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Abstract: We present a general counting result for the unstable eigenvalues of lin-
ear operators of the form J L in which J and L are skew- and self-adjoint operators,
respectively. Assuming that there exists a self-adjoint operator K such that the opera-
tors J L and J K commute, we prove that the number of unstable eigenvalues of J L
is bounded by the number of nonpositive eigenvalues of K . As an application, we dis-
cuss the transverse stability of one-dimensional periodic traveling waves in the classical
KP-II (Kadomtsev–Petviashvili) equation. We show that these one-dimensional peri-
odic waves are transversely spectrally stable with respect to general two-dimensional
bounded perturbations, including periodic and localized perturbations in either the lon-
gitudinal or the transverse direction, and that they are transversely linearly stable with
respect to doubly periodic perturbations.

1. Introduction

Linearized operators arising in stability studies for Hamiltonian systems have a typical
product structure J L in which J is a skew-adjoint operator and L a self-adjoint operator.
Well-known results show that, under suitable conditions, the number of unstable eigen-
values (i.e., the eigenvalues with positive real part) of the operator J L is bounded by
the number of nonpositive eigenvalues of the self-adjoint operator L (e.g., see [7,16,21]
and the references therein). In particular, if the operator L is positive-definite this im-
mediately implies that J L has no unstable spectrum. Since typically L is related to the
Hessian operator of an energy functional that is conserved in the time evolution of the
Hamiltonian system, besides spectral stability, one can also conclude on nonlinear, or-
bital stability. Such results have been extensively used in the analysis of the stability of
nonlinear waves (e.g., see the books [3,22]).

While these arguments work very well for solitary waves, for periodic waves they
allow, so far, to only understand stability with respect to co-periodic perturbations (i.e.,
which have the sameperiod as that of thewave). Themain difficulty in the case of periodic
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waves, is the fact that the number of negative eigenvalues of the operator L increases
when the period of the perturbations is an increasing multiple of the period of the wave,
and that L has negative essential spectrum when the perturbations are localized. These
are serious obstacles in controlling unstable eigenvalues and then proving stability of
periodic waves for arbitrary bounded perturbations.

In this paper we generalize this classical eigenvalue counting result by showing that
the operator L can be replaced by another self-adjoint operator K , provided the operators
J L and J K commute. More precisely, under suitable assumptions, we prove that the
number of unstable eigenvalues of the operator J L is bounded by the number of non-
positive eigenvalues of the self-adjoint operator K . In applications, and in particular for
periodic waves, when the operator L has too many negative eigenvalues to conclude on
stability, one could then try to construct such an operator K with less negative spectrum.

Very recently, the idea of using a positive definite operator K has been exploited
in [4,8,32] and [5,11] and allowed the authors to show the orbital stability of periodic
waves with respect to subharmonic perturbations (i.e., the period of the perturbations
is an integer multiple of the period of the wave) for the Korteweg–de Vries (KdV)
and the cubic nonlinear Schrödinger (NLS) equations, respectively. In these works, the
construction of K was strongly related to the integrability properties of these equations,
and more precisely to the existence of a higher-order conserved quantity whose Hessian
provided the positive definite operator K . In general, finding such an operator K for a
nonintegrable equation is a nontrivial task.

As an application of the general result, we discuss the transverse (spectral and linear)
stability of one-dimensional periodic traveling waves in a model equation derived by
Kadomtsev andPetviashvili [19]. Thanks to the scaling properties of thismodel equation,
we may take it in the following normalized form

(ut + 6uux + uxxx )x + uyy = 0, (1.1)

where the subscripts denote partial derivatives with respect to the spatial variables (x, y)
and the temporal variable t . This equation is referred to as the KP-II equation, where
the index II stands for the version relevant to the case of negative transverse dispersion.
The KP-I equation is obtained by replacing the positive sign in front of the term uyy
by a negative sign, and it is relevant to the case of positive transverse dispersion. Both
versions of the KP equation are two-dimensional extensions of the KdV equation

ut + 6uux + uxxx = 0, (1.2)

which governs one-dimensional nonlinear waves in the longitudinal direction of the x
axis. Just like the KdV equation, the KP-II and KP-I equations arise as particular models
in the classical water-wave problem, in the cases of small and large surface tension,
respectively.

The KP equations quickly became very popular due to their integrability properties
[33], including a rich family of exact solutions, a bi-Hamiltonian structure and the
recursion operator, a countable set of conserved quantities and symmetries, as well as
the inverse scattering transform techniques. At the same time, they became popular in
the analysis of the stability of nonlinear waves, both relying upon functional-analytic
methods and integrability techniques. As a model equation for surface water waves,
some of the obtained results were extended to the Euler equations describing the full
hydrodynamic problem [6,15,37].

Stability properties of travelingwaves are quite different for the twoversions of theKP
equation.While both periodic and solitary waves are transversely unstable under general
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bounded perturbations in the KP-I equation (e.g., see recent works [9,10,18,35,36]
and the references therein), it is expected that they are transversely stable in the KP-II
equation [1,19]. Numerical evidences of these stability properties can be found for
instance in [23,24]. For the case of solitary waves, the transverse nonlinear stability has
been recently proved for periodic transverse perturbations in [29], and for fully localized
perturbations in [28]. In contrast, there are few analytical results for periodic waves for
which, in particular, the question of transverse nonlinear stability is open.

By using a linearized version of the dressing method from [33], explicit eigenfunc-
tions of the spectral stability problem associated with the periodic waves of the KP-II
equation (1.1) were constructed in [25]. Completeness of the eigenfunctions and gener-
alizations to the case of oblique transverse perturbations were elaborated few year later
[38]. The results obtained by this method rely on explicit computations involving Jacobi
elliptic functions for the periodic waves and the associated Jost functions, which are
hard to check or confirm. An alternative approach, based on the classical counting result
for the unstable eigenvalues of linear operators of the form J L mentioned above, has
been recently discussed in [14]. It turns out that in the case of the periodic waves of the
KP-II equation under general two-dimensional bounded perturbations the self-adjoint
operator L has unbounded spectrum for both below and above. Consequently, this eigen-
value counting only allows one to obtain a partial result, showing spectral stability of
small-amplitude periodic waves with respect to perturbations which are co-periodic in
the direction of propagation x , and have long wavelengths in the transverse direction y
[14].

In the presentwork,we show that the general counting result inwhich the operator L is
replaced by a suitably chosen operator K allows us to give a complete proof of transverse
spectral stability of periodic waves for general two-dimensional bounded perturbations.
As a consequence, we also show that these periodic waves are transversely linearly
stable with respect to doubly periodic perturbations, which are subharmonic and have
zero mean in the direction of propagation x and have an arbitrary, but fixed, period in
the transverse direction y. The main challenge of our method is the construction of a
self-adjoint operator K such that the operators J L and J K commute and which has a
minimum number of negative eigenvalues. The best situation arises when the operator
K is positive, this property implying directly transverse stability.

One way of finding a self-adjoint operator K satisfying the commutativity property is
with the help of the conserved quantities of the KP-II equation, as this has been done for
the KdV and NLS equations in [4,5,8,11,32]. The self-adjoint operator L is related to
the Hessian operator of the standard energy functional expanded at the periodic traveling
wave. Similarly, a self-adjoint operator K can be found from the Hessian operator of a
higher-order energy functional associated with the KP-II equation, as for instance the
one used in the proof of global well-posedness for the KP-I equation [30,31]. Then the
operators J L and J K commute.

For the KdV and NLS equations, neither L and K are positive operators, but a
suitable linear combination of these operators is positive [4,5,8,11,32]. We found rather
surprising that this is not the case for the KP-II equation, when K is constructed from a
higher-order energy functional. In order to avoid this obstacle, we start with the operator
K obtained for the KdV equation and find an operator K for the KP-II equation by
a direct search from the commutativity relation. Then we show that a suitable linear
combination of L and K is indeed a positive operator. However, this self-adjoint operator
K constructed directly from the commutativity relation does not seem to be related to
the Hessian operator of some higher-order conserved quantity of the KP-II equation.



250 M. Haragus, J. Li, D. E. Pelinovsky

In particular, we cannot use this construction to also conclude on the nonlinear, orbital
stability of these periodic waves, which remains an open problem.

The idea of bounding the number of unstable eigenvalues through the use of com-
muting flows of a hierarchy of integrable equations goes back to the seminal work [27],
where orbital stability of N solitary waves of the KdV equation was proven with the
use of N + 1 higher-order Hamiltonians of the KdV hierarchy. This idea was extended
to N solitary waves of the NLS equation in [20], and more recently to breathers of the
modified KdV equation in [2], solitary waves of the nonlinear Dirac equations in [34],
and the black solitons of the defocusing NLS equation in [12]. As we described above,
our work is very different from the stream of these publications because we have no
(useful) higher-order Hamiltonian of the KP-II equation. As a result, we have to rely on
the commuting operators of the linearized evolution equations unrelated to the conserved
quantities of the nonlinear evolution equations.

The paper is organized as follows.We present the general counting result for unstable
eigenvalues in Sect. 2. In Sect. 3, we discuss the transverse spectral and linear stability
problems for the periodic waves of the KP-II equation and state the main results. The
proofs of these results are given inSect. 4.Weconcludewith a discussion of the transverse
nonlinear stability problem in Sect. 5.

2. Abstract Counting Result

Here we present the general counting result for the unstable eigenvalues of an operator
J L with J and L being skew- and self-adjoint operators, respectively.

Following a standard terminology, for a linear operator A, we denote by σs(A), σc(A),
and σu(A), the subsets of the spectrum σ(A) of A lying in the open left-half complex
plane, on the imaginary axis, and in the open right-half complex plane, respectively.
More precisely, we denote

σs(A) = {λ ∈ σ(A); Re λ < 0},
σc(A) = {λ ∈ σ(A); Re λ = 0},
σu(A) = {λ ∈ σ(A); Re λ > 0},

and refer to these sets as the stable, central, and unstable spectra of A, respectively.
Further, we denote by ns(A), nc(A), and nu(A), the dimension of the spectral subspaces
associated to σs(A), σc(A), and σu(A), respectively, if these exist. Recall that in the
case of a bounded spectral subset consisting only of isolated eigenvalues with finite
algebraic multiplicities, the corresponding spectral subspace is finite-dimensional, and
its dimension is given by the number of eigenvalues countedwith algebraicmultiplicities.

Hypothesis 2.1. Consider a Hilbert space H equipped with a scalar product 〈·, ·〉. As-
sume that J , L, and K are closed linear operators acting in H with the following
properties.

(i) J is a skew-adjoint operator (J ∗ = −J ) with bounded inverse.
(ii) L and K are self-adjoint operators (L∗ = L and K ∗ = K) such that the operators

J L and J K commute, i.e., the operators (J L)(J K ) and (J K )(J L) have the same
domain D ⊂ H, and

(J L)(J K )u = (J K )(J L)u, ∀ u ∈ D. (2.1)
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(iii) The nonpositive spectrum σs(K ) ∪ σc(K ) of the self-adjoint operator K consists,
at most, of a finite number of isolated eigenvalues with finite multiplicities.

(iv) The unstable spectrum σu(J L) of the operator J L consists, at most, of isolated
eigenvalues with finite algebraic multiplicities, and the generalized eigenvectors
associated to these eigenvalues belong to the domain of the operator J K .

A well-known property of the spectrum of the operator J L is that it is symmetric
with respect to the imaginary axis because J and L are skew- and self-adjoint operators,
respectively (e.g., see [16, Proposition 2.5]). In particular, eigenvalues of J L lying
outside the imaginary axis arise in pairs of eigenvalues (λ,−λ) with the same algebraic
multiplicity, so that we have a one-to-one correspondence between the spectral subsets
σs(J L) and σu(J L).

Remark 2.2. (i) The invertibility of the operator J implies that we can replace the
equality (2.1) by the equivalent equality

(L J K )u = (K J L)u, ∀ u ∈ D.

(ii) In the case of differential operators, as the ones which will be considered in the
next section, the second part of the Hypothesis 2.1 (iv) can be easily checked
using the property that generalized eigenvectors of differential equations are often
smooth functions. Alternatively, we can replace this hypothesis by slightly stronger
hypotheses on the domain of the operator J K , as for instance that the domain of
the operator (J L)n is included in the domain of J K , for some positive integer n.
Clearly, this property implies that the generalized eigenvectors of J L belong to the
domain of J K .

The key step in the proof of our main result is the following property which holds for
isolated eigenvalues of the operator J L under the assumptions (i) and (ii) of Hypothe-
sis 2.1, only.

Lemma 2.3. Under the assumptions (i) and (ii) of Hypothesis 2.1, if λ and σ are isolated
eigenvalues of J L with finite algebraic multiplicities and if

(i) λ + σ 	= 0,
(ii) the spectral subspaces Eλ and Eσ associated to the eigenvalues λ and σ , respec-

tively, are contained in the domain of the operator J K ,

then
〈Ku, v〉 = 0, ∀ u ∈ Eλ, v ∈ Eσ . (2.2)

Proof. The eigenvalues λ and σ are isolated and have finite multiplicities, so that there
exist finite bases of the associated spectral spaces Eλ and Eσ , which consist of chains
of generalized eigenvectors {u1, . . . , un} and {v1, . . . , vm}, respectively, satisfying

J Lui = λui + ui−1, u0 = 0, i = 1, . . . , n,

J Lv j = σv j + v j−1, v0 = 0, j = 1, . . . ,m.

It is sufficient to prove (2.2) for u = ui , v = v j , i = 1, . . . , n, j = 1, . . . ,m. We will
proceed by induction upon i and j .

Using successively the fact that ui belong to the domain of J K , the commutativity
of J L and J K , and the invertibility of J we obtain

J Lui = λui + ui−1 ⇒ J K J Lui = λJ Kui + J Kui−1

⇒ J L J Kui = λJ Kui + J Kui−1

⇒ L J Kui = λKui + Kui−1.
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The last equality implies that

λ〈Kui , v j 〉 = 〈L J Kui , v j 〉 − 〈Kui−1, v j 〉,
and since L and K are self-adjoint operators and J is a skew-adjoint operator, we also
have the equality

σ 〈Kui , v j 〉 = 〈Kui , J Lv j 〉 − 〈Kui , v j−1〉 = −〈L J Kui , v j 〉 − 〈Kui , v j−1〉.
Adding these two equalities we obtain

(λ + σ)〈Kui , v j 〉 = −〈Kui−1, v j 〉 − 〈Kui , v j−1〉. (2.3)

The first step of the induction argument is trivial,

〈Ku0, v j 〉 = 〈Kui , v0〉 = 0, ∀ i = 1, . . . , n, j = 1, . . . ,m,

since u0 = v0 = 0, and we then conclude using the equality (2.3) and the hypothesis
λ + σ 	= 0. ��

The following result which holds for the unstable eigenvalues of J L is an immediate
consequence of Lemma 2.3.

Corollary 2.4. Under the assumptions of Hypothesis 2.1, if u belongs to the spectral
subspace Eu associated to the unstable spectrum σu(J L) of J L, then

〈Ku, u〉 = 0.

We can now state the abstract counting result as follows.

Theorem 1. Under the assumptions in Hypothesis 2.1 the following properties hold.

(i) The number nu(J L) of unstable eigenvalues of the operator J L (counted with
algebraic multiplicities) and the number nsc(K ) = ns(K ) + nc(K ) of nonpositive
eigenvalues of the self-adjoint operator K (counted with multiplicities) satisfy

nu(J L) � nsc(K ).

(ii) If, in addition, the kernel of the operator K is contained in the kernel of the operator
J L, then

nu(J L) � ns(K ). (2.4)

Proof. (i)According to Hypothesis 2.1 (iii), the spectral subset σsc = σs(K )∪σc(K ) of
the self-adjoint operator K is a finite set, and we can consider the corresponding spectral
decomposition of the Hilbert space H,

H = Fsc ⊕ Fu, σ (K
∣
∣
Fsc

) = σsc(K ), σ (K
∣
∣
Fu

) = σu(K ). (2.5)

We denote by Psc the unique spectral projection onto Fsc. In particular,

dim(Fsc) = ns(K ) + nc(K ) = nsc(K ),

and
〈Ku, u〉 > 0, ∀ u ∈ Fu \ {0}. (2.6)

Similarly, according to Hypothesis 2.1 (iv), we consider the spectral subspace Eu associ-
ated to the unstable spectrum σu(J L) of J L , for whichwe have that dim(Eu) = nu(J L).
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Weclaim that the restriction to Eu of the spectral projection Psc is an injective operator
Psc

∣
∣
Eu

: Eu → Fsc. Indeed, assume that Pscu = 0, for some u ∈ Eu . Then u ∈ Fu
and 〈Ku, u〉 > 0, if u 	= 0, by (2.6). On the other hand, according to Corollary 2.4,
〈Ku, u〉 = 0, since u ∈ Eu . Consequently, u = 0 which proves the claim. Since Fsc is
a finite-dimensional space, the injectivity of Psc

∣
∣
Eu

implies that

dim(Eu) = nu(J L) � dim(Fsc) = nsc(K ),

and proves the first part of the theorem.
(ii) In the arguments above, we now replace the spectral decomposition (2.5) of H

by

H = Fs ⊕ Fcu, σ (K
∣
∣
Fs

) = σs(K ), σ (K
∣
∣
Fcu

) = σcu(K ),

and work with the spectral projection Ps onto Fs , instead of Psc. In this case, the restric-
tion Ps

∣
∣
Eu

: Eu → Fs is injective. Indeed, assume that Psu = 0, for some u ∈ Eu . Then
u ∈ Fcu and by Corollary 2.4 we have that 〈Ku, u〉 = 0. Together with the inequality
(2.6) this implies that u belongs to the kernel Fc of K , and hence to the kernel of J L , by
hypothesis. We conclude that u = 0, which proves the injectivity of Ps

∣
∣
Eu
. This latter

property implies the inequality (2.4) and completes the proof of the theorem. ��
The following corollary is a particular case ofTheorem1 for nonnegative operators K .

Corollary 2.5. Under the assumptions of Hypothesis 2.1, further assume that K is a
nonnegative operator. Then nu(J L) � nc(K ). If in addition the kernel of K is contained
in the kernel of J L, then nu(J L) = 0, and the spectrum of J L is purely imaginary.

Remark 2.6. The particular case of Theorem 1 with K = L recovers the classical count-
ing result showing thatnu(J L) � ns(L).More refinedversions of this result are available
in the literature in which, under different additional assumptions, the inequality is re-
placed by an equality (e.g., see [7,16,21]). The difference ns(L) − nu(J L) is shown to
be given by the number of purely imaginary eigenvalues of J L which have a negative
Krein signature. We expect that such results can be extended to the present setting by
introducing for the purely imaginary eigenvalues of J L a Krein signature relative to the
operator K .

3. Transverse Stability of Periodic Waves in the KP-II Equation

As an application of the general result in Theorem 1, we discuss the transverse stability
of periodic traveling waves in the KP-II equation (1.1). Here we formulate the transverse
spectral and linear stability problems and state the main results. We prove these results
in Sect. 4.

3.1. Transverse spectral stability. One-dimensional periodic traveling waves of the
KP-II equation (1.1) are solutions of the KdV equation (1.2) of the form u(x, t) =
φc(x + ct), with φc a periodic function and c a constant speed of propagation. In Sect. 4,
we recall somewell-knownproperties of these periodic travelingwaveswhich are needed
for our analysis. Without loss of generality, we can restrict to 2π -periodic and even so-
lutions φc, for c > 1, as given by Proposition 4.1.

In a coordinate system moving with the speed c of the periodic traveling wave, the
corresponding linearization of the KP-II equation (1.1) is given by
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(wt + wxxx + cwx + 6(φc(x)w)x )x + wyy = 0, (3.1)

in which, for notational simplicity, we denoted by x the variable x + ct from the KP-II
equation (1.1). Following the transverse spectral stability approach in [14], we consider
solutions of the form

w(x, y, t) = eλt+i pyW (x),

with W satisfying the differential equation

λWx +Wxxxx + cWxx + 6(φc(x)W )xx − p2W = 0.

The left hand side of this equation defines a linear differential operator with 2π -periodic
coefficients

Ac,p(λ) = λ∂x + ∂4x + c∂2x + 6∂2x (φc(x) ·) − p2,

and the spectral stability problem is concerned with the invertibility of this operator, for
certain values of p and in a suitable function space. The periodic wave φc is spectrally
stable ifAc,p(λ) is invertible for any λ ∈ C with Re λ > 0, and unstable otherwise. The
type of the perturbations determines the choice of the underlying function space and the
values of p. Here we consider general bounded two-dimensional perturbations of the
periodic wave, and we therefore assume that Ac,p(λ) acts in Cb(R), the Banach space
of uniformly bounded continuous functions on R, and consider any real number p.

The particular case p = 0 corresponds to one-dimensional perturbations of the
periodic wave which do not depend upon the transverse variable y. The dynamics of
such perturbations is better described by the KdV equation rather than the KP equation.
In particular, the operator Ac,0(λ) obtained using the KP equation has an unnecessary
factor ∂x , which is also a noninvertible operator. It is therefore more appropriate to
replace in this case the operator Ac,0(λ) by the one given by the KdV equation,

Ãc,0(λ) = λ + ∂3x + c∂x + 6∂x (φc(x) ·),
for which the invertibility question is equivalent to the one of studying the spectrum of
the operator

B̃c,0 = −∂3x − c∂x − 6∂x (φc(x) ·).
The results in [4] (see also [16] for the case of small-amplitude waves) imply that the
spectrum of this operator is purely imaginary, hence showing spectral stability with
respect to one-dimensional perturbations.

Truly two-dimensional perturbations correspond to p 	= 0. Since spectra of differ-
ential operators with periodic coefficients acting in Cb(R) are typically continuous, the
Hypothesis 2.1(iii), which requires point spectra, is not satisfied with this choice of the
function space. In order to overcome this difficulty, we use first a Bloch decomposition,
based on Floquet theory, showing that the operatorAc,p(λ) is invertible in Cb(R) if and
only if the operators

Ac,p(λ, γ ) = λ(∂x + iγ ) + (∂x + iγ )4 + c(∂x + iγ )2 + 6(∂x + iγ )2(φc(x) ·) − p2,

are invertible in the space L2
per (0, 2π) of square-integrable 2π -periodic functions, for

any γ ∈ [0, 1) (e.g., see [14]). At this point, we distinguish the cases γ 	= 0 and γ = 0.
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For any γ ∈ (0, 1), the operator ∂x + iγ has a bounded inverse in L2
per (0, 2π), so

that Ac,p(λ, γ ) is invertible if and only if λ belongs to the resolvent set of the operator

Bc,p(γ ) = −(∂x + iγ )3 − c(∂x + iγ ) − 6(∂x + iγ )(φc(x) ·) + p2(∂x + iγ )−1, (3.2)

which is a closed operator in L2
per (0, 2π) with domain H3

per (0, 2π). Consequently, our
problem is reduced to that of studying the spectrum ofBc,p(γ ), which is an operator with
compact resolvent, hence with point spectrum consisting of isolated eigenvalues with
finite algebraic multiplicities, only. Moreover, Bc,p(γ ) has the J L product structure in
the previous section,

Bc,p(γ ) = J (γ )Lc,p(γ ), (3.3)

with

J (γ ) = (∂x + iγ ), Lc,p(γ ) = −(∂x + iγ )2 − c − 6φc(x) + p2(∂x + iγ )−2. (3.4)

It is not difficult to check that the operators J (γ ) and Lc,p(γ ) satisfy the properties
required by the Hypothesis 2.1.

In contrast, for γ = 0, the operator ∂x is not invertible in L2
per (0, 2π). However, for

p 	= 0, any function in the kernel of Ac,p(λ, 0) has zero mean, so that the invertibility
of Ac,p(λ, 0) in L2

per (0, 2π) is equivalent to the invertibility of Ac,p(λ, 0) in the in-

variant subspace L̇2
per (0, 2π) of functions with zero mean. In this subspace, ∂x has a

bounded inverse, and Ac,p(λ, 0) is invertible if and only if λ belongs to the resolvent
set of the operator Bc,p(0) defined in (3.2) for γ = 0. We point out that L̇2

per (0, 2π)

is an invariant subspace for the operators Bc,p(0) and J (0) but not for Lc,p(0). There-
fore, in the subsequent analysis, we replace, when needed, the operator Lc,p(0) by the
projected operator �0Lc,p(0), where �0 : L2

per (0, 2π) → L̇2
per (0, 2π) is the standard

orthogonal projection that removes the mean value of periodic functions. For notational
simplicity, we denote the projected operator �0Lc,p(0) also by Lc,p(0), and refer to it
as the restriction of Lc,p(0) to L̇2

per (0, 2π).
Summarizing, we can restrict our analysis to the case of truly two-dimensional

bounded perturbations, p 	= 0. Nevertheless, the existing results for the limit case p = 0
from [8] will play a key role in the subsequent proofs. The arguments above show that the
question of transverse spectral stability for a periodic wave φc reduces to the study of the
(point) spectrumof the operatorsBc,p(γ ). For this spectral analysis, we apply the general
counting result in Corollary 2.5 with J = J (γ ), L = Lc,p(γ ), and suitably chosen oper-
ators K = Kc,p(γ ), which are nonnegative. These operators are constructed in Sects. 4.2
and 4.3 below. We obtain the following theorem showing transverse spectral stability.

Theorem 2. Consider a periodic traveling wave φc of the KdV equation (1.2) with the
properties given inProposition 4.1 below.For every p 	= 0, the following properties hold.

(i) The linear operator Bc,p(γ ) = J (γ )Lc,p(γ ) defined in (3.3)–(3.4), acting in
L2
per (0, 2π), when γ ∈ (0, 1), and in L̇2

per (0, 2π), when γ = 0, has purely imag-
inary spectrum, for any γ ∈ [0, 1).

(ii) The linear operator Ac,p(λ) is invertible in Cb(R), for any λ ∈ C with Re λ > 0.

Consequently, the periodic traveling wave φc is transversely spectrally stable with re-
spect to two-dimensional bounded perturbations.

We prove the first part of this theorem in Sect. 4.4. The second part is an immediate
consequence of the arguments above.
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Remark 3.1. As explained in [14], in the case of small-amplitude limit, c → 1, the
spectral properties of Lc,p(γ ) for p 	= 0 are not good enough to conclude on spectral
stability using the classical counting criterion (with K = L). Indeed, with Fourier series,
we find that the spectrum of the limit operator L1,p(γ ) from (3.4) is given by

σ(L1,p(γ )) =
{

k2 − 1 − p2k−2 ; k = γ + n, n ∈ Z, γ + n 	= 0
}

.

Since the map k �→ k2 −1− p2k−2 is negative for k2 � (1+
√

1 + 4p2)/2, the operator
has an increasing number of negative eigenvalues as p → ∞. This property remains
true for values of c close to 1, hence making difficult to conclude on the absence of
unstable eigenvalues for the operator J (γ )Lc,p(γ ) for any p.

3.2. Transverse linear stability. The positivity properties of the operators K = Kc,p(γ )

used in our spectral stability analysis, also allows us to prove a transverse linear stability
result. However, this latter result is restricted to doubly periodic perturbations, which
are subharmonic with zero mean in the direction of propagation x and have an arbitrary,
but fixed, period in the transverse direction y.

Restricting to periodic perturbations which have zero mean in x , we rewrite the
linearized equation (3.1) as an evolutionary problem

wt = Bcw, (3.5)

in which Bc is a differential operator with 2π -periodic coefficients having a J L-product
structure, more precisely,

Bc = J Lc, J = ∂x , Lc = −∂2x − c − 6φc(x) − ∂−2
x ∂2y . (3.6)

Here, the operator Bc is well-defined and closable in the space of locally square-
integrable functions on R2 which are 2πN -periodic and have zero mean in x , for some
N ∈ N, and are 2π/p-periodic in y, for some fixed wave number p. We denote this
space by L̇2(N , p). In this space, the operators J and Lc are skew- and self-adjoint
operators, respectively.

The key observation in our linear stability proof is that the existence of a self-adjoint
operator Kc satisfying the commutativity property

Lc J Kc = Kc J Lc, (3.7)

just as the ones in Hypothesis 2.1(ii), implies that the associated quadratic form 〈Kc·, ·〉
is constant along suitable solutions to the linearized equation (3.5), hence it acts as a
Lyapunov functional. Indeed, a simple formal calculation gives

d

dt
〈Kcw,w〉 = 〈Kc J Lcw,w〉 + 〈Kcw, J Lcw〉 = 〈Kc J Lcw,w〉 − 〈Lc J Kcw,w〉 = 0.

This calculation becomes rigorous for appropriately regular solutions. Thus, for suitable
solutions w(t) to the linearized equation (3.5), we have

〈Kcw(t), w(t)〉 = 〈Kcw(0), w(0)〉, ∀ t ∈ R. (3.8)

If the operator Kc is coercive in some norm, then the solutions w(t) to the linearized
equation (3.5) stay bounded in this norm for all times, which then implies linear stability.
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The transverse linear stability result is obtained in the energy space for the quadratic
form (3.8), which coincides with the Hilbert space H2,1(N , p) defined by

H2,1(N , p) = {w ∈ L̇2(N , p) : wx , wxx , wy ∈ L̇2(N , p)},

and equipped with the standard norm denoted by ‖ · ‖2,1. The following theorem is
proved in Sect. 4.5.

Theorem 3. Consider a periodic traveling wave φc of the KdV equation (1.2) with the
properties given in Proposition 4.1 below. For any N ∈ N and any positive p ∈ R, there
exists a constant CN ,p such that any solution w ∈ C1(R, H2,1(N , p)) to the linearized
equation (3.5) satisfies the inequality

‖w(t) − a(t)∂xφc‖2,1 � CN ,p‖w(0)‖2,1, |a′(t)| � CN ,p, (3.9)

where a(t) represents the orthogonal projection of the solution on the derivative ∂xφc
of the periodic wave,

a(t) = 〈w(t), ∂xφc〉
||∂xφc||2 .

Consequently, the periodic traveling wave is transversely linearly stable with respect to
doubly periodic perturbations in H2,1(N , p).

Remark 3.2. (i) Due to the translation invariance of the KP-II equation, the derivative
∂xφc of the periodic wave belongs to the kernel of the linearized operator Bc. As
we shall see later, it also belongs to the kernel of the operator Kc, which is only
coercive on the subspace orthogonal to ∂xφc. This explains the presence of the term
a(t)∂xφc in the first estimate in (3.9). Furthermore, the linearized operator Bc has
a generalized kernel with one, at least, 2× 2 Jordan block. This explains a possible
linear growth of a(t), as indicated by the second inequality in (3.9). The estimates
in (3.9) are the linear counterpart of a standard nonlinear orbital stability result
claiming that, as expected in the presence of translational invariance, solutions stay
close to the orbit {φc(· + x0)}x0∈R of the periodic traveling wave φc.

(ii) We do not discuss here the initial value problem for the linearized equation (3.5),
and hence the question of existence of solutions w ∈ C1(R, H2,1(N , p)). How-
ever, on the basis of semigroup theory, one expects that for initial data w(0) ∈
H5,3(N , p) a unique solution to the linearized equation (3.5) exists which satisfies
w ∈ C1(R, H2,1(N , p)) ∩ C0(R, H5,3(N , p)), where the space H5,3(N , p) is
defined similarly to H2,1(N , p).

4. Proofs of Theorems 2 and 3

Here we prove the stability results in Theorems 2 and 3. We recall some well-known
properties of the periodic traveling waves of the KdV equation (1.2) in Sect. 4.1. In
Sects. 4.2 and 4.3, we construct the operators K = Kc,p(γ ) and discuss their positivity
properties. We conclude with the proofs of the two theorems in Sects. 4.4 and 4.5.
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4.1. One-dimensional periodic traveling waves. Periodic traveling waves of the KdV
equation (1.2) are solutions of the form u(x, t) = v(x + ct), with v a periodic function
in its argument. Due to the Galilean invariance, one can integrate the resulting third-
order differential equation for v with zero integration constant and obtain v from the
second-order differential equation

v′′(x) + cv(x) + 3v2(x) = 0. (4.1)

Without loss of generality, due to scaling and translation invariances, we scale the period
of the periodic traveling wave to 2π , translate the wave profile v to be even in x , and
so restrict to 2π -periodic even solutions to the differential equation (4.1). A complete
characterization of these periodic waves is available in terms of Jacobi elliptic functions
(e.g., see [8]). The following proposition specifies this explicit result.

Proposition 4.1. For every c > 1, the differential equation (4.1) possesses a unique
2π -periodic even solution φc which satisfies φc(0) > 0 and is given by

φc(x) = 2K 2(k)

3π2

[

1 − 2k2 −
√

1 − k2 + k4 + 3k2cn2
(
K (k)

π
x; k

)]

. (4.2)

Here cn is the Jacobi elliptic function, K (k) is a complete elliptic integral, and the
elliptic modulus k ∈ (0, 1) parameterizes the speed parameter c by

c = 4K 2(k)

π2

√

1 − k2 + k4. (4.3)

Proof. It follows from the explicit expressions involving Jacobi elliptic functions (e.g.,
see [8]), that the function

u(ξ) = 2k2cn2(ξ ; k), k ∈ (0, 1),

is a 2K (k)-periodic solution of the second-order differential equation

u′′(ξ) + 4(1 − 2k2)u(ξ) + 3u2(ξ) = 4k2(1 − k2). (4.4)

In order to remove the constant term from the right-hand side of equation (4.4), and
normalize the period of u to 2π , we use the scaling and shift transformation

φc(x) = K 2(k)

π2

[

A(k) + u

(
K (k)

π
x

)]

, (4.5)

and take

c = K 2(k)

π2

[

4(1 − 2k2) − 6A(k)
]

, (4.6)

where A(k) is a solution of quadratic equation

3A2 − 4(1 − 2k2)A − 4k2(1 − k2) = 0, (4.7)

satisfying A(0) = 0. Solving the quadratic equation (4.7), we obtain

A(k) = 2

3

[

1 − 2k2 −
√

1 − k2 + k4
]

. (4.8)

Substituting (4.8) into (4.5) and (4.6), we obtain (4.2) and (4.3). ��
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Remark 4.2. As k → 0, the explicit solution given by (4.2) and (4.3) recovers the Stokes
expansion for small-amplitude periodic waves,

φc(x) = a cos(x) +
1

2
a2 [cos(2x) − 3] +O(a3), c = 1 +

15

2
a2 +O(a4), (4.9)

where a = k2/4 + O(k4) is the projection to the first Fourier mode. Note that c > 1
follows from (4.3) for every k ∈ (0, 1).

4.2. Construction of commuting operators Mc,p(γ ). We start by constructing a self-
adjoint operator Mc,p(γ ) which satisfies the commutativity condition (2.1) in Hypoth-
esis 2.1(ii). For notational simplicity, we restrict in the following arguments to the case
γ = 0 and take

J = ∂x , Lc,p = −∂2x − c − 6φc(x) + p2∂−2
x . (4.10)

For γ 	= 0, the operators Mc,p(γ ) are easily obtained from the resulting operator Mc,p
by formally replacing the derivative ∂x with ∂x + iγ .

We search for a self-adjoint operator Mc,p which satisfies the commutativity
condition (2.1) in Hypothesis 2.1 (ii). As in Remark 2.2 (i), we write the commutativity
condition in the form

Lc,p∂x Mc,p = Mc,p∂x Lc,p. (4.11)

For the purpose of symbolic computations, we write

Lc,p = LKdV + p2LKP, (4.12)

where
LKdV = −∂2x − c − 6φc(x), LKP = ∂−2

x , (4.13)

and similarly,
Mc,p = MKdV + p2MKP, (4.14)

where MKdV and MKP are the operators to be found.
The case p = 0 corresponds to the KdV equation for which the operator MKdV has

been constructed in [8]. We briefly recall this construction here. The operators LKdV and
MKdV are related to linearized equations of the KdV hierarchy. Formally, the second-
order differential equation (4.1) is the Euler–Lagrange equation for the energy functional

Sc(u) = E(u) − cQ(u), (4.15)

where E(u) and Q(u) are the Hamiltonian and momentum, respectively, of the KdV
equation (1.2) given by

E(u) =
∫ [

u2x − 2u3
]

dx, Q(u) =
∫

u2dx .

The higher-order energy functional of the KdV equation takes the form

H(u) =
∫ [

u2xx − 10uu2x + 5u4
]

dx . (4.16)

To obtain MKdV, we observe that a solution of the second-order differential equation
(4.1) is also a critical point of the higher-order energy functional

Rc(u) = H(u) − c2Q(u) + 2IC(u), (4.17)
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where C(u) = ∫

u dx is the Casimir-type functional, which does not contribute to the
second variation, whereas I is the first-order invariant for the second-order differential
equation (4.1) given by

I =
(
dv

dx

)2

+ cv2 + 2v3 = const.

By computing the Hessian operator of Rc(u) at the periodic wave φc, we obtain the
linear operator

MKdV = ∂4x + 10∂xφc(x)∂x − 10cφc(x) − c2, (4.18)

and straightforward symbolic computations confirm that

LKdV∂x MKdV − MKdV∂x LKdV = 0.

Next, we are looking for MKP from the commutativity condition

LKdV∂x MKP − MKP∂x LKdV = MKdV∂x LKP − LKP∂x MKdV, (4.19)

which corresponds to the order O(p2) obtained from (4.11), (4.12), and (4.14). From
the explicit expressions (4.13) and (4.18), we find the right-hand side of (4.19),

MKdV∂x LKP − LKP∂x MKdV = 10φ′
c(x) + 10c

(

∂−1
x φc(x) − φc(x)∂

−1
x

)

.

On the other hand, the left-hand side of (4.19) is given by the operator

LKdV∂x MKP − MKP∂x LKdV

= MKP∂
3
x − ∂3x MKP + c (MKP∂x − ∂x MKP) + 6 (MKP∂xφc(x) − φc(x)∂x MKP) .

By using symbolic computations, we obtain that the operator

MKP = 5

3

(

1 + c∂−2
x

)

(4.20)

is a solution of the linear equation (4.19). Moreover, since LKP and MKP in (4.13) and
(4.20) are operators with constant coefficients, the commutativity condition (4.11) at
order O(p4) is satisfied identically:

LKP∂x MKP − MKP∂x LKP = 0.

Thus, the commutativity condition (4.11) is satisfied at all orders with the operator Mc,p
given by (4.14), (4.18), and (4.20), or explicitly, by

Mc,p = ∂4x + 10∂xφc(x)∂x − 10cφc(x) − c2 +
5

3
p2

(

1 + c∂−2
x

)

. (4.21)

Finally, by replacing ∂x with ∂x + iγ in (4.21) we find

Mc,p(γ ) = (∂x + iγ )4 + 10(∂x + iγ )φc(x)(∂x + iγ )

−10cφc(x) − c2 +
5

3
p2

(

1 + c(∂x + iγ )−2
)

. (4.22)

This operator is well-defined and self-adjoint in L2
per (0, 2π), for any γ ∈ (0, 1). For

γ = 0, we use the restriction of Mc,p(0) to L̇2
per (0, 2π), as explained in Sect. 3.1 for

the operator Lc,p(0).
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Remark 4.3. For c = 1, when φc = 0 and the operators have constant coefficients, we
can explicitly compute the spectrum of M1,p(γ ) in (4.22). We obtain

σ(M1,p(γ )) =
{

k4 − 1 +
5p2

3
− 5p2

3k2
; k = γ + n, n ∈ Z, γ + n 	= 0

}

,

from which we conclude that the operators M1,p(γ ) have at least some negative eigen-
values, just as L1,p(γ ). However, the linear combination M1,p(γ ) − 2L1,p(γ ) of these
two operators has a nonnegative spectrum,

σ(M1,p(γ ) − 2L1,p(γ ))

=
{

(k2 − 1)2 +
5p2

3
+

p2

3k2
; k = γ + n, n ∈ Z, γ + n 	= 0

}

. (4.23)

In the next section we show that, by choosing an appropriate linear combination of the
operators Mc,p(γ ) and Lc,p(γ ), this positivity property can be extended to all c > 1.

4.3. Construction of positive operators Kc,p,b(γ ). Our construction of a positive linear
combination of the operators Mc,p(γ ) and Lc,p(γ ), relies upon the following result
obtained for the KdV equation in [8], which corresponds to p = 0 in our case.

Proposition 4.4. Consider a periodic traveling wave φc of the KdV equation (1.2) with
the properties given in Proposition 4.1, and a linear combination of the operators Lc,0
and Mc,0 in (4.10) and (4.21),

Kc,0,b = Mc,0 − bLc,0, (4.24)

for some real number b. Assume that Lc,0, Mc,0, and Kc,0,b act in L2
per (0, 2πN ), the

space of locally square-integrable functions on R which are 2πN-periodic. Then, for
any N ∈ N and b ∈ (b−(c), b+(c)), where

b−(c) =
(
5

3
+

1 − 2k2

3
√
1 − k2 + k4

)

c, b+(c) =
(
5

3
+

1 + k2

3
√
1 − k2 + k4

)

c, (4.25)

with k ∈ (0, 1) being the elliptic modulus in Proposition 4.1, there exists a positive
constant CN ,c,b such that

〈Kc,0,bW,W 〉 � CN ,c,b‖W‖2, ∀ W ∈ H2
per (0, 2πN ), 〈W, ∂xφc〉 = 0.

Here 〈·, ·〉 denotes the usual scalar product in L2
per (0, 2πN ) and ‖ ·‖ the corresponding

norm.

Proof. We transfer the result in [8] to our variables, just as in the proof of Proposition 4.1.
According to [8], the result in the proposition holds for the operator

K̃KdV = ∂4ξ + 10u(ξ)∂2ξ + 10u′(ξ)∂ξ + 10u′′(ξ) + 30u(ξ)2 − 16 + 56k2(1 − k2)

+c21(−∂2ξ − 6u(ξ) + 8k2 − 4),

in which u is the 2K (k)-periodic solution of the second-order differential equation (4.4)
in the proof of Proposition 4.1, and the constant c21, which plays the role of b, satisfies

4(3k2 − 2) < c21 < 4(4k2 − 2).
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Transforming variables through (4.5) and (4.6), after some computations, we obtain

K̃KdV = π4

K (k)4

[

∂4x + 10∂xφc(x)∂x − 10cφc(x) − c2
]

+
π2

K (k)2
[c21 + 10A(k)]

[

−∂2x − 6φc(x) − c
]

.

Comparing the expression of K̃KdV with Kc,0,b given by (4.10), (4.21), and (4.24), we
obtain the correspondence between b and c21,

b = −K (k)2

π2 [c21 + 10A(k)] ,

and the values of b for which the results in the proposition holds,

4K 2(k)

3π2

(

5
√

1 − k2 + k4 + 1 − 2k2
)

< b <
4K 2(k)

3π2

(

5
√

1 − k2 + k4 + 1 + k2
)

.

Finally, using the explicit definition of the speed c in (4.3), we obtain the formulas in
(4.25). ��
Remark 4.5. The result in this proposition has been proved in [8] by evaluating the
quadratic form associated to K̃KdV on a complete set of eigenfunctions of the linearized
KdV operator. This set of eigenfunctions is known explicitly, due to the integrability of
the KdV equation. Recently, in the context of the cubic NLS equation, such a result has
been obtained in [11] by directly estimating the quadratic form, hence without using the
knowledge of an explicit set of eigenfunctions. For the KdV equation there is no such
direct proof, so far. However, in the case of small-amplitude solutions (see the Stokes
expansion (4.9) in Remark 4.2), such a direct proof can be obtained using perturbation
arguments [26], just as recently done in [17] for the reduced Ostrovsky equations.

We consider now a linear combination of the operators Mc,p(γ ) and Lc,p(γ ),

Kc,p,b(γ ) = Mc,p(γ ) − bLc,p(γ ), (4.26)

for some real number b. As a consequence of the previous proposition we obtain the
following result for p = 0.

Corollary 4.6. ( p = 0) Consider a periodic traveling wave φc of the KdV equation
(1.2) with the properties given in Proposition 4.1. Then for every γ ∈ (0, 1) and
b ∈ (b−(c), b+(c)), where b−(c) and b+(c) are given by (4.25), there exists a posi-
tive constant Cc,0,b(γ ) such that the linear operator Kc,0,b(γ ) satisfies the inequality

〈Kc,0,b(γ )W,W 〉 � Cc,0,b(γ )‖W‖2, ∀ W ∈ H2
per (0, 2π).

For γ = 0, the derivative ∂xφc of the periodic wave belongs to the kernel of Kc,0,b(0),
and the inequality holds for any W ∈ H2

per (0, 2π) satisfying 〈W, ∂xφc〉 = 0. Here 〈·, ·〉
denotes the usual scalar product in L2

per (0, 2π) and ‖ · ‖ the corresponding norm.
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Proof. For rational numbers γ = j/N ∈ [0, 1), the assertion in this corollary is a
consequence of Proposition 4.4. Indeed, using Floquet decomposition in x , we obtain
that the spectrum of the operator Kc,0,b acting in L2

per (0, 2πN ) is given by

σ(Kc,0,b) =
⋃

γ∈IN

σ
(

Kc,0,b(γ )
)

, IN =
{

j

N
; j = 0, . . . , N − 1

}

,

where the operators Kc,0,b(γ ) act in L2
per (0, 2π). Then the result in Proposition 4.4

implies that the operators Kc,0,b(γ ) are positive for any rational number γ = j/N ∈
(0, 1), and that for γ = 0 they are nonnegative and have a one-dimensional kernel
spanned by ∂xφc. Consequently, the result holds for any rational number γ ∈ Q∩[0, 1).
Finally, the density ofQ inR together with a standard perturbation argument shows that
the result holds for any γ ∈ [0, 1), which proves the corollary. ��

We can now state the positivity result for the operators Kc,p,b(γ ) in (4.26), for p 	= 0.
These operators act in L2

per (0, 2π) when γ ∈ (0, 1), and are restricted to L̇2
per (0, 2π)

when γ = 0.

Lemma 4.7. ( p 	= 0) Consider a periodic traveling wave φc of the KdV equation (1.2)
with the properties given in Proposition 4.1. Assume that p 	= 0. Then, for any γ ∈ (0, 1)
and b ∈ (b0(c), b+(c)), where b0(c) = max{5c/3, b−(c)} and b±(c) are given by (4.25),
there exists a positive constant Cc,p,b(γ ) such that the linear operator Kc,p,b(γ ) defined
in (4.26), satisfies the inequality

〈Kc,p,b(γ )W,W 〉 � Cc,p,b(γ )‖W‖2, ∀ W ∈ H2
per (0, 2π).

For γ = 0, the same property holds for W ∈ H2
per (0, 2π) ∩ L̇2

per (0, 2π).

Proof. We rewrite

Kc,p,b(γ ) = Kc,0,b(γ ) +
5

3
p2 −

(

b − 5c

3

)

p2(∂x + iγ )−2.

For any b > 5c/3, the last two terms in the right hand side of this equality define a
positive operator. Combined with the result in Corollary 4.6, this proves the lemma. ��

4.4. Proof of Theorem 2. Theorem 2 (i) is a consequence of the general result in
Corollary 2.5. Indeed, take Kc,p,b(γ ) with some b ∈ (b0(c), b+(c)), as constructed in
Lemma 4.7. The operators J (γ ), Lc,p(γ ), and Kc,p,b(γ ) satisfy the Hypothesis 2.1, and
Kc,p,b(γ ) is positive when p 	= 0, according to Lemma 4.7. Consequently, Kc,p,b(γ )

is nonnegative with trivial kernel, and the result in Corollary 2.5 implies that the oper-
ator J (γ )Lc,p(γ ) has no unstable spectrum. This proves Theorem 2 (i). The proof of
Theorem 2(ii) has been discussed in Sect. 3.1.

Remark 4.8. The abstract result in Corollary 2.5 allows to recover the proof of spectral
stability of the periodic travelingwaveφc as a solution of theKdV equation (1.2). Indeed,
for p = 0, the operators J (γ ), Lc,0(γ ), and Kc,0,b(γ ) satisfy the Hypothesis 2.1, and by
Corollary 4.6, Kc,0,b(γ ) is positive for γ ∈ (0, 1), and for γ = 0 it is nonnegative and
has a one-dimensional kernel spanned by ∂xφc. Since ∂xφc also belongs to the kernel of
J (0)Lc,0(0), due to the translational invariance, the result in Corollary 2.5 implies that
the operator J (γ )Lc,0(γ ) has no unstable spectrum, for any γ ∈ [0, 1). Consequently,
the periodic traveling wave φc is stable as a solution of the KdV equation (1.2).
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4.5. Proof of Theorem 3. Following the arguments in Sects. 3.2, 4.2 and 4.3, we define
the linear operator

Kc = Mc − bLc, (4.27)

with

Mc = ∂4x + 10∂xφc(x)∂x − 10cφc(x) − c2 − 5

3

(

1 + c∂−2
x

)

∂2y ,

Lc given by (3.6), and some b ∈ (b0(c), b+(c)), as in Lemma 4.7. Then Kc satisfies
the commutativity property (3.7) with J = ∂x , and we claim that its restriction to the
space L̇2(N , p) is a nonnegative operator with one-dimensional kernel spanned by the
translation mode ∂xφc. (Here again, the restriction to the space L̇2(N , p) means that Kc
as defined above is composed with the standard projection on the subspace of functions
with zero mean.) Indeed, it is not difficult to check that Kc is a self-adjoint operator and
using Fourier series in y, and Floquet decomposition in x , that its spectrum is given by

σ(Kc) =
⋃

n∈Z

⋃

γ∈IN

σ
(

Kc,pn,b(γ )
)

, IN =
{

j

N
; j = 0, . . . , N − 1

}

,

with Kc,pn,b(γ ) being the operators defined by (4.26). Then the result in Lemma 4.7
proves the claim. As a consequence, there exists a positive constant cN ,p, such that

〈Kcw,w〉 � cN ,p‖w‖2, ∀ w ∈ Ḣ2,1(N , p), 〈w, ∂xφc〉 = 0,

where 〈·, ·〉 and ‖ · ‖ denote the scalar product and the norm, respectively, in L̇2(N , p).
Gårding’s inequality further implies that

〈Kcw,w〉 � cN ,p‖w‖22,1, ∀ w ∈ H2,1(N , p), 〈w, ∂xφc〉 = 0, (4.28)

with a possibly different constant cN ,p.
For a solution w ∈ C1(R, H2,1(N , p)) to the linearized equation (3.5), the equality

(3.8) holds. We set

w(t) = a(t)∂xφc + w1(t), a(t) = 〈w(t), ∂xφc〉
‖∂xφc‖2 , 〈w1(t), ∂xφc〉 = 0.

Inserting this decomposition into (3.8), using the inequality (4.28), and the fact that ∂xφc
spans the kernel of Kc, we find

cN ,p‖w1(t)‖22,1 � 〈Kcw1(t), w1(t)〉 = 〈Kcw(t), w(t)〉
= 〈Kcw(0), w(0)〉 � CN ,p‖w(0)‖22,1, (4.29)

whereCN ,p exists due to the boundedness of the quadratic form (3.8) in the energy space
H2,1(N , p). This proves the first inequality in (3.9).

Next, by taking the scalar product of the linearized equation (3.5) with ∂xφc we obtain
that a(t) satisfies the first order differential equation

a′(t) ‖∂xφc‖2 = 〈Bcw1(t), ∂xφc〉 = −〈w1(t), Lc∂
2
xφc〉. (4.30)

The inequality (4.29) above, together with the Cauchy–Schwarz inequality, implies that
the last term in (4.30) is a bounded function. Consequently, a′(t) is bounded, which
proves the second inequality in (3.9) and completes the proof of Theorem 3.
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5. Discussion

The general counting result in Sect. 2 allowed us to prove the transverse spectral and
linear stability of periodic waves for the KP-II equation (1.1). In this section, we address
the question of their transverse nonlinear stability, which remains open.

It is tempting to construct a higher-order energy functional associated with the linear
operator Mc,p given by (4.21), which could then be used for a nonlinear stability proof,
just as for the KdV and NLS equations [5,8,11]. Since the part MKdV in Mc,p is the
Hessian operator for Rc(u) in (4.17), which is constructed from the higher-order energy
functional H(u) in (4.16), whereas the part MKP in Mc,p has constant coefficients, a
higher-order energy functional can be thought in the following form

F̃(u) =
∫ ∫ [

u2xx − 10uu2x + 5u4 +
5

3
u2y − 5c

3
(∂−1

x uy)
2
]

dxdy. (5.1)

However, the function F̃(u) has a speed parameter c in front of the last term, which is
also the last term of the energy functional Ẽ(u) for the KP-II equation (1.1) given by

Ẽ(u) =
∫ ∫ [

u2x − 2u3 − (∂−1
x uy)

2
]

dxdy.

Since Ẽ(u) is constant in time and the speed c is an independent parameter, the quantity
F̃(u) in (5.1) is not related to a conserved quantity of the KP-II equation (1.1). There-
fore, the commuting operator Kc in (4.27) constructed in this paper is not the Hessian
operator for a higher-order conserved quantity of the KP-II equation (1.1).

On the other hand, for the KP-I equation, a conserved higher-order energy functional
has been constructed in [30,31]. After transforming this quantity to the variables used
in the KP-II equation (1.1), it can be written in the form

H̃(u) =
∫ ∫ [

u2xx − 10uu2x + 5u4 − 10

3
u2y +

5

9
(∂−2

x uyy)
2

+
10

3
u2∂−2

x uyy +
10

3
u

(

∂−1
x uy

)2
]

dxdy.

Similarly to F̃(u), the y-independent part of H̃(u) is equivalent to the higher-order
energy functional H(u) of the KdV equation (1.2) given by (4.16). However, unlike
F̃(u), the quantity H̃(u) is constant in the time evolution of the KP–II equation (1.1).

The periodic traveling wave φc is a critical point of the higher-order energy functional
R̃c(u) = H̃(u) − c2 Q̃(u) + 2I C̃(u), where Q̃(u) and C̃(u) generalize Q(u) and C(u)

by including the double integration in x and y. After a Fourier transform in the variable
y, we find that the Hessian operator at the periodic wave φc related to R̃c(u) is given by

M̃c,p = ∂4x + 10∂xφc(x)∂x − 10cφc(x) − c2

−10

3
p2

(

1 + φc(x)∂
−2
x + ∂−1

x φc(x)∂
−1
x + ∂−2

x φc(x)
)

+
5

9
p4∂−4

x . (5.2)

A long, but straightforward, symbolic computation shows that the commutativity con-
dition (4.11) is indeed satisfied with the two linear operators Lc,p and M̃c,p given by
(4.10) and (5.2), respectively.
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Note that the expression (5.2) for the operator M̃c,p is different from the expression
(4.21) for the operator Mc,p obtained by our direct symbolic computations. Clearly, the
difference between these two operators,

Mc,p − M̃c,p = 5

3
p2

(

3 + c∂−2
x + 2φc(x)∂

−2
x +2∂−1

x φc(x)∂
−1
x + 2∂−2

x φc(x)
)

−5

9
p4∂−4

x ,

also satisfies the commutativity condition (4.11). The operator equation (4.11) admits
multiple solutions, but the most general form for a solution Mc,p is unknown.

In contrast to the operator Mc,p given by (4.21), the operator M̃c,p in (5.2) cannot
be used to construct commuting positive operators, unlike the operators Kc,p,b(γ ) ob-
tained in Sect. 4.3. Indeed, by using the Floquet–Bloch transform and by taking a linear
combination of the two operators Lc,p(γ ) and M̃c,p(γ ) in the form

K̃c,p,b(γ ) = M̃c,p(γ ) − bLc,p(γ ), (5.3)

where γ ∈ [0, 1), we can check the analogue of property (4.23) in Remark 4.3. For
c = 1, when φc = 0, and b = 2, by using Fourier series in x , we obtain the spectrum of
K̃1,p,2(γ ),

σ(K̃1,p,2(γ )) =
{(

k2 − 1
)2

+
p2(5p2 − 30k4 + 18k2)

9k4
;

k = γ + n, n ∈ Z, γ + n 	= 0

}

.

(5.4)

If p = 0, which corresponds to the KdV case, the operator K̃1,0,2(γ ) is nonnegative, for
every γ ∈ [0, 1). On the other hand, by inspecting the sign of the function in (5.4), we can
show that, for every p 	= 0, the operator K̃1,p,2(γ ) has some negative eigenvalues [26], at
least for some values γ ∈ [0, 1), and then conclude that K̃c,p,b(γ ) is not always positive.

Summarizing, the existence of a Lyapunov functional for the KP-II equation (1.1)
which could be used for a transverse nonlinear stability proof for periodic waves is not
known, and this nonlinear stability problem remains open. We point out that the analyt-
ical difficulty of using the higher-order energy functional H̃(u) for a nonlinear stability
proof seems to be the same as the one arising in the proof of global well-posedness of
the KP-II equation in the energy space (see [13] and the references therein).
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