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A general approach to constructing the polynomial solutions satisfying various
reductions of the Kadomtsev–Petviashvili�KP� hierarchy is described. Within this
approach, the reductions of the KP hierarchy are equivalent to certain differential
equations imposed on the�-function of the hierarchy. In particular, thel-reduction
and thek-constraint as well as their generalized counterparts are considered. A
general construction of the rational solutions to these reductions is found and the
particular solutions are explicitly derived for some typical examples including the
KdV and Gardner equations, the Boussinesq and classical Boussinesq systems, the
NLS and Yajima–Oikawa equations. It is shown that the degenerate rational solu-
tions of the KP hierarchy are related to stationary manifolds of the Calogero–
Moser�CM� hierarchy of dynamical systems. The scattering dynamics of interact-
ing particles in the CM systems may become complicated due to an anomalously
slow fractional-power rate of the particle motion along the stationary manifolds.
© 1998 American Institute of Physics.�S0022-2488�98�03110-7�

I. INTRODUCTION

It is generally believed that all known hierarchies of (1�1)-dimensional equations integrable
by means of the inverse scattering method can be represented as certain reductions of a universal
Kadomtsev–Petviashvili�KP� hierarchy of (2�1)-dimensional equations and/or of its extentions
to modified and multicomponent cases. This hypothesis originates from a unifying Sato theory1–3

that describes the KP hierarchy in terms of the pseudodifferential operatorL��x�u2�x
�1

�u3�x
�2�¯ . The infinite set of functionsun for n�3 can be expressed through the scalar

functionu2�u(t1 ,t2 ,...) that depends ont1�x and on an infinite sequence of the time variables
tk , k�2. Then, equations of the KP hierarchy arise from the generalized Lax equation,

�L

�tk
��Bk ,L�, k�1, �1.1�

whereBk is a differential part ofLk. A typical example is the KP equation�see Ref. 3�,
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�2u
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�4u
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�2u

�t2
2 �0. �1.2�

Equations of the KP hierarchy are associated with the isospectral deformation of the eigenvalue
problemsL��	� and L* �̄�	�̄, where	 is a spectral parameter,L* is a formal operator
adjoint, and� and �̄ are eigenfunctions satisfying the time evolution problems,

��

�tk
�Bk�,

��̄

�tk
��Bk* �̄, k�1. �1.3�
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The KP hierarchy is closely related to the modified KP hierarchy which starts with the
modified KP equation,
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�

�t1
� �v
�t1

� t1
�1 �v

�t2
��0. �1.4�

Within the Sato approach, the modified KP hierarchy can be constructed by means of the gauge
transformation of the KP hierarchy which results in modification of the pseudodifferential operator
L.4 On the other hand, solutions of the modified KP hierarchy are formally expressed through the
eigenfunction� satisfying Eqs.�1.3� according to the relation,v���1��/�t1 .

Besides its own meaning, the KP hierarchy is useful for generating numerous integrable
hierarchies of (1�1)-dimensional equations by means of a certain reductive procedure. The
conventionall-reduction arises under the condition imposed to the operatorL,

L l�Bl , l�2, �1.5�

so that the whole set of functionsun become independent ont l as well as ontnl �see, e.g., Ref. 3�.
For l �2 this reduction leads to the KdV hierarchy, forl �3 it produces the Boussinesq hierarchy,
and so on.

Another reductive procedure was recently proposed through a symmetry constraint5 which
was also formulated as thek-constraint imposed on the operatorL.6 Thek-constraint occurs under
the condition,

Lk�Bk���x
�1�̄, k�1, �1.6�

and leads to coupled nonlinear equations between the functionsu2 ,u3 ,...,uk�1 of the KP hierar-
chy and the eigenfunctions� and�̄. Typical examples of thek-constrained KP hierarchy include
the NLS equation fork�1, the Yajima–Oikawa equations fork�2, and so on�see Refs. 5, 6�.

The reductive procedure applied to the KP hierarchy typically gives an idea as to which exact
solutions, such as soliton and rational solutions, remain invariant under the reduction and hence
represent the exact solutions of the (1�1)-dimensional equations.7–11 This search for the explicit
solutions is especially straightforward if one deals with the functionsun of the KP hierarchy and
the eigenfunctions� and�̄ under the zero boundary conditions at infinity. In contrast, a structure
of explicit solutions with nonzero boundary conditions is not so obvious and is not usually under
consideration. Some results concerned with multisoliton solutions of thek-constrained KP hierar-
chy under the nonzero boundary conditions for the fields� and�̄ were obtained quite recently by
Loris and Willox12,13 while the existence of rational solutions for this reduction remains an open
question. Therefore, a natural problem is how to detect those rational solutions of the KP hierarchy
that satisfy a generalized reduction or constraint imposed to the operatorL.

The generalizedl-reduction of the KP hierarchy can be formulated by means of a modification
of the condition�1.5� given by

L l�
L�Bl�
B1 , l�2, �1.7�

where the parameter
 is arbitrary. This reduction describes solutions of the KP hierarchy which
depend ont l according to the form,um�um(t1�
t l ,t2 ,...,t l �1 ,t l �1 ,...). A typical example is
the Boussinesq equation for acoustic waves14 which arises from the condition�1.7� for l �3.

The generalizedk-constraint was formulated by Loris and Willox13 as the condition,

Lk��L�1�Bk����1�̄, k�1, �1.8�

where the constant� is related to the asymptotic values of the eigenfunctions� and�̄ at infinity,
i.e.,��̄→� ast1→�. In particular, the NLS equation at the continuous-wave background15 arises
from the condition�1.8� for k�1.

This paper is devoted to studies of the rational solutions satisfying the generalized reductions
�1.7� and �1.8�. The main ideas and methods of this paper follow those of the previous paper16

referred to henceforth as paper I. The aims of both papers are twofold;�i� to analyze and classify
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various sets of rational solutions of the single-component KP hierarchy through the construction of
the equivalent polynomial�-function and�ii � to relate the different structure of the polynomials to
different dynamics of particles in a many-body Calogero–Moser�CM� system and its higher
commuting flows.17,18

The �-function representation of solutions of the KP hierarchy appears naturally within the
framework of the Hirota bilinear transformation�see, e.g., Ref. 3�,

u�
�2

�t1
2 log �, ��c

��

�
, �̄� c̄

��

�
, v�

�

�t1
log

��

�
, �1.9�

wherec and c̄ are arbitrary constants, the function���(t1 ,t2 ,...) is referred to as the�-function
of the KP hierarchy while the associated functions�� are expressed through� as follows:

����� t1�
1

	
,t2�

1

2	2 ,...�exp� � 

n�1

�

	ntn� . �1.10�

It was recently proved by Shiota19 �following the pioneer paper by Krichever20� that zeros of the
polynomial�-function of the KP hierarchy describe motion of particles in the whole hierarchy of
the CM dynamical systems.

In paper I it was shown that a general polynomial�-function of the KP hierarchy can be
factorized through a set of partial polynomial solutions generated by derivatives of certain expo-
nential functions with only one value of the spectral parameter	. These partial solutions were
referred to as the degenerate polynomials of the KP hierarchy. Different types of scattering of
particles in the CM hierarchy were analyzed in paper I with the help of the factorizing identities
and the degenerate polynomials were shown to be related to anomalous scattering of particles
accompanying slow rates of the particle motion. The first example of such an anomalous scattering
was presented by Gorshkovet al.21 for the KP1 equation and later by Ward22 and Ioannidou23 for
an integrable chiral model. Recently, it was shown by Ablowitz and Villarroel24 that the degen-
erate rational solutions of the KP1 equation naturally appear in the inverse scattering formalism
through a multiple pole expansion of the associated eigenfunction� �which is equivalent to the
pole expansion of the Baker–Akhiezer function used in a geometric method�.20 However, in
previous works a complete classification of the degenerate rational solutions of the KP hierarchy
has not been proposed.

In this paper we develop a unifying approach to constructing the degenerate polynomial
solutions of the KP hierarchy by using the theory of generalized Schur polynomials and vertex
operators. This approach enables us to characterize all degenerate polynomials in terms of station-
ary manifolds of the CM hierarchy25 and to find a simple representation of the rational solutions
satisfying the generalizedl-reduction andk-constraint of the KP hierarchy. A general scheme for
constructing the degenerate polynomials is described and particular applications of the scheme to
some physically meaningful nonlinear evolution equations are also given.

The paper is organized as follows. The basic notation and properties of the generalized Schur
polynomials and the vertex operators acting on these polynomials are described in Sec. II. A
connection of these polynomials with the stationary manifolds of the CM system is discussed in
Sec. III. A general classification of the stationary manifolds and of the related rational solutions to
the l-reduced KP hierarchy is given in Sec. IV. The rational solutions to the generalizedl-
reduction andk-constraint of the KP hierarchy are constructed in Sec. V and VI, respectively. A
classification of different dynamics of the anomalous scattering of particles in the CM hierarchy is
considered in Sec. VII. Finally, Sec. VIII concludes the paper.

II. THE GENERALIZED SCHUR POLYNOMIALS

Exact solutions of the KP hierarchy can be expressed through one of the conventional repre-
sentations of the�-function. Following paper I, only the Wronskian representation26 is considered
here but it enables us to generate all classes of rational solutions without loss of generality. Within
the Wronskian representation, the�-function is
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��WN��1 ,�2 ,...,�N��det��k�1�n

�t1
k�1 �

1�n,k�N

, �2.1�

where the entries of the Wronskian determinant�n��n(t1 ,t2 ,...), n�1,N satisfy the differential
equations

��n

�tk
�

�k�n

�t1
k , k�1. �2.2�

A degenerate polynomial�-function is generated by a partial solution of Eq.�2.2�,

�n�� 

j �1

n


 j Pmj
�p�� e��p�, �2.3�

where
 j are arbitrary coefficients,p is a spectral parameter, the phase factor is given by

��p�� 

k�1

�

pktk , �2.4�

and the functionsPn(p) are defined by a generating exponential function,

Pn�p��e���p�
�n

�pn e��p�. �2.5�

These functions are quasipolynomials of the time variablestk because they contain infinite series
of tk . However, the time variablestk enter the quasipolynomialsPn(p) only in the form of a finite
number of the generalized time variables�k(p) given by

�k�p��
1

k!

�k��p�

�pk � 

m�k

� � m
k � pm�ktm . �2.6�

Hence we refer toPn(p) as the generalized Schur polynomials. In the limitp→0 the polynomial
Pn(p) reduces to a conventional Schur polynomialpn(t1 ,t2 ,...)�Pn(0) arising from the expan-
sion e�(p)�
n�1

� (1/n!) pn(t1 ,t2 ,...)pn. The first few generalized polynomials have the form,

P1��1 , P2��1
2�2�2 , P3��1

3�6�1�2�6�3 ,

P4��1
4�12�1

2�2�12�2
2�24�1�3�24�4 ,

P5��1
5�20�1

3�2�60�1�2
2�60�1

2�3�120�2�3�120�1�4�120�5 .

The key property of the Schur polynomialsPn(p) is that they satisfy the original system�2.2�
rewritten in terms of the generalized variables�k and also the following relation:

�Pn

��k
�

�kPn

��1
k �

n!

�n�k�!
Pn�k . �2.7�

Using this key property, Matveev27 proved the following lemma.
Lemma 2.1:Suppose thatm1�m2�¯�mn and
n�1 in Eq. �2.3�. Then, there exists con-

stants�k0 , k�1,mn so that the superposition of the Schur polynomials in Eq.�2.3� is reducible to
a polynomial of the highest degree, i.e.,



j �1

n


 j Pmj
�p�� P̃mn

�p��Pmn
�p;�1��10,�2��20,...,�mn

��mn0�. �2.8�
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According to Lemma 2.1, the degenerate rational solutions of the KP hierarchy can be ex-
pressed through the leading-order polynomialsP̃mn

(p) with different values of the phase constants
�k0 . Then, the rational solution of this type has the form,

���p��1 ,�2 ,...�eN��p�, �2.9�

where�p(�1 ,�2 ,...) is apolynomial �or, equivalently, quasipolynomial� with respect to the time
variables�n��n(p) or tn , respectively. This polynomial�-function is given by the Wronskian
determinant,

�p��1 ,�2 ,...��WN� P̃m1
�p�,P̃m2

�p�,...,P̃mN
�p��. �2.10�

Using Eqs.�1.10� and �2.10�, we find the associated functions�� for the polynomial representa-
tion,

���� 	�p

	 � �N

�p� �1�
1

	�p
,�2�

1

2�	�p�2 ,...�exp�N��p����	��, �2.11�

where the spectral parameter	 may be arbitrary. However, the rational representations for the
eigenfunctions� and�̄ arise only in the limit	→0 provided that the constantsc andc̄ are chosen
appropriately. Then, the rational solutions to the KP hierarchy can be expressed through a scalar
polynomial function�p��p(�1 ,�2 ,...) asfollows:

u�
�2

��1
2 log �p , ���

S����p

�p
, �̄� �̄

S�1����p

�p
, v�

�

��1
log

S����p

�p
. �2.12�

Here the parameters� and �̄ define the boundary conditions of the eigenfunctions� and �̄ as
t1→�, the parameter� is ���p�1, and the generalized vertex operatorS(�) is introduced to
characterize shifts of the phase variables�k��k(p),

S����exp�� 

k�1

�
1

k
�k

�

��k
� . �2.13�

The action of the vertex operator on the generalized Schur polynomialsPn(p) is described by the
following lemma.

Lemma 2.2:If Pn(p) satisfies Eq.�2.7� for anyk andS(�) is defined by Eq.�2.13�, then the
following identities are valid:

Sk���Pn�p��

j �0

k

���� j � k
j � �Pn�p�

�� j
, �2.14�

S�k���Pn�p��

j �0

�

� j � j �k�1
k�1 � �Pn�p�

�� j
. �2.15�

Lemma 2.2 has a classic analog in the theory of group characters�see, e.g., Ref. 28�. Within
the given context, the formulas�2.14� and �2.15� have already been used for the construction of
integrable hierarchies11 and that of the rational solutions.14 Importantly, these formulas are not
applicable to the action of vertex operators on the polynomial function�p(�1 ,�2 ,...) because the
polynomial function�p does not generally satisfy the key relations�2.7�.

The multicomponent generalization of the vertex operator can be defined through the product
of the vertex operators�2.13�,

S��1 ,...,�k���
i �1

k

S�� i �, �2.16�

where the parameters� i are related to� j by the partial sums,
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� i���1� i �1 

z1�...�zk� i

�1
z1...�k

zk, �2.17�

and the indiceszl are either zeros or unities. Using the formulas�2.14� and�2.16� one can prove
the following lemma.

Lemma 2.3:If Pn(p) satisfies Eq.�2.7� for any k andS(�1 ,...,�k) is defined by Eqs.�2.16�
and �2.17�, then the following identity is satisfied:

S��1 ,...,�k�Pn�p��1�

i �1

k

� i

�Pn�p�

�� i
. �2.18�

III. CONNECTION WITH THE CM HIERARCHY

Properties of the degenerate rational solutions of the KP hierarchy are described by the
construction of the polynomial function�p(�1 ,�2 ,...) within the form �2.10�. The following
theorem proved by Shiota19 clarifies a relationship between this polynomial function and the
dynamics of particles in the CM hierarchy of dynamical systems.

Theorem 3.1: Let the function�p(t1 ,t2 ,...) be amonic polynomial int1 having R zeros
xj (t2 ,...), j �1,R according to the representation,

�p� t1 ,t2 ,...���
j �1

R

� t1�xj� t2 ,...��. �3.1�

This function is the�-function of the KP hierarchy if and only if the motion of zeros of�p is
governed by the hierarchy of the CM dynamical systems,

�xj

�tn
�

�Hn

�pj
,

�pj

�tn
��

�Hn

�xj
, n�2, �3.2�

whereHn�(�1)nSp(L)n and the elements of the matrixL areLi j �pj� i j �(1�� i j )(xi�xj )
�1.

In the particular casen�2, this system is just the Calogero–Moser system of particles,17,18

�2xj

�t2
2 �8


i� j

1

�xi�xj �
3 , �3.3�

wherexj are coordinates of particles, while the velocities of particles arev j��xj /�t2�2pj .
Collorary 3.2: The degree of the polynomial�-function with respect tot1 denoted byR

coincides with the number of particles of the corresponding CM system.
Collorary 3.3: The number of linearly independent time variables�n(p) of the polynomial

�-function denoted byG coincides with the dimension of a dynamical manifold of the correspond-
ing CM system.

A general solution describing normal scattering ofR particles along a manifold of the dimen-
sion G�2R is well known for the CM systems�3.2� and�3.3� �see, e.g., Ref. 19, and references
therein�. In paper I it was shown that besides a general solution there exists a wide set of
degenerate solutions which describe anomalous scattering of particles with asymptotically equal
velocities, i.e. whenv j→2p ast2→��. A complete picture of dynamical processes occurring in
the CM systems can be explained as a superposition of elementary processes of either normal or
anomalous scattering.16 Here we study only the anomalous scattering in the CM hierarchy which
is described by zeros of the degenerate polynomials�p(�1 ,�2 ,...) according to Theorem 3.1.

Proposition 3.4:The degenerate polynomial�p(�1 ,�2 ,...) given by Eq.�2.10� corresponds to
the CM system ofR particles, where

R�

j �1

N

mj�
N�N�1�

2
. �3.4�
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Proof: Suppose that 0�m1�m2�...�mN in Eq. �2.10�. The polynomialsPn(p) at the lead-
ing order approximation with respect to�1 �or, equivalently, tot1) are Pn(p)��1

n�O(�1
n�2).

Expanding the WronskianWN� P̃m1
(p),...,P̃mN

(p)� within this approximation, we find the result
�3.4� for the degree of the polynomial�p(�1 ,�2 ,...) which is equivalent to the number of particles
R according to Collorary 3.2. �

The degenerate polynomials of the KP hierarchy and the corresponding dynamics of the CM
systems can be classified into two different groups. The first group consists of the polynomials
which can be reduced to the generalized Schur polynomialsPR(p;�1 ,...,�R). It is clear from the
parametrization of these polynomials that a dynamical manifold of the CM system described by
PR(p) has the dimensionG�R with the ‘‘additional’’ parameterp determining the asymptotic
velocity of the particles ast2→�. The other group of the polynomial�-functions which includes
the rest of the polynomials�p describes the anomalous scattering occurring near one of the
stationary manifolds of the CM hierarchy.25

Definition 3.5:A manifold of the CM hierarchy is stationary with respect to the timet l if

�xj

�t l
�0, for all j and l�2. �3.5�

Stationary manifolds of the CM hierarchy form certain embeddings into dynamical manifolds
describing the anomalous dynamics of the CM particles. To be specific, the stationary manifolds
have the dimensionG which is less than the number of particlesR, i.e., although all asymptotic
velocities of particles are specified by a single parameterp, the asymptotic phases of the coordi-
natesxj (t2 ,...) in thelimit t2→� are functionally dependent. The following result proves that all
polynomial functions of the form�2.10� excepting those reducible to the polynomialsPn(p)
describe, within a particular limit, a certain stationary manifold of the CM hierarchy.

Proposition 3.6:Suppose that the polynomial�-function of the KP hierarchy is given by

�p� t1 ,t2 ,...��WN�pm1
,pm2

,...,pmN
�, �3.6�

wherepn�pn(t1 ,t2 ,...)�Pn(0). Zeros of this polynomial function describe one of the stationary
manifolds of the CM hierarchy ifN�1 and the set�mj� j �1

N is different from the ordered set
� j � j �1

N .
Proof: In the casemN�R it is clearly seen from Eq.�3.6� that the function�p(t1 ,t2 ,...) is

independent of at least the variablestmN�1 ,...,tR and hence, zeros of the polynomial function�p

do not depend on these times.
In the casemN�R it follows from Eq. �3.4� that the only possible solution is�p(t1 ,t2 ,...)

�WN�p1 ,p2 ,...,pN�1 ,pR� which is realized formN�R andR�N. Then, it can be shown that the
polynomial function�p does not depend on timetR , i.e., corresponds to the stationary manifold
with respect totR . In the exceptional caseR�N the condition of the proposition is not satisfied,
and, indeed, the function�p is now reducible to the Schur polynomialpN(t1 ,t2 ,...) �see paper
I�. �

In the next section we classify degenerate polynomial�-functions of the KP hierarchy into
different subgroups corresponding to different stationary manifolds of the CM hierarchy. This
classification is directly related to the construction of rational solutions of thel-reduced KP
hierarchy.

IV. THE l-REDUCED KP HIERARCHY

The following lemma can be readily proved by using the definition of thel-reduction�1.5�
�see Ref. 3 for details�.

Lemma 4.1:The polynomial�-function of thel-reduced KP hierarchy satisfies the differential
equation,

��p

�t l
�0, l�2. �4.1�
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Collorary 4.2:Zeros of the function�p(t1 ,t2 ,...) satisfying thel-reduced KP hierarchy define
the stationary manifold of the CM hierarchy with respect to the timet l .

Collorary 4.3: The �-function of thel-reduced KP hierarchy does not depend on variables
t l ,t2l ,...,tnl .

Collorary 4.3 follows from the identityLnl�(Bl)
n�Bnl and leads to the fact that the�-

function of thel-reduced KP hierarchy also gives a subset of solutions of thenl-reduced hierar-
chies. In order to present a closed classification scheme for the rational solutions of thel-reduced
KP hierarchy we assume that the function�p(t1 ,t2 ,...) satisfies the complimentary constraints,

��p

�t j
�0, j �1,l �1. �4.2�

Then, the following result defines a structural element of the polynomial�-function of the l-
reduced KP hierarchy.

Proposition 4.4:The differential equation�4.1� is satisfied by the (l �1) families of the
polynomial�-functions,

�p� t1 ,t2 ,...��Wnj
�pj pj � l ,...,pj ��nj �1�l �, j �1,l �1, �4.3�

where pn�pn(t1 ,t2 ,...)�Pn(0) and nj are positive integers enumerating the families of the
polynomials.

A proof can be given by means of a direct differentiation of�p(t1 ,t2 ,...) with respect tot l ,
use the formula�2.7� for p�0, and elimination of two identical columns in the Wronskian
determinants. This result has been widely used in previous literature�see, e.g., Ref. 11�. A less
known fact is that the (l �1) families of the polynomials given by Eq.�4.3� do not cover all
possible rational solutions of thel-reduced KP hierarchy except for the simple casel �2. Indeed,
a more general solution can still be constructed through a combination of the particular solutions
�4.3� in the following form:

�p� t1 ,t2 ,...��� l
n1n2 ...nl �1�WN�p1 ,p1� l ,...,p1��n1�1�l ;....;pl �1 ,p2l �1 ,...,pnl �1l �1�,

�4.4�

where N�� j �1
l �1nj . As follows from Collorary 4.2, zeros of this polynomial solution define a

general construction of the stationary manifold of the CM hierarchy with respect to the timet l . By
using Eq.�3.4� we find that the number of particles forming a stationary configuration is not
arbitrary but given by the expression,

R�

j �1

l �1

nj � j �
1

2
�nj� l �1��

1

2 

i �1

l �1

�ni�nj �� . �4.5�

The dimension of the stationary manifoldG is less than the number of particlesR because the time
variablest l , t2l , and so on, do not parametrize the function� l

n1n2 ...nl �1. It seems to be difficult to
find G for a general solution�4.4� �see, e.g., Ref. 14�. Still for the particular solutions�4.3� we find
the result,

R� 1
2nj�2 j �� l �1��nj�1��, G� j �� l �1��nj�1�. �4.6�

Example 4.5: The KdV hierarchy( l �2).
The KdV hierarchy starts with the KdV equation,

�4
�u

�t3
�12u

�u

�t1
�

�3u

�t1
3 �0. �4.7�

A complete set of the polynomial�-functions for the KdV hierarchy29,30 is given by Eq.�4.4� for
l �2 andn1�n, i.e.,

�p� t1 ,t3 ,...���2
n�Wn�p1 ,p3 ,...,p2n�1�. �4.8�
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Zeros of these polynomials define the stationary manifolds for the CM dynamical system�3.3�
with respect tot2 .25 It follows from Eq. �4.6� that these stationary manifolds exist only forR
�n(n�1)/2 particles and haveG�n parameter subspace.29 For reference, we reproduce here the
first polynomials of this family, omitting a constant factor in front of�2

n ,

�2
1�t1 ,

�2
2�t1

3�3t3 ,

�2
3�t1

6�15t1
3t3�45t3

2�45t1t5 ,

�2
4�t1

10�45t1
7t3�4725t1t3

3�315t1
5t5�4725t1

2t3t5�4725t5
2�1575t1

3t7�4725t3t7 .

Example 4.6: The Boussinesq hierarchy( l �3).
The Boussinesq hierarchy starts with the Boussinesq equation,

3
�2u

�t2
2 �6

�2u2

�t1
2 �

�4u

�t1
4 �0. �4.9�

A general rational solution of the Boussinesq equation14 is expressed through the polynomial
�-function �4.4� for l �3, n1�n, andn2�m, i.e.,

�p� t1 ,t2 ,...���3
nm�Wn�m�p1 ,p4 ,...,p3n�2 ;p2 ,p5 ,...,p3m�1�. �4.10�

Zeros of these polynomials define the stationary manifold of the first higher-order commuting flow
of the CM hierarchy�3.2�, i.e., that with respect tot3 . It was found by Galkinet al.14 that the
number of particlesR forming the stationary configuration and the dimension of the manifoldsG
are specified as follows:

R�n2�m�m�1��nm, �4.11�

G�� 2m�n m�2n

m�n 2n�m�n/2

2n�m�1 n/2�m

. �4.12�

The first polynomials are

�3
1,0�t1 , �3

0,1�t1
2�2t2 ,

�3
2,0�t1

4�4t1
2t2�4t2

2�8t4 , �3
1,1�t1

2�2t2 ,

�3
0,2�t1

6�10t1
4t2�20t1

2t2
2�40t2

3�40t1
2t4�80t2t4�80t1t5 ,

�3
3,0�t1

9�16t1
7t2�56t1

5t2
2�560t1t2

4�112t1
5t4�2240t1t2

2t4�2240t1t4
2�280t1

4t5�1120t1
2t2t5

�1120t2
2t5�2240t4t5�1120t1

2t7�2240t2t7 ,

�3
2,1�t1

4�4t1
2t2�4t2

2�8t4 , �3
1,2�t1

5�20t1t2
2�20t5 ,

�3
0,3�t1

12�28t1
10t2�260t1

8t2
2�1120t1

6t2
3�2800t1

4t2
4�11200t1

2t2
5�11200t2

6�280t1
8t4�2240t1

6t2t4

�11200t1
4t2

2t4�44800t1
2t2

3t4�67200t2
4t4�11200t1

4t4
2�134400t1

2t2t4
2�44800t2

2t4
2�89600t4

3

�960t1
7t5�4480t1

5t2t5�44800t1
3t2

2t5�89600t1t2
3t5�89600t1

3t4t5�179200t1t2t4t5

�89600t1
2t5

2�179200t2t5
2�8960t1

5t7�179200t1t2
2t7�179200t5t7�22400t1

4t8�89600t1
2t2t8

�89600t2
2t8�179200t4t8 .
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We notice from these explicit formulas that the polynomial solutions related to the symmetry of
the KP hierarchy with respect to the transformationtk→(�1)k�1tk appear naturally from the
general formula�4.10� for m, n�0. �

A straightforward generalization of the polynomial solutions�4.3� which satisfies thek-
constraint�1.6� of the KP hierarchy was recently presented by Loris and Willox.11 Unfortunately,
the rational solutions of thel-reduced andk-constrained KP hierarchies usually turn out to be
physically meaningless since they are either singular or complex. However, the results on the
existence and dimension of stationary manifolds of the CM hierarchy serve as an useful tool for
constructing and analyzing the degenerate rational solutions which satisfy the generalized reduc-
tions of the KP hierarchy. The latter solutions often describe physically interesting phenomena
within the underlying nonlinear evolution equations. In the next two sections we construct the
rational solutions satisfying the generalizedl-reduction andk-constraint of the KP hierarchy and
present a few examples where the rational solutions are physically meaningful.

V. THE GENERALIZED l-REDUCED KP HIERARCHY

Here we consider the generalizedl-reduction of the KP hierarchy defined by the condition
�1.7�. Using a simple modification of the methods of Ref. 3 one can prove the following lemma.

Lemma 5.1:The polynomial�-function of the generalizedl-reduced KP hierarchy satisfies the
differential equation,

��p

�t l
�


��p

�t1
, l�2. �5.1�

As in Lemma 4.1, we assume here that there are no differential relations similar to Eq.�5.1� for the
evolution of �p(t1 ,t2 ,...) with respect to the time variablest j for j �1,l �1. The differential
equation�5.1� implies that functions of the KP hierarchy depend ont l in the form of a stationary
phase, i.e.,uk�uk(t1�
t l ,t2 ,...,t l �1 ,t l �1 ,...). It is important that no rational solutions to the
generalizedl-reduction could be constructed by means of the Schur polynomialspn(t1 ,t2 ,...) and,
therefore, we have to consider the generalized Schur polynomialsPn(p) given by Eq.�2.5� at p
�0. Thus, a set of the rational solutions of the generalizedl-reduced KP hierarchy is prescribed by
the following result.

Proposition 5.2:The differential equation�5.1� is satisfied by the (l �1) families of the
polynomial�-functions,

�p��1 ,�2 ,...��Wn�P1�p�,S�1��1 ,....,� l �2�P3�p�,...,S��n�1���1 ,...,� l �2�P2n�1�p��.
�5.2�

Heren is a positive integer,Pn(p) is the generalized Schur polynomial�2.5�, and the generalized
vertex operatorS(�1 ,...,� l �2) is defined by Eqs.�2.16� and �2.17�. The parameters� i for i
�1,l �2 are given by

� i��� l
2� �1� l

i �2� p� i �5.3�

and the parameterp is one of the (l �1) roots of the algebraic equation,

lpl �1�
. �5.4�

Proof: First, we find that the polynomial function�p(�1 ,�2 ,...) defined by Eq.�5.2� satisfies
a certain differential equation with respect to the generalized time variables�k��k(p). This can
be done by differentiating each column of the Wronskian�5.2� with respect to�2 , by subsequent
subtracting of the nearbouring column multiplied by a certain factor and by using the formulas
�2.7� and �2.18�. As a result, we find the following differential equation for�p(�1 ,�2 ,...),

��p

��2
�


i �3

l

� i �2

��p

�� i
. �5.5�
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This relation should be compared with the differential equation�5.1� To do this, we rewrite Eq.
�5.1� in terms of the variables�k as follows:

� lpl �1�
�
��p

��1
�


i �2

l � l
i � pl � i

��p

�� i
�0. �5.6�

The leading-order term��p /��1 is always dominant in Eq.�5.6� because the time variable�1

always has a different weight in the polynomial function�p(�1 ,�2 ,...) compared to the other time
variables. Therefore, we have to remove this term and specifyp as a root of the algebraic equation
�5.4�. Then, by comparing the coefficients in Eqs.�5.5� and�5.6� we find the parameters� i in the
form �5.3�. �

It is obvious that the expression�5.2� generalizes the polynomial solutions�4.8� for the
2-reduced KP hierarchy�the KdV hierarchy� �see Example 4.5�. The polynomial function
�p(�1 ,�2 ,...) given by Eq.�5.2� has the degreeR�n(n�1)/2 and is parametrized byG�n linear
superpositions of the time variables�k �see examples below�. This polynomial function generates
a rational solution of the generalizedl-reduced KP hierarchy according to the representation
�2.12�. A more general rational solution can still be constructed within the framework of the
original Wronskian representation�2.1� where the functions�n are specified according to the
particular (l �1) solutions�5.2� �recall that the parameterp may have (l �1) values�. This general
rational solution can always be analyzed by applying the superposition formula found in paper I.

Example 5.4: The Gardner equation( l �2).
The reductionv�v(t1�
t2 ,t3 ,...) transforms the modified KP hierarchy to a hierarchy of

the Gardner equation. The Gardner equation follows from�1.4� in the form,

�4
�v
�t3

�3�
2�2
v�2v2�
�v
�t1

�
�3v

�t1
3 �0. �5.7�

Equivalently, the Gardner equation can be thought as the modified KdV equation under the
nonzero boundary conditions at infinity. Indeed, the modified KdV equation,

�4
�w

�t3
�

9

2

2

�w

�t1
�6w2

�w

�t1
�

�3w

�t1
3 �0, �5.8�

reduces to the Gardner equation�5.7� by means of the transformation,w�v�
/2. A single family
of the rational solutions of the Gardner equation is expressed through the representation�2.12�
with the polynomial�-function given by Eq.�5.2� for l �2, i.e.,

�p��1 ,�2 ,...��Wn�P1�p�,P3�p�,...,P2n�1�p��, �5.9�

wherep�
/2. The first polynomials are just the polynomials of the KdV hierarchy�see Example
4.5� with tk replaced by�k , i.e., �p��2

n(�1 ,�3 ,...). These polynomials can further be used to
construct the real nonsingular solutions of the�focusing� Gardner equation which follows from Eq.
�5.7� under the transformation
→ i 
̃ andv→ i ṽ. To do this, we just shift phases of the variables
�k in the function�p(�1 ,�2 ,...) andrewrite Eq.�2.12� for v in the equivalent form,

v�
�

��1
log

S1/2����p

S�1/2����p
, �5.10�

where���p�1��2
�1. Then, the transformation given above ensures the functionṽ be real
and nonsingular. Within this context, the rational solutions�5.9� and�5.10� describe an algebraic
soliton of the Gardner equation forn�1,31 a structural instability of the algebraic soliton due to a
resonance with a long wave shelf forn�2,32 and the scattering dynamics of two and more
algebraic solitons complicated by excitations of the wave shelfs forn�3.

Example 5.5: The Boussinesq equation for acoustic waves( l �3).
The reductionu�u(t1�
t3 ,t2 ,t4 ,...) transforms the KP hierarchy to a hierarchy of the

Boussinesq equation for acoustic waves. The latter equation follows from Eq.�1.2� in the form,
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3
�2u

�t2
2 �4


�2u

�t1
2 �6

�2u2

�t1
2 �

�4u

�t1
4 �0. �5.11�

Equivalently, the Boussinesq equation for acoustic waves can be thought of as the Boussinesq
equation�4.9� under the nonzero boundary conditions at infinity. Indeed, the transformation,u
→u�
/3 reduces Eq.�4.9� to the form�5.11�. Two particular families of the rational solutions of
the Boussinesq equation�5.11� are expressed through the polynomial�-function �5.2� for l �3,
i.e.,

�p��1 ,�2 ,...��Wn�P1�p�,S�1���P3�p�,...,S��n�1����P2n�1�p��, �5.12�

wherep���
/3, andS(�) is given by Eq.�2.13� with the parameter���(3p)�1.14 The first
polynomials�5.12� can be transformed by means of the phase translations to the polynomials of
the KdV hierarchy �see Example 4.5� with the residue terms, i.e.,�p��2

n(z1 ,z3 ,...)
���2

n(z1 ,z3 ,...), wherezk are new variables, i.e.,

z1��1 , z3��3���2� 1
4�

2�1 ,

z5��5�2��4� 3
2�

2�3� 3
2�

3�2� 9
16�

4�1 ,

z7��7�3��6� 15
4 �2�5� 9

2�
3�4� 63

16�
4�3� 63

16�
5�2� 105

64 �6�1 ,

and��2
n are the residue terms, i.e.,

��2
1�0, ��2

2�0, ��2
3� 45

4 �6,

��2
4��

42525

8
�8z1

2�
14175

4
�6z1z3�

382725

64
�10.

These polynomials can further be used to construct the real nonsingular rational solutions to the
�elliptic� Boussinesq equation which follows from Eq.�5.11� under the transformationt2→ iy .
This equation describes stationary wave processes in a medium with positive dispersion. The
rational solutions to this equation correspond to multilump wave structures propagating with a
constant velocity.14,21

VI. THE GENERALIZED k-CONSTRAINED KP HIERARCHY

Here we consider the generalizedk-constraint of the KP hierarchy defined by the condition
�1.8�. Loris and Willox13 proved the following result by using the technique based on a bilinear
formulation and identities�see also Ref. 11�.

Lemma 6.1:The�-function of the generalizedk-constrained KP hierarchy defined by Eq.�1.8�
admits the Wronskian solutions in the form�2.1� with the functions�n(t1 ,t2 ,...), n�1,N satis-
fying Eqs.�2.2� and the complimentary equation,

��n

�tk
��� t1

�1�n�cn�n , �6.1�

wherecn is arbitrary and� t1
�1 is a formal operator of integration with respect tot1 .

This lemma is a modification of Theorem 3 by Loris and Willox.13 Although they formulate
the theorem for a particular exponential representation of the functions�n which is suitable for
soliton solutions, the proof is based on the pseudodifferential equation�6.1� rather than on the
explicit representation of the functions�n . In order to proceed with the rational solutions of the
generalizedk-constraint we apply a simple trick which essentially simplifies the analysis. Let us
introduce an auxillary ‘‘time’’ variablet�1 according to the pseudo-differential equation,

��n

�t�1
�� t1

�1�n . �6.2�
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Then, we can construct the polynomial function�p(t1 ,t2 ,...;t�1) of the generalizedk-constrained
KP hierarchy according to the formulas�2.1�–�2.10� taking into account the auxillary equation
�6.2�. The only modification of this analysis is an extension of the generalized variables�k(p) to
the form,

�k�p�→ �̃k�p���k�p��
��1�k

p�1�k�
t�1 . �6.3�

As a result, the generalizedk-constraint�1.8� can be reformulated for the polynomial solutions of
the KP hierarchy as follows.

Lemma 6.2:The polynomial�-function of the generalizedk-constrained KP hierarchy satisfies
the differential equation,

��p

�tk
��

��p

�t�1
�0, k�1. �6.4�

For the particular casek�1 the differential equation�6.4� follows from the analysis of the
nonlocal Boussinesq equation�see formulas�19� and �20� in Ref. 12� and also from the analysis
of the Davey–Stewartson system at the continuous-wave background as a generalized reduction of
the KP hierarchy�see formulas�19� and�31� in Ref. 15�. The result of Lemma 6.2 enables us to
construct a set of the rational solutions of the generalizedk-constrained KP hierarchy.

Proposition 6.3:The differential equation�6.4� is satisfied by the (k�1) families of the
polynomial�-functions,

�p�Wn�P1�p�,S�1��1 ,...,�k�1�S���P3�p�,...,S��n�1���1 ,...,�k�1�Sn�1���P2n�1�p��,

�6.5�

whereS(�) andS(�1 ,...,�k�1) are defined by Eqs.�2.13� and�2.16�, respectively. The parameter
� is ���p�1, while the parameters� i for i �1,k�1 are given by

� i��� k�1
2 � �1� k�1

i �2 � p� i . �6.6�

Last, the parameterp is one of the (k�1) roots of the algebraic equation,

kpk�1��. �6.7�

Proof: First, we express Eq.�6.4� through the derivatives of�p( �̃1 ,�̃2 ,...) with respect to the
variables�̃k given by Eqs.�2.6� and �6.3�. This leads to the differential equation for�p ,

� kpk�1�
�

p2� ��p

��1
�


i �2

k � � k
i � pk� i�

��1� i�

pi �1 � ��p

�� i
�� 


i �k�1

�
��1� i �1

pi �1

��p

�� i
, �6.8�

where we have omited the sign ‘‘tilde’’ for convenience. Moreover, after the transformation of the
differential equation�6.4� to the form�6.8� we can treat the extra variablet�1 as a phase constant
since the equations of the KP hierarchy are only expressed through the time variablestk for k
�1.

The first term in Eq.�6.8� is removed if the parameterp is a root of the algebraic equation
�6.7�. The rest of terms in Eq.�6.8� disappear due to a special structure of the polynomial function
�(�1 ,�2 ,...) given by�6.5�. To show this, we apply a standard analysis described in the proof of
Proposition 5.2 and find from Eq.�6.5� the differential relation for�p(�1 ,�2 ...),

��p

��2
��


i �3

k

� i �2
��p

�� i
� 1�


j �1

i �2
� j

� j � � 

i �k�1

�

� i �2
��p

�� i
� 1� 


j �1

k�1
� j

� j
� . �6.9�
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Substituting Eq.�6.9� into Eq.�6.8� and taking into account Eq.�6.7� we find that the parameterp
can be eliminated if� is given���p�1, while the left-hand side and right-hand-side of Eq.�6.8�
reduce the system of linear equations for the coefficients�1 ,..., �k�1 ,

1� 

m�1

i �2
�m

�m �
2

k�1 �1�
�k�1�! ��1� i

i ! �k� i �! � �6.10�

for 3� i�k and

1� 

m�1

k�1
�m

�m �
2

k�1
. �6.11�

This linear algebraic system is not degenerate and the only solution is given by Eq.�6.6�. Indeed,
a direct substitution of Eq.�6.6� into Eqs.�6.10� and�6.11� produces the system of combinatorial
identities,



m�0

i

��1�m� k�1
m�2��k���1� i � k

i �2� �6.12�

for 1� i�k�2 and



m�0

k�1

��1�m� k�1
m�2��k. �6.13�

For i �1 the equality�6.12� is obviously satisfied. Furthermore, the equality�6.12� is satisfied for
any (i �1) provided it is valid fori. This statement is a consequence of the Pascal’ triangle
identity,

� k�1
i �3 ��� k

i �2��� k
i �3� . �6.14�

Finally, Eq. �6.13� is satisfied due to the combinatorial identity,



m��2

k�1

��1�m� k�1
m�2��0. �6.15��

By comparing the results of Propositions 5.2 and 6.3, we conclude that the only difference in
the rational solutions of the generalizedl-reduced andk-constrained KP hierarchies is the appear-
ance of the vertex operatorS(�) in the columns of the Wronskian determinant�6.5�. This addi-
tional operator provides an annihilation of the infinite sum in the right-hand side of Eq.�6.8� due
to the remarkable property�2.15�.

Example 6.4: The NLS hierarchy at the CW background(k�1).
The NLS hierarchy at the continuous-wave�CW� background starts with the NLS equation

written in the form,

�
��

�t2
�

�2�

�t1
2 �2���̄�����0,

��̄

�t2
�

�2�̄

�t1
2 �2���̄����̄�0, �6.16�

where the functions� and�̄ are supposed to have the nonzero boundary conditions at infinity, i.e.,
��̄→� as t1→�. Two particular families of rational solutions of the NLS hierarchy at the CW
background are expressed by means of the formula�2.12� through the function�p given by Eq.
�6.5� for k�1, i.e.,

�p��1 ,�2 ,...��Wn�P1�p�,S���P3�p�,...,Sn�1���P2n�1�p��, �6.17�
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wherep���� and���p�1.15 The first polynomials�6.17� can be transformed by means of
the phase translations exactly to the polynomials of the KdV hierarchy�see Example 4.5�, i.e.,
�p��2

n(z1 ,z3 ,...), wherezk are new variables, i.e.,

z1��1 , z3��3���2� 1
4 �2�1 ,

z5��5�2��4� 3
2 �2�3� 1

2 �3�2� 1
16 �4�1 ,

z7��7�3��6� 15
4 �2�5� 5

2 �3�4� 15
16 �4�3� 3

16 �5�2� 1
64 �6�1 .

These polynomials can further be used to construct the real nonsingular rational solutions to the
�focusing� NLS equation which arises under the transformationt2→ i t and the reduction�̄
��* , where�* is complex conjugate to�. These rational solutions describe the modulational
instability of a CW background under a localized perturbation of the algebraic profile.33,34

In addition, the same set of the polynomial�-function also gives the rational solutions of
another physically important equation which is the Kaup equation�or, equivalently, the classical
Boussinesq system�.35 The polynomials�p(�1 ,�2 ,...) given by Eq.�6.17� generate the rational
solutions of the Kaup equation written in the form,

�2v

�t2
2 �4�

�2v

�t1
2 �

�4v

�t1
4 �2

�v
�t1

�2v
�t1�t2

�2
�

�t1
� � �v

�t1
� 3

�
�v
�t1

�v
�t2

��0, �6.18�

within an equivalent bilinear representation�5.10�.36

Example 6.5: The Yajima–Oikawa hierarchy(k�2).
The Yajima–Oikawa hierarchy starts with the system,

�u

�t2
�

���̄

�t1
,

��

�t2
�

�2�

�t1
2 �2u�, �

��̄

�t2
�

�2�̄

�t1
2 �2u�̄, �6.19�

where we impose the boundary conditions,u→0 and��̄→� ast1→�. Three particular families
of the rational solutions of the Yajima–Oikawa hierarchy are expressed by means of the formula
�2.12� through the function�p given by Eq.�6.5� for k�2, i.e.,

�p��1 ,�2 ,...��Wn�P1�p�,S�1���S���P3�p�,...,S��n�1����Sn�1���P2n�1�p��, �6.20�

wherep may have three values,p�(�/2)1/3 and p�(�/2)1/3(�1�) i )/2, S(�) and S(�) are
both given by Eq.�2.13� with the parameters���p�1 and���(3p)�1. The first polynomials
�6.20� can be transformed by means of the phase translations to the polynomials of the KdV
hierarchy �see Example 4.5� with the residue terms, i.e.,�p��2

n(z1 ,z3 ,...)���2
n(z1 ,z3 ,...),

wherezk are new variables, i.e.,

z1��1 , z3��3�������2� 1
4�����2�1 ,

z5��5�2������4� 3
2�����2�3� 1

2�3�3�5�2��3��2��3��2

� 1
16�9�4�20�3��14�2�2�4��3��4��1 ,

z7��7�3������6� 15
4 �����2�5� 1

2�9�3�19�2��15��2�5�3��4� 1
16�63�4�156�3�

�138�2�2�60��3�15�4��3� 1
16�63�5�147�4��130�3�2�58�2�3�15��4�3�5��2

� 1
64�105�6�294�5��303�4�2�359�3�3�39�2�4�6��5��6��1 ,

and��2
n are the residue terms, i.e.,

��2
1�0, ��2

2�0, ��2
3� 45

4 �4�����2,
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��2
4�

798525

64
�3�3z1

4�
4725

8
�4�9�4�24�3��22�2�2�8��3��4�z1

2

�
14175

64
�3�16�3�32�2��16��2�169�3�z1z3

�
4725

64
�4�81�6�270�5��351�4�2�228�3�3�79�2�4�14��5��6�.

Within a physical context, the Yajima–Oikawa system�6.19� transformed according to the reduc-
tion t2→ i t and �̄� i�* describes a resonance of a mean flow and short dispersive waves. The
rational solutions to this system have not yet been analyzed. However, by an analogy with the
NLS hierarchy at the CW background�see Example 6.4�, these solutions seem to be relevant for
description of the modulational instability of a CW background under a localized perturbation of
the algebraic profile.

VII. ANOMALOUS SCATTERING IN THE CM HIERARCHY

We have shown that all degenerate rational solutions of the KP hierarchy excepting those
reducible to the generalized Schur polynomialsPn(p) describe, within a particular limit, the
stationary manifolds of the CM hierarchy�see Proposition 3.6�. Hence, in a general case, these
solutions describe the scattering dynamics of interacting particles in a neighborhood of the sta-
tionary manifolds. The stationary manifolds of the CM system�3.3�, i.e., those with respect to the
time t2 , are especially important because they are relevant for the rational solutions satisfying the
generalized reductions of the KP hierarchy. Here we study the dynamical processes of scattering
of the CM particles associated with this family of the rational solutions.

Proposition 7.1:Suppose that the�-function of the KP hierarchy is given by

�p��1 ,�2 ,...��WN� P̃1�p�,P̃3�p�,...,P̃2N�1�p��, �7.1�

where the tilde means that the translations of the time variables�k��k(p) may be arbitrary.
Define the indexs for the scattering rate ofR particles according to the asymptotic representation
xj�2pt2�t2

s ast2→� for j �1,R, wherexj (t2 ,...) arezeros of the�-function given by Eq.�3.1�.
Then, the scattering dynamics described by the polynomials�7.1� occur near a stationary manifold
of the CM system�3.3� of R�N(N�1)/2 particles, and the scattering rates may only have the
particular values,

s�sk,m�
k

2k�m
, �7.2�

where for each integerk�1,N�1 there exists a set of integersm��2l �1� l �1
N�k .

Proof: Noting that the�-function given by Eq.�7.1� can be reduced, within a particular limit,
to the form�(t1 ,t3 ,...)�WN�p1 ,p3 ,...,p2N�1� which describes a stationary manifold of the CM
system�3.3� of R�N(N�1)/2 particles according to Collorary�4.2� and Proposition 4.4. There-
fore, a more general form�7.1� of the �-function describes the scattering dynamics ofR particles
occurring near this stationary manifold. In order to find the scattering rate of the particle dynamics,
we need to show that zeros of the polynomial function�p(�1 ,�2 ,...) have the asymptotic repre-
sentation�1��2

s as�1 , �2→�, where the indexs is given by Eq.�7.2�.
The polynomial solution�7.1� has generallyG�R�N(N�1)/2 parameters. Among these

parameters,G1�N parameters correspond to the phases�1 , �3 ,...,�2N�1 which define the con-
figuration of the stationary manifold of the CM system whileG2�N(N�1)/2 parameters can be
regarded as amplitudes of elementary excitations of particles near the stationary manifold. We
show that an individual elementary excitation can be described by the particular polynomial
function �p following from Eq. �7.1�,

�p��1 ,�2 ,...���N
m,k�WN�P1�p�,...,Sm

�1�a�P1�2k�p�,...,Sm
�2�a�P1�4k�p�,...�, �7.3�
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wherek andm are the same integers as below Eq.�7.2�, while the operatorSm(a) is given by a
modification of Eq.�2.13� in the form,

Sm�a��exp��

i �1

�
1

i
ai

�

��mi
� . �7.4�

Using the standard analysis, one can readily show that the polynomial function�p(�1 ,�2 ,...)
given by Eq.�7.3� depends on the phases�2k�m and�2k only in the form of a linear superposition
(�2k�m�a�2k). Next, because the time variables�2k�m define the stationary manifold of the CM
system, zeros of the polynomial�N

m,k have the asymptotic representation�1��2k�m
1/(2k�m) as �1 ,

�2k�m→�. Substituting the linear superposition in this asymptotic representation and recalling
that �2k��2

k as �2 , �2k→�, we conclude that the�m,k� elementary excitation of the stationary
manifold of the CM system prescribed by Eq.�7.4� displays the fractional scattering rates defined
by Eq.�7.2�. Finally, it is clear that there exists exactlyG2�N(N�1)/2 particular representations
�7.4� for each polynomial function�7.1�. Therefore, all possible asymptotical scattering rates are
listed in the formula�7.2�. �

Example 7.2: The stationary manifold of 6 particles(N�3).
The following polynomial�-function of the KP hierarchy follows from Eq.�7.1� at N�3 and

describes the scattering dynamics ofR�6 particles occurring near the corresponding stationary
manifold of the CM system�3.3�,

�p�z1
6�15z1

3z3�45z3
2�45z1z5��, �7.5�

where

z1��1 , z3��3�b�2� 1
64�16b2�9a2��1 ,

z5��5�2b�4�
3

32
�16b2�a2��3�a�2

2�c�2�
3

512
a�16b2�9a2��1

2�
3

8

�1�3

�
5

8
ab�1�2�

1

2048
�81a4�1360a2b2�384b4�1024bc��1 ,

and

���
225

8
az5�

135

512
a�19a2�256b2�z3�45a2�2

2�
45

32
a�9a2b�16b3�32c��2

�
45

262144
�2781a6�32704a4b2�129024a2b4�16384b6

�36864a2bc�65536b3c�65536c2�.

Here the variablesz1 , z3 , andz5 define theG1�3 parameters of the stationary manifold, while
the constantsa, b, andc correspond to theG2�3 elementary excitations of the particles near the
manifold. It follows from zeros of the polynomial function�7.5� that if a�0 the scattering rates
is s2,1�2/5 according to Eq.�7.2�. If a�0 but b�0, then the scattering rate is slower, i.e.,s1,1

�1/3. At last, if a�b�0 but c�0 then the rate is still slower, i.e.,s1,2�1/5. Fora, b, andc all
equal to zero, the particles are not excited and lie on the stationary manifold of the CM system.�

Thus, we conclude that the existence of the stationary manifolds of the CM system leads to a
slowing down of the anomalous scattering of interacting particles according to a hierarchy of
characteristic scattering rates�7.2�. It is worthwhile to notice that the rates of anomalous scattering
occurring far from the stationary manifolds of the CM systems are higher than those given by Eq.
�7.2�. Indeed, zeros of the degenerate polynomials of the KP hierarchy including the generalized
Schur polynomialsPn(p) have generally an asymptotic representation�1��2

1/2 as �1 , �2→�,
i.e., the scattering rate is generallys�1/2. Only if the degenerate polynomials reduce to the form
�7.1� the scattering rate becomes slower with respect to the timet2 , i.e.,sk,m�1/2. A first example
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of the anomalous scattering occurring near the stationary manifolds of the CM system was pre-
sented by Gorshkovet al.21 and recently reproduced by Ablowitz and Villarroel for the lump
solutions in the KP1 equation.24 Although we do not consider here the rational solutions of the
KP1 equation, the results presented can further be generalized to describe the same scattering
dynamics of the lump solitons as the particles in the CM system�see also Ref. 21�.

VIII. CONCLUSION

In this paper we have developed a general approach to construct and analyze the degenerate
rational solutions of equations of the KP hierarchy and its reductions. In particular, we have
presented the rational solutions to the generalizedl-reduction andk-constraint of the KP hierarchy
which correspond to the reductions of the KP hierarchy under the nonzero boundary conditions at
infinity. We have also shown that these solutions describe anomalously slow dynamical processes
of scattering occurring near the stationary manifolds of the CM dynamical system.

Since the paper does not cover all possible generalized reductions of the KP hierarchy�see,
e.g., Refs. 5, 6 for other reductions� it is worthwhile to summarize our approach and present a
general scheme of a search for the polynomial�-function satisfying a generalized reduction of the
KP hierarchy. Suppose that the reduction is formulated in terms of a differential equation imposed
on the�-function of the KP hierarchy. Then, in order to find the particular form of the polynomial
function �p(�1 ,�2 ,...) �2.10� satisfying this reduction, one needs

�i� to rewrite the differential equation in terms of the generalized time variables�k(p);
�ii � to choosep such that the leading-order term��p /��1 is removed;
�iii � to find the first nonzero coefficient in front of the derivative��p /��m , then the polynomi-

als �p generalize the polynomials of them-reduced KP hierarchy given by�4.4�;
�iv� to introduce the generalized vertex operators�2.13� and�2.16� which displace phases of the

polynomialsPn(p) in each subsequent column of the Wronskian determinant�2.10�;
�v� to find the parameters of the vertex operators by comparing the differential equation de-

rived for the polynomial function�2.10� with that of the given reduction.

This scheme and the approaches used in both papers I and II can be developed for analysis of the
rational solutions of multicomponent KP hierarchies which include such an important example as
the Davey–Stewartson system�see, e.g., Ref. 15�. The �-function of the multicomponent KP
hierarchies can be expressed through a multicomponent Wronskian26 which can be treated in the
same manner as that in a single-component case. The classification and construction of rational
solutions of the multicomponent KP hierarchies remain open for further studies.
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