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Periodic Waves of the Modified KdV Equation as Minimizers of a New
Variational Problem\ast 

Uyen Le\dagger and Dmitry E. Pelinovsky\ddagger 

Abstract. Periodic waves of the modified Korteweg-de Vries (mKdV) equation are identified in the context of a
new variational problem with two constraints. The advantage of this variational problem is that its
nondegenerate local minimizers are stable in the time evolution of the mKdV equation, whereas the
saddle points are unstable. We explore the analytical representation of periodic waves given by Jacobi
elliptic functions and compute numerically critical points of the constrained variational problem. A
broken pitchfork bifurcation of three smooth solution families is found. Two families represent
(stable) minimizers of the constrained variational problem and one family represents (unstable)
saddle points.
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1. Introduction. We address traveling periodic waves of the modified Korteweg-de Vries
(mKdV) equation which we take in the normalized form

ut + 6u2ux + uxxx = 0.(1)

For the sake of clarity, we normalize the wave period to 2\pi and denote the Sobolev spaces of
2\pi -periodic functions by Hk

\mathrm{p}\mathrm{e}\mathrm{r} for k \in \BbbN with H0
\mathrm{p}\mathrm{e}\mathrm{r} \equiv L2

\mathrm{p}\mathrm{e}\mathrm{r} for k = 0.
Traveling waves of the form u(t, x) = \psi (x - ct) satisfy the stationary equation

 - \psi \prime \prime + c\psi + b = 2\psi 3,(2)

where \psi (x) : [0, 2\pi ] \mapsto \rightarrow \BbbR is the wave profile, c is the wave speed, and b is the constant of
integration. Traveling periodic waves of the mKdV equation (1) play a fundamental role in
physical applications, e.g., for dynamics of the internal waves in seas and oceans [12, 21, 22].
A period function for periodic solutions of the stationary equation (2) has been studied in
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PERIODIC WAVES OF THE MODIFIED KDV EQUATION 2519

[7, 10, 23]. Stability of periodic waves in the defocusing version of the mKdV equation was
studied both with respect to coperiodic and subharmonic perturbations [9]. We consider the
focusing version of the mKdV equation (1) and the coperiodic perturbations.

Transformations \psi (x) = \alpha \~\psi (\alpha x), c = \alpha 2\~c, and b = \alpha 3\~b leave the stationary equation
(2) invariant. Hence, the results obtained for the 2\pi -periodic solutions are extended to the
L-periodic solutions for every L > 0 by taking \alpha := L

2\pi .
There exist two families of periodic solutions to the stationary equation (2) for b = 0:

dnoidal waves with sign-definite profile \psi and cnoidal waves with sign-indefinite profile \psi .
Spectral and orbital stability of these periodic waves has been explored in the recent literature
[3, 4, 8]. While sign-definite dnoidal waves are stable for all speeds, sign-indefinite cnoidal
waves are stable for smaller speeds c and unstable for larger speeds c [8].

Compared to these definite results, the stationary mKdV equation (2) with b \not = 0 has
more general families of periodic waves expressed as two rational functions of Jacobi elliptic
functions [6]. Stability of a particular family of positive periodic waves with b \not = 0 has been
proven in [2], but no general results on stability of these periodic waves are available in the
literature to the best of our knowledge. A new variational formulation of the periodic waves
with b \not = 0 was developed in our previous works with Natali [17, 18] (see also the follow-up
work [1]).

The purpose of this paper is to explore the new variational formulation of traveling periodic
waves and to detect numerically which periodic waves with b \not = 0 are stable and which are
unstable in the time evolution of the mKdV equation (1).

Since the mKdV equation (1) admits the following conserved quantities on the 2\pi -periodic
domain,

E(u) =
1

2

\oint \bigl[ 
(u\prime )2  - u4

\bigr] 
dx, F (u) =

1

2

\oint 
u2dx, M(u) =

\oint 
udx,(3)

the stationary equation (2) is the Euler-Lagrange equation for the action functional

Gc,b(u) := E(u) + cF (u) + bM(u).(4)

We refer to E(u), F (u), and M(u) as the energy, momentum, and mass, respectively.
The standard variational formulation for stability of periodic waves is to find minimizers

of energy E(u) in H1
\mathrm{p}\mathrm{e}\mathrm{r} subject to the fixed momentum F (u) and mass M(u) [5, 14, 16, 20].

Parameters c and b of the stationary equation (2) are Lagrange multipliers of the action (4).
Unfortunately, this formulation may suffer from nonsmooth dependence of the minimizers from
Lagrange multipliers (c, b) as discussed in [17, 18] after [15]. This breakdown of the variational
theory happens at the bifurcation points for which the Hessian operator for Gc,b(u) admits a

zero eigenvalue, where \scrL = G
\prime \prime 
c,b(\psi ) : H

2
\mathrm{p}\mathrm{e}\mathrm{r} \subset L2

\mathrm{p}\mathrm{e}\mathrm{r} \mapsto \rightarrow L2
\mathrm{p}\mathrm{e}\mathrm{r} is given by

\scrL =  - \partial 2x + c - 6\psi 2.(5)

In [18] (based on the previous work [17] in the case of quadratic nonlinearities), we have
proposed a new variational approach to characterize the periodic waves of the stationary
equation (2) as minimizers of the following constrained variational problem,

rc,m := inf
u\in H1

\mathrm{p}\mathrm{e}\mathrm{r}

\biggl\{ 
\scrB c(u) :

\oint 
u4dx = 1,

1

2\pi 

\oint 
udx = m

\biggr\} 
,(6)
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2520 UYEN LE AND DMITRY E. PELINOVSKY

where

\scrB c(u) :=
1

2

\oint \bigl[ 
(u\prime )2 + cu2

\bigr] 
dx.(7)

It was shown in [18, Appendix B] that the minimizer exists for every c \in ( - 1,\infty ) and every
m \in [ - m0,m0], where m0 := (2\pi ) - 1/4. The minimizer has one maximum and one minimum
on the 2\pi -periodic domain ifm \in ( - m0,m0) and is given by the constant solution ifm = \pm m0.
The minimizer \chi \in H1

\mathrm{p}\mathrm{e}\mathrm{r} such that rc,m = \scrB c(\chi ) gives the solution of the stationary equation
(2) by using the scaling transformation

\psi = \chi 

\sqrt{} 
\scrB c(\chi ) - \pi cm2\sqrt{} 
1 - m

\oint 
\chi 3dx

,(8)

and it was shown in [18] that \scrB c(\chi ) - \pi cm2 > 0 and 1 - m
\oint 
\chi 3dx > 0. The inverse transfor-

mation is given by \chi = \psi /\| \psi \| L4 , hence

m =
1

2\pi \| \psi \| L4

\oint 
\psi dx.(9)

The family of sign-indefinite cnoidal waves for the stationary equation (2) with b = 0 was
recovered in [18] from the variational problem (6) for c \in ( - 1,\infty ) and m = 0 in the space
of odd periodic functions. It was found that the family is smooth with respect to parameter
c but there exists a bifurcation point c0 \approx 1.425 such that the sign-indefinite wave is not a
minimizer of the variational problem (6) for c \in (c0,\infty ) and m = 0. The bifurcation point
c0 coincides with the stability threshold found in [8]. The transition between the stable and
unstable cnoidal waves was also confirmed in [5], where the parameter c was normalized to
unity but the period L, the momentum F (\psi ), and the massM(\psi ) were continued with respect
to parameters of the wave profile \psi . The unstable solutions correspond to the region (b) in
Figure 3 in [5] and the stable solutions correspond to the region (d).

Similar study in the case of quadratic nonlinearity in [17] also showed that the family of
minimizers of the new variational problem for the traveling periodic waves with zero mean
remains smooth with respect to the wave speed c.

Another example when stability of periodic waves was studied outside the standard vari-
ational theory based on Gc,b(u) in (4) can be found in [11] in the framework of the Camassa--
Holm equation. An alternative Hamiltonian structure of this equation was used in order to
provide smooth continuation of the periodic waves and the stability conclusion.

Let us now explain the organization of this paper.
In section 2, we develop the stability theory for the traveling periodic waves given by

nondegenerate local minimizers and saddle points of the variational problem (6). We derive a
precise stability criterion for a nondegenerate local minimizer and a precise instability criterion
for a saddle point of the variational problem (6).

In section 3, we perform the numerical search of critical points of the variational problem
(6). We show that the global minimizers remain smooth in (c,m) for every c \in ( - 1,\infty ) and
m \in (0,m0). Besides the smooth family of global minimizers, there exist two other families of
periodic waves in a subset of the region c \in ( - 1,\infty ) andm \in (0,m0): one family contains local
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PERIODIC WAVES OF THE MODIFIED KDV EQUATION 2521

minimizers and the other family contains saddle points of the variational problem (6). The
two families disappear at the fold bifurcation point c\ast (m). When m\rightarrow 0, c\ast (m) \rightarrow c0 \approx 1.425,
where the three families are connected in the pitchfork bifurcation observed in [18]. No other
solution families have been identified in the numerical search.

Computing the stability criterion numerically, we show that the two families of minimizers
are stable in the time evolution of the mKdV equation (1) whereas the only family of saddle
points is unstable. These results generalize the result of [18] obtained for m = 0.

Section 4 concludes the paper with a summary and a discussion of further questions.

2. Stability theory for nondegenerate critical points. Let \chi \in H1
\mathrm{p}\mathrm{e}\mathrm{r} be a minimizer of the

variational problem (6) for c \in ( - 1,\infty ) and m \in (0,m0) which always exists by Proposition
6.5 in [18]. Let \psi \in H1

\mathrm{p}\mathrm{e}\mathrm{r} be obtained by means of the transformation (8). Then, \psi satisfies
the stationary equation (2) with uniquely defined function

b = b(c,m) :=
1

\pi 

\oint 
\psi 3dx - cm\| \psi \| L4 .(10)

The profile \psi has exactly one maximum and one minimum point on the 2\pi -periodic domain.
The main assumption on the minimizer \chi is given as follows.

Assume that \chi is a nondegenerate minimizer of the variational problem (6) module to the
translational symmetry: \chi (x) \mapsto \rightarrow \chi (x+ x0) for every x0 \in \BbbR .

For the solution \psi of the stationary equation (2) given by (8), this assumption implies
that the Hessian operator \scrL in (5) restricted to the orthogonal complement of \{ 1, \psi 3\} in L2

\mathrm{p}\mathrm{e}\mathrm{r}

is positive and admits a simple zero eigenvalue with the eigenfunction \partial x\psi . For the sake of
notations, we denote the restriction of \scrL to \{ 1, \psi 3\} \bot in L2

\mathrm{p}\mathrm{e}\mathrm{r} by \scrL | \{ 1,\psi 3\} \bot . With the standard
notations of n(\scrL ) and z(\scrL ) for the number of negative eigenvalues and the multiplicity of the
zero eigenvalue of a self-adjoint operator \scrL , we express the main assumption in the form

n(\scrL | \{ 1,\psi 3\} \bot ) = 0, z(\scrL | \{ 1,\psi 3\} \bot ) = 1.(11)

By using the implicit function argument (similar to Lemma 2.8 in [18]), it is easy to prove
that the assumption (11) implies smoothness of a continuation of the periodic waves with the
profile \psi \in H1

\mathrm{p}\mathrm{e}\mathrm{r}| \{ 1\} \bot with respect to parameters (c,m) such that \partial c\psi and \partial m\psi are 2\pi -periodic.
This implies with the help of (10) that the function b is also smooth in (c,m). Hence, both
\psi \in H1

\mathrm{p}\mathrm{e}\mathrm{r} and b can be differentiated in (c,m), from which we can characterize the range of \scrL 
by using

\scrL 1 = c - 6\psi 2,(12)

\scrL \psi =  - b - 4\psi 3,(13)

\scrL \partial c\psi =  - \partial cb - \psi ,(14)

\scrL \partial m\psi =  - \partial mb.(15)
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2522 UYEN LE AND DMITRY E. PELINOVSKY

We recall from [15] (see also Proposition 2.5 in [18]) that Ker(\scrL ) = span(\partial x\psi ) if and only if
\{ 1, \psi , \psi 2\} \in Range(\scrL ). By using this result, it follows from (12), (14), and (15) that z(\scrL ) = 1
if and only if \partial mb \not = 0.

We also recall that since \partial x\psi has exactly two zeros on the 2\pi -periodic domain, Sturm's
nodal theory from [15] (see also Proposition 2.4 in [18]) implies that \scrL is not positive and
admits at least one negative eigenvalue: n(\scrL ) \geq 1. Since \psi is related to a minimizer of the
variational problem (6) with two constraints, we have 1 \leq n(\scrL ) \leq 2.

Next we count n(\scrL ) based on the standard count of eigenvalues of a self-adjoint operator
under two orthogonal constraints (see Lemma 2.13 in [18] and Theorem 4.1 in [19]). We
compute the limit \lambda \rightarrow 0 of the following matrix:

P (\lambda ) :=

\biggl[ 
\langle (\scrL  - \lambda I) - 1\psi 3, \psi 3\rangle \langle (\scrL  - \lambda I) - 1\psi 3, 1\rangle 
\langle (\scrL  - \lambda I) - 11, \psi 3\rangle \langle (\scrL  - \lambda I) - 11, 1\rangle 

\biggr] 
, \lambda /\in \sigma (\scrL ).(16)

If \partial mb \not = 0, it follows from (13) and (15) that

\langle \scrL  - 11, 1\rangle =  - 1

\partial mb
\partial m

\biggl( \oint 
\psi dx

\biggr) 
,

\langle \scrL  - 11, \psi 3\rangle =  - 1

4\partial mb
\partial m

\biggl( \oint 
\psi 4dx

\biggr) 
,

\langle \scrL  - 1\psi 3, 1\rangle =  - 1

4

\oint 
\psi dx - b

4
\langle \scrL  - 11, 1\rangle ,

\langle \scrL  - 1\psi 3, \psi 3\rangle =  - 1

4

\oint 
\psi 4dx - b

4
\langle \scrL  - 11, \psi 3\rangle ,

which yields

lim
\lambda \rightarrow 0

det(P (\lambda )) = \langle \scrL  - 1\psi 3, \psi 3\rangle \langle \scrL  - 11, 1\rangle  - \langle \scrL  - 1\psi 3, 1\rangle \langle \scrL  - 11, \psi 3\rangle 

=
1

4\partial mb

\biggl[ \biggl( \oint 
\psi 4dx

\biggr) 
\partial m

\biggl( \oint 
\psi dx

\biggr) 
 - 1

4

\biggl( \oint 
\psi dx

\biggr) 
\partial m

\biggl( \oint 
\psi 4dx

\biggr) \biggr] 
=

1

4\partial mb

\biggl( \oint 
\psi 4dx

\biggr) 5

4

\partial m

\Biggl( \oint 
\psi dx\bigl( \oint 
\psi 4dx

\bigr) 1

4

\Biggr) 
=

\pi 

2\partial mb
\| \psi \| 5L4 ,

where the relation (9) has been used. Thus, we conclude that the sign of lim
\lambda \rightarrow 0

det(P (\lambda ))

coincides with the sign of \partial mb.
Recall the counting formulas (see Proposition 2.12 in [18]),\biggl\{ 

n(\scrL | \{ 1,\psi 3\} \bot ) = n(\scrL ) - n0  - z0 = 0,

z(\scrL | \{ 1,\psi 3\} \bot ) = z(\scrL ) + z0  - z\infty = 1,
(17)

where z0 is the multiplicity of the zero eigenvalue of lim
\lambda \rightarrow 0

P (\lambda ), n0 is the number of negative

eigenvalues of lim
\lambda \rightarrow 0

P (\lambda ), and z\infty is the number of eigenvalues P (\lambda ) diverging to infinity as

\lambda \rightarrow 0.
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PERIODIC WAVES OF THE MODIFIED KDV EQUATION 2523

\bullet If \partial mb < 0, then lim
\lambda \rightarrow 0

P (\lambda ) has one negative eigenvalue so that n0 = 1, z0 = z\infty = 0

implying from (17) that n(\scrL ) = 1 and z(\scrL ) = 1.
\bullet If \partial mb > 0, then lim

\lambda \rightarrow 0
P (\lambda ) is either positive or negative, but the former case would

imply from (17) that \scrL is positive, in contradiction with n(\scrL ) \geq 1. Hence lim
\lambda \rightarrow 0

P (\lambda ) is

negative with n0 = 2, z0 = z\infty = 0 implying from (17) that n(\scrL ) = 2 and z(\scrL ) = 1.
\bullet If \partial mb = 0, then z\infty = 1, z0 = 0 implying from (17) that z(\scrL ) = 2. This suggests that

one of the two negative eigenvalues of lim
\lambda \rightarrow 0

P (\lambda ) for \partial mb > 0 diverges to infinity as

\partial mb \rightarrow 0, whereas the other eigenvalue of lim
\lambda \rightarrow 0

P (\lambda ) remains negative so that n0 = 1

and n(\scrL ) = 1.
These computations are summarized as follows:

n(\scrL ) =
\biggl\{ 

2 if \partial mb > 0,
1 if \partial mb \leq 0,

z(\scrL ) =
\biggl\{ 

2 if \partial mb = 0,
1 if \partial mb \not = 0.

(18)

Next we determine the stability of minimizers in the time evolution of the mKdV equation
(1) by computing n(\scrL | \{ 1,\psi \} \bot ) and z(\scrL | \{ 1,\psi \} \bot ) and by using the stability criteria from [14]:

\bullet The periodic wave with profile \psi is stable if

n(\scrL | \{ 1,\psi \} \bot ) = 0 and z(\scrL | \{ 1,\psi \} \bot ) = 1.(19)

\bullet The periodic wave with profile \psi is unstable if

n(\scrL | \{ 1,\psi \} \bot ) = 1 and z(\scrL | \{ 1,\psi \} \bot ) = 1.(20)

Similarly to Theorem 2.14 in [18], we compute the limit \lambda \rightarrow 0 of the following matrix:

D(\lambda ) :=

\biggl[ 
\langle (\scrL  - \lambda I) - 1\psi ,\psi \rangle \langle (\scrL  - \lambda I) - 1\psi , 1\rangle 
\langle (\scrL  - \lambda I) - 11, \psi \rangle \langle (\scrL  - \lambda I) - 11, 1\rangle 

\biggr] 
, \lambda /\in \sigma (\scrL ).(21)

If \partial mb \not = 0, it follows from (14) and (15) that

\langle \scrL  - 11, 1\rangle =  - 1

\partial mb
\partial m

\biggl( \oint 
\psi dx

\biggr) 
,

\langle \scrL  - 11, \psi \rangle =  - 1

2\partial mb
\partial m

\biggl( \oint 
\psi 2dx

\biggr) 
,

\langle \scrL  - 1\psi , 1\rangle =  - \partial c
\biggl( \oint 

\psi dx

\biggr) 
 - \partial cb \langle \scrL  - 11, 1\rangle ,

\langle \scrL  - 1\psi ,\psi \rangle =  - 1

2
\partial c

\biggl( \oint 
\psi 2dx

\biggr) 
 - \partial cb \langle \scrL  - 11, \psi \rangle ,

which yields

lim
\lambda \rightarrow 0

det(D(\lambda )) = \langle \scrL  - 1\psi ,\psi \rangle \langle \scrL  - 11, 1\rangle  - \langle \scrL  - 1\psi , 1\rangle \langle \scrL  - 11, \psi \rangle 

=
1

2\partial mb

\biggl[ 
\partial c

\biggl( \oint 
\psi 2dx

\biggr) 
\partial m

\biggl( \oint 
\psi dx

\biggr) 
 - \partial m

\biggl( \oint 
\psi 2dx

\biggr) 
\partial c

\biggl( \oint 
\psi dx

\biggr) \biggr] 
=

1

2\partial mb

\bigm| \bigm| \bigm| \bigm| \partial c\scrF (c,m) \partial m\scrF (c,m)
\partial c\scrM (c,m) \partial m\scrM (c,m)

\bigm| \bigm| \bigm| \bigm| ,
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2524 UYEN LE AND DMITRY E. PELINOVSKY

where \scrF (c,m) := F (\psi ) and\scrM (c,m) :=M(\psi ) are computed from the two conserved quantities
in (3) at the family of periodic waves with the profile \psi that depends on parameters (c,m).
Note that the determinant in the last expression is the Jacobian of the transformation (c,m) \mapsto \rightarrow 
(\scrF ,\scrM ).

We shall now use the counting formulas,\biggl\{ 
n(\scrL | \{ 1,\psi \} \bot ) = n(\scrL ) - n0  - z0,

z(\scrL | \{ 1,\psi \} \bot ) = z(\scrL ) + z0  - z\infty ,
(22)

where z0, n0, and z\infty have the same meaning as in (17) but for the matrix D(\lambda ).
\bullet If \partial mb < 0, then it follows from (18) that n(\scrL ) = 1 and z(\scrL ) = 1 so that the stability

criterion (19) is satisfied if and only if n0 = 1, z0 = z\infty = 0, which is true if and only
if the Jacobian of the transformation (c,m) \mapsto \rightarrow (\scrF ,\scrM ) is strictly positive.

\bullet If \partial mb > 0, then it follows from (18) that n(\scrL ) = 2 and z(\scrL ) = 1 so that the stability
criterion (19) is satisfied if and only if n0 = 2, z0 = z\infty = 0, that is, \langle \scrL  - 11, 1\rangle < 0
and the Jacobian of the transformation (c,m) \mapsto \rightarrow (\scrF ,\scrM ) is strictly positive. Since
\langle \scrL  - 11, 1\rangle is the same diagonal term of both lim

\lambda \rightarrow 0
P (\lambda ) and lim

\lambda \rightarrow 0
D(\lambda ) whereas the former

is strictly negative, the first condition of \langle \scrL  - 11, 1\rangle < 0 is satisfied.
\bullet If \partial mb = 0, then it follows from (18) that n(\scrL ) = 1 and z(\scrL ) = 2 so that detD(\lambda ) is

singular in the limit \lambda \rightarrow 0. Hence z\infty = 1 and one of the two negative eigenvalues of
lim
\lambda \rightarrow 0

D(\lambda ) for \partial mb > 0 diverges to infinity as \partial mb\rightarrow 0, whereas the other eigenvalue of

lim
\lambda \rightarrow 0

D(\lambda ) remains negative if and only if the Jacobian of the transformation (c,m) \mapsto \rightarrow 
(\scrF ,\scrM ) is strictly positive, which implies n0 = 1, z0 = 0, and hence the stability
criterion (19).

The stability criterion in all three cases can be summarized as follows.

Let \psi \in H1
\mathrm{p}\mathrm{e}\mathrm{r} be a solution of the stationary equation (2) satisfying (11). The periodic

wave with the profile \psi is stable in the time evolution of the mKdV equation (1) if\bigm| \bigm| \bigm| \bigm| \partial c\scrF (c,m) \partial m\scrF (c,m)
\partial c\scrM (c,m) \partial m\scrM (c,m)

\bigm| \bigm| \bigm| \bigm| > 0.(23)

Note that the assumption (11) is satisfied for the solution \psi \in H1
\mathrm{p}\mathrm{e}\mathrm{r} related to both the global

and local nondegenerate minimizers \chi \in H1
\mathrm{p}\mathrm{e}\mathrm{r} of the variational problem (6).

Let us now consider the nondegenerate saddle points under the following assumption.

Assume that \chi is a nondegenerate saddle point of the variational problem (6) module to
the translational symmetry: \chi (x) \mapsto \rightarrow \chi (x+x0) for every x0 \in \BbbR with exactly one negative
direction in H1

\mathrm{p}\mathrm{e}\mathrm{r} under the two constraints.

The main assumption for the corresponding solution \psi \in H1
\mathrm{p}\mathrm{e}\mathrm{r} of the stationary equation

(2) can be expressed in the form
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PERIODIC WAVES OF THE MODIFIED KDV EQUATION 2525

n(\scrL | \{ 1,\psi 3\} \bot ) = 1, z(\scrL | \{ 1,\psi 3\} \bot ) = 1.(24)

The nondegeneracy of the saddle point implies smoothness of \psi \in H1
\mathrm{p}\mathrm{e}\mathrm{r} and b with respect to

parameters (c,m). As a result, the same count of n(\scrL ) can be performed based on limP (\lambda )
with exactly the same expression for lim

\lambda \rightarrow 0
det(P (\lambda )) if \partial mb \not = 0. Since lim

\lambda \rightarrow 0
det(P (\lambda )) \not = 0,

it follows from (17) with z0 = z\infty = 0 that n(\scrL ) = 2 if \partial mb < 0 for which n0 = 1. Since
1 \leq n(\scrL ) \leq 2 is no longer true for the saddle points, the case with \partial mb > 0 may either give
n(\scrL ) = 1 or n(\scrL ) = 3. To avoid ambiguity, we only consider the saddle points with \partial mb < 0.

It follows from (22) that if \partial mb < 0, then the instability criterion (20) is satisfied if and
only if the Jacobian of the transformation (c,m) \mapsto \rightarrow (\scrF ,\scrM ) is strictly positive for which
n0 = 1, z0 = z\infty = 0. The instability criterion can be summarized as follows.

Let \psi \in H1
\mathrm{p}\mathrm{e}\mathrm{r} be a solution of the stationary equation (2) satisfying (24). The periodic

wave with the profile \psi is unstable in the time evolution of the mKdV equation (1) if
\partial mb < 0 and \bigm| \bigm| \bigm| \bigm| \partial c\scrF (c,m) \partial m\scrF (c,m)

\partial c\scrM (c,m) \partial m\scrM (c,m)

\bigm| \bigm| \bigm| \bigm| > 0.(25)

Although the stability and instability criteria (23) and (25) are only sufficient conditions, we
show with the help of numerical approximations that these criteria cover all critical points of
the variational problem (6).

3. Numerical search of critical points of the variational problem. To perform the nu-
merical search, we use the analytical representation of solutions to the stationary equation (2)
in terms of the Jacobi elliptic functions. Such representations are known in the literature; we
refer to [6] for precise details.

One family of exact solutions is given by

\psi (x) = u4 +
(u1  - u4)(u2  - u4)

(u2  - u4) + (u1  - u2) sn2(\nu x; k)
,(26)

where the turning points u1, u2, u3, u4 satisfy the constraint

u1 + u2 + u3 + u4 = 0(27)

and define parameters c and b of the stationary equation (2) by\Biggl\{ 
c =  - (u1u2 + u1u3 + u1u4 + u2u3 + u2u4 + u3u4),

b = 1
2(u1u2u3 + u1u2u4 + u1u3u4 + u2u3u4).

(28)

Parameters \nu and k of the solution (26) are expressed by the relations

\nu =
1

2

\sqrt{} 
(u1  - u3)(u2  - u4), k =

\sqrt{} 
(u1  - u2)(u3  - u4)\sqrt{} 
(u1  - u3)(u2  - u4)

.
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2526 UYEN LE AND DMITRY E. PELINOVSKY

When a given value of c \in ( - 1,\infty ) is substituted into the first equation in (28) and the
additional constraint (27) is used, the family of solutions (26) has two arbitrary parameters
among the four turning points, which we choose to be u1 and u2. These two parameters
are defined from two additional constraints: the period of \psi must be normalized to 2\pi by
2K(k) = 2\pi \nu , where K(k) is the complete elliptic integral, and the mean value and the L4

norm of the solution \psi must be related to a given value of m \in ( - m0,m0) by (9). Newton's
method is used to satisfy these two constraints and to find the admissible values of u1 and u2.
The function b = b(c,m) is computed from the second equation in (28).

Another family of exact solutions is given by

\psi (x) = u1 +
(u2  - u1)(1 - cn(\nu x; k))

1 - cn(\nu x; k) + \delta (1 + cn(\nu x; k))
(29)

with the turning points u1, u2, u3 = \alpha + i\beta , u4 = \alpha  - i\beta . The turning points satisfy the
constraint

u1 + u2 + 2\alpha = 0(30)

and define parameters c and b of the stationary equation (2) by\Biggl\{ 
c =  - (u1u2 + 2\alpha (u1 + u2) + \alpha 2 + \beta 2),

b = \alpha u1u2 +
1
2(u1 + u2)(\alpha 

2 + \beta 2).
(31)

Parameters \nu , k, and \delta of the solution (29) are expressed by the relations

\delta =

\sqrt{} 
(u2  - \alpha )2 + \beta 2\sqrt{} 
(u1  - \alpha )2 + \beta 2

, \nu = 4
\sqrt{} 

[(u1  - \alpha )2 + \beta 2] [(u2  - \alpha )2 + \beta 2],

and

k =
1\surd 
2

\sqrt{} 
1 - (u1  - \alpha )(u2  - \alpha ) + \beta 2\sqrt{} 

(u1  - \alpha )2 + \beta 2
\sqrt{} 

(u2  - \alpha )2 + \beta 2
.

Again we use (30) to define \alpha and the first equation in (31) to define \beta from c \in ( - 1,\infty ). The
remaining parameters u1 and u2 are computed from two additional constraints: the period of
\psi must be normalized to 2\pi by 4K(k) = 2\pi \nu and the mean value and the L4 norm of the
solution \psi must be related to a given value ofm \in ( - m0,m0) by (9). Newton's method is used
to satisfy these two constraints for u1 and u2, from which we obtain the function b = b(c,m)
from the second equation in (31).

Figure 1 presents the main result in obtaining numerical solutions from the exact solutions
(26) and (29) with parameters found from Newton's method for c \in ( - 1,\infty ) and m \in [0,m0).
Three solution families are shown for b versus c for fixed values of m. The solid curves
represent solutions of the form (29) and the dotted curves are solutions of the form (26). The
black and blue dots demark the points at which the two solution forms connect. Continuing
one solution form across these points is impossible because the elliptic modulus k becomes
complex valued. The red dot shows pitchfork bifurcation (for m = 0) and fold bifurcation (for
m \not = 0) when the solution families coalesce.
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Figure 1. Three solution families on the (b, c) diagram for fixed values of m: m = 0 (top left), m = 0.01
(top right), m = 0.1 (bottom left), and m = 0.2 (bottom right).

Figure 1 (top left) agrees with Figure 2 (middle left panel) in [18] obtained from numerical
solutions of the stationary equation (2). For m = 0, there exists c0 \approx 1.425 (red dot) at
which the pitchfork bifurcation occurs. For m \not = 0 in Figure 1, the symmetry is broken, the
bifurcation point c\ast (m) such that c\ast (m) \rightarrow c0 as m \rightarrow 0 detaches from the upper branch
but remains the connection point for the middle and lower solution families. As m increases,
c\ast (m) at the bifurcation point increases rapidly and the two solution families move to larger
values of c.

Figure 2 (left) shows only the upper solution family on the (b, c) plane but for larger values
of m compared to Fig. 1. Figure 2 (right) compares the numerical result for m = 0.6 with the
analytical result for m = m0 \approx 0.6316 for which the solution family for the constant solutions
is given in the parametric form\biggl\{ 

c = 6u21  - 1,
b = u1  - 4u31,

u1 \in (0,\infty ).(32)

This exact solution for m = m0 follows from either (26) or (29) with u2 = u1. Although we
do not distinguish between the two solution forms (26) and (29) in the same solid lines on
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Figure 2. (Left) The same as Figure 1 but for the upper solution family only for m = 0.2, 0.3, 0.4, 0.5.
(Right) Comparison between the upper solution family for m = 0.6 and the exact solution for m = m0.
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Figure 3. The value of \scrB c(\chi ) for the three critical points of the variational problem (6) versus c for two
values of m: m = 0.01 (left) and m = 0.1 (right).

Figure 2, the connection point between the two solutions is shown and it moves to smaller
values of c as m increases.

Figure 3 clarifies the meaning of each of the three solution families among the critical
points of the variational problem (6). It shows the values of \scrB c(\chi ) defined in (7) versus c for
fixed values of m = 0.01 (left) and m = 0.1 (right), where \chi is computed from \psi by using
\chi = \psi /\| \psi \| L4 . To compute \scrB c(\chi ), we use forward finite difference to approximate \chi \prime and
then complete the quadrature using the trapezoidal rule. In both panels, the blue, red, and
black curves correspond, respectively, to the upper, middle, and lower families of solutions at
the bifurcation diagrams of Figure 1. We observe that the blue curves represent the global
minimizers, the black curves represent the local minimizers, and the red curves represent the
saddle points. The numerical search shows that no other solutions of the stationary equation
(2) yield critical points of the variational problem (6).

In order to apply the stability criterion (23) for nondegenerate minimizers of the variational
problem (6), we glue individual computations together and represent the solution surface of
b = b(c,m) versus (c,m) on Figure 4.
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PERIODIC WAVES OF THE MODIFIED KDV EQUATION 2529

Figure 4. (Left) The solution surface of b(c,m) for the global minimizers of the variational problem (6).
(Right) Two solution surfaces of b(c,m) for the local minimizers and saddle points of the variational problem
(6) which connect at the fold bifurcation.

Figure 4 (left) shows the smooth solution surface for the global minimizers of the vari-
ational problem (6) given by the upper solution family on Figure 1 for c \in ( - 1,\infty ) and
m \in (0,m0). It suggests nondegeneracy of the global minimizers except at the point of the
fold bifurcation for m = 0 and c = c0 \approx 1.425. The red curve on the solution surface in
denotes the connection line between the two solution forms (26) and (29).

Figure 4 (right) shows the solution surface b(m, c) for the other two critical points of the
variational problem (6). The top (red) part of the surface corresponds to the saddle points and
the bottom (black) part of the surface relates to the local minimizers. The numerical result
also suggests that the surface is smooth except at the points of the fold bifurcation where the
saddle points connect with the local minimizers. The black line denotes the connection line
between the two solution forms (26) and (29).

3.1. Stability of the global minimizers. It follows from (18) that the Morse index n(\scrL )
and the degeneracy index z(\scrL ) depend on the derivative \partial mb. Figure 5 shows b = b(c,m)
versus m for fixed values of c. For m = 0, the derivative \partial mb changes sign from positive to
negative at c1 \approx 3.1. According to (18), it corresponds to the change in the Morse index \scrL 
from n(\scrL ) = 2 for c \in ( - 1, c1) to n(\scrL ) = 1 for c \in (c1,\infty ). This agrees with Figure 2 (bottom
left panel) in [18].

It follows from Figure 5 that there exists m1(c) for c \in ( - 1, c1) such that n(\scrL ) = 2
for m \in (0,m1(c)) and n(\scrL ) = 1 for m \in (m1(c),m0). Because z(\scrL ) = 2 at m = m1(c),
the nondegeneracy assumption used in the conventional stability theory for periodic waves
(see [15, 17] and references therein) is not satisfied at m = m1(c). In particular, minimizers
of energy E(u) for fixed momentum F (u) and mass M(u) are not smooth with respect to
parameters (c, b) at the degeneracy point. This drawback of the conventional stability theory
is not present for the minimizers of the new variational problem (6).

Figures 6 and 7 show, respectively, the mass \scrM (c,m) and the momentum \scrF (c,m) versus
c at different values of m (top) and versus m at different values of c (bottom). It is clear
that the mass \scrM (c,m) is monotonically increasing in both c and m, whereas the momentum
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Figure 5. b = b(c,m) versus m at the solution surface of Fig. 4 (left) for various values of c =  - 0.99 (top
left), c = 0.51 (top right), c = 1.26 (bottom left), and c = 3.53 (bottom right).

\scrF (c,m) is monotonically increasing in c for everym \in (0,m0) and monotonically decreasing in
m for every c \in (0, c0), where c0 is the same bifurcation value of c for the pitchfork bifurcation
at m = 0. With these signs of partial derivatives, the stability condition (23) is always
satisfied for c \in (0, c0) and m \in (0,m0). Note that for m = 0, we have \partial m\scrF (c, 0) = 0 and
\partial m\scrM (c, 0) > 0 so that the stability criterion (23) reduces to \partial c\scrF (c, 0) > 0, monotonicity of
the mapping c \mapsto \rightarrow \scrF (c, 0), which was the main stability criterion used in [17] and [18].

It follows from Figure 7 that for c > c0, there exists m\ast (c) \in (0,m0) such that the
momentum \scrF (c,m) is monotonically decreasing in m for m \in (0,m\ast (c)) and monotonically
increasing inm form \in (m\ast (c),m0). It is not obvious in the latter case if the stability criterion
(23) is satisfied. Figure 8 shows the contour plot for the Jacobian in (23) for all c \in ( - 1, 5)
and m \in (0,m0), which is strictly positive with the minimal value of 0.0145 attained at the
corner point shown by the red dot. Therefore, the stability criterion (23) is satisfied for every
nondegenerate minimizer of the variational problem (6).

3.2. Instability of saddle points. Saddle points of the variational problem (6) corrrespond
to the middle solution family on Figure 1. The solution surface for the saddle point connects
to the solution surface for the local minimizers according to Figure 4 (right).

The instability criterion for the saddle points (25) was derived under the assumption of
\partial mb < 0. Figure 9 shows b = b(c,m) versus m for two values of c, which suggests that \partial mb < 0
is satisfied for all saddle points of the variational problem (6).

We have found numerically that the mass \scrM (c,m) of the saddle points is monotonically
increasing in both m and c similarly to Figure 6 for the global minimizers. We also found that
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Figure 6. Top: Mass \scrM (c,m) versus c for various values of m. Bottom: Mass \scrM (c,m) versus m for
various values of c.
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Figure 7. Top: Momentum \scrF (c,m) versus c for various values of m. Bottom: Momentum \scrF (c,m) versus
m for various values of c.
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Figure 8. Contour plot of the Jacobian in the stability criterion (23) for the global minimizers.
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Figure 9. b = b(c,m) versus m for the solution surface of Fig. 4 (right) for c = 5 (left) and c = 3 (right).

the momentum \scrF (c,m) is monotonically increasing in c but there exist c1 and c2 satisfying 3 <
c1 < c2 < 9 such that \scrF (c,m) is monotonically decreasing in m for c < c1 and monotonically
increasing in m for c > c2 similarly to Figure 7. Although the sign of the Jacobian in (25)
is not obvious in the latter case, we have computed it numerically and confirmed that the
Jacobian is strictly positive for the entire solution surface (not shown on figures). Thus, the
saddle points of the variational problem (6) are unstable in the time evolution of the mKdV
equation (1) according to the instability criterion (25).

3.3. Stability of local minimizers. Local minimizers of the variational problem (6) corre-
spond to the lower solution family on Figure 1. We have checked numerically that the plots of
b = b(c,m) versus m for fixed c, \scrM (c,m) and \scrF (c,m) versus both c and m are qualitatively
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PERIODIC WAVES OF THE MODIFIED KDV EQUATION 2533

similar to Figures 5, 6, and 7. This is not surprising since the lower and upper solution families
are equivalent to each other for m = 0.

We have also detected numerically that the Jacobian in the stability criterion (23) remains
positive for the entire solution surface. Thus, the local minimizers of the variational problem
(6) are stable in the time evolution of the mKdV equation (1) according to the stability
criterion (23).

4. Conclusion. The new variational characterization of periodic waves as nondegenerate
minimizers of the variational problem (6) has several advantages compared to the previous
variational theory, where the energy E(u) is minimized for fixed momentum F (u) and mass
M(u). First, the stability criterion is independent of whether the Morse index n(\scrL ) is one
or two and whether the linear operator \scrL is degenerate with z(\scrL ) = 2. Second, with the
exception of the pitchfork bifurcation point (c,m) = (c0, 0), minimizers of the variational
problem (6) are always nondegenerate.

The new variational characterization also has advantages compared to other (partial)
characterizations of periodic waves in the mKdV equation such as minimization of energy
E(u) for fixed momentum F (u) in [13] or minimization of Bc(u) for fixed L

4 norm in the space
of even functions also considered in [18]. The former minimization only allows us to identify
a subset of stable periodic waves as it only applies to the periodic waves with n(\scrL ) = 1. The
latter minimization requires proceeding with an additional Galilean transformation in order
to identify the stability criterion for the periodic waves and leads to computational formulas
which are not related to the dependence of mass M(u) or momentum F (u) on c.

Although our computations are only based on numerical approximations, the numerical
results are rather accurate since we use the exact analytical representations of the periodic
wave solutions. We have shown that the periodic waves that correspond to the global and
local minimizers of the variational problem (6) are stable in the time evolution of the mKdV
equation (1), whereas the periodic waves for the saddle points are unstable.

The main direction to be addressed in further work is to prove analytically that minimizers
of the variational problem (6) are nondegenerate in the entire existence interval with the
exception of the pitchfork bifurcation point at (c,m) = (c0, 0). Extensions of these numerical
results to the modified Benjamin--Ono equation or the fractional mKdV equation are also
of the highest priority. Finally, one can apply the same new variational problem to the
generalized fractional KdV equations with powers different from the quadratic and cubic
powers considered in [17] and [18], respectively.
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