigenfunctions of the spectral stability problem, see equation (3.5) below. The
method of squared eigenfunctions was explored in a similar context of stability of periodic traveling
waves in various integrable models in [23, 26, 27, 44]. The spectral stability problem can be solved
due to separation of variables and this has been explored for integrable models in [15–17, 20], see
also [14, 42] for the cases where the spectral stability of periodic traveling waves cannot be studied
by separation of variables.

It is interesting to emphasize that the Lax spectrum for the cnoidal wave (1.5) of the focusing
mKdV equation (1.1) is identical to that of the cnoidal wave solution of the focusing NLS equation
[17, 26]. The spectral stability spectrum is however very different since the stability spectrum of the
cnoidal waves in the focusing NLS equation only features the figure-8 instability [17, 26]. Although
transformations of the instability bands for Stokes waves in Euler’s equations are more complicated
than the one in Figure 1, see [21], the main transformation of figure-8 into figure-∞ due to the
co-periodic instability is well captured by the wave model of the focusing mKdV equation.

The paper is organized as follows. Section 2 presents the waveforms for the periodic traveling
waves of the mKdV equation (1.1). Section 3 characterizes the periodic traveling waves by using
the Lax pair and gives a relation between the squared eigenfunctions of the Lax pair and the
eigenfunctions of the linearized mKdV equation. Section 4 describes the analytical results on the
location of the Lax and stability spectra for the two waveforms of the periodic traveling waves.
Section 5 contains outcomes of the numerical computations based on a robust numerical algorithm
for approximation of the Lax spectrum. Section 6 gives a summary of our findings.

2. Waveforms for the periodic traveling waves

Integrating the second-order equation (1.3), we obtain the first-order invariant

(U ′)2 +Q(U) = d, (2.1)

where Q(U) := U4 − cU2 − 2bU and d is a constant. Two particular waveforms generalizing the
dnoidal and cnoidal waves (1.4) and (1.5) are given in terms of the four roots {u1, u2, u3.u4} of
Q(u) = d. The four roots satisfy the relations

u1 + u2 + u3 + u4 = 0,

u1u2 + u1u3 + u1u4 + u2u3 + u2u4 + u3u4 = −c,
u1u2u3 + u1u2u4 + u1u3u4 + u2u3u4 = 2b,

u1u2u3u4 = −d,

(2.2)
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which follow by expanding

Q(u)− d = (u− u1)(u− u2)(u− u3)(u− u4) = u4 − cu2 − 2bu− d.
The following proposition states the existence of two waveforms for the periodic traveling waves.
The statement is based on the explicit computations verified in [13].

Proposition 1. If the roots {u1, u2, u3.u4} are real and ordered as u4 ≤ u3 ≤ u2 ≤ u1, then the
first-order invariant (2.1) is satisfied by

U(x) = u4 +
(u1 − u4)(u2 − u4)

(u2 − u4) + (u1 − u2)sn2(νx, k)
, (2.3)

where

ν =
1

2

√
(u1 − u3)(u2 − u4), k =

√
(u1 − u2)(u3 − u4)√
(u1 − u3)(u2 − u4)

.

If {u1, u2} are real and {u3.u4} are complex-conjugate such that u2 ≤ u1 and u3 = ū4 = γ + iη with
η > 0, then the first-order invariant (2.1) is satisfied by

U(x) = u2 +
(u1 − u2)

(
1− cn(µx, k)

)
(δ + 1) + (δ − 1)cn(µx, k)

, (2.4)

where

δ =

√
(u1 − γ)2 + η2√
(u2 − γ)2 + η2

, µ = 4
√

[(u1 − γ)2 + η2][(u2 − γ)2 + η2],

and

2k2 = 1− (u1 − γ)(u2 − γ) + η2√
[(u1 − γ)2 + η2][(u2 − γ)2 + η2]

.

Remark 1. For periodic solution (2.3), exchanging u1 ↔ u3 and u2 ↔ u4 yields another periodic
solution:

U(x) = u2 +
(u2 − u3)(u2 − u4)

(u4 − u2) + (u3 − u4)sn2(νx; k)
, (2.5)

with the same definition of ν and k.

Remark 2. The periodic solutions U(x) in the form of (2.3) and (2.5) are located in the intervals
[u2, u1] and [u4, u3], respectively. In both cases, they have the period L = 2K(k)ν−1, where K(k)
is the complete elliptic integral of the first type. The periodic solution U(x) in the form of (2.4) is
located in the interval [u2, u1] and has the period L = 4K(k)µ−1.

To illustrate the two waveforms in Proposition 1, we plot the level curves of

H(U,U ′) = (U ′)2 +Q(U)

on the phase plane (U,U ′) ∈ R2. Figure 2(a) shows a typical phase portrait in the case c > 0 and

b ∈
(
−
√

2c3

3
√

3
,
√

2c3

3
√

3

)
, where the saddle point is squeezed between two center points shown by black

crosses. The level curves on the phase plane (U,U ′) correspond to the region of U , where Q(U) ≤ d,
shown in Figure 2(b).
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Figure 2. (a) Phase portrait in the phase plane (U,U ′) for b = 0.8 and c = 4. (b)
Levels of d at the plot of Q(U).

For d ∈ (d1, d2) and d ∈ (d3,∞), only two real roots of Q(U) = d exist and the solution waveform
is given by (2.4). For d ∈ (d2, d3), four real roots of Q(U) = d exist and the solution waveforms are
given by (2.3) and (2.5). In the limiting cases, the solution waveforms degenerate as follows.

• If d = d1, then u1 = u2 in (2.4) and we have the constant solution U(x) = u1.
• If d = d2, then u3 = u4 in (2.3) and we have the trigonometric waveform for the periodic

solution:

U(x) = u3 +
(u1 − u3)(u2 − u3)

(u2 − u3) + (u1 − u2) sin2(νx)
, ν =

1

2

√
(u1 − u3)(u2 − u3).

In addition, we have the constant solution U(x) = u3 from (2.5).
• If d = d3, then either u2 = u3 in (2.3) or η = 0 and u2 < γ < u1 in (2.4). The two cases give

two hyperbolic waveforms for the solitary wave solutions:

U(x) = u4 +
(u1 − u4)(u2 − u4)

(u2 − u4) + (u1 − u2) tanh2(νx)
, ν =

1

2

√
(u1 − u2)(u2 − u4)

and

U(x) = u4 +
(u1 − u4)(u2 − u4)(cosh(2νx)− 1)

(u1 − u4) cosh(2νx) + (u1 − 2u2 + u4)

= u4 +
(u1 − u4)(u2 − u4) tanh2(νx)

(u1 − u2) + (u2 − u4) tanh2(νx)
,

where we have relabeled u2 → u4 and γ → u2 = u3 in the second solution compared to (2.4)
and transformed it with µ = 2ν to the form similar to the first solution. In addition, we
have the constant solution U(x) = u2 from (2.5).
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3. Lax spectrum for the periodic traveling waves

The mKdV equation (1.1) is a compatibility condition of the following system of the linear
equations [1] for ψ ∈ C2: {

ψx = L(u, λ)ψ,
ψt = M(u, λ)ψ,

(3.1)

where

L(u, λ) =

(
λ u
−u −λ

)
and

M(u, λ) =

(
−4λ3 − 2λu2 −4λ2u− 2λux − 2u3 − uxx

4λ2u− 2λux + 2u3 + uxx 4λ3 + 2λu2

)
.

Solutions of the linear equations (3.1) for the traveling waves of the mKdV equation (1.1) are
related to solutions of the linearized mKdV equation at the traveling waves. These relations are
well-known, see, e.g., [24], and are reproduced here for the sake of transparency.

Let u(x, t) = U(x − ct) be the traveling wave solution of the mKdV equation (1.1). Then the
linear system (3.1) enjoys the separation of variables in the form ψ(x, t) = Ψ(x−ct)eΩt, with Ψ ∈ C2

and Ω ∈ C found from the linear system{
Ψ′ = L(U, λ)Ψ,

ΩΨ = [M(U, λ) + cL(U, λ)] Ψ.
(3.2)

The following proposition gives the admissible values of Ω.

Proposition 2. The admissible values of Ω are defined by the characteristic polynomial

P (λ) = 16λ6 − 8cλ4 + (c2 + 4d)λ2 − b2 (3.3)

as Ω = ±
√
P (λ).

Proof. The second equation in system (3.2) shows that Ω is an eigenvalue of the following matrix

A :=

(
−4λ3 − 2λU2 + cλ −(4λ2U + 2U3 + U ′′ − cU + 2λU ′)

4λ2U + 2U3 + U ′′ − cU − 2λU ′ 4λ3 + 2λU2 − cλ

)
.

Since the trace of A is zero, Ω2 = P (λ) := det(A), which is expanded in powers of λ as follows:

P (λ) = 16λ6 − 8cλ4 − (12U4 + 8UU ′′ − 4cU2 − 4(U ′)2 − c2)λ2 − (2U3 + U ′′ − cU)2.

By using (1.3) and (2.1), we rewrite P (λ) in the form (3.3). �

We define the Lax spectrum of the periodic travelling waves as the set of admissible values of λ
in the spectral problem Ψ′ = L(U, λ)Ψ of the system (3.2), for which Ψ ∈ L∞(R,C2). By Floquet
theorem, if U(x + L) = U(x) is L-periodic, then the bounded eigenfunction Ψ is quasi-periodic as
Ψ(x + L) = Ψ(x)eiµL with µ ∈

[
− π
L
, π
L

]
for the values of λ defined in the continuous bands of the

Lax spectrum.
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To relate the Lax spectrum with the stability spectrum, we define the linearization of the mKdV
equation (1.1) at the periodic traveling waves with the profile U . By using u(x, t) = U(x − ct) +
u(x− ct)eΛt and linearizing at u, we obtain the spectral stability problem in the form

Λu + u′′′ + 6(U2u)′ − cu′ = 0. (3.4)

The stability spectrum of the periodic traveling waves is defined as the set of admissible values of Λ
in the spectral stability problem (3.4), for which u ∈ L∞(R,C). By the same Floquet theorem, if
U(x + L) = U(x) is L-periodic, then the bounded eigenfunction u is quasi-periodic as u(x + L) =
u(x)eiθL with θ ∈

[
− π
L
, π
L

]
for the values of Λ defined in the continuous bands of the stability

spectrum. The bands of Λ in the stability spectrum are related to the bands of λ in the Lax
spectrum due to the squared eigenfunction relation [24].

The following proposition gives the relation between eigenfunctions of the spectral stability
problem (3.4) and the squared eigenfunctions of the linear system (3.2).

Proposition 3. Let Σ ⊂ C be the Lax spectrum and Ψ = (p, q)T ∈ L∞(R,C2) be the eigenfunction
of the linear system (3.2) for an admissible value of λ ∈ Σ. Then, u := p2 − q2 ∈ L∞(R,C) is the
eigenfunction of the spectral stability problem (3.4) with

Λ = 2Ω = ±2
√
P (λ). (3.5)

Proof. Given that Ψ = (p, q)T, we rewrite Ψ′ = L(U, λ)Ψ into{
p′ = λp+ Uq,

q′ = −Up− λq,

from which we obtain 
p′′ = λp′ + U ′q + Uq′

= λ2p+ U ′q − U2p,

q′′ = −U ′P − Up′ − λq′

= λ2q − U2q − U ′p
and 

p′′′ = λ2p′ + U ′′q + U ′q′ − 2UU ′p− U2p′

= λ3p+ λ2Uq + U ′′q − 3UU ′p− λU ′q − λU2p− U3q,

q′′′ = λ2q′ − U ′′p− U ′p′ − 2UU ′q − U2q′

= −λ3q − λ2Up− U ′′p− 3UU ′q − λU ′p+ λU2q + U3p.

This yields with explicit computations:

(p2)′′′ = 2pp′′′ + 6p′p′′

= 8λ3p2 + 8λ2Upq + 4λU ′pq − 8λU2p2 − 8U3pq + 6UU ′q2 − 6UU ′p2 + 2U ′′pq

and

(q2)′′′ = 2pp′′′ + 6p′p′′

= −8λ3q2 − 8λ2Upq + 4λU ′pq + 8λU2q2 + 8U3pq − 6UU ′q2 + 6UU ′p2 − 2U ′′pq.
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Combining with the second equation of (3.2), we obtain

(p2)′′′ + 12UU ′p2 + 6U2(p2)′ − c(p2)′

= 8λ3p2 + 8λ2Upq + 4λU ′pq + 4λU2p2 + 4U3pq + 2U ′′pq + 6UU ′q2 + 6UU ′p2

= −2Ωp2 + 6UU ′(p2 + q2)

and
(q2)′′′ + 12UU ′q2 + 6U2(q2)′ − c(q2)′

= −8λ3q2 − 8λ2Upq + 4λU ′pq − 4λU2q2 − 4U3pq − 2U ′′pq + 6UU ′q2 + 6UU ′p2

= −2Ωq2 + 6UU ′(p2 + q2),

which verify that

u′′′ + 12UU ′u + 6U2u′ − cu′ = −2Ωu,

for u := p2−q2. This equation is equivalent to (3.4) with Λ = 2Ω, whereas the relation Ω = ±
√
P (λ)

is established in Proposition 2. �

4. Lax and stability spectra: analytical results

Although the exact location of the Lax spectrum for the periodic traveling waves is not known,
the symmetry of the Lax spectrum with respect to reflection about λ = 0 and about the real axis
follow the symmetry of L(u, λ) in the linear system (3.1). The following proposition states these
properties of the Lax spectrum.

Proposition 4. Let λ ∈ C be an eigenvalue of the spectral problem ψx = L(u, λ)ψ with the
eigenfunction ψ = (p, q)T ∈ L∞(R,C2). Then, −λ is also an eigenvalue with the eigenfunction
ψ = (q,−p)T ∈ L∞(R,C2). Moreover, if λ /∈ R, then λ̄ is also an eigenvalue with the eigenfunction
ψ = (p̄, q̄)T ∈ L∞(R,C2).

Proof. We rewrite ψx = L(u, λ)ψ in the form:{
px = λp+ uq,
qx = −up− λq.

This implies {
qx = (−λ)q + u(−p),
−px = −λp− uq,

so that ψ := (q,−p)T is also a solution of ψx = L(u, λ)ψ with eigenvalue −λ. Furthermore, taking
the complex-conjugate transform yields{

p̄x = λ̄p̄+ ūq̄,
q̄x = −ūp̄− λ̄q̄.

Since u = ū and λ 6= λ̄, then ψ := (p̄, q̄)T is also a solution of ψx = L(u, λ)ψ with eigenvalue λ̄. �
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Roots of the characteristic polynomial P (λ) in (3.3) can be enumerated as {±λ1,±λ2,±λ3}. It
was found in [32, 33] that roots of P (λ) are related to roots {u1, u2, u3.u4} of Q(u) = d in (2.1).
These relations were verified for the mKdV equation in [13] with a direct proof, hence we state the
relations without further details:

λ1 =
1

2
(u1 + u2), λ2 =

1

2
(u1 + u3), λ3 =

1

2
(u2 + u3). (4.1)

It was shown in [13] that spectral bands of the Lax spectrum for the periodic traveling waves
outside iR are connected between the roots {±λ1,±λ2,±λ3}. In the next two theorems, we derive
the stability criterion for the waveform (2.3) and the instability criterion for the waveform (2.4) in
the spectral stability problem (3.4). It relies on the location of the spectral bands between the roots
of P (λ) in addition to the spectral bands on iR, which is assumed here and verified numerically in
Section 5, as well as the squared eigenfunction relation of Proposition 3.

Theorem 1. For the waveform (2.3) of Proposition 1, assume that the Lax spectrum is located on

iR ∪ [−λ1,−λ2] ∪ [−|λ3|, |λ3|] ∪ [λ2, λ1]. (4.2)

Then the stability spectrum is iR.

Proof. For the waveform (2.3) of Proposition 1, the roots {u1, u2, u3.u4} of Q(u) = d are real and
ordered as u4 ≤ u3 ≤ u2 ≤ u1. By (4.1), the roots {±λ1,±λ2,±λ3} of P (λ) are real and ordered
as λ3 ≤ λ2 ≤ λ1. Moreover, due to the first relation in (2.2), we have u2 + u3 = −u1 − u4. If
u2 + u3 < 0, then |u2 + u3| = u1 + u4 ≤ u1 + u3, which proves that |λ3| ≤ λ2 even if λ3 < 0. Hence,
we have 0 ≤ |λ3| ≤ λ2 ≤ λ1.

For λ ∈ iR in the Lax spectrum (4.2), we rewrite the polynomial P (λ) in the form:

P (λ) = 16(λ2 − λ2
1)(λ2 − λ2

2)(λ2 − λ2
3)

= −16(|λ|2 + λ2
1)(|λ|2 + λ2

2)(|λ|2 + λ2
3).

Since P (λ) < 0, we have Λ = ±2
√
P (λ) ∈ iR by (3.5). Moreover, lim

|λ|→∞
P (λ) = −∞ and lim

λ→0
P (λ) =

−16λ2
1λ

2
2λ

2
3 so that

(−∞,−8λ1λ2|λ3|] ∪ [8λ1λ2|λ3|,∞)i

belongs to the stability spectrum.

For λ ∈ [−λ1,−λ2]∪ [−|λ3|, |λ3|]∪ [λ2, λ1] in the Lax spectrum (4.2), we have P (λ) ≤ 0 so that

Λ = ±2
√
P (λ) ∈ iR by (3.5). Moreover, lim

|λ|→|λ3|
P (λ) = 0 so that

[−8λ1λ2|λ3|, 8λ1λ2|λ3|]i

also belongs to the stability spectrum. Hence, the image of Λ = ±2
√
P (λ) covers all iR. �

Remark 3. The parts of the Lax spectrum (4.2) for λ ∈ [−λ1,−λ2] ∪ [λ2, λ1] cover a subset of iR
for the second time. Regardless, the periodic traveling wave with the waveform (2.3) is classified as
spectrally stable.
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Theorem 2. For the waveform (2.4) of Proposition 1, assume that the Lax spectrum is located on

iR ∪ [−|λ1|, |λ1|] ∪ Σ+ ∪ Σ−, (4.3)

where Σ+ is the spectral band connecting two complex roots in the set {±λ2,±λ3} and Σ− is the
reflection of Σ+ about λ = 0. Then the stability spectrum is the union of iR and the spectral bands
which are not contained in iR and are symmetric about Λ = 0.

Proof. For the waveform (2.4) of Proposition 1, the roots {u1, u2} of Q(u) = d are real and ordered
as u2 ≤ u1, whereas the roots {u3, u4} are complex conjugate with u3 = ū4 = γ + iη and η > 0. By
(4.1), the roots {±λ1} of P (λ) are real, whereas the roots {±λ2,±λ3} represent a complex-conjugate
quadruplet since

λ3 =
1

2
(u2 + u3) = −1

2
(u1 + u4) = −1

2
(u1 + ū3) = −λ̄2,

due to the first relation in (2.2). Since λ2 = −λ̄3, we can rewrite P (λ) in the form:

P (λ) = 16(λ2 − λ2
1)[(λ2 − Re(λ2

2))2 + (Im(λ2
2))2].

For λ ∈ iR in the Lax spectrum (4.3), we have P (λ) < 0, and since lim
|λ|→∞

P (λ) = −∞ and

lim
λ→0

P (λ) = −16λ2
1λ

2
2λ

2
3, we have by Λ = ±2

√
P (λ) that

(−∞,−8|λ1||λ2|2] ∪ [8|λ1||λ2|2,∞)i

belongs to the stability spectrum.

For λ ∈ [−|λ1|, |λ1|] in the Lax spectrum (4.3), we have P (λ) ≤ 0 and since lim
|λ|→|λ1|

P (λ) = 0, we

have by Λ = ±2
√
P (λ) that

[−8|λ1||λ2|2, 8|λ1||λ2|2]i

also belongs to the stability spectrum. Hence, the image of Λ = ±2
√
P (λ) covers all iR.

It remains to prove that the image of Λ = ±2
√
P (λ) for λ ∈ Σ+ in the Lax spectrum (4.3) is

not contained in iR. Since Σ− is a reflection of Σ+ about λ = 0 and Λ = 0 if λ = ±λ2 or λ = ±λ3,
the image of Λ = ±2

√
P (λ) for λ ∈ Σ− is a reflection of the image of Λ = ±2

√
P (λ) for λ ∈ Σ+

about Λ = 0, so that the spectral bands are not contained in iR and are symmetric about Λ = 0.

Let λ ∈ Σ+. Due to symmetries between {±λ2,±λ̄2}, we may have only four possibilities, for

each we prove that there exists λ ∈ Σ+ such that Λ = ±2
√
P (λ) /∈ iR.

• Σ+ connects λ2 and λ̄2 and crosses R outside the segment [0, |λ1|]. For λ0 ∈ Σ+ ∩ R,

P (λ0) > 0 so that Λ = ±2
√
P (λ0) ∈ R.

• Σ+ connects λ2 and λ̄2 and crosses R inside the segment (0, |λ1|]. Σ+ and R intersect perpen-
dicularly at λ0 ∈ Σ+∩R due to the symmetry of Lax spectrum in Proposition 4 and P (λ0) ≤
0. Hence, there is λ ∈ Σ+ such that |λ − λ0| is small and |Re(λ − λ0)| � |Im(λ)|. Since

P ′(λ0) ∈ R, we have Re(P (λ)) ≤ 0 and Im(P (λ)) 6= 0 for this λ so that Λ = ±2
√
P (λ) /∈ iR.
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• Σ+ connects λ2 and 0 but does not intersect (R ∪ iR)\{0}. Since P (0) < 0, P ′(0) = 0, and
P ′′(0) ∈ R, we have Re(P (λ)) < 0 and Im(P (λ)) 6= 0 for every λ ∈ Σ+ with small |λ| and

Re(λ)Im(λ) 6= 0 so that Λ = ±2
√
P (λ) /∈ iR.

• Σ+ connects λ2 and −λ̄2 and crosses iR. Σ+ and iR intersect perpendicularly at λ0 ∈ Σ+∩iR
due to the symmetry of Lax spectrum in Proposition 4 and P (λ0) < 0. Hence, there is
λ ∈ Σ+ such that |λ− λ0| is small and |Im(λ− λ0)| � |Re(λ)|. Since P ′(λ0) ∈ iR, we have

Re(P (λ)) < 0 and Im(P (λ)) 6= 0 for this λ so that Λ = ±2
√
P (λ) /∈ iR.

The list of four possibilities above is complete. �

5. Lax and stability spectra: numerical results

We use the Fourier collocation method, see [45, Chapter 2, p.45], in order to approximate Lax
spectrum of Ψ′ = L(U, λ)Ψ numerically for the traveling waves with the periodic profile U . This
numerical method has been used in our previous work [20]. For every λ in the Lax spectrum, the

stability spectrum is obtained from Λ = ±2
√
P (λ) as in (3.5). The numerical results verify the

assumptions of Theorems 1 and 2 and illustrate their conclusions.

5.1. Waveform (2.3). We take four real roots {u1, u2, u3, u4} of Q(u) = d in the particular setting
of u1 = 1, u2 = 0.5, u3 = 0, and u4 = −u1 − u2 − u3 = −1.5. The Lax spectrum is shown in Figure
3(a) in agreement with (4.2), where the magenta crosses represent the roots of P (λ). The stability
spectrum shown in Figure 3(b) is equivalent to iR in agreement with Theorem 1.

-1 -0.5 0 0.5 1
Re

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Im

(a) Lax spectrum in λ-plane.

-1 -0.5 0 0.5 1
Re

-3

-2

-1

0

1

2

3

Im

(b) Stability spectrum in Λ-plane.

Figure 3. Numerically computed Lax and stability spectra for the periodic solution
with the profile (2.3) for u1 = 1, u2 = 0.5, u3 = 0, and u4 = −1.5.

5.2. Waveform (2.4). We take two real roots of Q(u) = d as u1 = 1 and u2 = 0.2 and the two
complex-conjugate roots as u3 = ū4 = −0.6 + 0.6i so that u1 + u2 + u3 + u4 = 0. The Lax spectrum
is shown in Figure 4(a) in agreement with (4.3). The stability spectrum is shown in Figure 4(b)
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in agreement with Theorem 2. The complex bands Σ± in (4.3) are connected across iR in the Lax
spectrum so that Σ− = Σ̄+. The stability spectrum is a standard figure-8 instability band.

For a different set of parameter values, the complex bands Σ± in (4.3) are connected across R
in the Lax spectrum so that Σ− = −Σ̄+. This is illustrated on Figure 5 for the choice of u1 = 1,
u2 = −0.2, and u3 = ū4 = −0.4 + 0.2i. Nevertheless, the stability spectrum is still a standard
figure-8 instability band.

-1 -0.5 0 0.5 1
-0.5

0

0.5

(a) Lax spectrum λ-plane.

-0.2 -0.1 0 0.1 0.2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) Stability spectrum Λ-plane.

Figure 4. Numerically computed Lax and stability spectra for the periodic solution
with the profile (2.4) for u1 = 1, u2 = 0.2, and u3 = ū4 = −0.6 + 0.6i.
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(a) Lax spectrum λ-plane.
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0.15

0.2

(b) Stability spectrum Λ-plane.

Figure 5. The same as in Figure 4 but for u1 = 1, u2 = −0.2, and u3 = ū4 = −0.4 + 0.2i.

At the first glance, readers may get impression that the cascade of instabilities for the cn-periodic
wave (1.5) shown on Figure 1 is not observed for the periodic waveform (2.4). However, this is just
because the two parameter configurations in Figures 4 and 5 do not represent a general picture.
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In order to unfold the cascade of instability bifurcations for the periodic waveform (2.4), we
parameterize the roots of Q(u) = d with parameters κ ∈ (0, 1) and ε ∈ (0, 2κ) as

u1 = κ, u2 = −κ+ ε, γ = − ε
2
, η =

√
1− κ2.

The periodic waveform (2.4) becomes

U(x) = κ+
(−2κ+ ε)

(
1− cn(µx; k)

)
1 + δ + (δ − 1)cn(µx; k)

, (5.1)

where

δ =

√(
κ− 3

2
ε
)2

+ 1− κ2√(
κ+ ε

2

)2
+ 1− κ2

,

µ = 4

√√√√[(κ− 3

2
ε

)2

+ 1− κ2

] [(
κ+

ε

2

)2

+ 1− κ2

]
,

2k2 = 1−
(
κ− ε

2

) (
−κ+ 3

2
ε
)

+ 1− κ2

µ2
.

When ε = 0, we have δ = 1, µ = 1, and k = κ so that we recover the cnoidal wave with the profile
U(x) = κcn(x;κ) as in the periodic solution (1.5).

We fix κ = 0.97 and compute numerically the Lax and stability spectra for different values of
ε ∈ (0, 2κ). The calculated Lax and stability spectra shown on Figure 6 turns out to be very similar
to those shown on Figure 1 for the cnoidal wave (1.5). The only difference from Figure 1 is that
figure-8 on panel (l) corresponds to the segments Σ± of the Lax spectrum in Theorem 2 crossing the
real line on panel (i) and that the line segment [−|λ1|, |λ1|] has a nonzero length. The co-periodic
instability (red points on the stability spectrum) arises when the segments Σ± of the Lax spectrum
touch the end points of the line segment [−|λ1|, |λ1|].

If we fix κ = 0.9 and change ε to the negative values as well, then the computed Lax and stability
spectra shown on Figure 7 features a different transformation of the instability bands. The figure-8
instability on panel (f) is related to the segments Σ± of the Lax spectrum in Theorem 2 crossing
the imaginary line on panel (c). The co-periodic instability (red points on the stability spectrum)
arises again when the segments Σ± of the Lax spectrum touch the end points of the line segment
[−|λ1|, |λ1|]. The co-periodic instability is present when the segments Σ± intersect the real line
outside [−λ1, λ1] and is absent when they intersect the real line inside [−λ1, λ1].

For the cnoidal wave on Figure 1, the line segment [−|λ1|, |λ1|] shrinks to the origin and the
co-periodic instability arises when the segments Σ± of the Lax spectrum touch the origin. Hence,
all four cases analyzed in the proof of Theorem 2 do actually occur in the Lax spectrum for the
waveform (2.4) with different parameter values.
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Figure 6. The Lax and stability spectra for periodic waveform (5.1) with κ = 0.97
and different values of ε. (a)-(c) and (g)-(i): Lax spectrum in λ-plane; (d)-(f) and
(j)-(l): stability spectrum in Λ-plane.
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Figure 7. The Lax and stability spectra for periodic waveform (5.1) with κ = 0.9
and different values of ε. (a)-(d): Lax spectrum in λ-plane; (e)-(h): stability spectrum
in Λ-plane.

6. Conclusion

We have studied the spectral stability of the periodic traveling waves in the focusing mKdV
equation and showed that the instability bands for the cnoidal periodic waves transform from
figure-8 into figure-∞ due to the co-periodic instability bifurcation. This transformation is rather
generic for other models with periodic traveling waves (Stokes waves) [11, 21, 25].

The conclusion was obtained by using a relation between squared eigenfunctions of the Lax pair
and eigenfunctions of the linearized mKdV equation at the periodic traveling waves. The location of
the Lax spectrum remains an open problem, especially for the cnoidal periodic waves. It is expected
that the elliptic function theory can be useful to compute it explicitly.

Given universality of the focusing mKdV equation for many applications in fluids, optics, and
plasmas, the conclusions obtained in this work can be used for the comprehensive study of the
modulational instability of the cnoidal periodic waves in the relevant non-integrable models.
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