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Rational solutions of the KP hierarchy and the dynamics
of their poles. Il. Construction of the degenerate
polynomial solutions
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A general approach to constructing the polynomial solutions satisfying various
reductions of the Kadomtsev—Petviash¥KiP) hierarchy is described. Within this
approach, the reductions of the KP hierarchy are equivalent to certain differential
equations imposed on thefunction of the hierarchy. In particular, theeduction

and thek-constraint as well as their generalized counterparts are considered. A
general construction of the rational solutions to these reductions is found and the
particular solutions are explicitly derived for some typical examples including the
KdV and Gardner equations, the Boussinesq and classical Boussinesq systems, the
NLS and Yajima—Oikawa equations. It is shown that the degenerate rational solu-
tions of the KP hierarchy are related to stationary manifolds of the Calogero—
Moser(CM) hierarchy of dynamical systems. The scattering dynamics of interact-
ing particles in the CM systems may become complicated due to an anomalously
slow fractional-power rate of the particle motion along the stationary manifolds.
© 1998 American Institute of Physid$50022-24888)03110-7

I. INTRODUCTION

It is generally believed that all known hierarchies of{{1)-dimensional equations integrable
by means of the inverse scattering method can be represented as certain reductions of a universal
Kadomtsev—PetviashvilKP) hierarchy of (2+1)-dimensional equations and/or of its extentions
to modified and multicomponent cases. This hypothesis originates from a unifying Sato‘tieory
that describes the KP hierarchy in terms of the pseudodifferential opefétop,+ uzr?;l
+u3ax‘2+~-- . The infinite set of functionss,, for n=3 can be expressed through the scalar
functionu,=u(t,,t,,...) that depends oty =x and on an infinite sequence of the time variables
ty, k=2. Then, equations of the KP hierarchy arise from the generalized Lax equation,
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whereB, is a differential part ofZ*. A typical example is the KP equatigsee Ref. 3
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Equations of the KP hierarchy are associated with the isospectral deformation of the eigenvalue
problems =Ny and £* y=N\i, where is a spectral parametef/* is a formal operator
adjoint, andys and ¢ are eigenfunctions satisfying the time evolution problems,
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The KP hierarchy is closely related to the modified KP hierarchy which starts with the
modified KP equation,
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Within the Sato approach, the modified KP hierarchy can be constructed by means of the gauge
transformation of the KP hierarchy which results in modification of the pseudodifferential operator
2.2 0n the other hand, solutions of the modified KP hierarchy are formally expressed through the
eigenfunctiony satisfying Eqs(1.3) according to the relation;= ¢~ 19/ dt, .

Besides its own meaning, the KP hierarchy is useful for generating numerous integrable
hierarchies of (% 1)-dimensional equations by means of a certain reductive procedure. The
conventional-reduction arises under the condition imposed to the operétor

=B, =2, (1.5

so that the whole set of functions, become independent dpas well as or,, (see, e.g., Ref.)3
Forl=2 this reduction leads to the KdV hierarchy, fer 3 it produces the Boussinesq hierarchy,
and so on.

Another reductive procedure was recently proposed through a symmetry cofstriaici
was also formulated as theconstraint imposed on the operatst® Thek-constraint occurs under
the condition,

SK=By+ gy, k=1, (1.6)

and leads to coupled nonlinear equations between the funatigns, ... ,u,_; of the KP hierar-
chy and the eigenfunctiong and . Typical examples of th&-constrained KP hierarchy include
the NLS equation fok=1, the Yajima—Oikawa equations f&r=2, and so or(see Refs. 5, )6

The reductive procedure applied to the KP hierarchy typically gives an idea as to which exact
solutions, such as soliton and rational solutions, remain invariant under the reduction and hence
represent the exact solutions of thet(1)-dimensional equatiorfs1! This search for the explicit
solutions is especially straightforward if one deals with the functignef the KP hierarchy and
the eigenfunctiongs and ¢ under the zero boundary conditions at infinity. In contrast, a structure
of explicit solutions with nonzero boundary conditions is not so obvious and is not usually under
consideration. Some results concerned with multisoliton solutions df-twstrained KP hierar-
chy under the nonzero boundary conditions for the figldsd s were obtained quite recently by
Loris and Willox*>*®while the existence of rational solutions for this reduction remains an open
guestion. Therefore, a natural problem is how to detect those rational solutions of the KP hierarchy
that satisfy a generalized reduction or constraint imposed to the operator

The generalizettreduction of the KP hierarchy can be formulated by means of a modification
of the condition(1.5) given by

A —as=B—aB;, 1=2, (1.7

where the parameter is arbitrary. This reduction describes solutions of the KP hierarchy which
depend ort; according to the formy,,=uy(t;+ at, ,to,... .ty _1,tj41,...). Atypical example is
the Boussinesq equation for acoustic wa{eghich arises from the conditiofl.7) for | =3.

The generalized-constraint was formulated by Loris and Willtxas the condition,

SR B I=B+ya Ly, k=1, (1.9

where the constarng is related to the asymptotic values of the eigenfunctigrasd s at infinity,
i.e., yiy— B ast;—o. In particular, the NLS equation at the continuous-wave backgroumises
from the condition(1.8) for k=1.

This paper is devoted to studies of the rational solutions satisfying the generalized reductions
(1.7 and(1.8). The main ideas and methods of this paper follow those of the previous'paper
referred to henceforth as paper I. The aims of both papers are tw@fpotd;analyze and classify
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various sets of rational solutions of the single-component KP hierarchy through the construction of
the equivalent polynomiat-function and(ii) to relate the different structure of the polynomials to
different dynamics of particles in a many-body Calogero—Ma$&&v) system and its higher
commuting flowst"18

The 7function representation of solutions of the KP hierarchy appears naturally within the
framework of the Hirota bilinear transformatigsee, e.g., Ref.)3
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wherec andc are arbitrary constants, the functier 7(t,t,,...) isreferred to as the-function
of the KP hierarchy while the associated functiarisare expressed throughas follows:

e "‘i A" 1.1
X,tz—t—ﬁ,... ex * 2 th|. (1.10

= ti+
It was recently proved by Shidta(following the pioneer paper by Kriche\i@r that zeros of the
polynomial ~-function of the KP hierarchy describe motion of particles in the whole hierarchy of
the CM dynamical systems.

In paper | it was shown that a general polynomidunction of the KP hierarchy can be
factorized through a set of partial polynomial solutions generated by derivatives of certain expo-
nential functions with only one value of the spectral paramgteFhese partial solutions were
referred to as the degenerate polynomials of the KP hierarchy. Different types of scattering of
particles in the CM hierarchy were analyzed in paper | with the help of the factorizing identities
and the degenerate polynomials were shown to be related to anomalous scattering of particles
accompanying slow rates of the particle motion. The first example of such an anomalous scattering
was presented by Gorshket al?! for the KP1 equation and later by Wafdand loannidot? for
an integrable chiral model. Recently, it was shown by Ablowitz and Villaffaeiat the degen-
erate rational solutions of the KP1 equation naturally appear in the inverse scattering formalism
through a multiple pole expansion of the associated eigenfungtimhich is equivalent to the
pole expansion of the Baker—Akhiezer function used in a geometric methatbwever, in
previous works a complete classification of the degenerate rational solutions of the KP hierarchy
has not been proposed.

In this paper we develop a unifying approach to constructing the degenerate polynomial
solutions of the KP hierarchy by using the theory of generalized Schur polynomials and vertex
operators. This approach enables us to characterize all degenerate polynomials in terms of station-
ary manifolds of the CM hierarcRy and to find a simple representation of the rational solutions
satisfying the generalizeldreduction and-constraint of the KP hierarchy. A general scheme for
constructing the degenerate polynomials is described and particular applications of the scheme to
some physically meaningful nonlinear evolution equations are also given.

The paper is organized as follows. The basic notation and properties of the generalized Schur
polynomials and the vertex operators acting on these polynomials are described in Sec. Il. A
connection of these polynomials with the stationary manifolds of the CM system is discussed in
Sec. lll. A general classification of the stationary manifolds and of the related rational solutions to
the I-reduced KP hierarchy is given in Sec. IV. The rational solutions to the generdlized
reduction andk-constraint of the KP hierarchy are constructed in Sec. V and VI, respectively. A
classification of different dynamics of the anomalous scattering of particles in the CM hierarchy is
considered in Sec. VII. Finally, Sec. VIII concludes the paper.

II. THE GENERALIZED SCHUR POLYNOMIALS

Exact solutions of the KP hierarchy can be expressed through one of the conventional repre-
sentations of the-function. Following paper I, only the Wronskian represent&fios considered
here but it enables us to generate all classes of rational solutions without loss of generality. Within
the Wronskian representation, thdunction is
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where the entries of the Wronskian determinapt ¢, (t4,t5,...), n=1N satisfy the differential
equations

e
=—¢, k=1 2.2

A degenerate polynomiat-function is generated by a partial solution of Ef.2),
n
d>n=<121 aijj(p))e‘”p), (2.3

wherea; are arbitrary coefficienty is a spectral parameter, the phase factor is given by

<1><p>=k§1 Pty (2.4)

and the functiond,(p) are defined by a generating exponential function,

ﬁn
Py(p)=e~*® (?—pneq(p). (2.5
These functions are quasipolynomials of the time variablésecause they contain infinite series

of t,. However, the time variabldg enter the quasipolynomial,(p) only in the form of a finite
number of the generalized time variablggp) given by

1 & ~
9k(p):HTp(IP—)=mE_k (T:) P K. (2.6)

Hence we refer td,(p) as the generalized Schur polynomials. In the lipit:0 the polynomial
P.(p) reduces to a conventional Schur polynonpa(t,,t,,...)=P,(0) arising from the expan-
sion e‘D(p)=E;°=l(l/n!) Pn(ty,ts,...)p". The first few generalized polynomials have the form,

Pi=6,, P,=03+20,, P3=605+66,0,+60,
P,= 07+ 12020,+ 1205+ 240, 05+ 246,,
Ps= 63+ 206050, + 600, 65+ 6062 03+ 1200, 03+ 1200, 6,+ 12005 .

The key property of the Schur polynomidts(p) is that they satisfy the original syste®.2)
rewritten in terms of the generalized variablgsand also the following relation:

P, dP,  nl 5 )
a0, ok (n—k)! "k @7

Using this key property, Matve&Vproved the following lemma.

Lemma 2.1:Suppose thamn;<m,<---<m, anda,=1 in Eq.(2.3). Then, there exists con-
stantsf,o, k=1,m, so that the superposition of the Schur polynomials in ®) is reducible to
a polynomial of the highest degree, i.e.,

n

gl &Py (P) =P (P)=Pr (301~ 010,02~ 030, .0, ~ O, 0)- (2.9
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According to Lemma 2.1, the degenerate rational solutions of the KP hierarchy can be ex-
pressed through the leading-order polynomigjs(p) with different values of the phase constants
0. Then, the rational solution of this type has the form,

7=1y(01,0,,..)eNP), (2.9

where,(61,6,,...) is apolynomial (or, equivalently, quasipolynomiaWith respect to the time
variables6,= 6,,(p) or t,, respectively. This polynomiad-function is given by the Wronskian
determinant,

7o(01,02,..) =WA[ P, (P),Pm,(P),...Pm (P)]. (2.10

Using Egs.(1.10 and(2.10, we find the associated function$ for the polynomial representa-
tion,

S St} R A N
T _(T) Tp( N 2 a7 | SRNP (RPN, (213

where the spectral parametermay be arbitrary. However, the rational representations for the
eigenfunctionsy andy arise only in the limit\—0 provided that the constantsandc are chosen
appropriately. Then, the rational solutions to the KP hierarchy can be expressed through a scalar
polynomial functionr,= 7,(6,,6,,...) asfollows:

e S(/-L)Tp - —Sil(M)Tp d S(M)Tp
U—ﬁf'Og Tps lﬁ—p - y lﬁ—p T—p’ U—[?—albg - . (212'

Here the parameters and p define the boundary conditions of the eigenfunctiaxnandZ as
t,—, the parameten is u=—p~ !, and the generalized vertex opera8fj.) is introduced to
characterize shifts of the phase variablgs= 6,(p),

o

1 d

S(M)=exr{—k21 e e (2.13

The action of the vertex operator on the generalized Schur polynoRiéts is described by the
following lemma.

Lemma 2.21f P,(p) satisfies Eq(2.7) for anyk andS(u) is defined by Eq(2.13, then the
following identities are valid:

k
(k| aP,
sk<mPn<p>=2<—m'(-) (,p), (2.14
]=0 J ae]
B S ([i+tk—=1) dPn(p)
S wPap=2 W | 5 (2.19

Lemma 2.2 has a classic analog in the theory of group charasess e.g., Ref. 28Within
the given context, the formulad®.14) and(2.15 have already been used for the construction of
integrable hierarchié$ and that of the rational solutiot8.Importantly, these formulas are not
applicable to the action of vertex operators on the polynomial funeti¢s, , 6, ...) because the
polynomial functionr, does not generally satisfy the key relatid@s?).

The multicomponent generalization of the vertex operator can be defined through the product
of the vertex operator2.13),

k
S(vl,...,vk>=i[[1 S(i), (2.16

where the parameteng are related tqu; by the partial sums,
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=(-1'"t X utpk (2.17

2+t z=i

and the indiceg, are either zeros or unities. Using the formu{@sl4 and(2.16) one can prove
the following lemma.

Lemma 2.31f P,(p) satisfies Eq(2.7) for anyk andS(v4,...,vy) is defined by Eqs(2.16
and(2.17), then the following identity is satisfied:

K aP,
Zl (p)_

S(Vl!"'i n(p = (21&

[lI. CONNECTION WITH THE CM HIERARCHY

Properties of the degenerate rational solutions of the KP hierarchy are described by the
construction of the polynomial functiomy(6;,6,,...) within the form (2.10. The following
theorem proved by Shicta clarifies a relationship between this polynomial function and the
dynamics of particles in the CM hierarchy of dynamical systems.

Theorem 3.1: Let the functiony(ty,t5,...) be amonic polynomial int; having R zeros
Xj(tz,...), j=1R according to the representation,

py)

Tty by, )= H 1= X(t2,.)). (3.1

This function is ther-function of the KP hierarchy if and only if the motion of zeros ©f is
governed by the hierarchy of the CM dynamical systems,

ax; oH op; JH
T BT oy (3.2
Ity Ip; Ity X

whereH,=(—1)"Sp(L)" and the elements of the matrixareL;; = p;d;;+ (1— &) (x; —
In the partlcular casa=2, this system is just the Calogero—Moser system of part’rélb%

07XJ 1

=8>

&tz 1% (Xi_Xj)a, (33)
wherex; are coordinates of particles, while the velocities of particlesvaredx; /dt,=2p; .

Collorary 3.2: The degree of the polynomiat-function with respect td; denoted byR
coincides with the number of particles of the corresponding CM system.

Collorary 3.3: The number of linearly independent time variablggp) of the polynomial
7-function denoted b¥s coincides with the dimension of a dynamical manifold of the correspond-
ing CM system.

A general solution describing normal scatteringRoparticles along a manifold of the dimen-
sion G=2R is well known for the CM systemg.2) and(3.3) (see, e.g., Ref. 19, and references
therein. In paper | it was shown that besides a general solution there exists a wide set of
degenerate solutions which describe anomalous scattering of particles with asymptotically equal
velocities, i.e. whemw;— 2p ast,— *. A complete picture of dynamical processes occurring in
the CM systems can be explained as a superposition of elementary processes of either normal or
anomalous scatterin.Here we study only the anomalous scattering in the CM hierarchy which
is described by zeros of the degenerate polynomig($,,6-,...) according to Theorem 3.1.

Proposition 3.4:The degenerate polynomia(64,6,...) given by Eq.(2.10 corresponds to
the CM system oR particles, where

N (N—1
R=2, m, S5 (3.4
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Proof: Suppose that &@m;<m,<...<my in Eq. (2.10. The polynomialsP,(p) at the lead-
ing order approximation with respect # (or, equivalently, tot;) are Pn(p)~ 67+ 0(02’2).
Expanding the WronskiaV[ Py, (P)....,Pm (P)] within this approximation, we find the result
(3.4) for the degree of the polynomial,(6;,6,,...) which is equivalent to the number of particles
R according to Collorary 3.2. O

The degenerate polynomials of the KP hierarchy and the corresponding dynamics of the CM
systems can be classified into two different groups. The first group consists of the polynomials
which can be reduced to the generalized Schur polynor®ig{®; 64,...,0g). It is clear from the
parametrization of these polynomials that a dynamical manifold of the CM system described by
Pr(p) has the dimensio® =R with the “additional” parametep determining the asymptotic
velocity of the particles as,— . The other group of the polynomiatfunctions which includes
the rest of the polynomials,, describes the anomalous scattering occurring near one of the
stationary manifolds of the CM hierarcRy.

Definition 3.5: A manifold of the CM hierarchy is stationary with respect to the titmi

dx; _
WZO‘ for all j and I=2. (3.5
[

Stationary manifolds of the CM hierarchy form certain embeddings into dynamical manifolds
describing the anomalous dynamics of the CM particles. To be specific, the stationary manifolds
have the dimensiof® which is less than the number of particlgsi.e., although all asymptotic
velocities of particles are specified by a single paramgténe asymptotic phases of the coordi-
natesx;(t,,...) in thelimit t,— o are functionally dependent. The following result proves that all
polynomial functions of the forn(2.10 excepting those reducible to the polynomids(p)
describe, within a particular limit, a certain stationary manifold of the CM hierarchy.

Proposition 3.6:Suppose that the polynomiadfunction of the KP hierarchy is given by

Tp(tlatZ;---):WN[pmlypmza---ypmN]u (36)

wherep,=p,(ti,t,,...)=P,(0). Zeros of this polynomial function describe one of the stationary
mall?ifolds of the CM hierarchy iN>1 and the se{mj}jN:1 is different from the ordered set
T

JProof: In the casemy<R it is clearly seen from Eq(3.6) that the functionr,(t;,t;,...) is
independent of at least the variabt(ﬁ%+l,...,tR and hence, zeros of the polynomial functigp
do not depend on these times.

In the casemy=R it follows from Eq. (3.4) that the only possible solution is,(t;,t;,...)
=W\[P1:P2,---.Pn_1,Pr] Which is realized fomy=R andR>N. Then, it can be shown that the
polynomial functionr, does not depend on tintg, i.e., corresponds to the stationary manifold
with respect tdr . In the exceptional case=N the condition of the proposition is not satisfied,
and, indeed, the functiom, is now reducible to the Schur polynomipi(ty,t,,...) (see paper
). O

In the next section we classify degenerate polynomifilnctions of the KP hierarchy into
different subgroups corresponding to different stationary manifolds of the CM hierarchy. This
classification is directly related to the construction of rational solutions ofl{fegluced KP
hierarchy.

IV. THE I-REDUCED KP HIERARCHY

The following lemma can be readily proved by using the definition ofltheduction(1.5
(see Ref. 3 for details

Lemma 4.1The polynomialr~function of thel-reduced KP hierarchy satisfies the differential
equation,

I7p _

i =0 1=2. 4.1
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Collorary 4.2: Zeros of the functiorry(ty,t,,...) satisfying thd-reduced KP hierarchy define
the stationary manifold of the CM hierarchy with respect to the time

Collorary 4.3: The =function of thel-reduced KP hierarchy does not depend on variables
t .t ..t

Collorary 4.3 follows from the identity."'=(B,)"=B,, and leads to the fact that the
function of thel-reduced KP hierarchy also gives a subset of solutions ohHreduced hierar-
chies. In order to present a closed classification scheme for the rational solutiond-oédueed
KP hierarchy we assume that the functigy(t,,t,,...) satisfies the complimentary constraints,

io,  j=11-1 4.2
Fa j=1l-1. (4.2)
Then, the following result defines a structural element of the polynomfahction of thel-
reduced KP hierarchy.
Proposition 4.4:The differential equation(4.1) is satisfied by thel=1) families of the
polynomial functions,

Tp(tlatz----):an[pjijv---,Pj+(nj—1)|]- j=1)1-1, 4.3

where p,=p,(t1,ty,...)=P,(0) andn; are positive integers enumerating the families of the
polynomials.

A proof can be given by means of a direct differentiationrpft, ,t,,...) with respect ta, ,
use the formula(2.7) for p=0, and elimination of two identical columns in the Wronskian
determinants. This result has been widely used in previous literégers e.g., Ref. J1A less
known fact is that thel(-1) families of the polynomials given by E@4.3) do not cover all
possible rational solutions of tHereduced KP hierarchy except for the simple cks®. Indeed,
a more general solution can still be constructed through a combination of the particular solutions
(4.3 in the following form:

Tp(t1:t21---):Trlnzmnl_lsz[plale veeeP1a(ng- 1)1 5o PI- 1 P2 - 10 P01l
(4.9

whereN=2};}nj. As follows from Collorary 4.2, zeros of this polynomial solution define a
general construction of the stationary manifold of the CM hierarchy with respect to thé tifsg
using Eq.(3.4) we find that the number of particles forming a stationary configuration is not

arbitrary but given by the expression,

-1 1 1I71
R=j§1 nj| i+ (n=l+1-3 2 (n-n) . (4.5

The dimension of the stationary manifd&lis less than the number of particlRdecause the time
variablest; , t,, and so on, do not parametrize the functii™? " ~2. It seems to be difficult to
find G for a general solutiofd.4) (see, e.g., Ref. 24Still for the particular solution§4.3) we find
the result,

R=3n;(2j+(1-1)(nj—1)), G=j+(I-1)(n;—1). (4.6)

Example 4.5: The KdV hierarchy =2).
The KdV hierarchy starts with the KdV equation,

4™ M T @7
It gty oS '

A complete set of the polynomiatfunctions for the KdV hierarcty*°is given by Eq.(4.4) for
=2 andn;=n, i.e,,

7p(t1,tg,...) =72=Wi[pP1,P3,....P2n-1]. (4.9
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Zeros of these polynomials define the stationary manifolds for the CM dynamical sy3i8m
with respect tot,.? It follows from Eq. (4.6) that these stationary manifolds exist only far
=n(n+1)/2 particles and hav@=n parameter subspaéeFor reference, we reproduce here the
first polynomials of this family, omitting a constant factor in front o,

T%Etl,
—3t3,
=15 — 155t — 4565+ 454t
Ta=t10— 45t]t;— 4725, t3+ 315 5ts + 4725 2t 5t — 47282 — 15755t + 4728 4t

Example 4.6: The Boussinesq hierardhy- 3).
The Boussinesq hierarchy starts with the Boussinesq equation,

3_(92u +6 _azuz + _&4u 0 4.9
2 2 z =Y. '

A general rational solution of the Boussinesq equdfias expressed through the polynomial
7function (4.4) for =3, n;=n, andn,=m, i.e.,

Tp(t1it2,..)=73"=Wn i [ P1,P4,---P3n—2:P2.P5:---.Pam-1]- (4.10

Zeros of these polynomials define the stationary manifold of the first higher-order commuting flow
of the CM hierarchy(3.2), i.e., that with respect tt;. It was found by Galkiret al!* that the
number of particle® forming the stationary configuration and the dimension of the manif@lds
are specified as follows:

R=n?+m(m+1)—nm, (4.11)

2m—n m=2n
G={ m+n 2n>m=n/2, (4.12
2n—m—1 n/2>m

The first polynomials are
Téoztl, Tg'llit%‘f‘ztz,
20=t1+4t3t,— 45— 8t,, T3'=t?-2t,,
79%=t8+ 107t + 2025+ 4053 — 403t , + 80k ot ,— 80t 5,
730=15+ 16t]t,+ 56t5t5— 560t t5— 1125t — 224Q , t5t,— 2240 ,t5— 280 jts+ 112G 5t
+112Q5t5— 2240 4t5+ 112G 3t + 2240t 4,
3l=t]— 45, — 45+ 8t,, 73’=t;—20t,t5+20ts,

79°%=t1%+28t1%, + 260 3t5+ 112aS5t3 + 2804 1t5 + 112005t5+ 112005 — 2803t , — 2245t 5t
—1120Q7t5t,+ 4480055t + 672005t ,— 1120Q7t5+ 13440Q%t,t5+ 4480055 — 896003
—96Q1ts— 44805t ts— 4480Q5t5ts— 89600, t3ts— 89605t 4t5+ 17920Q t ot 4t 5
—8960Q3t2+ 17920@,t2+ 896G 5t; — 17920Q, t5t,+ 17920Qst, + 224005t + 896003t tg
— 896005t — 17920Q,t5.
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We notice from these explicit formulas that the polynomial solutions related to the symmetry of
the KP hierarchy with respect to the transformatiga-(—1)“"'t, appear naturally from the
general formula4.10 for m, n#0. O

A straightforward generalization of the polynomial solutiof#s3) which satisfies thek-
constraint(1.6) of the KP hierarchy was recently presented by Loris and Wifodnfortunately,
the rational solutions of théreduced andk-constrained KP hierarchies usually turn out to be
physically meaningless since they are either singular or complex. However, the results on the
existence and dimension of stationary manifolds of the CM hierarchy serve as an useful tool for
constructing and analyzing the degenerate rational solutions which satisfy the generalized reduc-
tions of the KP hierarchy. The latter solutions often describe physically interesting phenomena
within the underlying nonlinear evolution equations. In the next two sections we construct the
rational solutions satisfying the generalizegeduction andck-constraint of the KP hierarchy and
present a few examples where the rational solutions are physically meaningful.

V. THE GENERALIZED /-REDUCED KP HIERARCHY

Here we consider the generalizededuction of the KP hierarchy defined by the condition
(1.7). Using a simple modification of the methods of Ref. 3 one can prove the following lemma.
Lemma 5.1The polynomial~function of the generalizedreduced KP hierarchy satisfies the

differential equation,

9T _ . T =2 (5.9
a, Yo © '
As in Lemma 4.1, we assume here that there are no differential relations similar (@ Edor the
evolution of 7(ty,t5,...) with respect to the time variablas for j=1]1—1. The differential
equation(5.1) implies that functions of the KP hierarchy dependtpm the form of a stationary
phase, i.e.u =u,(t;+at to,... .t _1,t41,...). It isimportant that no rational solutions to the
generalized-reduction could be constructed by means of the Schur polynomjiéls.,t,,...) and,
therefore, we have to consider the generalized Schur polynoj#s) given by Eq.(2.5) atp
#0. Thus, a set of the rational solutions of the generalizediuced KP hierarchy is prescribed by
the following result.

Proposition 5.2: The differential equation5.1) is satisfied by the l~1) families of the
polynomial ~functions,

Tp(elv021---):Wn[Pl(p)vsil(Vla----vVI—Z)PS(p)v---asi(nil)(vlv---aVI—Z)PZn—l(p)]-(S 2

Heren is a positive integerP,(p) is the generalized Schur polynomi@.5), and the generalized
vertex operatorS(vy,...,v;_,) is defined by Eqs(2.16 and (2.17). The parameters; for i
=1]-2 are given by

o) it

and the parametqy is one of the (— 1) roots of the algebraic equation,

p’ (5.3

Vi=—

Ip't=a. (5.4

Proof: First, we find that the polynomial function,(6,,6,,...) defined by Eq(5.2) satisfies
a certain differential equation with respect to the generalized time varié#es,(p). This can
be done by differentiating each column of the Wronski&2) with respect tod,, by subsequent
subtracting of the nearbouring column multiplied by a certain factor and by using the formulas
(2.7) and(2.18. As a result, we find the following differential equation fgy(6,,6,,...),

! T

aT
P .
(902 I;; VI—Z (96| . (55)
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This relation should be compared with the differential equatf®d) To do this, we rewrite Eq.
(5.1 in terms of the variableg, as follows:

!)p'i ﬂ=o. (5.6)

The leading-order terndr,/36; is always dominant in Eq(5.6) because the time variabig,
always has a different weight in the polynomial functigyf 6, , 6,...) compared to the other time
variables. Therefore, we have to remove this term and sppeifya root of the algebraic equation
(5.4). Then, by comparing the coefficients in E¢5.5) and(5.6) we find the parametens in the
form (5.3. O

It is obvious that the expressiofb.2) generalizes the polynomial solutiorid.8) for the
2-reduced KP hierarchythe KdV hierarchy (see Example 4)5 The polynomial function
7o(61,65,...) given by Eq.(5.2) has the degreR=n(n+1)/2 and is parametrized i§y=n linear
superpositions of the time variablég (see examples belgwThis polynomial function generates
a rational solution of the generalizdeteduced KP hierarchy according to the representation
(2.12. A more general rational solution can still be constructed within the framework of the
original Wronskian representatiaf2.1) where the functionsp,, are specified according to the
particular { — 1) solutions(5.2) [recall that the parametgrmay have [—1) valueg. This general
rational solution can always be analyzed by applying the superposition formula found in paper |I.

Example 5.4: The Gardner equati¢gh=2).

The reductiorv =v (t;+ at,,t3,...) transforms the modified KP hierarchy to a hierarchy of
the Gardner equation. The Gardner equation follows ftam) in the form,

22 s 2am—201) P T g 5
Fa (a®+2av—2v7) A (5.7

Equivalently, the Gardner equation can be thought as the modified KdV equation under the
nonzero boundary conditions at infinity. Indeed, the modified KdV equation,

4(9W+9 , W 6 2&W+&3W 0
p— R — —— W — —_—
gty 2 Y oty at, ot

(5.9
reduces to the Gardner equati@?7) by means of the transformation=uv — a/2. A single family
of the rational solutions of the Gardner equation is expressed through the represe@din
with the polynomialr~function given by Eq(5.2) for =2, i.e.,

7p(01,02,...) =Wi[P1(p),P3(p).-.. ,P2on-1(P) ], (5.9

wherep= a/2. The first polynomials are just the polynomials of the KdV hierardge Example
4.5 with t, replaced byg,, i.e., rp=rg(01,03,...). These polynomials can further be used to
construct the real nonsingular solutions of tfacusing Gardner equation which follows from Eq.
(5.7) under the transformation— i@ andv—iv. To do this, we just shift phases of the variables
0 in the function7,(6,,6,,...) andrewrite Eq.(2.12) for v in the equivalent form,

_ 9 og ST (5.10
"6, IS )y |

whereu=—p~1=—-2a"1 Then, the transformation given above ensures the funetiba real
and nonsingular. Within this context, the rational soluti¢h®) and(5.10 describe an algebraic
soliton of the Gardner equation far= 1! a structural instability of the algebraic soliton due to a
resonance with a long wave shelf for=23? and the scattering dynamics of two and more
algebraic solitons complicated by excitations of the wave shelfs$o8.

Example 5.5: The Boussinesq equation for acoustic wéves).

The reductionu=u(t;+ atjz,t5,t,,...) transforms the KP hierarchy to a hierarchy of the
Boussinesq equation for acoustic waves. The latter equation follows frorlEyin the form,
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AR SO AL (5.1
a2 YT Tl '

Equivalently, the Boussinesq equation for acoustic waves can be thought of as the Boussinesq
equation(4.9) under the nonzero boundary conditions at infinity. Indeed, the transformaition,
—u— al/3 reduces Eq4.9) to the form(5.11). Two particular families of the rational solutions of

the Boussinesq equatigh.11) are expressed through the polynomiaiunction (5.2) for 1=3,

ie.,

Tp(01,02,..)=W[P1(p),S™H(»)P3(p),....5 " V(v)Pan_1(p)], (5.12
wherep= = \/a/3, andS(») is given by Eq.(2.13 with the parameter= — (3p) ~.2* The first
polynomials(5.12 can be transformed by means of the phase translations to the polynomials of

the KdV hierarchy (see Example 4)5 with the residue terms, i.e.,rpzrg(zl,zs,...)
+A7)(z4,23,...), Wherez, are new variables, i.e.,

2,=01, Z3=03+v0,+30%0,,
Zs= 605+ 2v6,+ %V293+%V392+ %1/101,
Z;= 6071+ 3v6g+ %V205+%V304+ %V‘lag‘}‘ %Vsﬁz-i— %‘Vfiﬁl,
andA 75 are the residue terms, i.e.,
AT%:O, ATSZO, AT%I%V(S,

42525

+
g 4",

14175 382725
V°Z123+ 64 v

7-2:_

These polynomials can further be used to construct the real nonsingular rational solutions to the
(elliptic) Boussinesq equation which follows from E@.11) under the transformatioh,—iy.

This equation describes stationary wave processes in a medium with positive dispersion. The
rational solutions to this equation correspond to multilump wave structures propagating with a
constant velocity#2!

VI. THE GENERALIZED k-CONSTRAINED KP HIERARCHY

Here we consider the generalizkgtonstraint of the KP hierarchy defined by the condition
(1.8). Loris and Willox® proved the following result by using the technique based on a bilinear
formulation and identitiegsee also Ref. )1

Lemma 6.1The 7~function of the generalizekconstrained KP hierarchy defined by E.8)
admits the Wronskian solutions in the for@@.1) with the functionsg,(t,,t,,...), n=1N satis-
fying Egs.(2.2) and the complimentary equation,

dpn
at,

+,8(9111¢nzcn¢nv (6.

wherec, is arbitrary andﬁt_l1 is a formal operator of integration with respecttio

This lemma is a modification of Theorem 3 by Loris and WilldAlthough they formulate
the theorem for a particular exponential representation of the functbgnshich is suitable for
soliton solutions, the proof is based on the pseudodifferential equéi@nrather than on the
explicit representation of the functions, . In order to proceed with the rational solutions of the
generalizedk-constraint we apply a simple trick which essentially simplifies the analysis. Let us
introduce an auxillary “time” variablg _; according to the pseudo-differential equation,

Iy
at_,

zgt*lld,n_ (6.2
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Then, we can construct the polynomial functigyt, ,t,,...;t ;) of the generalize#-constrained
KP hierarchy according to the formul#2.1)—(2.10 taking into account the auxillary equation
(6.2). The only modification of this analysis is an extension of the generalized varié{les to
the form,

~ (— 1)K
Ok(pP)— Ok(P) = 6i(p) + EE) t_q. (6.3

As a result, the generalizddconstraint(1.8) can be reformulated for the polynomial solutions of
the KP hierarchy as follows.

Lemma 6.2The polynomialrfunction of the generalizeklconstrained KP hierarchy satisfies
the differential equation,

g T g k=1 6.4
= = =1. .
aty at_q ' ©.4

For the particular cask=1 the differential equatior6.4) follows from the analysis of the
nonlocal Boussinesq equatigsee formulag19) and(20) in Ref. 12 and also from the analysis
of the Davey—Stewartson system at the continuous-wave background as a generalized reduction of
the KP hierarchy(see formulag19) and(31) in Ref. 15. The result of Lemma 6.2 enables us to
construct a set of the rational solutions of the generalkzednstrained KP hierarchy.

Proposition 6.3:The differential equatior(6.4) is satisfied by the K—1) families of the
polynomial ~functions,

Tp=Wi[P1(P),S™ (¥1,... ) S(0)P3(P),...S™ " (v, i) S H( 1) Pan-a(P)],
(6.5

whereS(w) andS(vq,...,v_4) are defined by Eq$2.13 and(2.16), respectively. The parameter
wis w=—p~ 1, while the parameters; for i=1k—1 are given by

k+1|°t
Vi=— 2

k+1
i+2

p . (6.6)

Last, the parametegy is one of the k+ 1) roots of the algebraic equation,
kp<ti=g. (6.7)

Proof: First, we express Ed6.4) through the derivatives afp(51 ,52,...) with respect to the
variablesd given by Eqs(2.6) and(6.3). This leads to the differential equation fay,

k [
o) 5 [ 52

L (_1)i+l%
P p

T g, (6.8

oT =
P
90; Bi=§k:+1

where we have omited the sign “tilde” for convenience. Moreover, after the transformation of the
differential equatior(6.4) to the form(6.8) we can treat the extra variabile; as a phase constant
since the equations of the KP hierarchy are only expressed through the time vatjatdex

=1.

The first term in Eq(6.8) is removed if the parametgris a root of the algebraic equation
(6.7). The rest of terms in Eq6.8) disappear due to a special structure of the polynomial function
7(601,65,...) given by(6.5). To show this, we apply a standard analysis described in the proof of
Proposition 5.2 and find from E@6.5 the differential relation forry(64,6,...),

k i—-2
an:_ FZ%(]__ el

” oT K1 Vi

i—-2 p J
—= - —1-> . 6.9
38, > w ( 2 M) 6.9

i=k+1 d0; i

I
w
B

>
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Substituting Eq(6.9) into Eq.(6.8) and taking into account E@6.7) we find that the parameter
can be eliminated if is givenu= —p~*, while the left-hand side and right-hand-side of E&8)
reduce the system of linear equations for the coefficients.., vy_4,

2y, 2 (k=1)1(—1)
1-2 P51 (k1)1 .19
for 3<i<k and
k—1
Vm 2
=2 e e

This linear algebraic system is not degenerate and the only solution is given I6§.6qIndeed,
a direct substitution of Eq6.6) into Egs.(6.10 and(6.11) produces the system of combinatorial
identities,

‘ k+1 [k
mE:O (—1)m(m+2)=k+(—1)'(i+2) (6.12
for 1<i<k—2 and
k—1
k+1
20 (—1)m(m+2)=k. (6.13

m=

Fori=1 the equality(6.12) is obviously satisfied. Furthermore, the equalityl?) is satisfied for
any (+1) provided it is valid fori. This statement is a consequence of the Pascal’ triangle

identity,
k
i+2)

Finally, Eq.(6.13 is satisfied due to the combinatorial identity,

k+1
i+3

k
i+3)' (6.19

Kl k+1
=0 O (6.19

m
mzz_g (_ 1 ( m+2
By comparing the results of Propositions 5.2 and 6.3, we conclude that the only difference in
the rational solutions of the generalizeceduced and-constrained KP hierarchies is the appear-
ance of the vertex operat&@(u) in the columns of the Wronskian determind6t5). This addi-
tional operator provides an annihilation of the infinite sum in the right-hand side di6EB).due
to the remarkable propert{2.15.
Example 6.4: The NLS hierarchy at the CW backgroiwe 1).
The NLS hierarchy at the continuous-wa{@W) background starts with the NLS equation
written in the form,

Py — o Py — —
IZJFEJFZ(I!H//—BW—O, £+?§+2(¢f¢/—ﬁ)d/—0, (6.19

where the functiong and ¢ are supposed to have the nonzero boundary conditions at infinity, i.e.,
Yip— B ast;—oo. Two particular families of rational solutions of the NLS hierarchy at the CW
background are expressed by means of the forrf@te2) through the functionr, given by Eq.

(6.5 for k=1, i.e.,

7p(61,02,..) =Wo[ P1(p),S(1)P3(p),....S" (1) Pan-1(P)], (6.17)
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wherep=+ /B and u=—p~1.2® The first polynomialg6.17) can be transformed by means of
the phase translations exactly to the polynomials of the KdV hierasbg Example 4)5i.e.,
Tp= 75(24,23,...), Wherez, are new variables, i.e.,

21=01, 23=03— pbp+ 7 u20y,
Z5= 05— 2u0s+ 3 n?03— 3 u30,+ 15 w01,
2;=0;-3ube+ 3 u’0s— 3 pu30,+ 18 w03~ 15 u2 0+ o5 wn®;.

These polynomials can further be used to construct the real nonsingular rational solutions to the
(focusing NLS equation which arises under the transformatigra-it and the reductiony

=y*, wherey* is complex conjugate t@. These rational solutions describe the modulational
instability of a CW background under a localized perturbation of the algebraic pioffle.

In addition, the same set of the polynomiafunction also gives the rational solutions of
another physically important equation which is the Kaup equdiionequivalently, the classical
Boussinesq system® The polynomialsr,(6,,6,,...) given by Eq.(6.17) generate the rational
solutions of the Kaup equation written in the form,

9*v A v I ) v v Lo (au)3 v v o 6.18
a2 BE{ o oty dtyat,  Taty |\aty) oty oty '
within an equivalent bilinear representatich10).3
Example 6.5: The YajimaDikawa hierarchy(k=2).
The Yajima—Oikawa hierarchy starts with the system,
o oy P o Py —
—=—, —/—= +2uyp, ——= +2uy, 6.1
dt, oty oty 2 v at, o2 v (6.19

where we impose the boundary conditions; 0 and«/fZ—gB ast;—oo. Three particular families
of the rational solutions of the Yajima—Oikawa hierarchy are expressed by means of the formula
(2.12 through the functiorr, given by Eq.(6.5) for k=2, i.e.,

T5(01,05,..) =Wo[P1(p),S™ (»)S(1)P3(p),...5 " PD(»)S" () Pan-1(p)], (6.20

wherep may have three valuegp=(/2)"® and p=(B/2)Y3(—1+v3i)/2, S(x) and S(v) are

both given by Eq(2.13 with the parametera=—p~! andv=—(3p) ~*. The first polynomials
(6.20 can be transformed by means of the phase translations to the polynomials of the KdV
hierarchy (see Example 4)5with the residue terms, i.ez,=175(21,23,...)t A715(21,23,...),
wherez, are new variables, i.e.,

21:011 23: 03"’(1}—#)02_}_%(1/_“)261,
Z5= 05+ 2(V_/.L) 94+ %(V—M)203+ %(3V3_5V2/.L+3VILL2—M3) 02
+15(9v* = 2003w+ 1402 P — Avp®+ u*) 6,

2:=07+3(v— ) O+ 2(v— ) 205+ 3913 — 192 u+ 150 u®—5u%) 0, + &(63v*— 1561° 1
+ 1380212 — 60vu+ 15u?) O3+ &(63v°— 147w+ 1300° 12— 5802 3+ 15vu*— 3u°) 6,
+ &(1050° — 2940° 1 + 303v* %+ 3593 3+ 392t — 6 s+ ub) 6,

andA 75 are the residue terms, i.e.,

AT%ZO, AT§=O, AT%Z Br4(v—pu)?,
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798525 4725
A7‘21= 61 v3,u32111— 8 V4(9v4—241/3,u,+221/2,u,2—8vu3+,u,4)z§
14175
o7 v3(16v°3— 3202+ 16vu®—169u®) 2,25
4725 , 6 5 4 2 3,3 2 4 5, 6
+ 61 ¥ (81w°— 2700+ 35 " —228°u >+ 79 u™* — Ldv >+ 1°).

Within a physical context, the Yajima—Oikawa systédrnl9 transformed according to the reduc-

tion t,—it and ¢y=i¢* describes a resonance of a mean flow and short dispersive waves. The
rational solutions to this system have not yet been analyzed. However, by an analogy with the
NLS hierarchy at the CW backgrourtdee Example 6)4these solutions seem to be relevant for
description of the modulational instability of a CW background under a localized perturbation of
the algebraic profile.

VIl. ANOMALOUS SCATTERING IN THE CM HIERARCHY

We have shown that all degenerate rational solutions of the KP hierarchy excepting those
reducible to the generalized Schur polynomi&@g(p) describe, within a particular limit, the
stationary manifolds of the CM hierarchligee Proposition 3)6 Hence, in a general case, these
solutions describe the scattering dynamics of interacting particles in a neighborhood of the sta-
tionary manifolds. The stationary manifolds of the CM sysi@), i.e., those with respect to the
timet,, are especially important because they are relevant for the rational solutions satisfying the
generalized reductions of the KP hierarchy. Here we study the dynamical processes of scattering
of the CM particles associated with this family of the rational solutions.

Proposition 7.1:Suppose that the-function of the KP hierarchy is given by

7o( 01,0,,...)=W\[P1(p),P3(P),-...Pon1(P)], (7.9

where the tilde means that the translations of the time variaflesé,(p) may be arbitrary.
Define the indejs for the scattering rate d® particles according to the asymptotic representation
Xj— 2pt,~t5 ast,— o for j=1R, wherex;(t,,...) arezeros of ther-function given by Eq(3.1).
Then, the scattering dynamics described by the polynorifals occur near a stationary manifold
of the CM system3.3 of R=N(N+1)/2 particles, and the scattering ratenay only have the
particular values,

k
S=Skm= 5’ (7.2
where for each integer=1N—1 there exists a set of integems={21 — 1} .

Proof: Noting that ther-function given by Eq(7.1) can be reduced, within a particular limit,
to the formr(t4,t3,...)=Wx[P1,P3.---.P2n—1] Which describes a stationary manifold of the CM
system(3.3) of R=N(N+1)/2 particles according to Collorafy.2) and Proposition 4.4. There-
fore, a more general forrfv.1) of the ~~function describes the scattering dynamicdRgdarticles
occurring near this stationary manifold. In order to find the scattering rate of the particle dynamics,
we need to show that zeros of the polynomial functiggé, ,6-,...) have the asymptotic repre-
sentationf,~ 65 as 6;, #,—, where the indexs is given by Eq.(7.2).

The polynomial solution(7.1) has generallylG=R=N(N+1)/2 parameters. Among these
parametersG,;=N parameters correspond to the phadesfs,...,0,y_1 Which define the con-
figuration of the stationary manifold of the CM system whBg=N(N—1)/2 parameters can be
regarded as amplitudes of elementary excitations of particles near the stationary manifold. We
show that an individual elementary excitation can be described by the particular polynomial
function 7, following from Eq.(7.1),

To(01,05,..) = TN =W\[P1(p),.... Sy (@) P11 2k(P),....Sp2(@)P1sak(p)...], (7.3
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wherek andm are the same integers as below Ef2), while the operato5,(a) is given by a
modification of Eq.(2.13 in the form,

1 9
Sm(a)=ex;{—izl i—a' W} (7.4)

Using the standard analysis, one can readily show that the polynomial fungffen,o,,...)
given by Eq.(7.3) depends on the phasés, . , and 6 only in the form of a linear superposition
(02¢+mTaby). Next, because the time variablés, . ,, define the stationary manifold of the CM
system, zeros of the polynomiaf’* have the asymptotic representatiop~ 652%™ as 6,
O+ m— . Substituting the linear superposition in this asymptotic representation and recalling
that 65~ 05 as 6,, 0,,—, we conclude that thém,k elementary excitation of the stationary
manifold of the CM system prescribed by Ed.4) displays the fractional scattering rateefined
by Eq.(7.2. Finally, it is clear that there exists exactB,=N(N—1)/2 particular representations
(7.4 for each polynomial functiort7.1). Therefore, all possible asymptotical scattering rates are
listed in the formula(7.2). O

Example 7.2: The stationary manifold of 6 particidé=3).

The following polynomial~function of the KP hierarchy follows from E¢7.1) atN=3 and
describes the scattering dynamicsRf 6 particles occurring near the corresponding stationary
manifold of the CM systen(3.3),

To=123— 152;25— 4525+ 452,75+ A, (7.5
where

21: 01, Z3=03+b02+&(16b2+9a2)01,

- 3 2_ 2 2 3 2 2 g2 3
Z5= 95+2b04+3—2(16b —a )63+a02+c02—5—12a(16b +9a )61—5 af,63

S 1 4 22 4
+ = ab#,0,— —— (81a%+ 136(2b%+ 3840 — 1024C) 0, ,

8 2048
and
Ao 228 135 s 25?7+ 5262 2 a(9a%h 1667 32000
=— g A%~ ga )23 2~ 309 00
B 6 ap2 2p4_ 6
5124 27815+ 32704%b%+ 1290247 - 16384

+36864°%bc+ 65536°3c— 655362).

Here the variableg,, z3, andzs define theG,=3 parameters of the stationary manifold, while

the constants, b, andc correspond to th&,=3 elementary excitations of the particles near the

manifold. It follows from zeros of the polynomial functidii.5) that if a# 0 the scattering rats

is s,1=2/5 according to Eq(7.2). If a=0 butb#0, then the scattering rate is slower, 8.,

=1/3. At last, ifa=b=0 butc+#0 then the rate is still slower, i.es; ,=1/5. Fora, b, andc all

equal to zero, the particles are not excited and lie on the stationary manifold of the CM &ystem.
Thus, we conclude that the existence of the stationary manifolds of the CM system leads to a

slowing down of the anomalous scattering of interacting particles according to a hierarchy of

characteristic scattering rat€&2). It is worthwhile to notice that the rates of anomalous scattering

occurring far from the stationary manifolds of the CM systems are higher than those given by Eq.

(7.2). Indeed, zeros of the degenerate polynomials of the KP hierarchy including the generalized

Schur polynomialsP,(p) have generally an asymptotic representatiqn- 0%’2 as fq, 6,—x,

i.e., the scattering rate is generadly: 1/2. Only if the degenerate polynomials reduce to the form

(7.1) the scattering rate becomes slower with respect to thettimiee., s, ,<<1/2. A first example
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of the anomalous scattering occurring near the stationary manifolds of the CM system was pre-
sented by Gorshkoet al?* and recently reproduced by Ablowitz and Villarroel for the lump
solutions in the KP1 equatidif. Although we do not consider here the rational solutions of the
KP1 equation, the results presented can further be generalized to describe the same scattering
dynamics of the lump solitons as the particles in the CM sydt® also Ref. 21

VIIl. CONCLUSION

In this paper we have developed a general approach to construct and analyze the degenerate
rational solutions of equations of the KP hierarchy and its reductions. In particular, we have
presented the rational solutions to the generallzediuction and-constraint of the KP hierarchy
which correspond to the reductions of the KP hierarchy under the nonzero boundary conditions at
infinity. We have also shown that these solutions describe anomalously slow dynamical processes
of scattering occurring near the stationary manifolds of the CM dynamical system.

Since the paper does not cover all possible generalized reductions of the KP hidsaehy
e.g., Refs. 5, 6 for other reductions is worthwhile to summarize our approach and present a
general scheme of a search for the polynomifinction satisfying a generalized reduction of the
KP hierarchy. Suppose that the reduction is formulated in terms of a differential equation imposed
on the~function of the KP hierarchy. Then, in order to find the particular form of the polynomial
function 7,(64,6,,...) (2.10 satisfying this reduction, one needs

(i)  to rewrite the differential equation in terms of the generalized time variahlgs);

(i) to choosep such that the leading-order terémr, /36, is removed,

(i)  to find the first nonzero coefficient in front of the derivati#e,/36,, then the polynomi-
als 7, generalize the polynomials of thre-reduced KP hierarchy given .4);

(iv) tointroduce the generalized vertex operai@43 and(2.16 which displace phases of the
polynomialsP,(p) in each subsequent column of the Wronskian determifaao);

(v)  to find the parameters of the vertex operators by comparing the differential equation de-
rived for the polynomial functiorf2.10 with that of the given reduction.

This scheme and the approaches used in both papers | and Il can be developed for analysis of the
rational solutions of multicomponent KP hierarchies which include such an important example as
the Davey—Stewartson systefsee, e.g., Ref. 15 The ~function of the multicomponent KP
hierarchies can be expressed through a multicomponent WroASkiaith can be treated in the

same manner as that in a single-component case. The classification and construction of rational
solutions of the multicomponent KP hierarchies remain open for further studies.
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