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Abstract. Dynamics of the Fermi–Pasta–Ulam (FPU) system on a two-dimensional square lattice is considered in the limit
of small-amplitude long-scale waves with slow transverse modulations. In the absence of transverse modulations, dynamics
of such waves, even at an oblique angle with respect to the square lattice, is known to be described by the Korteweg–de
Vries (KdV) equation. For the three basic directions (horizontal, vertical, and diagonal), we prove that the modulated waves
are well described by the Kadomtsev–Petviashvili (KP-II) equation. The result was expected long ago but proving rigorous
bounds on the approximation error turns out to be complicated due to the nonlocal terms of the KP-II equation and the
vector structure of the FPU systems on two-dimensional lattices. We have obtained these error bounds by extending the
local well-posedness result for the KP-II equation in Sobolev spaces and by controlling the error terms with energy estimates.
The bounds are useful in the analysis of transverse stability of solitary and periodic waves in two-dimensional FPU systems
due to many results available for the KP-II equation.
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1. Introduction

A Fermi–Pasta–Ulam (FPU) system is formed by particles connected to their nearest neighbours by
nonlinear springs. If the particles are organized in a one-dimensional chain, we can label the position
variable of the j-th particle by qj . The equations of motion are written in the form

q̈j = V ′(qj+1 − qj) − V ′(qj − qj−1), (1.1)

where V (q) is the potential energy. The total conserved energy of the FPU system (1.1) is given by

H =
∑

j∈Z

1
2
q̇2
j + V (qj+1 − qj). (1.2)

A useful approximation to dynamics of small-amplitude long-scale waves in the FPU chain with smooth
V satisfying V ′(0) = 0, V ′′(0) > 0, and V ′′′(0) �= 0 is given by the Korteweg–de Vries (KdV) equation,
which is a remarkable model due to integrability, stability of periodic and solitary waves, and global
existence of solutions in Sobolev spaces (see [18] for review).

Bounds on the approximation error between solutions of the FPU system and the KdV equation
were obtained by G. Schneider and C.E. Wayne in a conference proceeding [31] as an exercise related
to the justification technique the authors had developed for the water wave problem [32]. The same
approximation appeared to be very useful in the context of stability of FPU solitary waves and was
studied comprehensively in the series of papers by G. Friesecke and R. L. Pego [13–16]. It was also
justified in the context of normal forms and KAM theory for metastability and recurrency of the FPU
systems [2,30].

More recently, the same approximation but with other versions of the KdV equation was justified
for FPU systems with Hertzian potentials [9] and with pure anharmonic powers [26]. In [26], the KdV
approximation was extended to logarithmically long time scales provided the global dynamics of the
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generalized KdV equation is well defined in Sobolev spaces of higher regularity. The KdV approximation
was also used in the context of periodic waves and for FPU systems with nonlocal interactions [12,24].
Higher-order corrections to the KdV approximation were studied in [21], where it was shown that the
second-order corrections are spanned by two members of the integrable KdV hierarchy, whereas the third-
order corrections can only be spanned by three members of the KdV hierarchy under a constraint on
parameters of the FPU system. Review of results on nonlinear waves in one-dimensional FPU chains can
be found in [37].

The purpose of this work is to consider dynamics of the two-dimensional FPU systems and to justify
the two-dimensional KdV approximation given by the Kadomtsev–Petviashvili (KP-II) equation. Similar
to the KdV equation, the KP-II equation is remarkable due to integrability [40], stability of periodic and
solitary waves [23,28], and global existence of solutions in Sobolev spaces [22,29].

The first formal derivation of the KP-II equation was performed in [10] for the scalar extension of the
two-dimensional FPU systems with the total energy of the form

H =
∑

(j,k)∈Z2

1
2
q̇2
j,k +

1
2
(qj+1,k − qj,k)2 +

1
2
ε2(qj,k+1 − qj,k)2 +

1
3
α(qj+1,k − qj,k)3, (1.3)

where ε2 is a small parameter of slow transverse modulations in the k-direction of the dominant wave
propagating in the j direction and α is the parameter for the cubic interaction potential. A similar scalar
model was considered in the recent work [20], where the KP-II equation in the periodic domain was
rigorously justified (among other integrable models) as the normal form for metastability (exponential
localization of energy) [5] in two-dimensional rectangular lattices. Existence of two-dimensional solitary
waves [7] and breathers (space-localized and time-periodic solutions) [38,39] was also studied in the scalar
two-dimensional FPU lattices. Extensions of the scalar two-dimensional FPU models that include har-
monic interactions between the first and second nearest neighbours were considered in [1,25]. Applications
of the scalar FPU models to the two-dimensional square-packed granular arrays were studied numeri-
cally and experimentally in [27], where propagation of a modulated one-dimensional solitary wave was
observed. Periodic triangular lattices were compared with square lattices in the numerical study in [3,4],
where it was shown that non-square lattices do not have integrable approximations leading to the energy
localization.

In the context of mechanical models of the elasticity theory, vector extensions of the two-dimensional
FPU systems were considered but the long-wave reductions were used to derive the one-dimensional KdV
equation (rather than the two-dimensional KP-II equation). A two-dimensional square FPU lattice was
considered in [11] with additional springs along the diagonals and a pair of potential functions, one for
the horizontal and vertical displacements and the other one for the diagonal displacements. Existence
of small-amplitude supersonic longitudinal solitary waves propagating along the horizontal direction was
proven in [11]. Surprisingly, the result holds even when the potential functions are quadratic, due to the
geometric nonlinearity of the lattice. Nonlinear couplings were included in the consideration of the same
model in [8], where the solitary wave propagated under an arbitrary angle with respect to the square
lattice.

Another work can be found in [33], where propagation of rings in two-dimensional lattices was analysed
in the linear approximation and compared rigorously with the approximation of the linearized KdV
equation (rather than with the linearized KP-II equation).

Compared to the previous works, we prove validity of the KP-II approximation for dynamics of trans-
versely modulated small-amplitude long-scale waves in a vector FPU system on a two-dimensional square
lattice.

The paper is organized as follows. Section 2 presents the mechanical models and the main results of
this work. Section 3 contains preliminary results needed for the justification analysis. In particular, we
extend [19] to obtain additional estimates on solutions of the KP-II equation and extend [9,31] to control
�2(Z2) norm at the slowly varying solution of the KP-II equation. Section 4 gives the proof of Theorem
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1 after equations of motion are set up in the strain variables and the near-identity transformations are
performed to reduce the residual. The error terms are controlled from the energy estimates and Gronwall’s
inequality. Section 5 gives relevant details for the proof of Theorem 2. Summary and discussion of further
questions are contained in the concluding Sect. 6.

2. Main results

For the mechanical model, each particle at the (j, k) site of the two-dimensional square lattice is charac-
terized by the vectors of relative displacements (xj,k, yj,k) and relative velocities (ẋj,k, ẏj,k). The nonlinear
springs connecting the particles are shown on Fig. 1. The potential energy of a single spring between two
particles in the horizontal direction is defined by

V (r, s) =
1
2
c2
1r

2 +
1
2
c2
2s

2 +
1
3
α1r

3 +
1
2
α2rs

2,

where (r, s) are the relative displacements of the two particles in the (x, y) coordinates, (c2
1, c

2
2) are

some coefficients of the quadratic interaction potential, and (α1, α2) are some coefficients of the cubic
interaction potential. The cubic terms are chosen in such a way that the potential energy of the horizontal
spring is symmetric with respect to the sign of vertical relative displacements of the particles. Due to the
symmetry between horizontal and vertical springs, the total energy of the two-dimensional FPU lattice
takes the form

H =
1
2

∑

(j,k)∈Z2

ẋ2
j,k + ẏ2

j,k

+
∑

(j,k)∈Z2

V (xj+1,k − xj,k, yj+1,k − yj,k) + V (yj,k+1 − yj,k, xj,k+1 − xj,k). (2.1)

j−1,k−1 j,k−1 j+1,k−1

j−1,k j,k j+1,k

j−1,k+1 j,k+1 j+1,k+1

Fig. 1. A mass–spring mechanical system arranged in a square lattice
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The corresponding equations of motion are given by

ẍj,k = Vx(xj+1,k − xj,k, yj+1,k − yj,k) − Vx(xj,k − xj−1,k, yj,k − yj−1,k)

+ Vy(yj,k+1 − yj,k, xj,k+1 − xj,k) − Vy(yj,k − yj,k−1, xj,k − xj,k−1), (2.2)

and

ÿj,k = Vy(xj+1,k − xj,k, yj+1,k − yj,k) − Vy(xj,k − xj−1,k, yj,k − yj−1,k)

+ Vx(yj,k+1 − yj,k, xj,k+1 − xj,k) − Vx(yj,k − yj,k−1, xj,k − xj,k−1), (2.3)

where Vx and Vy denote partial derivatives of V = V (x, y).
As is discussed in [17], the model with horizontal and vertical springs may not capture all properties

of elastic materials and diagonal springs are required to describe structural stability of some materials.
The KP-II approximation in the square lattices with additional diagonal springs should be possible, but
computations of coefficients will become more complicated.

Next we present the main result for the propagation of nonlinear waves in the horizontal direction.
We will seek a continuous approximating function of the form

xj,k = εX (ξ, η, τ) + error, (2.4)

with ξ = ε(j − c1t), η = ε2k, and τ = ε3t. We will show that xj,k satisfy the equations of motion with
small error controllable in �2(Z2) if X (ξ, η, τ) solves the following KP-II equation

2c1∂ξ∂τX +
c2
1

12
∂4

ξX + 2α1 (∂ξX)
(
∂2

ξX
)

+ c2
2∂

2
ηX = 0. (2.5)

For justification analysis, it is more convenient to solve the FPU system in strain variables,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u
(1)
j,k := xj+1,k − xj,k,

u
(2)
j,k := xj,k+1 − xj,k,

v
(1)
j,k := yj+1,k − yj,k,

v
(2)
j,k := yj,k+1 − yj,k,

(2.6)

which are defined by the relative displacements between adjacent particles, and introduce the amplitude
function A (ξ, η, τ) in the form

xj+1,k − xj,k = ε2A (ξ, η, τ) + error. (2.7)

The reason for the different scaling in (2.4) and (2.7) is that we can formally consider the relationship
between the function A and X through a Taylor expansion

A (ξ, η, τ) = ∂ξX (ξ, η, τ) + O(ε), (2.8)

so that the KP-II equation (2.5) can be rewritten in the form

2c1∂ξ∂τA +
c2
1

12
∂4

ξA + 2α1∂ξ (A∂ξA) + c2
2∂

2
ηA = 0, (2.9)

Associated with a smooth solution to the KP–II equation (2.9) at a given time τ , for which both A ∈
Hs

(
R

2
)

and ∂−1
ξ A ∈ Hs

(
R

2
)

with sufficiently large s, we define the anti-derivative by

∂−1
ξ A(ξ, η) :=

ξ∫

−∞
A(ξ′, η)dξ′.

The solution to the KP-II equation (2.9) is required to have enough regularity so that ∂−1
ξ ∂2

τA ∈
C0

(
[−τ0, τ0] ,Hs

(
R

2
))

and ∂−2
ξ ∂2

η∂τA ∈ C0
(
[−τ0, τ0] ,Hs

(
R

2
))

with s ≥ 3. Existence of such solu-
tions is proven in Lemma 1 (Section 3). Since A(ε(j − c1t), ε2k, ε3t) is estimated in the �2(Z2) norm over
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(j, k) ∈ Z
2, we will also need the bound on the �2(Z2) norm of these terms by their Hs(R2) norm, this

bound is obtained in Lemma 2 (Sect. 3).
The following theorem formulates the main result which justifies the KP-II approximation (2.9) for

the horizontal propagation of nonlinear waves.

Theorem 1. Let A ∈ C0
(
[−τ0, τ0] ,Hs+9

(
R

2
))

be a solution to the KP-II equation (2.9) with fixed s ≥ 0,
whose initial data A(ξ, η, 0) = A0 satisfies

A0 ∈ Hs+9
(
R

2
)
, ∂−2

ξ ∂2
ηA0 ∈ Hs+9

(
R

2
)

and

∂−1
ξ ∂2

η

[
∂−2

ξ ∂2
ηA0 + A2

0

]
∈ Hs+3

(
R

2
)
.

Then, there are constants C0, C1, ε0 > 0 such that for ε ∈ (0, ε0) if the initial conditions of the two-
dimensional FPU system satisfies

∥∥∥u
(1)
in − ε2A0

∥∥∥
�2

+
∥∥∥u

(2)
in

∥∥∥
�2

+
∥∥ẋin + ε2c1A0

∥∥
�2

+
∥∥∥v

(1)
in

∥∥∥
�2

+
∥∥∥v

(2)
in

∥∥∥
�2

+ ‖ẏin‖�2 ≤ C0ε
5
2

(2.10)

then the solution to the two-dimensional FPU system satisfies
∥∥∥u(1)(t) − ε2A

∥∥∥
�2

+
∥∥∥u(2)(t)

∥∥∥
�2

+
∥∥ẋ(t) + ε2c1A

∥∥
�2

+
∥∥∥v(1)(t)

∥∥∥
�2

+
∥∥∥v(2)(t)

∥∥∥
�2

+ ‖ẏ(t)‖�2 ≤ C1ε
5
2 ,

(2.11)

for t ∈ [−τ0ε
−3, τ0ε

−3].

Remark 1. Extending this result to ε
7
2 is difficult as the next order of the asymptotic expansion has

terms which are not removed by seeking solutions to the KP-II equation alone. They could be removed
by seeking a function of the form

A (ξ, η, τ) = A(0) (ξ, η, τ) + ε2A(1) (ξ, η, τ) ,

where A(0) solves the KP-II equation (2.9) and A(1) solves an appropriately chosen linearized KP-II
equation. However, the linearized KP-II equation is nonhomogeneous, where the nonhomogeneous piece
contains higher-order antiderivative terms of A(0).

Remark 2. Compared to the work [10], the slow transverse modulations in the expansion (2.7) are not due
to the external small parameter in the potential energy V (r, s). If we have the external small parameter ε
as in (1.3), we can use η = εk so that the comparison between the �2 norm and the Sobolev norm would
only lose ε−1 compared to ε− 3

2 in Lemma 2. Performing the justification analysis on a version of the FPU
system as in [10] should also yield Theorem 1 but with the errors bounds of ε3 rather than ε

5
2 .

Remark 3. Theorem 1 can be proven in the setting of periodic transverse modulations, for which A(ξ, η+
P, τ) = A(ξ, η, τ) with fixed P > 0. In view of the scaling η = ε2k, this would correspond to the periodic
transverse modulations with large, ε-dependent period Pε−2. Similarly, one can consider periodic waves
of the KP-II equation satisfying A(ξ + L, η, τ) = A(ξ, η, τ), for which the periodic waves of the FPU
lattice has large, ε-dependent period Lε−1. The recent work [20] addresses the KP-II approximation for
periodic solutions in both spatial directions of the rectangular FPU system as the normal form which
justifies rigorously the exponential localization of energy for the initial data of a long wavelength also
known as the metastability phenomenon [5].

Remark 4. By the obvious symmetry, the result of Theorem 1 can be formulated for the vertical propa-
gation of nonlinear waves in the y-coordinates.
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xm−1,n χm−1,n xm,n+1 χm,n+1

χm−1,n−1 xm,n χm,n xm+1,n+1

xm,n−1 χm,n−1 xm+1,n χm+1,n

χm,n−2 xm+1,n−1 χm+1,n−1 xm+2,n

Fig. 2. A diatomic mass spring system arranged in a square lattice

Finally, we consider the diagonal propagation of nonlinear waves in the FPU lattice shown on Fig. 1
and introduce a new coordinate system by

m =
j + k

2
, n =

j − k

2
, (j, k) ∈ Z

2.

In the new coordinate system, the particle experiences nearest-neighbour interactions with neighbours
located a half lattice site away. Due to this we redefine xj,k as xm,n and introduce χm,n := xm+ 1

2 ,n+ 1
2
.

The FPU system becomes a diatomic system where xm,n particles communicate with four χm,n nearest-
neighbour particles and vice versa, see Fig. 2 for an illustration.

We will seek a continuous approximating function of the form

xm,n = εX
(
ε(m − c∗

1t), ε
2(n − c∗

2t), ε
3t
)

+ error,

where c∗
1 = 1

2

√
c2
1 + c2

2 and c∗
2 = 1

2

√
c2
1 − c2

2. It is hard to control the error in a general case because
nonlocal terms related to the solution of the KP-II equation appear in lower-orders of the asymptotic
approximation. However, if c2 = c1 and α2 = 2α1, then c∗

1 = c1√
2
, c∗

2 = 0 and furthermore, the FPU
system is satisfied by the invariant reduction xj,k = yj,k. By using the strain variables,

xm+1,n − xm,n = ε2A
(
ε(m − c∗

1t), ε
2n, ε3t

)
+ error, (2.12)

which corresponds to the displacement along the main diagonal, we derive the following KP-II equation
for A(ξ, η, τ) with the same relation (2.8) between A and ∂ξX:

2c∗
1∂ξ∂τA +

(c∗
1)

2

48
∂4

ξA + α1∂ξ (A∂ξA) + (c∗
1)

2∂2
ηA = 0. (2.13)
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where ξ = ε(m − c∗
1t), η = ε2n, and τ = ε3t. Similarly to the case of horizontal propagation, we can

redefine the strain variables for the diagonal propagation as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u
(1)
m,n := xm+1,n − xm,n,

u
(2)
m,n := xm,n+1 − xm,n,

v
(1)
m,n := χm+1,n − χm,n,

v
(2)
m,n := χm,n+1 − χm,n.

(2.14)

The following theorem is similar to Theorem 1 but it justifies the KP-II approximation (2.13) for the
diagonal propagation of nonlinear waves.

Theorem 2. Let A ∈ C0
(
[−τ0, τ0] ,Hs+9

(
R

2
))

be a solution to the KP-II equation (2.13) with fixed s ≥ 0,
whose initial data A(ξ, η, 0) = A0 satisfies

A0 ∈ Hs+9
(
R

2
)
, ∂−2

ξ ∂2
ηA0 ∈ Hs+9

(
R

2
)

and

∂−1
ξ ∂2

η

[
∂−2

ξ ∂2
ηA0 + A2

0

]
∈ Hs+3

(
R

2
)
.

Then, there are constants C0, C1, ε0 > 0 such that for ε ∈ (0, ε0) if the initial conditions of the two-
dimensional FPU system with c2 = c1 and α2 = 2α1 satisfies

∥∥∥u
(1)
in − ε2A0

∥∥∥
�2

+
∥∥∥u

(2)
in

∥∥∥
�2

+
∥∥ẋin + ε2c∗

1A0

∥∥
�2

+
∥∥∥v

(1)
in − ε2A0

∥∥∥
�2

+
∥∥∥v

(2)
in

∥∥∥
�2

+
∥∥χ̇in + ε2c∗

1A0

∥∥
�2

≤ C0ε
5
2

(2.15)

then the solution to the two-dimensional FPU system satisfies
∥∥∥u(1)(t) − ε2A

∥∥∥
�2

+
∥∥∥u(2)(t)

∥∥∥
�2

+
∥∥ẋ(t) + ε2c∗

1A
∥∥

�2

+
∥∥∥v(1)(t) − ε2A

∥∥∥
�2

+
∥∥∥v(2)(t)

∥∥∥
�2

+
∥∥χ̇(t) + ε2c∗

1A
∥∥

�2
≤ C1ε

5
2 ,

(2.16)

for t ∈ [−τ0ε
−3, τ0ε

−3].

Remark 5. It is an open problem to justify the KP-II approximation for diagonal propagation with c2 �= c1

and α2 �= 2α1 or for other directions along the lattice. The main challenge arises in controlling in Sobolev
norm of the nonlocal terms computed at solutions of the KP-II equation. Even for Theorem 2, if we use
another equivalent choice for the asymptotic approximation, e.g.

χm,n − xm,n =
1
2
ε2A

(
ε(m − c∗

1t), ε
2n, ε3t

)
+ error, (2.17)

the asymptotic expansions contain some nonlocal terms. Although these nonlocal terms can be trans-
formed away by near-identity transformations, the choice of (2.12) allows us to avoid the nonlocal terms,
see Sect. 5.

3. Preliminary results

Consider the Cauchy problem for the normalized KP-II equation
{

∂τA + ∂ξ

(
A2

)
+ ∂3

ξA + ∂−1
ξ ∂2

ηA = 0, t > 0,

A|τ=0 = A0.
(3.1)

The normalized KP-II equation differs slightly from (2.9) and (2.13), in the choice of constants. However,
the constants in the KP-II equation can be changed, as long as each constant is positive, through a scaling
of its variables.
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Global well-posedness of the Cauchy problem (3.1) was established in Hs
(
T

2
)

or Hs
(
R

2
)

with any
s ≥ 0 in [6], provided that the initial data satisfies the constraint

∫

R

A0 (ξ, η) dξ = 0, for every η. (3.2)

The result was proven by combining local well-posedness and conservation laws, namely conservation of
the L2 norm along the solution.

Local well-posedness result was extended in [35] to Sobolev spaces of the type Hs1,s2
(
R

2
)
, with

s1 > − 1
4 and s2 ≥ 0, the global result was also obtained by the conservation laws provided that s1 ≥ 0. It

was further shown in [34] that the zero-mean constraint (3.2) can be dropped in the local well-posedness
result.

We will use the following local well-posedness result [19] (see [36] for earlier work).

Proposition 1. [19] For any A0 ∈ Hs+6
(
R

2
)
such that ∂−2

ξ ∂2
ηA0 ∈ Hs+6

(
R

2
)
with fixed s ≥ 0, there

exists τ0 > 0 such that the Cauchy problem (3.1) admits a unique solution

A ∈ C0
(
[−τ0, τ0] ,Hs+6

) ∩ C1
(
[−τ0, τ0] ,Hs+3

) ∩ C2 ([−τ0, τ0] ,Hs)

such that ∂−1
ξ ∂ηA ∈ C0

(
[−τ0, τ0] ,Hs+5

) ∩ C1
(
[−τ0, τ0] ,Hs+2

)
.

However, for our work, we need to extend this result to C3 ([−τ0, τ0] ,Hs) since we need the antideriv-
ative term ∂−1

ξ A as a function of τ to be twice continuously differentiable in some Sobolev space. The
following lemma presents the corresponding extension of Proposition 1.

Lemma 1. For any A0 ∈ Hs+9
(
R

2
)
such that ∂−2

ξ ∂2
ηA0 ∈ Hs+9

(
R

2
)
and

∂−1
ξ ∂2

η

[
∂−2

ξ ∂2
ηA0 + A2

0

]
∈ Hs+3

(
R

2
)

with fixed s ≥ 0, there exists τ0 > 0 such that the Cauchy problem (3.1) admits a unique solution

A ∈ C0
(
[−τ0, τ0] ,Hs+9

) ∩ C1
(
[−τ0, τ0] ,Hs+6

) ∩ C2
(
[−τ0, τ0] ,Hs+3

) ∩ C3 ([−τ0, τ0] ,Hs)

such that

∂−1
ξ ∂ηA ∈ C0

(
[−τ0, τ0] ,Hs+8

) ∩ C1
(
[−τ0, τ0] ,Hs+5

) ∩ C2
(
[−τ0, τ0] ,Hs+2

)

and

∂−2
ξ ∂2

ηA ∈ C0
(
[−τ0, τ0] ,Hs+6

) ∩ C1
(
[−τ0, τ0] ,Hs+3

)
.

Proof. Assume that A solves the Cauchy problem (3.1) and set D := ∂−2
ξ ∂2

ηA. By Proposition 1, since
the initial data satisfies A0 ∈ Hs+9

(
R

2
)

and ∂−2
ξ ∂2

ηA0 ∈ Hs+9
(
R

2
)

with s ≥ 0, the KP-II equation has
a solution

A ∈ C0
(
[−τ0, τ0] ,Hs+9

) ∩ C1
(
[−τ0, τ0] ,Hs+6

) ∩ C2
(
[−τ0, τ0] ,Hs+3

)
(3.3)

such that ∂−1
ξ ∂ηA ∈ C0

(
[−τ0, τ0] ,Hs+8

) ∩ C1
(
[−τ0, τ0] ,Hs+5

)
. Taking ∂2

η (·) of the KP-II equation
yields

∂2
ξ∂τD + ∂ξ∂

2
η

(
A2

)
+ ∂5

ξD + ∂ξ∂
2
ηD = 0.

Setting D̃ := D + A2 and taking ∂−2
ξ (·) yields the evolution equation

∂τ D̃ + ∂3
ξ D̃ + ∂−1

ξ ∂2
ηD̃ = ∂τ

(
A2

)
+ ∂3

ξ

(
A2

)
. (3.4)
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Let us define Ω := ∂−1
ξ ∂2

η + ∂3
ξ and S(τ) := eτΩ. Since Ω is skew-adjoint, the evolution operator S (τ)

is unitary in L2(R2). Using Duhamel’s principle, we can write the evolution equation (3.4) in the integral
form:

D̃ (τ) = S(τ)D̃0 +

τ∫

0

S(τ − s)
[
∂s

(
A2

)
+ ∂3

ξ

(
A2

)]
(s)ds,

where D̃0 = ∂−2
ξ ∂2

ηA0 + A2
0. Expressing back D = D̃ − A gives us an integral equation for D(τ) of the

form

D (τ) = S(τ)D̃0 − A(τ)2 +

τ∫

0

S(τ − s)
[
∂s

(
A2

)
+ ∂3

ξ

(
A2

)]
(s)ds. (3.5)

Since D̃0 ∈ Hs+9(R2) and S(τ) is unitary in L2(R2), the local solution (3.3) yields D ∈
C0

(
[−τ0, τ0] ,Hs+6

)
.

Taking the time derivative of the integral equation (3.5), using

d

dτ
S(τ − s) = − d

ds
S(τ − s),

and integrating by parts, we obtain

∂τD(τ) =S(τ)
[
ΩD̃0 + 2A0∂τA0 + ∂3

ξ

(
A2

0

)] − 2A(τ)∂τA(τ)

+

τ∫

0

S (τ − s) ∂s

[
∂s

(
A2

)
+ ∂3

ξ

(
A2

)]
(s)ds.

Since ΩD̃0 ∈ Hs+3(R2), then the solution (3.3) satisfies ∂τD ∈ C0
(
[−τ0, τ0] ,Hs+3

)
, which gives ∂−2

ξ ∂2
ηA

∈ C1
(
[−τ0, τ0] ,Hs+3

)
.

It remains to control ∂3
τA and ∂−1

ξ ∂η∂2
τA, which is achieved by computing the time derivatives of the

KP-II equation:

∂2
τA = −

(
2∂ξ (A∂τA) + ∂3

ξ∂τA + ∂−1
ξ ∂2

η∂τA
)

,

∂3
τA = −

(
2∂ξ

(
(∂τA)2 + A∂2

τA
)

+ ∂3
ξ∂2

τA + ∂−1
ξ ∂2

η∂2
τA

)

It follows from (3.3) that all but the last term in ∂3
τA are in C0 ([−τ0, τ0] ,Hs). By using the expression

for ∂2
τA, we check that

∂−1
ξ ∂2

τA = − (
2A∂τA + ∂2

ξ∂τA + ∂τD
)
, (3.6)

so that ∂−1
ξ ∂2

τA ∈ C0
(
[−τ0, τ0] ,Hs+3

)
, which yields A ∈ C3 ([−τ0, τ0] ,Hs) and ∂−1

ξ ∂ηA ∈
C2

(
[−τ0, τ0] ,Hs+2

)
. �

Next we derive a useful bound on the �2(Z2) norm of a function expressed in terms of the slowly
varying solution of the KP-II equation defined in Hs(R2). A similar result for one-dimensional chains was
obtained in [9] (see also [31] for earlier work).

Proposition 2. [9] Let uj = U(εj), where U ∈ H1(R). There is a constant C > 0 such that for every
ε ∈ (0, 1] we have

‖u‖�2(Z) ≤ Cε− 1
2 ‖U‖H1(R) , ∀U ∈ H1 (R) . (3.7)

The following lemma generalizes Proposition 2 for two-dimensional square lattices.
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Lemma 2. Let uj,k = U(εj, ε2k), where U ∈ Hs(R2) with fixed s > 1. There is a constant Cs > 0 that
depends on s such that for every ε ∈ (0, 1] we have

‖u‖�2(Z2) ≤ Csε
− 3

2 ‖U‖Hs(R2) , ∀U ∈ Hs
(
R

2
)
. (3.8)

Proof. We use the discrete Fourier transform defined by

û (θ, φ) =
∑

(j,k)∈Z2

uj,ke−i(jθ+kφ)

with the inverse transform given by

uj,k =
1

(2π)2

π∫

−π

π∫

−π

û (θ, φ) ei(jθ+kφ)dθdφ. (3.9)

Since U ∈ Hs(R2) and s > 1, the Fourier transform of U denoted by Û can be defined through the
standard formula. We represent

uj,k = U(εj, ε2k) =
1

(2π)2

∞∫

−∞

∞∫

−∞
Û(p̃, q̃)ei(εjp̃+ε2kq̃)dp̃dq̃

=
1

(2π)2ε3

∞∫

−∞

∞∫

−∞
Û
(p

ε
,

q

ε2

)
ei(jp+kq)dpdq

=
1

(2π)2ε3

∑

(n,m)∈Z2

(2n+1)π∫

(2n−1)π

(2m+1)π∫

(2m−1)π

Û
(p

ε
,

q

ε2

)
ei(jp+kq)dpdq

=
1

(2π)2ε3

∑

(n,m)∈Z2

π∫

−π

π∫

−π

Û

(
θ + 2πm

ε
,
φ + 2πn

ε2

)
ei(jθ+kφ)dθdφ.

(3.10)

For any finite subset Λ ⊂ Z
2, we have

∑

(n,m)∈Λ

π∫

−π

π∫

−π

∣∣∣∣Û
(

θ + 2πm

ε
,
φ + 2πn

ε2

)∣∣∣∣ dθdφ ≤
∞∫

−∞

∞∫

−∞

∣∣∣Û
(p

ε
,

q

ε2

)∣∣∣ dpdq,

hence

∑

(n,m)∈Z2

π∫

−π

π∫

−π

∣∣∣∣Û
(

θ + 2πm

ε
,
φ + 2πn

ε2

)∣∣∣∣ dθdφ ≤ ‖Û‖L1(R2)ε
3,

where ‖Û‖L1(R2) < ∞ if U ∈ Hs(R2) with s > 1. Then, we can interchange summation and integration
in (3.10) by the Fubini-Tonelli theorem. Comparing (3.9) and (3.10) yields

û (θ, φ) =
1
ε3

∑

(n,m)∈Z2

Û

(
θ + 2πm

ε
,
φ + 2πn

ε2

)
.

Parseval’s identity yields

‖u‖2
�2(Z2) =

1
(2π)2ε6

π∫

−π

π∫

−π

∣∣∣∣∣∣

∑

(n,m)∈Z2

Û

(
θ + 2πm

ε
,
φ + 2πn

ε2

)∣∣∣∣∣∣

2

dθdφ
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≤ 1
(2π)2ε6

∑

(n1,m1)∈Z
2

(n2,m2)∈Z
2

π∫

−π

π∫

−π

∣∣∣∣Û
(

θ + 2πm1

ε
,
φ + 2πn1

ε2

)∣∣∣∣

×
∣∣∣∣Û

(
θ + 2πm2

ε
,
φ + 2πn2

ε2

)∣∣∣∣ dθdφ.

Denote 〈x, y〉2 =
√

1 + x2 + y2. Inserting the weights
〈

πm1
ε , πn1

ε2

〉−2s

2
and

〈
πm2

ε , πn2
ε2

〉−2s

2
, then applying

Young’s inequality, ab ≤ 1
2a2 + 1

2b2, yields

‖u‖2
�2(Z2) ≤ 1

(2π)2ε6

∑

(n1,m1)∈Z
2

(n2,m2)∈Z
2

〈πm1

ε
,
πn1

ε2

〉−2s

2

〈πm2

ε
,
πn2

ε2

〉−2s

2

×
⎛

⎝
π∫

−π

π∫

−π

1
2

〈πm1

ε
,
πn1

ε2

〉4s

2

∣∣∣∣Û
(

θ + 2πm1

ε
,
φ + 2πn1

ε2

)∣∣∣∣
2

dθdφ

+

π∫

−π

π∫

−π

1
2

〈πm2

ε
,
πn2

ε2

〉4s

2

∣∣∣∣Û
(

θ + 2πm2

ε
,
φ + 2πn2

ε2

)∣∣∣∣
2

dθdφ

⎞

⎠ .

Hence, by symmetry of coefficients, we obtain:

‖u‖2
�2(Z2) ≤ 1

(2π)2ε6

⎛

⎝
∑

(n1,m1)∈Z2

〈πm1

ε
,
πn1

ε2

〉−2s

2

⎞

⎠

×
⎛

⎝
∑

(n2,m2)∈Z2

π∫

−π

π∫

−π

〈πm2

ε
,
πn2

ε2

〉2s

2

∣∣∣∣Û
(

θ + 2πm2

ε
,
φ + 2πn2

ε2

)∣∣∣∣
2

dθdφ

⎞

⎠ .

When ε ∈ (0, 1] the double series in first term in ‖u‖2
�2(Z) converges for s > 1 by the integral test, hence

∃Cs > 0 so that
∑

(n1,m1)∈Z2

〈πm1

ε
,
πn1

ε2

〉−2s

2
< C2

s .

The second term in ‖u‖2
�2(Z) is related to the Hs norm of U given by,

‖U‖2
Hs =

1
(2π)2

∞∫

−∞

∞∫

−∞
〈p̃, q̃〉2s

2

∣∣∣Û(p̃, q̃)
∣∣∣
2

dp̃dq̃

=
1

(2π)2ε3

∑

(n2,m2)∈Z2

π∫

−π

π∫

−π

〈
θ + 2πm2

ε
,
φ + 2πn2

ε2

〉2s

2

×
∣∣∣∣Û

(
θ + 2πm2

ε
,
φ + 2πn2

ε2

)∣∣∣∣
2

dθdφ.

Since
〈πm2

ε
,
πn2

ε2

〉2s

2
≤

〈
θ + 2πm2

ε
,
φ + 2πn2

ε2

〉2s

2

, ∀θ, φ ∈ [−π, π],
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the second term in ‖u‖2
�2(Z) is bounded above by (2π)2ε3‖U‖2

Hs . Hence, we obtain ‖u‖2
�2(Z2) ≤ ε−3C2

s ‖U‖2
Hs

which yields (3.8). �

4. Proof of Theorem 1

Here, we use the results of Lemmas 1 and 2 in order to prove Theorem 1. We start by writing equations
of motions in terms of the strain variables (2.6):

u̇
(1)
j,k = wj+1,k − wj,k,

u̇
(2)
j,k = wj,k+1 − wj,k,

v̇
(1)
j,k = zj+1,k − zj,k,

v̇
(2)
j,k = zj,k+1 − zj,k,

ẇj,k = c2
1

(
u

(1)
j,k − u

(1)
j−1,k

)
+ c2

2

(
u

(2)
j,k − u

(2)
j,k−1

)

+α1

[(
u

(1)
j,k

)2

−
(
u

(1)
j−1,k

)2
]

+α2

[
u

(2)
j,kv

(2)
j,k − u

(2)
j,k−1v

(2)
j,k−1 +

1
2

(
v
(1)
j,k

)2

− 1
2

(
v
(1)
j−1,k

)2
]

żj,k = c2
1

(
v
(2)
j,k − v

(2)
j,k−1

)
+ c2

2

(
v
(1)
j,k − v

(1)
j−1,k

)
,

+α1

[(
v
(2)
j,k

)2

−
(
v
(2)
j,k−1

)2
]

+α2

[
u

(1)
j,kv

(1)
j,k − u

(1)
j−1,kv

(1)
j−1,k +

1
2

(
u

(2)
j,k

)2

− 1
2

(
u

(2)
j,k−1

)2
]

, (4.1)

where wj,k := ẋj,k, zj,k := ẏj,k, and (j, k) ∈ Z
2. The justification procedure is divided into the following

four steps.

4.1. Step 1. Decomposition

Let us use the following decomposition,

u
(1)
j,k = ε2A (ξ, η, τ) + ε2U

(1)
j,k

u
(2)
j,k = ε2Bε (ξ, η, τ) + ε2U

(2)
j,k

v
(1)
j,k = ε2V

(1)
j,k

v
(2)
j,k = ε2V

(2)
j,k

wj,k = ε2Wε (ξ, η, τ) + ε2Wj,k

zj,k = ε2Zj,k

(4.2)

where ξ = ε (j − c1t), η = ε2k, and τ = ε3t. The leading-order function A is defined as a suitable solution
to the KP-II equation (2.9), whereas the ε-dependent functions Bε and Wε are introduced to eliminate
the lower-order terms in ε arising from time derivatives and finite differences of A in the first and second
equations of system (4.1).
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We denote the error terms of the formal power ε5 by O(ε5) and define Wε and Uε from the following
equations:

Wε (ξ + ε, η) − Wε (ξ, η) = −εc1∂ξA(ξ, η) + ε3∂τA(ξ, η) + O(ε5) (4.3)

and

Wε

(
ξ, η + ε2

) − Wε (ξ, η) = −εc1∂ξBε(ξ, η) + ε3∂τBε(ξ, η) + O(ε5), (4.4)

where the time dependence is dropped from the list of arguments.
We look for an approximate solution to (4.3) in the form:

Wε = W (0) + εW (1) + ε2W (2) + ε3W (3), (4.5)

where the functions W (j) depend on (ξ, η) and decay to zero at infinity. Plugging (4.5) into (4.3) and
expanding each W (j) in Taylor series, we get

ε∂ξW
(0) +

1
2
ε2∂2

ξW (0) +
1
6
ε3∂3

ξW (0) +
1
24

ε4∂4
ξW (0)

+ ε2∂ξW
(1) +

1
2
ε3∂2

ξW (1) +
1
6
ε4∂3

ξW (1) + ε3∂ξW
(2) +

1
2
ε4∂2

ξW (2)

+ ε4∂ξW
(3) = −εc1∂ξA + ε3∂τA + O(ε5).

Grouping terms by their orders in powers of ε yields a sequence of equations with their relevant solutions:

O(ε) : ∂ξW
(0) = −c1∂ξA

=⇒ W (0) = −c1A

O(ε2) :
1
2
∂2

ξW (0) + ∂ξW
(1) = 0

=⇒ W (1) =
c1

2
∂ξA

O(ε3) :
1
6
∂3

ξW (0) +
1
2
∂2

ξW (1) + ∂ξW
(2) = ∂τA

=⇒ W (2) = ∂−1
ξ ∂τA − c1

12
∂2

ξA

O(ε4) :
1
24

∂4
ξW (0) +

1
6
∂3

ξW (1) +
1
2
∂2

ξW (2) + ∂ξW
(3) = 0

=⇒ W (3) = −1
2
∂τA.

(4.6)

With the choice in (4.6), this construction ensures that equation (4.3) is satisfied up to and including the
order of O(ε4). Substituting (4.6) into (4.5) yields

Wε = −c1A + ε
(c1

2
∂ξA

)
+ ε2

(
∂−1

ξ ∂τA − c1

12
∂2

ξA
)

− ε3

(
1
2
∂τA

)
. (4.7)

Similarly, we look for an approximate solution to (4.4) in the form:

Bε = εB(1) + ε2B(2) + ε3B(3), (4.8)

where the functions B(j) depend on (ξ, η) and decay to zero at infinity. Plugging (4.5) and (4.8) into (4.4)
and expanding each W (j) in Taylor series, we get

ε2
(
−c1∂ξB

(1)
)

+ ε3
(
−c1∂ξB

(2)
)

+ ε4
(
−c1∂ξB

(3) + ∂τB(1)
)

= ε2∂ηW (0) + ε3∂ηW (1) + ε4

(
∂ηW (2) +

1
2
∂2

ηW (0)

)
+ O(ε5).

(4.9)
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Grouping terms by their orders in powers of ε and using the values for Wε found in (4.6), we obtain a
sequence of equations with their relevant solutions:

O(ε2) : −c1∂ξB
(1) = −c1∂ηA

=⇒ B(1) = ∂−1
ξ ∂ηA

O(ε3) : −c1∂ξB
(2) =

c1

2
∂ξ∂ηA

=⇒ B(2) = −1
2
∂ηA

O(ε4) : −c1∂ξB
(3) + ∂τB(1) = ∂−1

ξ ∂η∂τA − c1

12
∂2

ξ∂ηA − c1

2
∂2

ηA

=⇒ B(3) =
1
2
∂−1

ξ ∂2
ηA +

1
12

∂ξ∂ηA

(4.10)

Substituting (4.10) into (4.8) yields

Bε = ε∂−1
ξ ∂ηA − ε2

(
1
2
∂ηA

)
+ ε3

(
1
2
∂−1

ξ ∂2
ηA +

1
12

∂ξ∂ηA

)
. (4.11)

Substituting decomposition (4.2) into the first and second equations of system (4.1) yield equations

U̇
(1)
j,k = Wj+1,k − Wj,k + ResU(1)

j,k ,

U̇
(2)
j,k = Wj,k+1 − Wj,k + ResU(2)

j,k ,
(4.12)

where

ResU(1)

j,k := c1ε∂ξA − ε3∂τA + Wε (ξ + ε, η) − Wε (ξ, η) ,

ResU(2)

j,k := c1ε∂ξBε − ε3∂τBε + Wε

(
ξ, η + ε2

) − Wε (ξ, η) .

If expansions (4.7) and (4.11) are used, the residual terms have the formal order of O(ε5). The third and
fourth equations of system (4.1) have not been changed:

V̇
(1)
j,k = Zj+1,k − Zj,k,

V̇
(2)
j,k = Zj,k+1 − Zj,k.

(4.13)

Finally, the last two equations of system (4.1) can be rewritten explicitly as

Ẇj,k = c2
1

[
U

(1)
j,k − U

(1)
j−1,k

]
+ c2

2

[
U

(2)
j,k − U

(2)
j,k−1

]

+ α1ε
2

[
2AU

(1)
j,k − 2A (ξ − ε, η) U

(1)
j−1,k +

(
U

(1)
j,k

)2

−
(
U

(1)
j−1,k

)2
]

+ α2ε
2
[
Bε (ξ, η) V

(2)
j,k − Bε

(
ξ, η − ε2

)
V

(2)
j,k−1 + U

(2)
j,k V

(2)
j,k − U

(2)
j,k−1V

(2)
j,k−1

]

+ α2ε
2

[
1
2

(
V

(1)
j,k

)2

− 1
2

(
V

(1)
j−1,k

)2
]

+ ResW
j,k

Żj,k = c2
2

[
V

(1)
j,k − V

(1)
j−1,k

]
+ c2

1

[
V

(2)
j,k − V

(2)
j,k−1

]

+ α2ε
2

[
Bε (ξ, η) U

(2)
j,k − Bε

(
ξ, η − ε2

)
U

(2)
j,k−1 +

1
2

(
U

(2)
j,k

)2

− 1
2

(
U

(2)
j,k−1

)2
]

+ α2ε
2
[
A (ξ, η) V

(1)
j,k − A (ξ − ε, η) V

(1)
j−1,k + V

(1)
j,k U

(1)
j,k − V

(1)
j−1,kU

(1)
j−1,k

]

+ α1ε
2

[(
V

(2)
j,k

)2

−
(
V

(2)
j,k−1

)2
]

+ ResZ
j,k

(4.14)
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where

ResW
j,k :=c1ε∂ξWε − ε3∂τWε + c2

1 [A (ξ, η) − A (ξ − ε, η)]

+ c2
2

[
Bε (ξ, η) − Bε

(
ξ, η − ε2

)]
+ α1ε

2
[
A (ξ, η)2 − A (ξ − ε, η)2

]
,

ResZ
j,k :=

α2ε
2

2

[
Bε (ξ, η)2 − Bε

(
ξ, η − ε2

)2]
.

Expanding each term in ResW
j,k by using expansions (4.7) and (4.11) yields the following formal expansion

ResW
j,k = ε3

[
2c1∂τA +

c2
1

12
∂3

ξA + c2
2∂

−1
ξ ∂2

ηA + α1∂ξ

(
A2

)]

−ε4

[
c1∂ξ∂τA +

c2
1

24
∂4

ξA +
c2
2

2
∂2

ηA +
α1

2
∂2

ξ

(
A2

)]
+ O(ε5).

If the function A is a solution of the KP-II equation (2.9), the residual term ResW has the formal order
of O(ε5). It is also clear from expansion (4.11) that ResZ has the formal order of O(ε6).

4.2. Step 2. Residual terms

The residual terms are handled by using Taylor’s theorem. If A is defined in Sobolev space Hs(R2) with
sufficiently large s, then we can estimate the residual terms in the �2(Z2) norm by an application of
Lemma 2. Since all residual terms have the formal order of O(ε5), we can obtain the bound of O(ε

7
2 ) on

the residual terms in the �2(Z) norm.
The following lemma gives us estimates of the �2-norm for the residual terms in equations (4.12) and

(4.14). No residual terms appear in equations (4.13).

Lemma 3. Let A ∈ C0(R,Hs) be a solution to the KP-II equation (2.9) with s ≥ 9. There is a positive
constant C that depend on A such that for all ε ∈ (0, 1], we have

∥∥∥ResU(1)

j,k

∥∥∥
�2

+
∥∥∥ResU(2)

j,k

∥∥∥
�2

+
∥∥ResW

j,k

∥∥
�2

+
∥∥ResZ

j,k

∥∥
�2

≤ Cε
7
2 . (4.15)

Proof. By construction, all terms in ResU(1)

j,k below the formal order of O(ε5) vanish. From the Taylor’s
theorem for Wε (ξ + ε, η) − Wε (ξ, η), the nonzero terms at O(ε5) are given by the integrals:

ε5

1∫

0

∂5−l
ξ W (l)

(
ε (j + r) , ε2k

) (1 − r)5−l−1

(5 − l − 1)!
dr, 0 ≤ l ≤ 3.

In view of corrections for W (l) in (4.7), the error is given by a linear combination of the following two
terms:

ε5 sup
r∈[0,1]

∣∣∂5
ξA

(
ε (j + r) , ε2k

)∣∣ , ε5 sup
r∈[0,1]

∣∣∂2
ξ∂τA

(
ε (j + r) , ε2k

)∣∣ .

Using Lemma 2, there is a constant Cs > 0 such that the �2 norm of the residual term ResU(1)
is bounded

by
∥∥∥ResU(1)

∥∥∥
�2

≤ Csε
7
2 (‖A‖Hs+5 + ‖∂τA‖Hs+2) ,

for s > 1.
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Similarly, all terms in ResU(2)

j,k below the formal order of O(ε5) vanish. From the Taylor’s theorem for
Wε

(
ξ, η + ε2

)− Wε (ξ, η) and the corrections for Wε and Uε given by (4.7) and (4.11), the error is given
by a linear combination of the following six terms:

ε5 sup
r∈[0,1]

∣∣∂ξ∂
2
ηA

(
εj, ε2(k + r)

)∣∣ , ε5 sup
r∈[0,1]

∣∣∂η∂τA
(
εj, ε2(k + r)

)∣∣ ,

ε6 sup
r∈[0,1]

∣∣∂3
ηA

(
εj, ε2(k + r)

)∣∣ , ε6 sup
r∈[0,1]

∣∣∂2
ξ∂2

ηA
(
εj, ε2(k + r)

)∣∣ ,

ε6 sup
r∈[0,1]

∣∣∣∂−1
ξ ∂2

η∂τA
(
εj, ε2(k + r)

)∣∣∣ , ε6
∣∣∂ξ∂η∂τA

(
εj, ε2k

)∣∣ .

Using Lemma 2, there is a constant Cs > 0 such that the �2 norm of the residual term ResU(2)
is bounded

for ε ∈ (0, 1] by
∥∥∥ResU(2)

∥∥∥
�2

≤ Csε
7
2

(
‖A‖Hs+4 + ‖∂τA‖Hs+2 + ‖∂−1

ξ ∂η∂τA‖Hs+1

)
,

for s > 1.
If A ∈ C0(R,Hs) is a solution to the KPII equation (2.9) with s ≥ 9, all terms in ResW

j,k below the
formal order of O(ε5) vanish. Expanding all terms in ResW

j,k shows that the error is given by a linear
combination of the following eight terms:

ε5
∣∣∣∂−1

ξ ∂2
τA

(
εj, ε2k

)∣∣∣ , ε5
∣∣∂2

ξ∂τA
(
εj, ε2k

)∣∣ , ε6
∣∣∂2

τA
(
εj, ε2k

)∣∣ ,

ε5 sup
r∈[0,1]

∣∣∂5
ξA

(
ε(j + r), ε2k

)∣∣ , ε5 sup
r∈[0,1]

∣∣∂3
ξA2

(
ε(j + r), ε2k

)∣∣ ,

ε5 sup
r∈[0,1]

∣∣∣∂−1
ξ ∂3

ηA
(
εj, ε2(k + r)

)∣∣∣ , ε5 sup
r∈[0,1]

∣∣∂ξ∂
2
ηA

(
εj, ε2(k + r)

)∣∣ ,

and

ε6 sup
r∈[0,1]

∣∣∂3
ηA

(
εj, ε2(k + r)

)∣∣ .

Using Lemma 2 and the relation (3.6) for ∂−1
ξ ∂2

τA, there is a constant Cs > 0 such that the �2 norm of
the residual term ResW is bounded for ε ∈ (0, 1] by

∥∥ResW
∥∥

�2
≤ Csε

7
2

(
‖∂2

τA‖Hs + ‖∂τA‖Hs+2 + ‖∂−2
ξ ∂2

η∂τA‖Hs + ‖A‖Hs+5 + ‖∂−1
ξ ∂ηA‖Hs+2

+‖A‖Hs‖A‖Hs+3 + ‖A‖Hs‖∂τA‖Hs) ,

for s > 1.
The final residual term ResZ

j,k is estimated from the expansion (4.11). The error is given by

ε6 sup
r∈[0,1]

[∣∣∣∂−1
ξ ∂ηA(εj, ε2(k + r))

∣∣∣ + ε
∣∣∂ηA(εj, ε2(k + r))

∣∣

+ ε2
∣∣∣∂−1

ξ ∂2
ηA(εj, ε2(k + r))

∣∣∣ + ε2
∣∣∂ξ∂ηA(εj, ε2(k + r))

∣∣
]

× sup
r∈[0,1]

[∣∣∣∂−1
ξ ∂2

ηA(εj, ε2(k + r))
∣∣∣ + ε

∣∣∂2
ηA(εj, ε2(k + r))

∣∣

+ ε2
∣∣∣∂−1

ξ ∂3
ηA(εj, ε2(k + r))

∣∣∣ + ε2
∣∣∂ξ∂

2
ηA(εj, ε2(k + r))

∣∣
]

and is controlled in the �2 norm by using the bound
∥∥ResZ

∥∥
�2

≤ Csε
9
2

(∥∥∥∂−1
ξ ∂ηA

∥∥∥
2

Hs+2
+ ‖A‖2

Hs+3

)
,

where Cs > 0, s > 1, and ε ∈ (0, 1].
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Combining all four bounds together and using the fact that a solution A ∈ C0(R,Hs) to the KP-II
equation (2.9) with s ≥ 9 enjoys the estimates of Lemma 1, we obtain the bound (4.15). �

4.3. Step 3. Energy estimates

In order to control the growth of the approximation error from solutions to system (4.12), (4.13), and
(4.14), we will introduce the following energy function,

E(t) =frac12
∑

j,k∈Z2

W 2
j,k + Z2

j,k + c2
1

(
U

(1)
j,k

)2

+ c2
2

(
U

(2)
j,k

)2

+ c2
1

(
V

(1)
j,k

)2

+ c2
2

(
V

(2)
j,k

)2

+ α1ε
2

[
2A

(
U

(1)
j,k

)2

+
2
3

(
U

(1)
j,k

)3

+
2
3

(
V

(2)
j,k

)3
]

+ α2ε
2

[
A
(
V

(1)
j,k

)2

+ U
(1)
j,k

(
V

(1)
j,k

)2

+
(
U

(2)
j,k

)2

V
(2)
j,k + 2BεU

(2)
j,k V

(2)
j,k

]
.

(4.16)

The ε-dependent terms of E(t) are chosen from the condition that the growth rate E′(t) along the
solution of system (4.12), (4.13), and (4.14) does not contain terms of the formal orders O(ε) and O(ε2)
(see Lemma 5 below).

The following lemma establishes coercivity of the energy E(t) with respect to the �2 norm of the
perturbations as long as the perturbations are not large in the �2 norm.

Lemma 4. Let A ∈ C0
(
[−τ0, τ0] ,Hs

(
R

2
))

and ∂−1
ξ ∂ηA ∈ C0

(
[−τ0, τ0] ,Hs−1

(
R

2
))

with s > 3 and
assume that E(t) ≤ E0 for some ε-independent constant E0 > 0 for every t ∈ [−τ0ε

−3, τ0ε
−3]. There

exist some constants ε0 > 0 and K0 > 0 that depend on A such that

‖W‖2
�2 + ‖Z‖2

�2 +
∥∥∥U (1)

∥∥∥
2

�2
+
∥∥∥U (2)

∥∥∥
2

�2
+
∥∥∥V (1)

∥∥∥
2

�2
+
∥∥∥V (2)

∥∥∥
2

�2
≤ 2K0E(t), (4.17)

for each ε ∈ (0, ε0) and t ∈ [−τ0ε
−3, τ0ε

−3].

Proof. It follows from the decomposition (4.11) and Sobolev’s embedding of Hs(R2) into L∞(R2) for
s > 1 that if A ∈ C0

(
[−τ0, τ0] ,Hs

(
R

2
))

and ∂−1
ξ ∂ηA ∈ C0

(
[−τ0, τ0] ,Hs−1

(
R

2
))

with s > 3, then there
exists a constant C0 > 0 that depends on A such that

sup
t∈[−τ0,τ0]

(‖A(·, τ)‖L∞(R2) + ‖Uε(·, τ)‖L∞(R2)

) ≤ C0.

By using (4.16) and the Cauchy–Schwarz inequality for U
(2)
j,k V

(2)
j,k , we derive the following lower bound for

E(t):

2E(t) ≥‖W‖2
�2 + ‖Z‖2

�2

+
(

c2
1 − 2α1ε

2C0 − 2
3
α1ε

2‖U (1)‖�∞

)∥∥∥U (1)
∥∥∥

2

�2

+
(
c2
2 − α2ε

2C0 − α2ε
2‖V (2)‖�∞

)∥∥∥U (2)
∥∥∥

2

�2

+
(
c2
1 − α2ε

2C0 − α2ε
2‖U (1)‖�∞

)∥∥∥V (1)
∥∥∥

2

�2

+
(

c2
2 − α2ε

2C0 − 2
3
α1ε

2‖V (2)‖�∞

)∥∥∥V (2)
∥∥∥

2

�2

For fixed c1, c2 > 0, we use the bound ‖U‖�∞ ≤ ‖U‖�2 and choose ε0 > 0 and K0 > 0 such that
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c2
1 − 2α1ε

2
0C0 − 2

3
α1ε

2
0(2K0E0)1/2 ≥ min(1,K−1

0 ),

c2
2 − α2ε

2
0C0 − α2ε

2
0(2K0E0)1/2 ≥ min(1,K−1

0 ),

c2
1 − α2ε

2
0C0 − α2ε

2
0(2K0E0)1/2 ≥ min(1,K−1

0 ),

c2
2 − α2ε

2
0C0 − 2

3
α1ε

2
0(2K0E0)1/2 ≥ min(1,K−1

0 ),

which is always possible if ε0 is sufficiently small. This gives the bound (4.17) with K0 redefined as
max(1,K0). �

The following lemma uses the coercivity of the energy E(t) in Lemma 4 to establish the rate at which
it may grow in time along the solutions of system (4.12), (4.13), and (4.14). We will be able to use this
in Step 4, along with a Gronwall lemma argument of Lemma 6 below, in order to get a bound on the size
of the energy quantity. This will in turn gives a bound on how far solutions of the KP-II equation (2.9)
drift away from solutions of the FPU system (4.1) and hence will complete the proof of Theorem 1.

Lemma 5. Let A ∈ C0
(
[−τ0, τ0] ,Hs+9

(
R

2
))

be a solution to the KP-II equation (2.9) with s ≥ 0 in the
class of functions of Lemma 1 and assume that E(t) ≤ E0 for some ε-independent constant E0 > 0 for
every t ∈ [−τ0ε

−3, τ0ε
−3]. There exist some constants ε0 > 0 and K0 > 0 that depend on A such that

|E′(t)| ≤ K0

(
ε

7
2 E(t)

1
2 + ε3E(t)

)
, (4.18)

for each ε ∈ (0, ε0) and t ∈ [−τ0ε
−3, τ0ε

−3].

Proof. By differentiating E(t), defined by (4.16), in time t, we obtain

E′(t) =
∑

j,k∈Z2

Ẇj,kWj,k + Żj,kZj,k + c2
1U̇

(1)
j,k U

(1)
j,k + c2

2U̇
(2)
j,k U

(2)
j,k + c2

1V̇
(1)
j,k V

(1)
j,k + c2

2V̇
(2)
j,k V

(2)
j,k

+ α1ε
2

[
Ȧ
(
U

(1)
j,k

)2

+ 2AU̇
(1)
j,k U

(1)
j,k + U̇

(1)
j,k

(
U

(1)
j,k

)2

+ V̇
(2)
j,k

(
V

(2)
j,k

)2
]

+ α2ε
2

[
ḂεU

(2)
j,k V

(2)
j,k +

1
2
U̇

(1)
j,k

(
V

(1)
j,k

)2

+ U
(1)
j,k V̇

(1)
j,k V

(1)
j,k +

1
2

(
U

(2)
j,k

)2

V̇
(2)
j,k

+U̇
(2)
j,k U

(2)
j,k V

(2)
j,k + BεU̇

(2)
j,k V

(2)
j,k + BεU

(2)
j,k V̇

(2)
j,k +

1
2
Ȧ
(
V

(1)
j,k

)2

+ AV̇
(1)
j,k V

(1)
j,k

]
,

where the dot denotes derivative in t and is applied with the chain rule to A and Uε that depends on
(ε(j − c1t), ε2k, ε3t). Substituting equations of motion (4.12), (4.13), and (4.14) and summing across
(j, k) ∈ Z

2 simplifies E′(t) to the form:

E′(t) =
∑

j,k∈Z2

Wj,kResW
j,k + Zj,kResZ

j,k

+
(

c2
1U

(1)
j,k + 2α1ε

2AU
(1)
j,k + α1ε

2
(
U

(1)
j,k

)2

+
1
2
α2ε

2
(
V

(1)
j,k

)2
)

ResU(1)

+
(
c2
2U

(2)
j,k + α2ε

2BεV
(2)
j,k + α2ε

2U
(2)
j,k V

(2)
j,k

)
ResU(2)

+ α1ε
2
(−c1ε∂ξA + ε3∂τA

) (
U

(1)
j,k

)2

+ α2ε
2
(−c1ε∂ξBε + ε3∂τBε

)
U

(2)
j,k V

(2)
j,k

+
α2

2
ε2

(−c1ε∂ξA + ε3∂τA
) (

V
(1)
j,k

)2

.
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Applying the Cauchy–Schwartz inequality and the bound ‖U‖�∞ ≤ ‖U‖�2 yields

|E′(t)| ≤ ‖W‖�2

∥∥ResW
∥∥

�2
+ ‖Z‖�2

∥∥ResZ
∥∥

�2

+
(

c2
1

∥∥∥U (1)
∥∥∥

�2
+ 2α1ε

2 ‖A‖L∞

∥∥∥U (1)
∥∥∥

�2
+ α1ε

2
∥∥∥U (1)

∥∥∥
2

�2
+

1
2
α2ε

2
∥∥∥V (1)

∥∥∥
2

�2

)∥∥∥ResU(1)
∥∥∥

�2

+
(
c2
2

∥∥∥U (2)
∥∥∥

�2
+ α2ε

2 ‖Bε‖L∞

∥∥∥V (2)
∥∥∥

�2
+ α2ε

2‖U (2)‖�2‖V (2)‖�2

)∥∥∥ResU(2)
∥∥∥

�2

+ ε2
(
c1ε ‖∂ξA‖L∞ + ε3 ‖∂τA‖L∞

)(
α1

∥∥∥U (1)
∥∥∥

2

�2
+

1
2
α2

∥∥∥V (1)
∥∥∥

2

�2

)

+ ε2
(
c1ε ‖∂ξBε‖L∞ + ε3 ‖∂τBε‖L∞

) ∥∥∥U (2)
∥∥∥

�2

∥∥∥V (2)
∥∥∥

�2
.

Estimating the residual terms and the perturbation terms with the help of Lemmas 3 and 4, respectively,
yields (4.18). �

4.4. Step 4. Bound on the approximation error

By making the substitution E(t) := 1
2Q(t)2, we obtain from (4.18):

|Q′(t)| ≤ K0

(
ε

7
2 + ε3Q

)
, (4.19)

where the constant K0 may change from one line to another line. The norm of the perturbation terms
controlled by Q(t) is further estimated by using the Gronwall’s inequality.

Lemma 6. Assume that Q(t) satisfies (4.19) for t ∈ [−τ0ε
−3, τ0ε

−3] and Q(0) ≤ C0ε
1
2 for some ε-

independent constant C0. There exists ε0 > 0 such that

Q(t) ≤ ε
1
2 (1 + C0) exp (K0τ0) (4.20)

for each ε ∈ (0, ε0) and t ∈ [−τ0ε
−3, τ0ε

−3].

Proof. By using the integrating factor, we can rewrite (4.19) in the form:
d

dt

[
exp

(−ε3K0t
)
Q
] ≤ K0ε

7
2 exp

(−ε3K0t
)
. (4.21)

Integrating (4.21) yields the Gronwall’s inequality

Q(t) ≤
(
Q(0) + ε

1
2

)
exp

(
ε3K0t

)
. (4.22)

Since Q(0) ≤ Cε
1
2 and t ∈ [−τ0ε

−3, τ0ε
−3], the inequality (4.22) yields (4.20). �

We can finish the proof of Theorem 1 by using Lemmas 4 and 6. Since

Q(0) ≤ CA

(∥∥∥U
(1)
in

∥∥∥
�2

+
∥∥∥U

(2)
in

∥∥∥
�2

+ ‖Win‖�2 +
∥∥∥V

(1)
in

∥∥∥
�2

+
∥∥∥V

(2)
in

∥∥∥
�2

+ ‖Zin‖�2

)
,

where the subscript in stands for the initial condition, the decomposition (4.2) and the hypothesis (2.10)
yield that Q(0) ≤ Cε

1
2 , so that Lemma 6 gives the bound (4.20). With decomposition (4.2) and Lemma

4, we have that
∥∥∥u(1)(t) − ε2A

(
ε(j − c1t), η2k, ε3t

)∥∥∥
2

�2
+
∥∥∥u(2)(t) − ε2Bε

(
ε(j − c1t), η2k, ε3t

)∥∥∥
2

�2

+
∥∥w(t) − ε2Wε

(
ε(j − c1t), η2k, ε3t

)∥∥2

�2
+
∥∥∥v(1)(t)

∥∥∥
2

�2
+
∥∥∥v(2)(t)

∥∥∥
2

�2
+ ‖z(t)‖2

�2 ≤ K0ε
4Q(t)2,

where the ε-dependent functions Wε and Bε are given in terms of A by (4.7) and (4.11), respectively. Due
to the bound (4.20) and the triangle inequality, we obtain the bound (2.11) and the result of Theorem 1
follows.
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5. Proof of Theorem 2

Here, we give relevant details of the proof of Theorem 2. As is explained in the introduction, we will
only consider the reduction of the general FPU system if c1 = c2 and α2 = 2α1, when the vertical and
horizontal displacements on the square two-dimensional lattice coincide with xj,k = yj,k.

Instead of working with the strain variables in (2.14), we introduce the following strain variables (see
Fig. 2):

⎧
⎪⎪⎨

⎪⎪⎩

al
m,n = χm,n − xm,n,

ad
m,n = xm+1,n+1 − χm,n,

ax
m,n = xm+1,n − χm,n,

ay
m,n = xm,n+1 − χm,n,

(5.1)

in order to write equations of motion in the form:

ȧl
m,n =vm,n − um,n,

ȧd
m,n =um+1,n+1 − vm,n,

ȧx
m,n =um+1,n − vm,n,

ȧy
m,n =um,n+1 − vm,n,

u̇m,n =c2
1

(
al

m,n − ad
m−1,n−1 − ax

m−1,n − ay
m,n−1

)

+ 2α1

[(
al

m,n

)2 − (
ad

m−1,n−1

)2 − (
ax

m−1,n

)2 +
(
ay

m,n−1

)2]
,

v̇m,n =c2
1

(
ad

m,n − al
m,n + ax

m,n + ay
m,n

)

+ 2α1

[(
ad

m,n

)2 − (
al

m,n

)2
+
(
ax

m,n

)2 − (
ay

m,n

)2]
,

(5.2)

where um,n := ẋm,n, vm,n := χ̇m,n, and (m,n) ∈ Z
2. The justification procedure is divided into the same

four steps as in the case of the horizontal propagation.

5.1. Step 1. Decomposition

We will use the following decomposition,

al
m,n = ε2Lε (ξ, η, τ) + ε2Lm,n,

ad
m,n = ε2Dε (ξ, η, τ) + ε2Dm,n,

ax
m,n = ε2Xε (ξ, η, τ) + ε2Xm,n,

ay
m,n = ε2Yε (ξ, η, τ) + ε2Ym,n,

um,n = ε2Uε (ξ, η, τ) + ε2Um,n,

vm,n = ε2Vε (ξ, η, τ) + ε2Vm,n,

(5.3)

where ξ = ε(m − c∗
1t), η = ε2n, and τ = ε3t with c∗

1 := c1√
2
. By ignoring the error terms and the residual

terms of the formal order of O(ε5) for the time being, we shall use the equations of motion (5.2) and
define the expansions of the functions Lε, . . . , Vε in ε from the condition that all residual terms of the
formal order below O(ε5) are removed.

The first equation in system (5.2) gives us the relationship:

− εc∗
1∂ξLε + ε3∂τLε = Vε − Uε, (5.4)

which is used to eliminate Vε from all other relations.
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Adding the first and third equations in system (5.2) implies

− εc∗
1∂ξ(Lε + Xε) + ε3∂τ (Lε + Xε) = Uε (ξ + ε, η) − Uε (ξ, η) , (5.5)

which coincides with equation (4.3) up to notations. As follows from (2.12), we set

Xε + Lε = A, (5.6)

where A is a suitable solution of the KP-II equation (2.13). Since (5.5) coincides with (4.3), we rewrite
expansions (4.5) and (4.7) in new notations:

Uε = −c∗
1A + ε

(
c∗
1

2
∂ξA

)
+ ε2

(
∂−1

ξ ∂τA − c∗
1

12
∂2

ξA

)
− ε3

(
1
2
∂τA

)
. (5.7)

Adding the first and fourth equations in system (5.2) implies

− εc∗
1∂ξ(Lε + Yε) + ε3∂τ (Lε + Yε) = Uε

(
ξ, η + ε2

) − Uε (ξ, η) (5.8)

which coincides with Eq. (4.4) up to notations, Again, we rewrite expansions (4.8) and (4.11) in new
notations:

Yε + Lε = ε∂−1
ξ ∂ηA − ε2

(
1
2
∂ηA

)
+ ε3

(
1
2
∂−1

ξ ∂2
ηA +

1
12

∂η∂ξA

)
. (5.9)

Finally, adding the first and second equations in system (5.2) implies

− εc∗
1∂ξ(Lε + Dε) + ε3∂τ (Lε + Dε) = Uε

(
ξ + ε, η + ε2

) − Uε (ξ, η) . (5.10)

We derive by using Taylor series and expansion (5.7) up to the formal order of O(ε5):

Uε

(
ξ + ε, η + ε2

) − Uε (ξ, η) = ε∂ξUε + ε2

(
1
2
∂2

ξUε + ∂ηUε

)

+ ε3

(
1
6
∂3

ξUε + ∂ξ∂ηUε

)
+ ε4

(
1
24

∂4
ξUε +

1
2
∂2

ξ∂ηUε +
1
2
∂2

ηUε

)

= −c∗
1ε∂ξA − c∗

1ε
2∂ηA + ε3

(
∂τA − c∗

1

2
∂ξ∂ηA

)

+ ε4

(
∂−1

ξ ∂η∂τA − c∗
1

12
∂2

ξ∂ηA − c∗
1

2
∂2

ηA

)
.

Expanding the left-hand side of equation (5.10) in orders of ε and comparing with the previous expansions
yields

Dε + Lε = A + ε∂−1
ξ ∂ηA + ε2

(
1
2
∂ηA

)
+ ε3

(
1
2
∂−1

ξ ∂2
ηA +

1
12

∂ξ∂ηA

)
. (5.11)

All quantities of the decomposition (5.3) are now defined in terms of A and Lε. We can now use the
fifth and sixth equations in system (5.2) in order to define Lε and to verify the validity of the KP-II
equation (2.13) for A up to truncation at the formal order of O(ε5). The fifth and sixth equations in
system (5.2) yield

− εc∗
1∂ξUε + ε3∂τUε = c2

1

(
Lε (ξ, η) − Dε

(
ξ − ε, η − ε2

) − Xε (ξ − ε, η) − Yε

(
ξ, η − ε2

))

+ 2α1ε
2
[
Lε (ξ, η)2 − Dε

(
ξ − ε, η − ε2

)2 − Xε (ξ − ε, η)2 + Yε

(
ξ, η − ε2

)2] (5.12)

and
− εc∗

1∂ξVε + ε3∂τVε = c2
1 (Dε (ξ, η) − Lε (ξ, η) + Xε (ξ, η) + Yε (ξ, η))

+ 2α1ε
2
[
Dε (ξ, η)2 − Lε (ξ, η)2 + Xε (ξ, η)2 − Yε (ξ, η)2

] (5.13)

In view of equation (5.4), the left-hand side of equation (5.13) is expanded as

−εc∗
1∂ξVε + ε3∂τVε = −εc∗

1∂ξUε + ε2(c∗
1)

2∂2
ξLε + ε3∂τUε − 2ε4c∗

1∂ξ∂τLε + ε6∂2
τLε,
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whereas the right-hand side of Eq. (5.13) can be written as

c2
1 (Dε + Lε + Xε + Lε + Yε + Lε − 4Lε)

+ 2α1ε
2
[
(Dε + Lε)2 + (Xε + Lε)2 − (Yε + Lε)2 − 2Lε (Dε + Lε + Xε + Lε − Yε − Lε)

]

We expand Lε in powers of ε as

Lε = L(0) + εL(1) + ε2L(2) + ε3L(3), (5.14)

where the functions L(j) depend on (ξ, η) and decay to zero at infinity. Substituting (5.6), (5.7), (5.9),
(5.11), and (5.14) into the left-hand and right-hand sides of Eq. (5.13) yields the following equations in
different powers of ε with their corresponding solutions:

O(1) : 0 = 2(c∗
1)

2(2A − 4L(0))

=⇒ L(0) =
1
2
A

O(ε) : (c∗
1)

2∂ξA = 2(c∗
1)

2(2∂−1
ξ ∂ηA − 4L(1))

=⇒ L(1) =
1
2
∂−1

ξ ∂ηA − 1
8
∂ξA

O(ε2) : 0 = 2(c∗
1)

2(−4L(2))

=⇒ L(2) = 0

O(ε3) : −2c∗
1∂τA − (c∗

1)
2

24
∂3

ξA +
(c∗

1)
2

2
∂ξ∂ηA = 2(c∗

1)
2(∂−1

ξ ∂2
ηA +

1
6
∂ξ∂ηA − 4L(3)) + α1A∂ξA.

By using the KPII equation (2.13), we eliminate

2c∗
1∂τA + α1A∂ξA = − 1

48
(c∗

1)
2∂3

ξA − (c∗
1)

2∂−1
ξ ∂2

ηA

and obtain from the equation at the order of O(ε3) that

L(3) =
1
8
∂−1

ξ ∂2
ηA +

1
384

∂3
ξA − 1

48
∂ξ∂ηA.

Substituting this expansion into (5.14) yields the expansion

Lε =
1
2
A + ε

(
1
2
∂−1

ξ ∂ηA − 1
8
∂ξA

)
+ ε3

(
1
8
∂−1

ξ ∂2
ηA +

1
384

∂3
ξA − 1

48
∂ξ∂ηA

)
. (5.15)

By using (5.6), (5.9), and (5.11), we also obtain

Xε =
1
2
A − ε

(
1
2
∂−1

ξ ∂ηA − 1
8
∂ξA

)
− ε3

(
1
8
∂−1

ξ ∂2
ηA +

1
384

∂3
ξA − 1

48
∂ξ∂ηA

)
, (5.16)

Yε = −1
2
A + ε

(
1
2
∂−1

ξ ∂ηA +
1
8
∂ξA

)
− ε2

(
1
2
∂ηA

)

+ ε3

(
3
8
∂−1

ξ ∂2
ηA − 1

384
∂3

ξA +
5
48

∂ξ∂ηA

)
, (5.17)

Dε =
1
2
A + ε

(
1
2
∂−1

ξ ∂ηA +
1
8
∂ξA

)
+ ε2

(
1
2
∂ηA

)

+ ε3

(
3
8
∂−1

ξ ∂2
ηA − 1

384
∂3

ξA +
5
48

∂ξ∂ηA

)
, (5.18)

Finally, substituting decompositions (5.7), (5.15), (5.16), (5.17), and (5.18) into (5.12) gives the expansion:

ε(c∗
1)

2∂ξA − 1
2
ε2(c∗

1)
2∂2

ξA + ε3

(
−2c∗

1∂τA +
1
12

(c∗
1)

2∂3
ξA

)
+ ε4c∗

1∂ξ∂τA
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= ε(c∗
1)

2∂ξA − 1
2
ε2(c∗

1)
2∂2

ξA + ε3

(
5
48

(c∗
1)

2∂3
ξA + (c∗

1)
2∂−1

ξ ∂2
ηA + α1A∂ξA

)

+ ε4

(
− 1

96
(c∗

1)
2∂4

ξA − 1
2
(c∗

1)
2∂2

ηA − 1
2
α1∂ξ(A∂ξA)

)
,

which is satisfied up to the formal order of O(ε5) if A is a suitable solution of the KP-II equation (2.13).

5.2. Step 2. Residual terms

Plugging the decomposition (5.3) into equations of motion (5.2) gives the following equations for the error
terms:

L̇m,n = Vm,n − Um,n,

Ḋm,n = Um+1,n+1 − Vm,n + ResD
m,n,

Ẋm,n = Um+1,n − Vm,n + ResX
m,n,

Ẏm,n = Um,n+1 − Vm,n + ResY
m,n,

U̇m,n = c2
1 (Lm,n − Dm−1,n−1 − Xm−1,n − Ym,n−1)

+ 2α1ε
2
[
L2

m,n − D2
m−1,n−1 − X2

m−1,n + Y 2
m,n−1

]

+ 4α1ε
2
[
Lm,nLε (ξ, η) − Dm−1,n−1Dε

(
ξ − ε, η − ε2

)]

+ 4α1ε
2
[
Ym,n−1Yε

(
ξ, η − ε2

) − Xm−1,nXε (ξ − ε, η)
]

+ ResU
m,n,

V̇m,n = c2
1 (Dm,n − Lm,n + Xm,n + Ym,n)

+ 2α1ε
2
[
D2

m,n − L2
m,n + X2

m,n − Y 2
m,n

]

+ 4α1ε
2 [Dm,nDε − Lm,nLε + Xm,nXε − Ym,nYε] + ResV

m,n,

(5.19)

where

ResD
m,n := Uε(ξ + ε, η + ε2) − Vε(ξ, η) + εc∗

1∂ξDε − ε3∂τDε,

ResX
m,n := Uε(ξ + ε, η) − Vε(ξ, η) + εc∗

1∂ξXε − ε3∂τXε,

ResY
m,n := Uε(ξ, η + ε2) − Vε(ξ, η) + εc∗

1∂ξYε − ε3∂τYε,

and the residuals ResU and ResV are computed from the residual terms of equations (5.12) and (5.13).
Similarly to Lemma 3, the residual terms are controlled in the �2(Z2) norm if A is a smooth solution of
the KP-II equation (2.13). This estimate is summarized in the following lemma, which we give without
proof.

Lemma 7. Let A ∈ C0(R,Hs) be a solution to the KP-II equation (2.13) with s ≥ 9. There is a positive
constant C that depend on A such that for all ε ∈ (0, 1], we have

∥∥ResD
∥∥

�2
+
∥∥ResX

∥∥
�2

+
∥∥ResY

∥∥
�2

+
∥∥ResU

∥∥
�2

+
∥∥ResV

∥∥
�2

≤ Cε
7
2 . (5.20)
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5.3. Step 3. Energy estimates

In order to control the growth of the approximation error from solutions to system (5.19), we introduce
the following energy function,

E(t) =
∑

m,n

1
2
(
U2

m,n + V 2
m,n

)
+

1
2
c2
1

(
L2

m,n + D2
m,n + X2

m,n + Y 2
m,n

)

+
∑

m,n

2α1ε
2
(
L2

m,nLε + D2
m,nDε + X2

m,nXε − Y 2
m,nYε

)

+
∑

m,n

2
3
α1ε

2
(
L3

m,n + D3
m,n + X3

m,n − Y 3
m,n

)
.

(5.21)

Similarly to the proof of Lemma 4, the energy is coercive with respect to the �2 norm of the perturbations
if ε is sufficiently small and the perturbations are not large in the �2 norm. The only difference between
the expansions (5.15), (5.16), (5.17), and (5.18) from the expansion (4.11) is that the former involves
three derivatives of A and one derivative of ∂−1

ξ ∂ηA, whereas the latter involves two derivatives of A and
one derivative of ∂−1

ξ ∂ηA. This modifies the statement of the following lemma, which we give without
proof.

Lemma 8. Let A ∈ C0
(
[−τ0, τ0] ,Hs+1

(
R

2
))

and ∂−1
ξ A ∈ C0

(
[−τ0, τ0] ,Hs

(
R

2
))

with s > 3 and assume
that E(t) ≤ E0 for some ε-independent constant E0 > 0 for every t ∈ [−τ0ε

−3, τ0ε
−3]. There exists some

constants ε0 > 0 and K0 > 0 that depend on A such that

‖U‖2
�2 + ‖V ‖2

�2 + ‖L‖2
�2 + ‖D‖2

�2 + ‖X‖2
�2 + ‖Y ‖2

�2 ≤ 2K0E(t), (5.22)

for each ε ∈ (0, ε0) and t ∈ [−τ0ε
−3, τ0ε

−3].

Finally, the growth of the energy (5.21) is estimated from the balance equation:

E′(t) =
∑

m,n

Um,nResU
m,n + Vm,nResV

m,n

+ c2
1

∑

m,n

Dm,nResD
m,n + Xm,nResX

m,n + Ym,nResY
m,n

+ 4α1ε
2
∑

m,n

D2
m,nResD

m,n + X2
m,nResX

m,n − Y 2
m,nResY

m,n

+ 4α1ε
2
∑

m,n

Dm,nDεResD
m,n + Xm,nXεResX

m,n − Ym,nYεResY
m,n

+ 2α1ε
2
∑

m,n

L2
m,nL̇ε + D2

m,nḊε + X2
m,nẊε − Y 2

m,nẎε,

(5.23)

where the dot denotes the derivative in t of the function of ξ = ε(m − c∗
1t), η = ε2n, and τ = ε3t. In view

of Lemmas 7 and 8, similar to the proof of Lemma 5, we can obtain a bound on the growth of the energy.
This bound is summarized in the following lemma, which we give without proof.

Lemma 9. Let A ∈ C0
(
[−τ0, τ0] ,Hs+9

(
R

2
))

be a solution to the KP-II equation (2.13) with s ≥ 0 in the
class of functions of Lemma 1 and assume that E(t) ≤ E0 for some ε-independent constant E0 > 0 for
every t ∈ [−τ0ε

−3, τ0ε
−3]. There exist some constants ε0 > 0 and K0 > 0 that depend on A such that

|E′(t)| ≤ K0

(
ε

7
2 E(t)

1
2 + ε3E(t)

)
, (5.24)

for each ε ∈ (0, ε0) and t ∈ [−τ0ε
−3, τ0ε

−3].
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5.4. Step 4. Bound on the approximation error

Since the bounds (4.18) and (5.24) coincide, application of the Gronwall’s inequality in Lemma 6 gives
the desired result of Theorem 2 exactly like in Step 4 of the proof of Theorem 1.

6. Conclusion

We have proved here the validity of the KP–II approximation for dynamics of transversely modulated
small-amplitude long-scale waves in a vector FPU system on a two-dimensional square lattice. The justi-
fication was performed for horizontal and vertical propagations of the waves and, under some restrictions
on parameters of the FPU system, for the diagonal propagation. While the general algorithm of the jus-
tification analysis is well understood by now, the technical details of the justification analysis have been
developed for the first time in the vector FPU systems, to the best of our knowledge.

This research opens up new directions. First, it is interesting to see if the justification analysis can be
generalized for the vector FPU mass–spring systems with diagonal springs and for the wave propagation
under an arbitrary angle with respect to the square lattice. Second, in terms of applications of the
FPU models to the graphene materials, it is important to consider other two-dimensional models such
as hexagonal lattices. Finally, known properties of the KP-II equation can be applied to study other
problems of the nonlinear dynamics of small-amplitude waves in the two-dimensional FPU lattices such
as the linear and nonlinear stability of periodic and solitary waves with respect to transverse modulations.
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