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Summary. We consider the discrete Klein–Gordon equation for magnetic metama-
terials derived by Eleftheriou, Lazarides, and Tsironis [4, 7]. We obtain a general
criterion for spectral stability of multi-site breathers for a small coupling constant.
We show how this criterion differs from the one derived in the standard discrete
Klein–Gordon equation [6, 13].

1 Introduction

We address space-localized and time-periodic breathers in the discrete Klein–Gordon
equation describing magnetic metamaterials which consist of periodic arrays of split-
ring resonators [4, 7]:

q̈n + V
′(qn) = ǫ(q̈n+1 + q̈n−1), n ∈ Z, (1)

where t ∈ R is the evolution time, qn(t) ∈ R is the normalized charge stored in the
capacitor of the n-th split-ring resonator, V : R → R is a smooth on-site potential for
the voltage across the slit of the n-th resonator, and ǫ ∈ R is the coupling constant
from the mutual inductance. In particular, the voltage u = f(q) = V ′(q) is found
by inverting the charge-voltage dependence near small charge:

q = u+ αu
3 ⇒ u = f(q) = q − αq

3 +O(q5) as q → 0, (2)

where α is the parameter for the self-focusing (α > 0) or self-defocusing (α < 0)
nonlinearity. These parameter values correspond to the soft and hard potentials V
respectively, for sufficiently small values of q. Note that V is an even function of q.

Discrete breathers in both one-dimensional and two-dimensional lattices were
approximated numerically in the limit of small coupling constant ǫ [4, 7]. Excitations
of discrete breathers near the edge of a one-dimensional lattice created by a truncated
array of nonlinear split-ring resonators were considered numerically in [8].

It is the purpose of this paper to consider spectral stability of multi-site discrete
breathers in the limit of small coupling constant ǫ. This limit is referred usually as the
anti-continuum limit and it has been considered before in the context of spectral
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stability of discrete breathers in the standard discrete Klein–Gordon equation [1,
3, 6, 10]. Recent works [13, 14, 18] were devoted to the derivation of the most
general stability criterion for multi-site breathers in Klein–Gordon lattices. Our
main result shows that the stability criterion for multi-site breathers in the discrete
Klein–Gordon equation (1) differs from the one derived in the standard discrete
Klein–Gordon equation [6, 13].

The paper is organized as follows. We formulate the discrete Klein–Gordon equa-
tion (1) as an evolution problem in Section 2. The existence and continuation results
for multi-site discrete breathers in the limit of small coupling constant ǫ are reviewed
in Section 3. Spectral stability of multi-site breathers for small coupling constants
is considered in Section 4. Section 5 discusses application of the stability criterion
to the multi-site breathers in magnetic metamaterials.

2 Formalism

In what follows, we shall use bold-faced notations for vectors in discrete space lp(Z)
defined by their norms

‖q‖lp :=

(

∑

n∈Z

|qn|p
)1/p

, p ≥ 1.

Components of q are denoted by qn for n ∈ Z. These components can be functions
of t, in which case they can be considered either in the space C2(0, T ) of twice
continuously differentiable functions on (0, T ) or in the L2-based Sobolev space
Hs

per(0, T ) of T -periodic functions equipped with the norm,

‖f‖Hs
per

:=

(

∑

m∈Z

(1 +m
2)s|cm|2

)1/2

, s ≥ 0,

where the coefficients {cm}m∈Z define the Fourier series of a T -periodic function f ,

f(t) =
∑

m∈Z

cm exp

(

2πimt

T

)

, t ∈ [0, T ].

To start analysis, we set up the discrete Klein–Gordon equation (1) as an evolu-
tion problem in t in the phase space C2([0, T ), l2(Z)), where T > 0 is the maximal
existence time (which may be infinite). Let us consider the bounded operator

M(ǫ) = I − ǫ(σ+ + σ−) : l
2(Z) → l

2(Z),

where the shift operators σ± : l2(Z) → l2(Z) are defined by

(σ±q)n = qn±1, n ∈ Z. (3)

For any ǫ ∈
(

− 1
2
, 1
2

)

, the operator M(ǫ) : l2(Z) → l2(Z) is diagonally dominant
and hence invertible and the inverse operator M−1(ǫ) : l2(Z) → l2(Z) is bounded.
Moreover, the operator M−1(ǫ) is analytic at ǫ = 0 and admits the Taylor series,
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M
−1(ǫ) = I +

∞
∑

k=1

ǫ
k(σ+ + σ−)

k
, ǫ ∈

(

−1

2
,
1

2

)

. (4)

The discrete Klein–Gordon equation (1) can be written in the operator form as
follows:

M(ǫ)
d2q

dt2
+ f(q) = 0, (5)

where (f(q))n = V ′(qn). InvertingM(ǫ) for any ǫ ∈
(

− 1
2
, 1
2

)

, we obtain the evolution
form of the discrete Klein–Gordon equation (5):

d2q

dt2
+M

−1(ǫ)f(q) = 0. (6)

With this formulation, we prove the first result on local existence of solutions of the
Cauchy problem associated with the evolution equation (6).

Proposition 1. Let V ∈ C2(R) and q0,q1 ∈ l2(Z). For any ǫ ∈
(

− 1
2
, 1
2

)

, there exist
T > 0 and a unique local solution of the evolution problem (6) in the phase space
q ∈ C2([0, T ), l2(Z)) such that q(0) = q0 and q̇(0) = q1.

Proof. Because V ∈ C2(R) and l2(Z) is a Banach algebra with respect to pointwise
multiplication, the map f(q) : l2(Z) → l2(Z) is C1. For any ǫ ∈

(

− 1
2
, 1
2

)

, there exists
C(ǫ) > 0 such that ‖M−1(ǫ)‖l2→l2 ≤ C(ǫ). Therefore, the vector field M−1(ǫ)f(q)
is a bounded C1 map from l2(Z) to l2(Z), hence, it is locally Lipschitz. The result of
Proposition 1 follows from the standard existence theory of second-order evolution
equations in Banach spaces [2, Chapter 2]. ⊓⊔

Remark 1. For the particular function V defined by (2), we note that the assumption
V ∈ C2(R) is satisfied for any α > 0 (in which case, V ∈ C∞(R)), because 1+3αu2 >

0 for all u ∈ R and f : R → R is one-to-one and onto. However, for α < 0, the function
f is one-to-one and onto on (−Q0, Q0) with the range in (−U0, U0), where

Q0 =
2

√

27|α|
, U0 =

1
√

3|α|
. (7)

Therefore, in this case, we only have V ∈ C2(−Q0, Q0) (in fact, V ∈ C∞(−Q0, Q0)),
so a unique local solution of the evolution problem (6) exists if q0 ∈ l2(Z) satisfies
further restriction: (q0)n ∈ (−Q0, Q0) for all n ∈ Z.

Remark 2. We shall only consider the Klein–Gordon lattice (1) with the nonlinear
potential (2) for small values of qn.

3 Existence of multi-site discrete breathers

We consider space-localized and time-periodic breathers of the discrete Klein–
Gordon equation (1) in the space q ∈ H2

per((0, T ), l
2(Z)), where T > 0 represents

the fundamental period.
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Remark 3. Note that the space H2
per((0, T ), l

2(Z)) for discrete breathers is actually
weaker than the space C2([0, T ), l2(Z)), for which the existence of a unique local
solution is established in Proposition 1, but Sobolev’s embedding of H2

per(0, T ) to
Cper(0, T ) and the bootstrapping arguments from the evolution equation (6) show
that if q ∈ H2

per((0, T ), l
2(Z)), then q ∈ C2

per((0, T ), l
2(Z)) (the opposite is true

immediately).

Accounting for symmetries, we shall work in the restriction of H2
per(0, T ) to the

space of even T -periodic functions,

H
2
e (0, T ) =

{

f ∈ H
2
per(0, T ) : f(−t) = f(t), t ∈ R

}

.

We shall also assume everywhere that the nonlinear potential V is an even function
of q, which agrees with the potential defined by (2). This assumption is not very
restrictive and is used to simplify the technical computations.

At ǫ = 0, we have many possible configurations of multi-site breathers,

Q
(0)(t) =

∑

k∈S

σkϕ(t)ek, (8)

where ek is the unit vector in l2(Z) associated with the site k ∈ Z, S ⊂ Z is a finite
set of excited sites of the lattice, σk ∈ {+1,−1} encodes the phase factor of the k-th
oscillator, and ϕ ∈ H2

e (0, T ) is an even solution of the nonlinear oscillator equation
at the energy level E,

ϕ̈+ V
′(ϕ) = 0 ⇒ E =

1

2
ϕ̇

2 + V (ϕ). (9)

Remark 4. Note that if ϕ is a solution of (9), then −ϕ is also a solution of (9) because
V ′ is an odd function of ϕ. This motivates the notations in (8) due to the technical
simplification that V is even. If V is of general type, we would need to modify the
representation formula (8) and the subsequent analysis.

The unique even solution ϕ(t) satisfies the initial condition,

ϕ(0) = a, ϕ̇(0) = 0, (10)

where a is the smallest positive root of V (a) = E for a fixed value of E. Period of
oscillations T is uniquely defined by the energy level E, according to the following
formula:

T =
√
2

∫ a

−a

dϕ
√

E − V (ϕ)
. (11)

Remark 5. All nonlinear oscillators at the excited sites of S ⊂ Z in the configuration
(8) have the same period T . Two oscillators at the j-th and k-th sites are said to be
in-phase if σjσk = 1 and anti-phase if σjσk = −1.

Persistence of the limiting configuration (8) as a space-localized and time-
periodic breather of the discrete Klein–Gordon equation (1) for small values of ǫ
is established by MacKay & Aubry [9]. Using this theory, we prove the next result
on the existence and continuation of the multi-site discrete breathers.
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Proposition 2. Fix the period T and the solution ϕ ∈ H2
e (0, T ) of the nonlinear

oscillator equation (9) with an even function V ∈ C∞(R) such that V ′′(0) = 1.
Assume that T 6= 2πn, n ∈ N and T ′(E) 6= 0. Define Q(0) by the representation (8)
with fixed finite S ⊂ Z and {σk}k∈S. There are ǫ0 ∈

(

0, 1
2

)

and C > 0 such that

for all ǫ ∈ (−ǫ0, ǫ0), there exists a unique solution Q(ǫ) ∈ H2
e ((0, T ), l

2(Z)) of the
discrete Klein–Gordon equation (1) satisfying

‖Q(ǫ) −Q
(0)‖H2

per((0,T ),l2(Z)) ≤ C|ǫ|. (12)

Moreover, the map (−ǫ0, ǫ0) ∋ ǫ 7→ Q(ǫ) ∈ H2
e ((0, T ), l

2(Z)) is C∞.

Proof. We shall writeM−1(ǫ) = I+ǫK(ǫ), where K(ǫ) : l2(Z) → l2(Z) is a bounded
analytic operator for all ǫ ∈

(

− 1
2
, 1
2

)

. Then, the discrete Klein–Gorodn equation (1)
for T -periodic solutions Q can be rewritten in the perturbed form:

d2Q

dt2
+ f(Q) = −ǫK(ǫ)f(Q), (13)

where (f(Q))n = V ′(Qn).
Substituting Q = Q(0) +W, where Q(0) is given by (8), we obtain the coupled

system of differential-difference equations in the form:

LeWn = −ǫ
(

K(ǫ)f(Q(0))
)

n
+ (N(W, ǫ))n , n ∈ S (14)

and
L0Wn = −ǫ

(

K(ǫ)f(Q(0))
)

n
+ (N(W, ǫ))n , n ∈ Z\S, (15)

where the linear operators are

Le = ∂
2
t + V

′′(ϕ(t)) : H
2
e (0, T ) → L

2
e(0, T ),

L0 = ∂
2
t + 1 : H

2
e (0, T ) → L

2
e(0, T )

and the nonlinear vector field is

(N(W, ǫ))n = −ǫ
(

K(ǫ)(f(Q(0) +W)− f(Q(0))
)

n

+V ′(Q(0)
n ) + V

′′(Q(0)
n )Wn − V

′(Q(0)
n +Wn).

We have used here that V is even and V ′′(0) = 1.
Under the condition T ′(E) 6= 0, the operator Le is invertible, because the only

eigenvector ϕ̇ of L = ∂2
t + V ′′(ϕ(t)) : H2

per(0, T ) → L2
per(0, T ) is odd in t. Similarly,

operator L0 is invertible if T 6= 2πn, n ∈ N.
Thanks to Banach algebra of H2

e ((0, T ), l
2(Z)) and the assumption V ∈ C∞(R),

the map N(Q, ǫ) : H2
e ((0, T ), l

2(Z)) × R → H2
e ((0, T ), l

2(Z)) is C∞, hence it is
locally Lipschitz. Thanks to the invertibility of the linearized operators Le and L0

on L2
e(0, T ), the result of the theorem follows from the Implicit Function Theorem

and the map ǫ 7→ Q(ǫ) is C∞ for small ǫ (Theorem 4.E in [19]).⊓⊔

Remark 6. Although persistence of other breather configurations, where oscillators
are neither in-phase nor anti-phase, can not be apriori excluded, we restrict our
studies to the breather configurations covered by Proposition 2.



6 Dmitry Pelinovsky and Vassilis Rothos

4 Stability of multi-site breathers

Let Q ∈ H2
e ((0, T ), l

2(Z)) be a multi-site breather in Proposition 2. To study the
spectral stability of multi-site breathers, we substitute the decomposition q(t) =
Q(t)+w(t) to the discrete Klein–Gordon equation (1), neglect quadratic and higher-
order terms in w, and obtain the linearized discrete Klein–Gordon equation,

ẅn + V
′′(Qn)wn = ǫ (ẅn+1 + ẅn−1) , n ∈ Z. (16)

Using the abstract evolution form (6) and the decomposition M−1(ǫ) = I + ǫK(ǫ),
we can rewrite the linearized equations (16) in the equivalent form:

d2w

dt2
+ f

′(Q)w = −ǫK(ǫ)f ′(Q)w, (17)

where f ′(Q) is the diagonal operator with entries V ′′(Qn), n ∈ Z.
Because Q(t+ T ) = Q(t), an infinite-dimensional analogue of the Floquet theo-

rem applies and the Floquet monodromy matrix M is defined by w(T ) = Mw(0).
We say that the breather is stable if all eigenvalues of M, called Floquet multipliers,
are located on the unit circle and it is unstable if there is at least one Floquet multi-
plier outside the unit disk. Because the linearized system (16) is reversible, Floquet
multipliers come in pairs µ1 and µ2 with µ1µ2 = 1.

To consider Floquet multipliers, we can introduce the characteristic exponent λ
in the decomposition w(t) = W(t)eλt. If µ = eλT is the Floquet multiplier of the
monodromy operator M, then W ∈ H2

per((0, T ), l
2(Z)) is a solution of the eigenvalue

problem,
d2W

dt2
+ 2λ

dW

dt
+ λ

2
W + f

′(Q)W = −ǫK(ǫ)f ′(Q)W. (18)

In particular, Floquet multiplier µ = 1 corresponds to the characteristic exponent
λ = 0. The generalized eigenvector Z0 ∈ H2

per((0, T ), l
2(Z)) of the eigenvalue prob-

lem (18) for λ = 0 solves the inhomogeneous problem,

d2Z0

dt2
+ f

′(Q)Z0 = −ǫK(ǫ)f ′(Q)Z0 − 2
dW0

dt
, (19)

where W0 is the eigenvector of (18) for λ = 0. To normalize Z0 uniquely, we add a
constraint that Z0 is orthogonal to W0 with respect to the natural inner product

〈W0,Z0〉L2
per((0,T ),l2(Z)) :=

∫ T

0

∑

n∈Z

(Z̄0)n(t)(W0)n(t)dt.

At ǫ = 0, the eigenvector W0 of the eigenvalue problem (18) for λ = 0 is spanned
by the linear combination of N fundamental solutions,

W
(0)(t) =

∑

k∈S

ckϕ̇(t)ek, (20)

where N is the number of sites in the set S. The generalized eigenvector Z0 is
spanned by the linear combination of N solutions,

Z
(0)(t) = −

∑

k∈S

ckv(t)ek, v := 2L−1
e ϕ̈, (21)
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where Le = ∂2
t + V ′′(ϕ(t)) : H2

e (0, T ) → L2
e(0, T ) is invertible and ϕ̈ ∈ L2

e(0, T ).
Note that 〈ϕ̇, v〉L2

per(0,T ) = 0 because ϕ̇ is odd and v is even in t.

We proceed now with perturbation expansions for particular configurations S of
the limiting breather (8). Perturbation expansions are different depending if the set S
has no holes (the excited oscillators are adjacent) or includes some holes (oscillators
at rest are located between excited oscillators).

4.1 Adjacent excited oscillators

We consider here the set S = {1, 2, ..., N} of N adjacent sites with excited oscillators
at ǫ = 0. By Proposition 2, the breather solution Q(ǫ) can be expanded into the
power series

Q
(ǫ) = Q

(0) +

∞
∑

m=1

ǫ
m
Q

(m)
, (22)

where Q(0)(t) =
∑N

k=1 σkϕ(t)ek and the correction terms are computed recursively
from the system of linear inhomogeneous equations. In particular, for the first-order
correction term, we write the linear inhomogeneous problem explicitly as follows:

(

d2

dt2
+ V

′′(Q(0)
n )

)

Q
(1)
n = −

(

(σ+ + σ−)f(Q
(0))
)

n
, n ∈ Z. (23)

where again (f(Q))n = V ′(Qn).
Let ϕ be an even T -periodic solution of the nonlinear oscillator equation (9)

subject to the initial conditions (10). Let ψ and φ be even T -periodic solutions of
the linear inhomogeneous equations

ψ̈ + V
′′(ϕ)ψ = V

′(ϕ), (24)

and
φ̈+ φ = V

′(ϕ). (25)

Note that the unique even solutions exist for the linear equations (24) and (25)
under the conditions T ′(E) 6= 0 and T 6= 2πm, m ∈ N because of invertibility of
operators Le and L0 defined in the proof of Proposition 2. By using solutions ψ and
φ, we can write the first-order correction term Q(1) explicitly as follows:

Q
(1)(t) = −σ1φ(t)e0 −

N
∑

k=1

(σk−1 + σk+1)ψ(t)ek − σNφ(t)eN+1, (26)

where we have used the convention: σ0 = σN+1 = 0. The following theorem repre-
sents the main result of the perturbation computations.

Theorem 1. Under assumptions of Proposition 2, let Q(0) =
∑N

k=1 σkϕek yield a

solution Q(ǫ) ∈ H2
e ((0, T ), l

2(Z)) of the discrete Klein–Gordon equation (1) for small
ǫ > 0. Then the eigenvalue problem (18) for small ǫ > 0 has 2N small eigenvalues,

λ = ǫ
1/2
Λ+O(ǫ),

where Λ is an eigenvalue of the matrix eigenvalue problem
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T 2(E)

T ′(E)M1
Λ

2
c = Sc, c ∈ C

N
. (27)

Here M1 is a positive numerical coefficient given by

M1 =

∫ T

0

ϕ̈
2
dt > 0

and the N ×N matrix S is given by

S =



















−σ1σ2 1 0 . . . 0 0
1 −σ2(σ1 + σ3) 1 . . . 0 0
0 1 −σ3(σ2 + σ4) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −σM−1(σM−2 + σM ) 1
0 0 0 . . . 0 −σMσM−1



















.

Proof. At ǫ = 0, the eigenvalue problem (18) admits eigenvalue λ = 0 of geometric
multiplicity N and algebraic multiplicity 2N , which is isolated from the rest of the
spectrum. Perturbation theory in ǫ applies thanks to the smoothness of Q(ǫ) in ǫ

and V ′ in u. Perturbation expansions (so-called Puiseux series, see Chapter 2 in [5])
are smooth in powers of ǫ1/2 thanks to the Jordan block decomposition at ǫ = 0.

We need to find out how the eigenvalue λ = 0 of algebraic multiplicity 2N split
for small ǫ > 0. Therefore, we are looking for the eigenvectors of the eigenvalue prob-
lem (18) in the subspace associated with the eigenvalue λ = 0 using the substitution
λ = ǫ1/2λ̃ and the decomposition

W = W
(0) + ǫ

1/2
λ̃W

(1) + ǫW̃,

where

W
(0) =

N
∑

k=1

ckϕ̇ek

and

W
(1) = −

N
∑

k=1

ckv(t)ek, v := 2L−1
e ϕ̈.

The error term W̃ satisfies a residual equation, which we only write on the active
sites k ∈ S in the perturbation form:

¨̃
Wk + V

′′(ϕ)W̃k = −
(

(σ+ + σ−)f
′(Q(0))W(0)

)

k
− ckσkV

′′′(ϕ)Q
(1)
k ϕ̇

+λ̃2
ck(2v̇ − ϕ̇) +O(ǫ1/2), (28)

where again f ′(Q) is the diagonal operator with entries V ′′(Qn), n ∈ Z.
Expanding λ̃ = Λ + O(ǫ1/2), projecting the system of linear inhomogeneous

equations (28) to ϕ̇ ∈ H2
per(0, T ), the kernel of L = ∂2

t + V ′′(ϕ) : H2
per(0, T ) →

L2
per(0, T ), and truncating at the leading order, we obtain the system of difference

equations for k ∈ S:
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Λ
2
ck

∫ T

0

(

ϕ̇
2 + 2vϕ̈

)

dt = −(ck+1 + ck−1)

∫ T

0

V
′′(ϕ)ϕ̇2

dt

+σk(σk+1 + σk−1)ck

∫ T

0

V
′′′(ϕ)ϕ̇2

ψdt, (29)

where the explicit expression (26) has been used, as well as the convention: c0 =
cN+1 = 0.

It is proved with the standard computation [13] that

∫ T

0

(

ϕ̇
2 + 2vϕ̈

)

dt = −T
2(E)

T ′(E)
. (30)

On the other hand, differentiating the linear inhomogeneous equation (24) and pro-
jecting it to ϕ̇, we infer that

∫ T

0

V
′′′(ϕ)ϕ̇2

ψdt =

∫ T

0

V
′′(ϕ)ϕ̇2

dt, (31)

Using now the equation
...
ϕ + V

′′(ϕ)ϕ̇ = 0, (32)

we finally obtain

∫ T

0

V
′′(ϕ)ϕ̇2

dt = −
∫ T

0

ϕ̇
...
ϕdt =

∫ T

0

ϕ̈
2
dt =M1.

Combining all together, the system of difference equations (29) yields the matrix
eigenvalue problem (27), which defines 2N small eigenvalues that bifurcate from
λ = 0 for small ǫ > 0. ⊓⊔

We recall the result obtained by Sandstede in Lemma 5.4 and Appendix C [15],
which we reproduce here without a proof.

Proposition 3. Let n0 be the number of negative elements in {σjσj+1}N−1
j=1 . Matrix

S in Theorem 1 has exactly n0 positive and N−1−n0 negative eigenvalues counting
their multiplicities, in addition to the simple zero eigenvalue.

Remark 7. Because M1 > 0, the matrix eigenvalue problem (27) differs from the
similar reduction for the standard Klein–Gordon equation in [13] by the sign change
in front of the matrix S. In particular, if T ′(E) < 0, the matrix eigenvalue problem
(27) has n0 pairs of purely imaginary eigenvalues Λ and N−1−n0 pairs of purely real
eigenvalues Λ counting their multiplicities, in addition to the double zero eigenvalue.
If T ′(E) > 0, the conclusion changes to the opposite.

4.2 Oscillators at rest between excited oscillators

We consider here the set S = {1, 3, ..., 2N − 1} of N sites with excited oscillators
separated by exactly one oscillator at rest at ǫ = 0. By using the power series
expansions (22) in Proposition 2 with Q(0)(t) =

∑N
k=1 σ2k−1ϕ(t)e2k−1, we compute

a different explicit solution of the linear inhomogeneous equation (23):
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Q
(1)(t) = −

N
∑

k=0

(σ2k−1 + σ2k+1)φ(t)e2k, (33)

where φ is an even T -periodic solution of the linear inhomogeneous equation (25)
and we have used the convention: σ−1 = σ2N+1 = 0.

To find the second-order correction term, we write the linear inhomogeneous
problem explicitly as follows:

(

d2

dt2
+ V

′′(Q(0)
n )

)

Q
(2)
n = −

(

(σ+ + σ−)
2
f(Q(0))

)

n
−
(

(σ+ + σ−)f
′(Q(0))Q(1)

)

n
,

where we have used the fact that V ′′′(Q
(0)
n )(Q

(1)
n )2 = 0 for all n ∈ Z.

Let θ and ζ be even T -periodic solutions of the linear inhomogeneous equation

θ̈ + V
′′(ϕ)θ = φ, t ∈ R (34)

and
ζ̈ + ζ = φ, t ∈ R, (35)

which exist and are unique under the conditions that T ′(E) 6= 0 and T 6= 2πm,
m ∈ N. By using these solutions, we can write the second-order correction term
Q(2) explicitly as follows:

Q
(2)(t) = −

N
∑

k=1

(σ2k−3 + 2σ2k−1 + σ2k+1)(ψ(t)− θ(t))e2k−1

−σ1(φ(t)− ζ(t))e−1 − σ2N−1(φ(t)− ζ(t))e2N+1. (36)

The following theorem represents the main result of the perturbation computations.

Theorem 2. Under assumptions of Proposition 2, let Q(0) =
∑N

k=1 σ2k−1ϕe2k−1

yield a solution Q(ǫ) ∈ H2
e ((0, T ), l

2(Z)) of the discrete Klein–Gordon equation (1)
for small ǫ > 0. Then the eigenvalue problem (18) for small ǫ > 0 has 2N small
eigenvalues,

λ = ǫΛ+O(ǫ2),

where Λ is an eigenvalue of the matrix eigenvalue problem

T 2(E)

T ′(E)M2
Λ

2
c = Sc, c ∈ C

N
, (37)

associated with the same matrix S and a different numerical coefficient M2 given by

M2 = −
∫ T

0

ϕ̈φ̈dt.

Proof. Similarly to the proof of Theorem 1, we are looking for the eigenvectors of
the eigenvalue problem (18) in the subspace associated with the eigenvalue λ = 0
using the substitution λ = ǫλ̃ and the decomposition

W = W
(0) + ǫλ̃W

(1) + ǫW
(2) + ǫ

2
W̃,

where
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W
(0) =

N
∑

k=1

c2k−1ϕ̇e2k−1, (38)

W
(1) = −

N
∑

k=1

c2k−1ve2k−1, (39)

W
(2) = −

N
∑

k=0

(c2k−1 + c2k+1)φ̇e2k, (40)

subject to the convention: c−1 = c2N+1 = 0. The error term W̃ satisfies a residual
equation, which we only write on the active sites 2k − 1 ∈ S in the perturbation
form:

¨̃
W2k−1 + V

′′(ϕ)W̃2k−1 = −
(

(σ+ + σ−)
2
f
′(Q(0))W(0)

)

2k−1

−
(

(σ+ + σ−)f
′(Q(0))W(2)

)

2k−1

−c2k−1σ2k−1V
′′′(ϕ)Q

(2)
k ϕ̇+ λ̃

2
c2k−1(2v̇ − ϕ̇)

+O(ǫ), (41)

where we have used properties of the explicit solutions (33), (36), and (38)–(40).
Expanding λ̃ = Λ+O(ǫ), projecting the system of linear inhomogeneous equa-

tions (41) to ϕ̇ ∈ H2
per(0, T ), and truncating at the leading order, we obtain the

system of difference equations for 2k − 1 ∈ S:

Λ
2
c2k−1

∫ T

0

(

ϕ̇
2 + 2vϕ̈

)

dt = −(c2k+1 + 2c2k−1 + c2k−3)

∫ T

0

(V ′′(ϕ)ϕ̇2 − ϕ̇φ̇)dt

+ σ2k−1(σ2k+1 + 2σ2k−1 + σ2k−3)c2k−1

∫ T

0

V
′′′(ϕ)ϕ̇2(ψ − θ)dt. (42)

Differentiating the linear inhomogeneous equation (34) and projecting it to ϕ̇,
we infer that

∫ T

0

V
′′′(ϕ)ϕ̇2

θdt =

∫ T

0

ϕ̇φ̇dt. (43)

Combining (30), (31), and (43), the system of difference equations (42) yields the
matrix eigenvalue problem (37) with

M2 =

∫ T

0

(V ′′(ϕ)ϕ̇2 − ϕ̇φ̇)dt =

∫ T

0

ϕ̈(ϕ̈+ φ)dt =

∫ T

0

ϕ̈(φ− V
′(ϕ))dt = −

∫ T

0

ϕ̈φ̈dt,

where we have used equations (25) and (32), as well as integration by parts. The
matrix eigenvalue problem (37) defines 2N small eigenvalues that bifurcate from
λ = 0 for small ǫ > 0. ⊓⊔
Remark 8. The matrix eigenvalue problem (37) differs from the similar reduction
for the standard Klein–Gordon equation in [13] by the sign change in front of the
matrix S and by the replacement of the quantity M2 with the quantity

M
[13]
2 =

∫ T

0

ϕ̇φ̇dt,

where φ is now a solution of the linear inhomogeneous equation φ̈ + φ = ϕ instead
of equation (25).
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5 Discussion

We consider the example of the discrete Klein–Gordon equation (1) related to the
potential (2). Because V is even, the even solution ϕ ∈ H2

e (0, T ) satisfies the sym-
metry

ϕ

(

T

2
− t

)

= −ϕ(t), t ∈ R, (44)

so that it can be expanded into the Fourier cosine series,

ϕ(t) =
∑

n∈Nodd

cn(T ) cos

(

2πnt

T

)

, (45)

with zero coefficients cn for all even n. Because V ′(ϕ) = −ϕ̈, a solution of the linear
inhomogeneous equation (25) can also be found in the form of the Fourier cosine
series:

φ(t) =
∑

n∈Nodd

4π2n2cn(T )

T 2 − 4π2n2
cos

(

2πnt

T

)

. (46)

Using Parseval’s equality, we compute the numerical coefficient M2 in Theorem 2 in
the Fourier series form:

M2 = −
∫ T

0

ϕ̈φ̈dt =
∑

n∈Nodd

(4π2n2)3|cn(T )|2
T 3(4π2n2 − T 2)

. (47)

Consider now the dependence T (E) defined by the integral formula (11). Because
V ′′(0) = 1, we have T (E) → 2π as E → 0. For small values of E, the cubic term in
the expansion (2) shows that the case α < 0 gives a hard potential with T ′(E) < 0,
whereas the case α > 0 gives a soft potential with T ′(E) > 0 for small E.

If T ′(E) < 0 and T (E) < 2π, thenM2 > 0. Also recall thatM1 > 0. In this case,
Proposition 3 implies that the only stable configuration of the multi-site breathers in
Theorems 1 and 2 is the one with all alternating {σk}Nk=1 or {σ2k−1}Nk=1 (anti-phase
breathers). This conclusion is recorded in the first line of Table I.

If T ′(E) > 0 and T (E) > 2π, then the situation is different between Theorems
1 and 2. Because M1 > 0, the only stable configuration of the multi-site breathers
in Theorem 1 is the one with all equal {σk}Mk=1 (in-phase breathers).

On the other hand, the quantity M2 changes sign in the interval T (E) between
two resonances at 2π and 6π, because the first negative term in the series (47)
dominates if T (E) is close to 2π whereas the second positive term dominates if
T (E) is close to 6π. Therefore, there exists a period T∗ ∈ (2π, 6π) such that M2 < 0
for T ∈ (2π, T∗) and M2 > 0 for T ∈ (T∗, 6π). Stable configurations of discrete
solitons for T ′(E) > 0 and 2π < T < 6π are recorded in the second line of Table I.

Theorem 1 Theorem 2

T ′(E) < 0
0 < T < 2π

anti-phase anti-phase

T ′(E) > 0
2π < T < 6π

in-phase
2π < T < T∗ anti-phase
T∗ < T < 6π in-phase

Table I: Stable multi-site breathers in the hard and soft potentials.
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We can now compare these analytical results with numerical simulations of one-
dimensional discrete breathers in [4, 7]. Figure 1 in [7] and Figure 6 in [4] show
stable propagation of the so-called fundamental breather (N = 1 in Theorem 1) for
α > 0. Profiles of stable breathers are also shown in Figure 4 for α > 0 and Figure
5 for α < 0 [4]. The stable fundamental breather corresponds to the sign-definite
(positive) amplitudes for α > 0 and sign-alternating amplitudes for α < 0, which
is in agreement with the results of Table I. The two-site twisted (sign-alternating)
mode (N = 2 in Theorem 2) is reported to be stable both for α > 0 and α < 0,
which is also in agreement with Table I for 2π < T < T∗.

We note that the results of Table I apply only to the small-amplitude discrete
breathers in the nonlinear potential (2) because the sign of T ′(E) may change for
large amplitudes. In particular, the potential may become hard for large amplitudes
in the case α > 0 because f(q) ∼ q1/3 as q → ∞. Similarly, the potential may
become soft for large amplitudes in the case α < 0 because f(q) only exists for
q ∈ (−Q0, Q0), where Q0 is given by (7).

We do not also know if any discrete breather in the nonlinear potential given
by (2) can have the period close to the resonant value 6π, to observe additional
phenomena such as pitchfork bifurcations of single-site and multi-site breathers [13].
These open questions will await further detailed numerical studies of the discrete
Klein–Gordon equation (1).

References

1. J.F.R. Archilla, J. Cuevas, B. Sänchez-Rey, and A. Alvarez, “Demonstration of
the stability or instability of multibreathers at low coupling”, Physica D 180

(2003), 235–255.
2. P. Cherrier and A. Milani, Linear and Quasi-linear Evolution Equations in

Hilbert Spaces (AMS, Providence, 2012).
3. J. Cuevas, V. Koukouloyannis, P.G. Kevrekidis, and J.F.R. Archilla, “Multi-

breather and vortex breather stability in Klein–Gordon lattices: Equivalence
between two different approaches”, Int. J. Bif. Chaos 21 (2011), 2161–2177.

4. M. Eleftheriou, N. Lazarides, and G.P. Tsironis, “Magnetoinductive breathers
in metamaterials”, Phys. Rev. E 77 (2008), 036608 (13 pages).

5. T. Kato, Perturbation Theory for Linear Operators (Springer–Verlag, Berlin,
1995).

6. V. Koukouloyannis and P.G. Kevrekidis, “On the stability of multibreathers in
Klein–Gordon chains”, Nonlinearity 22 (2009), 2269–2285.

7. N. Lazarides, M. Eleftheriou, and G.P. Tsironis, “Discrete breathers in nonlinear
magnetic metamaterials”, Phys. Rev. Lett. 97 (2006), 157406 (4 pages)

8. N. Lazarides, G.P. Tsironis, and Yu.S. Kivshar “Surface breathers in discrete
magnetic metamaterials”, Phys. Rev. E 77 (2008), 065601(R) (4 pages).

9. R.S. MacKay and S. Aubry, “Proof of existence of breathers for time-reversible
or Hamiltonian networks of weakly coupled oscillators”, Nonlinearity 7 (1994),
1623-1643.

10. A.M. Morgante, M. Johansson, G. Kopidakis, and S. Aubry, “Standing wave
instabilities in a chain of nonlinear coupled oscillators”, Physica D 162 (2002),
53–94.



14 Dmitry Pelinovsky and Vassilis Rothos

11. D.E. Pelinovsky, P.G. Kevrekidis, and D.J. Frantzeskakis, “Stability of discrete
solitons in nonlinear Schrödinger lattices”, Physica D 212 (2005), 1–19.

12. D.E. Pelinovsky and A. Sakovich, “Internal modes of discrete solitons near the
anti-continuum limit of the dNLS equation”, Physica D 240 (2011), 265–281.

13. D.E. Pelinovsky and A. Sakovich, “Multi-site breathers in Klein–Gordon lat-
tices: stability, resonances, and bifurcations”, Nonlinearity 25 (2012), 3423–
3451.

14. Z. Rapti, “Multi-breather stability in discrete Klein–Gordon equations: beyond
nearest neighbors”, preprint (2013).

15. B. Sandstede, “Stability of multiple-pulse solutions”, Trans. Amer. Math. Soc.
350 (1998) 429–472.

16. V.A. Yakubovich and V.M. Starzhinskii, Linear Differential Equations With
Periodic Coefficients (John Wiley & Sons, New York, 1975).

17. K. Yoshimura, “Existence and stability of discrete breathers in diatomic Fermi–
Pasta–Ulam type lattices”, Nonlinearity 24 (2011), 293–317.

18. K. Yoshimura, “Stability of discrete breathers in nonlinear Klein–Gordon type
lattices with pure anharmonic couplings”, J. Math. Phys. 53 (2012), 102701 (20
pages).

19. E. Zeidler, Applied Functional Analysis. Main Principles and Their Applica-
tions, Applied Mathematical Sciences 109 (Springer–Verlag, New York, 1995)


