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The work is concerned with long nonlinear internal waves interacting with a shear
flow localized near the sea surface. The study is focused on the most intense resonant
interaction occurring when the phase velocity of internal waves matches the flow
velocity at the surface. The perturbations of the shear flow are considered as ‘vorticity
waves’, which enables us to treat the wave–flow resonance as the resonant wave–wave
interaction between an internal gravity mode and the vorticity mode. Within the
weakly nonlinear long-wave approximation a system of evolution equations governing
the nonlinear dynamics of the waves in resonance is derived and an asymptotic
solution to the basic equations is constructed. At resonance the nonlinearity of the
internal wave dynamics is due to the interaction with the vorticity mode, while the
wave’s own nonlinearity proves to be negligible. The equations derived are found to
possess solitary wave solutions of different polarities propagating slightly faster or
slower than the surface velocity of the shear flow. The amplitudes of the ‘fast’ solitary
waves are limited from above; the crest of the limiting wave forms a sharp corner.
The solitary waves of amplitude smaller than a certain threshold are shown to be
stable; ‘subcritical’ localized pulses tend to such solutions. The localized pulses of
amplitude exceeding this threshold form infinite slopes in finite time, which indicates
wave breaking.

1. Introduction
Continuing progress in the remote sensing of the ocean surface makes the study

of links between the processes in the water interior and their surface signatures one
of the ‘hottest’ topics of physical oceanography today. Internal gravity waves, being
widespread in all natural basins, remain the only ‘internal’ process having numerous
and well-documented surface manifestations supported by in situ measurements (e.g.
Apel et al. 1985). The interest in the physical mechanisms of such manifestations
has resulted in a vast literature (see e.g. Robinson 1985 for a review of the basic,
mechanisms). Recently a new mechanism for the amplification of internal wave
manifestations due to their resonance with a thin subsurface shear current was

† Present address: Department of Mathematics, University of Toronto, Toronto, Ontario,
M5S 3G3, Canada.
‡ Present address: Department of Applied Mathematics, University College Cork, Ireland. e-mail:

shrira@ucc.ie.



210 V. V. Voronovich, D. E. Pelinovsky and V. I. Shrira

considered in Voronovich & Shrira (1996) within the framework of a linear theory. The
present work develops a nonlinear description of such resonance and, in particular,
shows its prime importance not only in the context of surface signatures but also for
internal wave dynamics in shallow water.

Internal gravity waves in themselves have been a subject of intense studies since
the beginning of the century (see e.g. Leblond & Mysak 1979; Phillips 1977; Turner
1973), which, now, after reaching a peak in the seventies, is experiencing a kind
of renaissance, especially in the context of coastal waters. The growing number of
field observations in the coastal zone, their improved quality and, especially, new
capabilities of computer data processing has created a demand for new theoretical
models that better explain the variety of features of internal wave dynamics. By now,
the basic features of internal wave evolution in the coastal waters have been well
established experimentally: the waves are long compared to the typical water depth;
the in-shore propagating waves are, as a rule, much more pronounced; they exhibit
essentially nonlinear behaviour; solitary-wave-type patterns are dominant quite often
in the wave dynamics, although bore-like structures might occur as well (Ostrovsky &
Stepanyants 1989; Serebryany 1993). The basic theoretical model used in the last two
decades to describe the field evolution is the Korteweg–de Vries equation with variable
coefficients, due to the bottom topography and large-scale inhomogeneity coefficients
(see e.g. Grimshaw 1986). Modifications allowing for Earth’s rotation were developed
to describe the nonlinear evolution of lower-frequency waves or waves at larger times
(Ostrovsky 1978). In the specific situation with vanishing quadratic nonlinearity taking
account of a cubic one leads to the cubic or mixed Korteweg–de Vries (KdV) equations.
The role of shear currents within the framework of such models although important
is still merely quantitative: the coefficients of the underlying equation depend on the
vertical profile of the currents (Maslowe & Redekopp 1980; Grimshaw 1997).

To ensure stability of the flows under consideration it is usually presumed that
the Richardson number Ri = [N(z)/U ′(z)]2, where N(z), U ′(z) are the Brunt-Väisälä
frequency and the mean current vertical gradient, exceeds 1/4 everywhere. The op-
posite inequality, i.e. the Richardson number being smaller than 1/4, means that
owing to the mean shear current the forces due to the inhomogeneous vorticity field
dominate those of buoyancy which are due to the density stratification. However, even
in the limit of small Richardson number, when the shear effects prevail, the current
does not necessarily become unstable, although the nature of the wave dynamics
changes drastically. The main new feature, which is typical of internal waves at small
Richardson numbers, is the critical layer which means that there is a depth where the
wave phase velocity matches that of the current. The vast literature devoted to the
critical layer problem is confined to the situation of monochromatic or, at best, nearly
monochromatic waves in a deep fluid (see e.g. Leblond & Mysak 1979; Craik 1985
and references therein). In terms of the linear spectral problem for guided internal
waves (the Taylor–Goldstein equation with the corresponding boundary conditions
at the surface and the bottom) the presence of critical layers leads to appearance of
singular modes of continuous spectrum. The problem of treating these singularities
is commonly circumvented by taking into account either viscous or nonlinear effects
prevailing in the thin critical layer. In our context the problem lies in the fact that the
shallow water waves usually are far from being monochromatic and the description
of the critical layer interactions for such waves encounters insurmountable difficulties
in the generic case, especially for non-planar motions.

However, in the geophysically most relevant situations, those with the shear due to
wind drift current localized near the surface, solutions to the basic equations may be
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sought in terms of an asymptotic expansion in powers of the natural small parameter
ε characterizing the smallness of the current depth compared to a typical wavelength.
The remarkable fact that allows us to progress is that arbitrary perturbations of such
a thin shear current comprising an aggregate of the singular modes behave at certain
timescales as if they were a single discrete mode having no singularities at the leading
order in ε (Shrira 1989; Voronovich, Shrira & Stepanyants 1997). Next-order solutions
usually exhibit a logarithmic singularity for strictly plane motions and a pole-like
singularity for non-planar ones. The presence of stratified fluid below very weakly
affects the properties of this single mode: a localized current with a strong shear can
support wave-like motions even in the absence of any stratification. We shall call
such modes vorticity waves as their existence is due to the mean flow inhomogeneous
vorticity field. The vorticity waves are weakly dispersive and their phase speed tends
to the flow velocity at the surface in the long-wave limit. Treating these perturbations
as waves not only greatly simplifies their description, but it also makes it possible to
describe wave–flow interaction in terms of wave–wave interaction.

Thus, in typical oceanic conditions a stratified shear flow characterized by a
thin wind-driven subsurface current can support wave motions of two physically
different types, vorticity and internal gravity waves which interact weakly or strongly,
depending on the particular environment features. If the phase speed of a certain
internal wave mode coincides with that of the vorticity mode, i.e. approximately
equals the surface velocity of the flow, a resonance of internal waves with shear flow
occurs and a particularly strong interaction, which we are interested in, takes place.
In terms of wave–wave interactions this resonance is of the direct resonance type
(Akylas & Benney 1980, 1982) which means that in resonant conditions both the
celerities and vertical structure of the modes are close to each other. Direct resonance
is qualitatively different from that between two internal wave modes originating from
two different thermoclines, studied by Gear & Grimshaw (1984) and Gear (1985),
because in the latter case only the phase speeds of the modes match while the vertical
structure remains different and a traditional KdV-type theory can be applied even at
the resonant conditions. As shown below this is not the case for the direct resonance
and a new theory is required which is the subject of this paper.

A linear theory of an internal wave–shear flow resonant interaction was first
developed by Reutov (1990) and later by Voronovich & Shrira (1996). The latter
work established the resonance to be of the direct resonance type, i.e. the vertical
structures of the interacting modes are close to each other, and found that the process
leads to a significant amplification of the wave motion near the surface. However,
the question of whether there exists a limitation on the motion amplitudes as well
as a number of other physically important questions could not be resolved within
the framework of the linear theory. In the present work we take the natural next
step: using a standard technique for the wave–wave interactions we derive a simple
nonlinear model describing the phenomenon of the resonance. The main implication
of the latter for internal wave dynamics is that it makes the dynamics of even relatively
weak internal waves essentially nonlinear.

We start in §2 with the derivation of the set of equations governing nonlinear
dynamics of quasi-plane internal waves in stratified shear flow assuming the shear to
be localized near the surface and the waves to be long compared to the fluid depth. In
the absence of a resonance with the vorticity mode the equations are shown to reduce
to the famous Kadomtsev–Petviashvili (KP) equation. The standard procedure breaks
down in the presence of the resonance, because of the strong coupling of an internal
mode and the vorticity modes. In §3 we study their nonlinear resonant interaction by
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means of an asymptotic analysis and arrive at the set of two coupled equations for
normalized wave amplitudes a and b of the internal and vorticity modes, respectively,

(at + ∆ax + axxx − bx)x + ayy = 0,

bt + 2bbx − ax = 0,

 (1.1)

where ∆ is a free parameter corresponding to a mismatch in the phase speeds of the
coupled waves. In §4 we look for the basic solutions to (1.1) in the form of steady
solitary waves and find plane solitary wave solutions of two different types. Solutions
of the first type propagate with velocities greater than that of the current and are
characterized by different polarities of a and b. Their amplitudes are limited by a
critical value at which the solitary wave exhibits a sharp corner at the crest. Solitary
waves of the second type have velocities smaller than the flow speed at the surface
and the polarities of a and b are identical.

In §5 we study stability of plane solitary waves with respect to small plane per-
turbations and find the conditions for the solitary waves of the first type to become
unstable. The development of this nonlinear instability, as well as the generic evolution
of localized perturbations with ‘supercritical’ amplitudes, leads to the formation of
vertical slopes and, thus, to wave breaking in finite time. The problem of the existence
of solitons with critical amplitudes and the aforementioned scenarios of nonlinear
soliton dynamics seem to be very similar to those studied within the framework
of Whitham’s integro–differential equation modelling wave breaking by Fornberg &
Whitham (1978) or of the integrable equation for the so-called peaked solitons by
Camassa & Holm (1993). We should mention that the existence of solitons with crit-
ical and supercritical amplitudes was also investigated using the primitive equations
for some particular stratified shear flows (Amick & Turner 1986; Pullin & Grimshaw
1988).

The results obtained are briefly discussed in the concluding §6. In the Appendix
we study some features of oblique solitary wave solutions to (1.1), and we show that
no solitary waves localized in all directions can exist within the framework of the
model (1.1) because of the inextinguishable resonance with the small-amplitude linear
waves, in accordance with the earlier results by Voronovich et al. (1997).

2. Formulation of the problem
We study the particular case of long-wave dynamics in inviscid incompressible

stratified fluid of a finite constant depth in the presence of a comparatively strong
shear flow. Fluid density stratification is supposed to be smooth and the shear flow to
be localized in the thin subsurface layer of typical width h and to have no inflection
points in the velocity profile U(z)† (see figure 1). The total fluid depth H is assumed
to be much greater than h but small compared to the typical wavelength.

In the Cartesian frame with the x-axis directed streamwise and the z-axis vertically
upward the non-dimensional governing equations (the Euler, the mass conservation
and the continuity ones) in the standard Boussinesq approximation are (e.g. Leblond

† The latter condition is to ensure stability of the flows under consideration with respect to all
perturbations, not necessarily long-wave ones. The linear stability of such flows may be seen from
the dispersion relation derived in Voronovich & Shrira (1996) for the case of the simplest piecewise
linear model or from ‘energy sign’ considerations in the spirit of Craik (1985, §2.3).
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Figure 1. Flow geometry and notation.

& Mysak 1979; Phillips 1977)

ut + (u · ∇)u+ ∇ p
ρ0

+
ρ

ρ0

z = 0, (2.1a)

ρt + wN2 + (u · ∇)ρ = 0, (2.1b)

∇ · u = 0. (2.1c)

Here p, and ρ are the pressure and density perturbations, ρ0(z) is the equilibrium
density distribution, z is a unit vertical vector, ∇ = {∂x, ∂y, ∂z} is the gradient operator,
subscripts denote the corresponding derivatives and the fluid velocity u contains both
the mean flow and perturbations

u(x, y, z, t) = {U(z) + u, v, w}.

Use of the standard Boussinesq approximation is the reason for the neglect of
nonlinear terms including density perturbations as well as the mean density variations
with the depth (e.g. Leblond & Mysak 1979; Phillips 1977).

The equations were made non-dimensional by employing the scaling

{x′, y′, z′} = H0 {x, y, z}, t′ =
H0

U0

t, p′ = ρ∗U
2
0 p,

{u′, U ′} = U0 {u, U}, ρ′ = ρ∗
U2

0

gH0

ρ, ρ′0 = ρ∗ ρ0;

N ′ =
U0

H0

N,


(2.2)

where H0 is the typical fluid depth†, U0 is a typical, say maximal, value of the flow
speed, ρ∗ is a typical constant fluid density, say that in the upper mixed layer, N is
the Brunt–Väisälä frequency

N2(z) = −g ρ0z

ρ0

and primes denote dimensional variables.

† The non-dimensional depth H can be set equal to unity without loss of generality; however
we prefer to preserve H , presuming H ≈ 1, to facilitate generalization of the results for the case of
varying depth to be considered elsewhere.
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The standard boundary conditions

w = 0 at z = −H, z = 0 (2.3)

should be applied to the solutions of (2.1), the latter being the ‘no-flux’ condition at
the rigid boundary and the former, the so-called ‘rigid-lid’ condition, naturally arising
in studies of internal waves owing to the negligible smallness of the wave Froude
numbers (Leblond & Mysak 1979; Phillips 1977).

We are interested in the dynamics of long quasi-plane waves in a stratified shear
flow, i.e. those with the spanwise scale much larger than the streamwise one which, in
turn, is much larger than the characteristic stratification scale and the fluid depth H .
It is well-known that long waves in a smoothly stratified fluid with a shear flow are
described by an infinite set of vertical eigenmodes specified by the linear boundary-
value problem, the amplitudes of which satisfy the KdV equations for a plane (x, z)
motion and the KP equations for a weakly three-dimensional (x, y, z) motion. To
derive such equations, one should apply the multiple-scale method by introducing
‘slow’ space–time variables

X = µ(x− ct), Y = µ2y, T = µ3t, (2.4)

where µ� 1 and c is the limiting long-wave speed to be determined, and looking for
solutions to (2.1)–(2.3) in the form of an asymptotic expansion in powers of µ

u = µ2A [(c−U)Φ]z + O(µ4), p = µ2Aρ0(c−U)2Φz + O(µ4),

v = µ3

(∫
AY dx

)
(c−U)Φz + O(µ5), ρ = −µ2Aρ0zΦ+ O(µ4),

w = −µ3AX(c−U)Φ+ O(µ5),


(2.5)

where A = A(X,Y , T ) and Φ = Φ(z). Such a representation singles out one of the
modal functions Φ(z) satisfying the boundary-value problem with c as an eigenvalue,[

(c−U)2Φz
]
z

+N2Φ = 0,

Φ(0) = Φ(−H) = 0,

 (2.6)

while the evolution of the mode amplitude A(X,Y , T ) is governed by the KP equation,

(αAT + βAXXX + γAAX)X + δAY Y = 0, (2.7)

with the coefficients given by

α = 2

∫ 0

−H
(c−U)Φ2

z dz, β =

∫ 0

−H
(c−U)2Φ2 dz, (2.8a,b)

γ = 3

∫ 0

−H
(c−U)2Φ3

z dz, δ =

∫ 0

−H
(c−U)2Φ2

z dz. (2.8c,d )

The boundary-value problem (2.6) for the smooth functions U(z) and N2(z) possesses
an infinite countable set of discrete eigenvalues c = cn (n = 1, 2, ...), which correspond
to the set of discrete linear modes Φ = Φn. The evolution equation (2.7) for a particular
chosen nth mode is valid only when all other modes are far from resonance with the
chosen one, i.e. the wave phase speed cn does not coincide with that of any other
mode cm. This being the case, the modes are weakly coupled and do not interact at the
leading orders. The nonlinear dynamics of such an isolated finite-amplitude internal
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wave is then described completely by (2.7) or, for a plane wave (A = A(X,T )), by the
KdV equation. The latter exhibits rather simple wave field dynamics which usually
reduces to the generation of a number of solitary waves from an initial localized pulse
and their successive interaction (e.g. Karpman 1975; Ablowitz & Clarkson 1991).

The resonance of modes originating from two different thermoclines in still fluid
was considered by Gear & Grimshaw (1984) and Gear (1985), where a system of
coupled KdV equations was derived for two plane (AY Y = 0) waves instead of (2.7).
The analysis was based on the fact that near resonance the phase velocities of the
waves are close to each other, cn → cm and n 6= m, but the mode functions Φn
and Φm have different spatial structures. In contrast, in the presence of a shear flow
the resonance cn → cm may occur, with the mode functions Φn and Φm coinciding
identically at the leading order. This is due to the fact that a shear flow can support
an additional wave mode, the vorticity wave.

To cast some light on the nature of the vorticity waves consider a simplified model
consisting of a uniform fluid of total depth H and a shear flow with a piecewise-linear
profile

U =

 1 + z/h at −h 6 z 6 0

0 at −H 6 z 6 −h.
(2.9)

On substituting (2.9) into (2.6) and assuming N2 = 0 the solution for the mode
function is easily obtained as

Φ = Φv =


z at −h < z 6 0

h
z +H

h−H at −H 6 z 6 −h,
(2.10a)

c = cv = 1− h/H. (2.10b)

The solution found represents, in fact, a long wave having the maximum of its modal
function at the vorticity jump at z = −h. These motions are often called vorticity
waves. In (2.10b) and below subscript v stands for vorticity waves.

In the case of the smooth shear profile, the situation, though being much more
mathematically complicated, still preserves some basic properties of the simplest
model. The discrete modes are replaced by a continuous spectrum, which, for inter-
mediate times and arbitrary long-wave perturbations still behaves like the discrete
mode (2.10). The waves of the continuous spectrum form an intermediate asymptotic
solution, its leading terms coinciding with the solution of the simplest model (2.10).
The theory for nonlinear vorticity waves as the intermediate asymptotics was devel-
oped by Shrira (1989) for the most relevant geophysical situation, that of the shear
flow localized near the surface. In particular, it was shown that the intrinsic dynamics
of weakly nonlinear vorticity waves is governed by an essentially two-dimensional
generalized Benjamin–Ono equation, rather than by the KP equation. Thus, vorticity
waves represent wave-like perturbations in shear flows due to the inhomogeneous
mean vorticity field supplied by the basic current. In the presence of a density stratifi-
cation the vorticity and internal gravity waves interact and influence each other. This
influence, being relatively weak far from the resonance, is greatly enhanced when the
phase speed of the vorticity wave matches the celerity of one of the internal wave
modes (Voronovich & Shrira 1996; Voronovich et al. 1997).

Thus, in the vicinity of the resonance, the evolution equation (2.7) is not applicable
and, in the next section, we develop an asymptotic approach to derive new coupled
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equations describing the resonance of finite-amplitude internal and vorticity waves.
It is worthwhile mentioning that for the resonance to occur, the typical frequency
of the vorticity waves should be of the same order as that of the internal waves N0

(variables are dimensional)

U0

H0

∼ N0 = max

{(
−g ρ0z

ρ0

)1/2
}
. (2.11)

The balance (2.11) being valid, the non-dimensional Brunt–Väisälä frequency N in
(2.1b) is of order of unity in our scaling.

3. Asymptotic analysis
3.1. The core solution

Hereinafter we will confine ourselves to consideration of the shear flow localized in a
thin subsurface layer of a width h, so that

h/H ∼ ε� 1, (3.1)

and it is absent in the bulk of the fluid. Thus, the fluid is composed of two layers: the
still core and a boundary layer with an effectively different scale of vertical motion.
The natural way of treating the problem is to find a solution to (2.1)–(2.3) in the core
subject to the no-flux condition at z = −H , then to introduce an inner-boundary-layer
vertical variable

ζ = z/ε (3.2)

and to find an inner solution subject to the ‘rigid–lid’ condition at ζ = 0, and, finally,
to match both solutions at ζ → −∞, z → 0.

To this end we introduce a set of ‘slow’ space–time coordinates

X = µ(x− ct), Y = µ2y, T = µ3t, (3.3)

where µ is a small parameter characterizing long spatial and slow temporal scales for
the amplitude variations, while c is the long-wave speed limit of the internal wave
mode subject to the resonance. To derive the evolution equations for wave amplitudes
which would describe dispersive, diffractive, resonant, and nonlinear effects at the
same order as the asymptotic expansion one has to assume a certain balance among
the small parameters of the problem. The analysis of Voronovich & Shrira (1996)
revealed that for the waves at resonance the appropriate balance is prescribed by the
relation

ε = µ4. (3.4)

Thus, the solutions to the governing equations (2.1)–(2.3) should be looked for in the
form of an expansion in powers of a single small parameter. The magnitudes of the
motion in the bulk of the fluid and in the boundary layer are quite different and,
thus, a particular amplitude scaling is required for these two layers.

In the bulk of the fluid we neglect the terms containing the mean flow in (2.1)–(2.3)
and look for the normalized perturbation components

u = εû, v = εµv̂, w = εµŵ, p = εp̂, ρ = ερ̂, (3.5)

where µ is related to ε through (3.4). Under the scaling (3.3)–(3.5) the primitive
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equations (2.1) can be presented as a single equation for the vertical velocity ŵ:(
ŵzz +

N2

c2
ŵ

)
XX

+ ε1/2

[
−2

c
ŵzzXT − ŵzzY Y + ŵXXXX

]
+ O(ε) = 0. (3.6)

Solutions to this equation can be sought in the form of an asymptotic expansion,

ŵ = w0 + ε1/2w1 + O(ε). (3.7)

At the leading order the horizontal and vertical variables can be separated and the
solution has a simple form

w0 = −cAXf, (3.8)

where A = A(X,Y , T ) is the depth-independent amplitude of an internal wave, while
f = f(z) is the modal function satisfying the boundary-value problem

fzz +
N2

c2
f = 0,

f(0) = f(−H) = 0, fz(0) = 1.

 (3.9)

The last condition just specifies the normalization of the modal function. The
boundary-value problem (3.9) (cf. (2.6)) is exactly the same as in studies of long
internal waves propagating in a stratified Boussinesq fluid without shear (see e.g.
Leblond & Mysak 1979). Thus, at the leading order the internal waves are not influ-
enced by the shear flow and their speed and modal structure are completely prescribed
by the density stratification. The effect of the shear flow on the internal waves occurs
at the next order and results in a correction w1 not satisfying the boundary condition
(2.3) at z = 0, where the shear flow layer is located. Therefore, we are looking for the
correction w1 subject to the following boundary conditions:

w1

∣∣
z=0

= −cBX, w1|z=−H = 0, (3.10)

where B = B(X,Y , T ) is the amplitude of the vorticity wave in the shear flow layer.
Multiplying the O(ε1/2) terms of (3.6) by f(z), integrating with respect to z and using
(3.9), (3.10) we find an evolution equation for the internal mode amplitude A,

α
(
ATX + 1

2
cAY Y

)
+ βAXXXX − c2BXX = 0, (3.11)

where the coefficients α, β (cf. (2.8)) are given by

α = 2c

∫ 0

−H
(fz)

2 dz, β = c2

∫ 0

−H
f2dz. (3.12)

Equation (3.11) is the linearized version of (2.7) written for a particular internal
mode having phase speed c. Thus, the internal wave is linear in this approximation,
but being coupled with the vorticity wave, is, therefore, affected by its nonlinear
behaviour. To close the system of amplitude equations we have to consider solutions
in the boundary layer where the vorticity wave is located and to match them with the
core solution taken at z → 0 as follows:

u→ εcA+ O(ε3/2), (3.13a)

v → εµc

(∫
AY dx

)
+ O(ε3/2µ), (3.13b)

w → −ε3/2µcBX + O(ε2µ), (3.13c)
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p→ εc2A+ O(ε3/2), (3.13d)

ρ→ −ε3/2Bρ0z

∣∣
z=0

+ O(ε2). (3.13e)

Note, that the perturbation field components in (3.13) are real non-dimensional
variables, rather than the normalized ones having the hats in (3.5).

3.2. The boundary layer solution

Inside the boundary layer the scale of vertical motion is different from that in the
bulk of the fluid. Therefore, both the mean flow velocity and the field variables are
supposed to depend on the inner vertical variable ζ rather than on z, while the
Brunt–Väisälä frequency is supposed to be constant N = N(0) at this scale. The
solution to the basic equations is subject to the ‘rigid-lid’ condition at ζ = 0 and
should be matched with (3.13) in the limit ζ → −∞. The latter condition specifies the
proper scaling of the field component amplitudes inside the boundary layer:

u = ε1/2ũ, v = εµṽ, w = ε3/2µw̃, p = εp̃, ρ = ε3/2ρ̃, (3.14)

with the tilded variables being of order of unity.
Equation (3.14) indicates that fluid particles oscillate, basically in the streamwise

direction, while vertical and spanwise motion is considerably weaker. This constitutes
one of the main features of vorticity waves as it was first pointed out by Shrira
(1989). Also, the resonance proved to lead to a significant (an order of magnitude)
amplification of the horizontal motion near the surface compared to that at depth.
Thus, in the presence of a subsurface shear current even a comparatively small-
amplitude linear internal wave manifests itself as an intense, often nonlinear, wave-like
perturbation of the flow (see Voronovich & Shrira 1996).

Equations (2.1) with (3.2)–(3.4), (3.14) taken into account can be reduced by virtue
of a standard procedure to a single equation for the vertical velocity w̃:

(c−U) w̃ζζX +Uζζw̃X + ε1/2
[
−w̃ζζT +

(
ũũX + w̃ũζ

)
ζX

]
+ O(ε) = 0 (3.15)

closed only in the leading-order (linear) approximation. It is worthwhile noting that
the terms due to the density stratification do not appear at the leading orders in (3.15)
and, thus, the restoring force in the upper layer is not gravity but the ‘vorticity’ force
due to the mean shear. Mathematically this fact is a consequence of the smallness of
the global Richardson number in the asymptotic limit under consideration

Ri ≈ (N0h/V )2 � 1,

in accordance with (2.11), (3.1).
We look for solutions to (3.15) in the form of power series in ε1/2:

w̃ = w1 + ε1/2w2 + O(ε), (3.16a)

ũ = u−1 + ε1/2u0 + O(ε). (3.16b)

The main-order solution for the vertical velocity is found from (3.15); other field
components can be found from (2.1)–(2.3) and used for obtaining nonlinear terms in
the next-order approximation.

Also, we suppose that the phase velocity of the vorticity wave cv , which at the
leading order equals that of the current at the surface, does not match exactly that
of the internal wave c, but there is an O(ε1/2) mismatch ∆c

c = cv + ε1/2∆c. (3.17)
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On substituting (3.16) and (3.17) into (3.15) we find the leading-order terms of the
velocity disturbance w̃ and ũ in the form (Shrira 1989; Voronovich et al. 1997)

w1 = −GX(cv −U), u−1 = −GUζ, (3.18)

where G is the amplitude of the fundamental mode supported by the shear flow.
Then, integrating the inhomogeneous equation for w2 arising in the next-order
approximation of (3.15) we find its general solutions in the form

w2 = GT − ∆cGX − GGXUζ + QX(cv −U)

∫ ζ dζ ′

(cv −U(ζ ′))2
, (3.19)

where Q is an amplitude of the second fundamental solution to the homogeneous
problem following from (3.15). This fundamental solution is known in the theory of
hydrodynamic stability as the Tollmien inviscid solution (Drazin & Reid 1979). Using
(3.19), we also find the component u0 of the horizontal velocity,

u0 = 1
2
G2Uζζ + Q

[
Uζ

∫ ζ dζ ′

(cv −U(ζ ′))2
− 1

cv −U

]
. (3.20)

Applying the matching conditions (3.13) we are able to express the unknown
functions G and Q through the internal and vorticity wave amplitudes A and B:

G = B(X,Y , T ), Q = −c2
vA(X,Y , T ). (3.21)

On the other hand, applying the ‘rigid-lid’ condition at ζ = 0 leads to an identity at
the main order provided by cv = U

∣∣
ζ=0

, but yields the second evolution equation for

the wave amplitudes

BT − ∆cBX −U ′0BBX −
U2

0

U ′0
AX = 0, (3.22)

where U0 = U
∣∣
ζ=0

and U ′0 = Uζ

∣∣
ζ=0

. In contrast to (3.11) the vorticity wave is

governed by the nonlinear equation (3.22) and can exhibit quite strong nonlinear
features as will be shown below.

The system of equations (3.11) and (3.22) governs the dynamics of the resonance
between the vorticity wave and a long internal wave. This system reduces to the non-
dimensional form (1.1) by means of a simple scaling transformation of dependent
variables

A = −2U2
0

αU ′0
a(x+ ∆t, y, t), B = − 2U2

0

α1/2(U ′0)
3/2
b(x+ ∆t, y, t),

and independent variables

x =

(
αU4

0

β2U ′0

)1/4

X, y =

(
2U3

0

βU ′0

)1/2

Y ,

t =

(
U12

0

αβ2U ′30

)1/4

T , ∆ =

(
αU ′0
U4

0

)1/2

∆c.


(3.23)

It should be mentioned that the streamwise velocity component u0 is logarithmically
divergent as ζ → 0 according to its asymptotic presentation

u0 →
U ′′0
U ′20

(
log |ζ|+ 3

2

)
c2
vA+ 1

2
U ′′0B

2, (3.24)
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Figure 2. Splitting of dispersion curves in the vicinity of the resonance:
(a) subcritical case (∆ = −1); (b) supercritical case (∆ = 2).

where U ′′0 = U0ζζ

∣∣
ζ=0

. This divergence indicates the existence of a critical layer at

ζ = 0, where cv = U(ζ). Strictly speaking, in order to remove this divergence one
has to modify the asymptotic technique and to introduce one more inner expansion,
inside the critical layer. However, the analysis carried out by Voronovich et al. (1997)
shows that the critical layer contribution is negligible at the order in which (3.22) was
derived. This fact enables us to ignore the existence of the critical layer in our further
consideration.

4. Plane solitary wave solutions
In the next two sections we confine ourselves to considering plane solitary waves

within the framework of (1.1), i.e. we presume AY Y ≡ 0, leaving a brief discussion
of some three-dimensional solutions to the system (1.1) to the Appendix. The basic
system (1.1) is simplified to

at + ∆ax + axxx − bx = 0,

bt + 2bbx − ax = 0.

 (4.1)

To get an idea of the dispersion properties of the system, first consider a solution to
the linearized system (4.1) in the form of a pair of harmonic waves

a ∼ â exp[ik(x− ct)], b ∼ b̂ exp[ik(x− ct)],

where k is the wavenumber and c = c(k) is the phase velocity. The dispersion relation
for linear waves has two roots for each value of the wavenumber k:

c = c1,2 = 1
2

[
∆− k2 ±

(
4 + (∆− k2)2

)1/2
]
. (4.2)

Different roots correspond to the vorticity and internal waves modified by their
interaction in the vicinity of the resonance. For linear waves the resonance results in
a specific reconnection of the dispersion curves in the region of small k, which, in our
case, does not lead to linear instability as (4.2) indicates. The parameter ∆ specifies
the phase velocity mismatch between two waves in the limit k → 0. The dispersion
curves for ‘subcritical’ (∆ < 0 or, equivalently, cv > c) and ‘supercritical’ (∆ > 0 or
cv < c) resonances are plotted in figure 2. Equation (4.2) indicates (see also figure 2)
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that for any ∆ there exist two gaps, or forbidden zones, in the spectrum of the linear
wave speeds:

c ∈ (c−; 0), c ∈ (c+;∞), (4.3a)

where

c± = 1
2

[
∆±

(
4 + ∆2

)1/2
]
. (4.3b)

Therefore, one may expect the existence of nonlinear solitary waves travelling with
velocities that lie inside the forbidden zones. Otherwise, the resonance with infinitesi-
mal linear waves would lead to a radiative damping of the solitary waves and, finally,
to their decay. With this expectation in mind, we look for steady solitary solutions
preserving their form and advancing with a constant speed

a = as(x− vt), b = bs(x− vt).

Our analysis is confined to the consideration of localized solutions having zero
asymptotics at both infinities, i.e. as, bs → 0 as x → ±∞. Then, integrating (4.1) we
find the relation between as and bs as

as = b2
s − vbs (4.4a)

and the ordinary differential equation to solve for the function bs is

(v − 2bs)
2

(
dbs
dx

)2

= b2
s

[
(v − ∆)b2

s + 2
(

2
3
− v(v − ∆)

)
bs + v (v(v − ∆)− 1)

]
. (4.4b)

Equation (4.4b) can be thought of as the energy integral of a particle moving in a
potential well. From this point of view the coordinate x is an analogue of time and
the amplitude bs of coordinate, (dbs/dx)2 represents the particle kinetic energy, the
total energy of the particle is zero and the potential is given by the expression

Π(bs) = − b2
s

(v − 2bs)2

[
(v − ∆)b2

s + 2
(

2
3
− v(v − ∆)

)
bs + v (v(v − ∆)− 1)

]
. (4.5)

The potential (4.5) specifies completely the phase plane of the particle (bs, b
′
s), where

b′s = dbs/dx. Clearly, the origin of the coordinate frame (0, 0) is always an equilibrium,
but a homoclinic orbit, which originates at this point and represents a localized solitary
wave solution, exists only if the point (0, 0) is a saddle point, but not a centre. Thus,
the potential should have a local maximum at bs = 0 and, hence, its second derivative

Π ′′(bs)|bs=0 = −2

v
(v2 − ∆v − 1) < 0 (4.6)

should be negative. One can see that the condition (4.6) is fulfilled when the solitary
wave speed v lies exactly inside the gaps in the spectrum of the linear waves (4.3).

Yet, for solitary wave solutions to exist, condition (4.6) is necessary but not
sufficient. For a trajectory starting from the saddle point in the limit t → −∞ to
return at t → +∞, a turning point where the potential changes its sign should exist.
Only under this condition can a closed separatrix trajectory be formed. The turning
point bs = bmax corresponds to the maximal amplitude of the solitary wave and is
prescribed completely by the non-zero root of the equation Π(bs) = 0 closest to the
origin. In turn, the non-zero roots of Π(bs) coincide with those of the polynomial
inside the brackets in (4.5). A simple analysis indicates that the roots exist if v lies
inside the interval

v ∈ (v−; v+), (4.7a)
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where

v± = 1
2

[
∆±

(
16
3

+ ∆2
)1/2
]
. (4.7b)

Thus, we have two types of solitary waves in the model: the ‘fast’ ones, with velocity
lying inside the interval (c+; v+), and the ‘slow’ ones with negative velocity. Examples
of the phase plane (bs, b

′
s) for the waves of both types are presented in figure 3, with

the homoclinic orbits being marked by the bold curves. The regions of the (v, ∆) plane
where the solitary wave solutions exist are plotted in figure 4.

The solitary wave solutions b = bs(x) can be found in closed form from (4.4b) by
direct integration. First, consider the ‘fast’ solitary waves. They can be given by the
following analytical expression:

exp(−κ|x|) =

[
(b−(b+ − bs))1/2 − (b+(b− − bs))1/2

(b−(b+ − bs))1/2 + (b+(b− − bs))1/2

] [
(b+ − bs)1/2 + (b− − bs)1/2

(b+ − bs)1/2 − (b− − bs)1/2

]2ν

,

(4.8)
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Figure 5. ‘Fast’ solitary wave profiles: (a) as(x); (b) bs(x) for ∆ = 0. Curve 1, v = 1.05; curve 2,
v = 1.1; curve 3, v = 1.154

where

κ =

(
v(v − ∆)− 1

v

)1/2

, ν =

(
v(v − ∆)− 1

v|v − ∆|

)1/2

,

and

b± =
3v(v − ∆)− 2± [4− 3v(v − ∆)]1/2

3(v − ∆)
.

For c+ < v < v+ both non-zero roots of the nonlinear potential b± prove to be
positive and, moreover, direct calculations show that the inequality

b− <
1
2
v (4.9)

holds. Hence, the singularity in the potential Π(bs) occurring at bs = v/2 does not
prevent the solutions from existing, bs(x) is positive for all x while as according to
(4.4a) is negative. Thus, fluid particles moving with the vorticity wave are accelerated
while those moving with the internal wave are decelerated. The maximal amplitude
of the solitary wave is specified by the smaller root of the potential: bmax = b−.
The profiles of bs and as corresponding to the ‘fast’ solitary waves are plotted in
figure 5(a, b). The dependence of the solitary wave velocity v and the characteristic
width δ = κ−1 on the amplitude bmax is presented in figure 6(a, b) for several values
of ∆. We would like to mention that similar dependencies were also found for the
surface and interfacial solitary waves on a uniform shear flow (see figures 2 and 11
of Pullin & Grimshaw 1988).

The ‘fast’ solitary wave solutions of (4.4b) exhibit rather interesting limiting be-
haviour as their speed v tends to the edges of the existence interval. In the limit v → c+

the smaller root of the potential tends to coalesce with the saddle point, i.e. b− → 0,
and the solitary wave (4.8) becomes asymptotically close to the small-amplitude KdV
soliton, strongly elongated in the streamwise direction,

bs ≈ b−cosh−2
[

1
2
κx
]
, (4.10a)

where b− and κ are given by (4.8) and prove to be small in the limit v → c+. This limit
corresponds to small-amplitude resonant vorticity and internal waves, the coupling
of which and splitting of dispersion curves are due to the linear dispersive effects at
the leading order. At the next order, taking account of nonlinearity leads to separate
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Figure 6. Solitary wave speed v (a) and width δ (b) vs. its amplitude bmax for ‘fast’ waves.
Different curves correspond to different values of ∆ as labelled.

effective KdV equations for both waves. In fact, soliton (4.10a) represents a solution
of one of those asymptotic equations.

In the opposite limit v → v+ two non-zero roots of Π(bs) tend to coalesce and to
form a double root at b± = b∗ = v+/2, though the singularity which occurs exactly
at this value makes the behaviour of the potential much more complex. If the wave
speed v grows further, at v > v+ the potential no longer has non-zero roots, and
the separatrix trajectory originating from the saddle point in the phase plane (see
figure 3a), therefore, goes to infinity and localized solitary solutions of (4.4b) no longer
exist. Thus, the amplitude of the ‘fast’ solitary waves is bounded from above by the
critical value b∗ = v+/2 (see figure 6a, b). The limiting solution can be found directly
from (4.8) in a simple form,

bs = b∗ exp(−κ∗|x|), (4.10b)

where κ∗ = 1/ (3v+)1/2. This solution represents the solitary wave of the greatest
height with a sharp corner at the crest. Its shape is plotted in figure 5(a, b) (curve
3) for the components a = as and b = bs, respectively. We note that the component
as for the internal solitary wave remains smooth. The limiting solitary waves with a
corner-type crest are often called peaked solitons and are a typical phenomenon in
strongly nonlinear problems. Within the framework of weakly nonlinear theories the
peaked solitons are very rare. Such solutions were first constructed analytically by
Fornberg & Whitham (1978) in their studies of wave breaking by means of a model
equation. As a matter of fact, their equation (29) possesses solitary wave solutions
which differ from those of (4.4b) only in the numerical coefficients. An integrable
evolution equation with solutions of the peaked-soliton type was derived recently by
Camassa & Holm (1993).

Recall that in terms of the physical variables the amplitude a is proportional to
the horizontal velocity u and the vertical displacement of the fluid particles. The
vertical velocity w and the vertical acceleration wt, being proportional to ax and axx
respectively, exhibit stronger singularities at the peaked solitary waves, which indicates
that the derived system (4.1) is invalid for describing of the limiting solutions. If we
note that in the dimensional variables the denominator in (4.4b) responsible for the
singularity becomes proportional to (u − V ), where V is the dimensional celerity of
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the solitons, then the specific physical mechanism responsible for the limitation of the
wave amplitude of the fast solitary waves becomes clear: the horizontal velocity u of
the fluid particle in the wave cannot exceed the wave phase velocity V . The fact that
the presence of a thin shear layer severely diminishes the maximal wave amplitude is
not surprising. A similar phenomenon occurs for water waves in the presence of even
infinitesimally thin shear layer (Phillips 1977, §3.9).

If the solitary wave speed v lies inside the interval (c−; 0), i.e. the solitary wave is
‘slow’, the origin of the phase plane (bs, b

′
s) is again the saddle point (see figure 3b).

The inequality v− < c− indicates, according to (4.7), that the potential Π(bs) always
has two non-zero roots b± for v ∈ (c−, 0) which are given below (4.8). Yet, their
location with respect to the point bs = 0 depends on the relative values of v and ∆. If
v > ∆, which is possible only in the subcritical case, i.e. for negative ∆, both roots turn
out to be negative, but the singularity always occurs between them and the origin, i.e.

b± <
1
2
v.

A separatrix trajectory cannot cross this line† and, hence, the ‘slow’ solitary wave
solutions do not exist for ∆ < v < 0.

If, now, the opposite inequality holds, i.e. v < ∆, then the roots of Π(bs) have
different signs so that b+ < 0 and b− > 0, while the singularity is located between
the negative root b+ and the origin. Therefore, a closed separatrix in the negative
half-plane is prevented by the singularity of the potential, while this trajectory exists
in the positive half-plane (see figure 3b). Thus, the ‘slow’ solitary waves exist for
v ∈ (c−,min (0, ∆)) (see figure 4). For these solitary wave solutions both as and bs
have positive polarity which corresponds to acceleration of fluid particles in the wave.
Integrating (4.4b) we find the wave profile in the closed form

exp(κ|x|) =

[
(b−(bs − b+))1/2 − (b+(bs − b−))1/2

(b−(bs − b+))1/2 + (b+(bs − b−))1/2

]
exp

[
−4ν tan−1

(
b− − bs
bs − u+

)1/2
]
, (4.11)

where κ, ν, and b± are the same as in (4.8), and we have used the inequality
b+ < 0 < b < b−. Examples of the ‘slow’ solitary waves are depicted in figure 7(a, b)

† In this analysis, we do not consider solitary wave solutions having regions of infinite slope.
Such singular solutions corresponding to separatrix trajectories crossing the singularities could be
constructed for any value of v ∈ (c−, 0) .
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for ∆ = 0, while the dependence of v and δ = κ−1 on the maximal amplitude bmax = b−
is shown in figure 8(a, b) for several values of ∆. In the limit v → c− the positive root of
the potential again tends to zero and the amplitude of the solitary wave decreases. In
this limit, the form of the solitary wave (4.11) tends asymptotically to that of the KdV
soliton (4.10a) for the other effective KdV equation. On the other hand, for the sub-
critical case the amplitude of the ‘slow’ solitary waves is not bounded from above, i.e.
bmax → +∞ for v → ∆. On the contrary, in the supercritical case the maximal ampli-
tude of the wave is bounded by its limiting value bc = 4/(3∆) as v → 0 (see figure 7a, b).

5. Stability and evolution
In this section we discuss the stability and evolution of the plane solitary wave

solutions (4.8) and (4.11) as well as of general localized wave perturbations within our
simplified system (4.1). First, we find two conserved quantities of this system which
are the momentum and the energy of the nonlinear wave field:

P [a, b] =
1

2

∫ +∞

−∞
(a2 + b2) dx, (5.1a)

H[a, b] =
1

2

∫ +∞

−∞

(
a2
x − ∆a2 + 2ab− 2

3
b3
)

dx. (5.1b)

Equations (4.4a,b) for localized solitary wave solutions can be found from the con-
strained variational problem δΛ = 0, where Λ is the Lyapunov functional given by
Λ = H + vP and v serves as a Lagrange multiplier. In other words, the stationary
solitary wave solutions can be regarded as extremal points of the energy functional
H at a fixed value of P . In order to analyse the stability of these stationary solutions
we introduce small (infinitesimal) perturbations, δa = a − as and δb = b − bs, which
do not change the value of the momentum P . Therefore, these perturbations should
satisfy the integral constraint

F[δa, δb] =

∫ +∞

−∞
(asδa+ bsδb) dx = 0. (5.2)
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Then, we evaluate from (5.1) the second variation of the Lyapunov functional δ2Λ
which has the form

δ2Λ =
1

2

∫ +∞

−∞

[
δaLδa+ (v − 2bs)(δb̃)

2
]

dx, (5.3)

where δb̃ = δb+ (v − 2bs)
−1δa and the linearized operator L is given by

L = − ∂2

∂x2
+ (v − ∆)− 1

v − 2bs
. (5.4)

Stability of soliton solutions in the energetic sense means that the second variation
of the Lyapunov functional δ2Λ (5.3) is sign-definite (say, positive-definite) under the
constraint (5.2) (see e.g. Grillakis, Shatah & Strauss 1987). In the opposite case, when
the second variation is sign-indefinite, the soliton solutions are unstable and the small
perturbations δa and δb grow exponentially in time.

Let us consider the ‘fast’ solitary wave solutions (4.8) for which c+ < v 6 v+

and (v − 2bs) > 0 for any x. Then, the second term in (5.3) is non-negative. On the
other hand, the operator L is a standard Sturm–Liouville operator with the known
neutral mode, Lχ0 = 0, where χ0 = asx. The function asx is odd with only one node
and, therefore, according to the oscillation theorem, the operator L has a unique
localized ground-state mode χ− with a negative eigenvalue µ− < 0, Lχ− = µ−χ−. The
rest of the spectrum, Lχ+ = µ+χ+, contains continuum-spectrum eigenfunctions χ+(p)
corresponding to the eigenvalues µ+(p) bounded from below, as µ+(p) > µ+(0) =
v − ∆ − v−1 > 0. Other localized modes are also possible in the gap for µ+ between
zero and µ+(0). For simplicity we suppose that these additional modes are absent
although our analysis is valid for the general case as well. Also, we assume that the
functions χ−, χ0, and χ+(p) form a complete orthogonal and orthonormal basis.

To find the criterion for soliton stability we apply the well-known method of
Lagrange multipliers which was originally proposed by Vakhitov & Kolokolov (1973)
in their studies of soliton stability within the framework of the nonlinear Schrödinger
equation. Following their analysis, we consider the minimizing problem for the func-
tional δ2Λ (5.3) constrained by (5.2).

This problem reduces to finding the minimal eigenvalue λ for the following system:

Lδam = λδam + ν

(
bs

v − 2bs
− as

)
, (5.5a)

δb̃m = − νbs

v − 2bs
, (5.5b)

where ν is the Lagrange multiplier for the minimizing problem. If the minimal
eigenvalue is negative, then the second variation δ2Λ has a negative subspace, i.e.
it is sign-indefinite, which indicates soliton instability. Using the properties of the
linearized operator L we express solutions to (5.5a) through the orthonormal set of
the eigenfunctions, χ−, χ0, and χ+(p):

as −
bs

v − 2bs
= r−χ− +

∫ ∞
0

r(p)χ+(p) dp,

δam = ν

[
r−

λ− µ−
χ− +

∫ ∞
0

r(p)

λ− µ(p)
χ+(p) dp

]
,

 , (5.6)

where r− and r(p) are spectral coefficients of the expansion. It can be easily shown
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that the function χ0 does not enter this expansion because of the different parity of
the functions as and asx. Using this representation we rewrite the integral constraint
(5.2) as a function of λ:

F(λ) = ν

[
r2
−

λ− µ−
+

∫ ∞
0

r2(p)

λ− µ+(p)
dp−

∫ +∞

−∞

b2
s

v − 2bs
dx

]
. (5.7)

The minimal eigenvalue λ is a root of the equation F(λ) = 0. It is obvious that λ
is bounded from below by µ−, which can be reached only for ν = 0 and r− = 0.
We assume here that ν > 0 (without loss of generality) and also r− 6= 0; the latter
condition is equivalent to the following integral restriction:∫ +∞

−∞
χ−
∂as

∂v
dx 6= 0. (5.8)

Under this assumption we can see from (5.7) that λ is located between µ− < 0 for
which F(λ → µ− + 0) → +∞ and µ+(0) > 0 for which F(λ → µ+(0) − 0) → −∞.
Therefore, a root F(λ) = 0 exists inside this interval. Also, this root is unique because
the function F(λ) is continuous and decreasing in a monotonic manner (see (5.7)).
Hence, the sign of λ is controlled by the sign of F(0) so that their signs coincide.
Using (5.2), (5.5b) and the properties of the operator L we can evaluate this quantity
in the explicit form

F(0) = ν
dPs
dv

, (5.9)

where Ps = Ps(v) is defined by (5.1a) for a = as and b = bs. Thus, we prove that the
minimal eigenvalue is positive for

dPs
dv

> 0, (5.10)

and, therefore, the ‘fast’ solitary wave solutions (4.8) are stable under the condition
(5.10). In the opposite case, when dPs/dv < 0, the minimal eigenvalue is negative and
the solitary wave solutions are linearly unstable. In the critical case, dPs/dv = 0, it
follows from (5.5b) that the perturbations minimizing δ2Λ lead to renormalization of
the solitary wave parameter v according to

δam = r0asx + ν
∂as

∂v
, δbm = r0bsx + ν

∂bs

∂v
, (5.11)

where r0 and ν are arbitrary parameters. In this case, the infinitesimal perturbations
δa and δb grow in time in a power-like manner: δa, δb ∼ O(t2) as t → ∞ (see
Pelinovsky & Grimshaw 1997 and references therein).

We display the dependence Ps(v) calculated for the solitary wave solutions of the
first branch for several values of ∆ in figure 9(a–c). As a matter of fact, for any ∆ there
is a very narrow region vc < v 6 v+ near the limiting peaked soliton (4.10b) where
the solitary waves (4.8) are unstable. This instability region is difficult to distinguish
for ∆ 6 0 (see figure 9a) but for large positive ∆ this region is clearly visible in
figures 9(b, c).

Outside this region the soliton solutions remain stable including the asymptotic
limit v → c+ in accordance with the well-known results on stability of the KdV
solitons (4.10a) (see e.g. Pelinovsky & Grimshaw 1997).

Consider now the ‘slow’ solitary wave solutions (4.11) for which c− < v < min (0, ∆)
and (v − 2bs) < 0. In this case, the properties of the operator L are the same as
above but the second term in (5.3) is always negative. Therefore, there exist not
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Figure 9. Functions Ps(v) for different values of the phase mismatch:
(a) ∆ = 0; (b) ∆ = 2.5; (c) ∆ = 5.

only the localized mode χ− with a negative value of the second variation δ2Λ but
also an infinite-dimensional subspace of soliton variations. In this case, the analysis
described above and the general stability theorem are not applicable and the soliton
solutions might be unstable even if the criterion (5.10) is satisfied (see Pego, Smereka
& Weinstein 1995 for an example of such instability). We have checked that the
slope Ps(v) for the soliton solutions (4.11) is always positive but this does not exclude
the possibility of oscillatory type instabilities. The latter problem needs a special
mathematical study and lies beyond the scope of the present paper. It seems more
important to show that the stability properties of the soliton solutions can lead to
wave breaking within the framework of system (4.1) and, therefore, limit applicability
of our weakly nonlinear asymptotic approach developed in §3.

In the rest of this section we discuss the evolutional properties of localized initial
perturbations and the possible formation of solitary waves or singularities, of the
‘vertical slope’ type, within the framework of the system (4.1). First, we mention
that the development of instability for solitary waves of different classes was recently
described in the review article by Pelinovsky & Grimshaw (1997). Their approach is
valid in the vicinity of the instability threshold, which is realized in our context for
special values of the soliton amplitude, where the slope of the function Ps(v) is small.
Near this instability threshold, the weak instability of the solitary wave solutions leads
to their adiabatic evolution, i.e. the solitary wave as it evolves remains self-similar to
the stationary wave profile with the parameter v varying in time. Indeed, we have
seen from (5.11) that the perturbation weakly growing at the soliton background
changes the soliton parameters. As a result of this adiabatic evolution, the amplitude
of the solitary waves grows and reaches the critical value b∗ corresponding to the
limiting peaked soliton (4.10b). As the peaked soliton is also unstable, the solitary
wave evolution cannot be stabilized by a sharp corner wave profile. Hence we expect
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Figure 10. Nonlinear evolution of an initial pulse of subcritical amplitude. The profile of the
relevant soliton solution of family (4.8) is shown for comparison by the dashed line.

that further evolution would lead to the formation of vertical slopes for the solitary
wave profile which indicates wave breaking.

On the other hand, the solitary wave solutions are stable in the parameter domain
c+ < v < vc (see figure 9a–c) and, therefore, these solitons might attract certain
localized perturbations playing the role of elementary particles in the nonlinear wave-
field dynamics. The emergence of solitary waves as the intermediate asymptotics
of ‘small-amplitude’ (subcritical) localized perturbations could be traced numerically
within the framework of the system (4.1). For ‘large-amplitude’ (supercritical) initial
perturbations the situation seems to be more complicated: the direct formation of
the solitons is unlikely and, instead, we can expect wave breaking developing out of
the large-amplitude perturbations. Possibly, after wave breaking, solitary waves could
still be formed but this scenario cannot be adequately described by our asymptotic
system (4.1).

To check these qualitative predictions of the stability analysis some preliminary
numerical simulations of the system (4.1) were produced for ∆ = 0 under the periodic
boundary conditions. The initial perturbation was taken in the form of (4.8) with
the amplitude bmax = b− and the parameter κ given below (4.8). The time evolution
for the case v = 1.1 and bmax ≈ 0.3 is displayed in figure 10(a, b) and, as we have
expected, results in the formation of a solitary wave with the amplitude bmax ≈ 0.45.
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Figure 11. Nonlinear evolution of an initial pulse of supercritical amplitude.

For this case, the critical amplitude is b∗ ≈ 0.57 so that the solitary wave formed in
this process is strongly nonlinear.

These results indicate that solitary waves even of near-critical amplitudes are the
stable elements of the nonlinear wave-field dynamics.

Another simulation shown in figure 11(a, b) was made for the same initial conditions
(curve 1) but with the amplitude bmax exceeding the critical value given by the exact
analytical formula. We took bmax ≈ 0.6, which means that the amplitude is slightly
supercritical. It can be clearly seen from figure 11(a) that the evolution of the localized
perturbation leads to the formation of vertical slopes after which the numerical
solution breaks down at time t ≈ 8.5 (curve 4). We conclude that the evolution
of localized perturbations with supercritical amplitudes leads to wave breaking in
accordance to our expectations. The question of whether a smaller-amplitude solitary
wave emerges after the breaking event cannot be resolved within the system (4.1).

6. Discussion
The main conclusion of the paper is that the presence of the subsurface shear

current may change drastically the nonlinear dynamics of internal waves in shallow
water. Provided the resonance condition is met the interaction with the vorticity mode
provides the small-amplitude internal mode with nonlinearity. To describe the coupled
dynamics of the internal gravity and vorticity modes at resonance we have derived a
new system of evolution equations. This model inherits some properties of the coupled
KdV (KP) equations, on the one hand, and the integro-differential Whitham equation,
on the other hand. Its analysis of preliminary character, which we carried out, was
focused on the properties of the basic solutions – the solitary waves. The two classes of
solitary waves explicitly found exhibit quite different properties: for the ‘fast’ solitons
there is a critical amplitude they cannot exceed and the corresponding limiting shape
is characterized by a sharp corner at the crest, while the ‘slow’ ones, being always
smooth, have no limitations on the wave amplitude. The ‘fast’ solitons proved to be
stable unless their amplitudes are very close to the limiting one. Numerical simulation
shows that such solitons can be formed from localized perturbations of subcritical
amplitudes. The localized pulses of larger, supercritical, amplitude develop vertical
slopes in finite time which indicates wave breaking.

These two scenarios of localized pulse dynamics resemble those of wave evolution
within the Whitham equation (see figures 13 and 14 of Fornberg & Whitham 1978).
The formation of infinite slopes in finite time described by our evolution model
implies that the small-but-finite-amplitude asymptotic approach loses its validity in
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the vicinity of the wave breaking. In this case, Amick & Turner (1986) showed that
either a vertical tangent and overhanding regions should develop in bubble-capped
wave structures (see Pullin & Grimshaw 1988) or the fluid system allows the formation
of an internal bore. The description of such strongly nonlinear vortex structures goes
far beyond the aims of the present paper.

Before turning to the discussion of the possible implications of the above results
it seems helpful to give a better idea of the typical scales involved. Let us consider
the relevant parameters specified by the resonance condition of matching of the
current velocity at the surface, U0, and the phase velocity of the long internal
waves c, estimating the latter roughly as N0H/πn, where N0 is the depth-averaged
Brunt–Väisälä frequency, H is the characteristic fluid depth and n is the vertical
mode number. It is easy to see that for the typical velocity and the Brunt–Väisälä
frequency N0 being, say, ≈ 5×10−2 m s−1 and 1–3×10−3 s−1, respectively, the resonance
condition selects depths of about 50–150 m for the main mode in the case of collinear
propagation. Obviously, the higher modes become resonant at n-times larger depths,
while the oblique orientation of the internal wave and current requires smaller depths.
Thus, the typical resonant depths fall into the range of a few dozens to 100–200 m.
Note, that to be strong the resonance interaction does not require large-amplitude
internal waves, which allows the waves of higher modes, usually barely seen in the
observations, to interact intensively with the current.

The accepted scaling (3.4) prescribes the typical internal wavelengths and amplitudes
involved. We would like to emphasize that the key small parameter of our asymptotic
expansion is µ2 and not ε or µ; the latter should not be small in itself. Say that
under the physical conditions specified above for H ≈ 102 m and the small parameter
µ2 = ε1/2 ≈ 10−1 one gets an estimate of the typical wavelength being ≈ 2 km
and of the current vertical scale of order of a few metres. The corresponding wave
amplitudes (in terms of the isopycne displacements) are of order of one metre. These
values are very typical of internal waves observed on the shelf and of wind-generated
drift currents.

The underlying scaling (3.4) of the model assumes a balance of the nonlinearity
of the vorticity mode and dispersion due to non-hydrostatic effects for the internal
mode in the resonance. The diffraction effects are presumed to be of the same order.
What happens if the scales involved are different and the balance doesn’t hold? Are
there other relevant balances? There are two main distinct situations. The picture is
clear when the amplitude of the internal wave is much smaller, i.e. is o(ε), while the
amplitude of the vorticity mode remains of the same order. Then the term ax providing
the coupling with the internal mode drops out of the equation for the vorticity mode
(the second equation in the set (1.1)). The resulting decoupled Riemann wave equation
predicts wave steepening and the ‘gradient catastrophe’ after a while, unless wave
dispersion is taken into account. As soon as dispersion is accounted for we arrive at
the model describing the vorticity wave evolution with weak nonlinearity and its own
dispersion being in balance. The model was derived and studied in Voronovich et al.
(1997). Within the framework of this model small-amplitude resonant internal waves
are either emitted or absorbed by the nonlinear vorticity mode. The situation when
the amplitude of the internal wave mode greatly exceeds ε is much more difficult to
analyse. Say, if we start with the standard KdV-type scaling for the internal mode, i.e.
presume weak linear dispersion balanced by the mode’s own quadratic nonlinearity,
this implies velocities in the water interior due to the wave to be u = O(µ2)=O(ε1/2)
and w = O(µ3). In virtue of continuity of the vertical displacement the scaling of
w holds in the surface layer as well, where the continuity equation indicates that
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the balance w = O(µεu) is relevant, which means u = O(1), i.e. we arrive at strongly
nonlinear motion. Thus, one may expect internal waves obeying the KdV-type balance
to induce violent motions in the surface layer. These though being hardly tractable
analytically will on the other hand produce strong easily visible surface signatures.

Some immediate implications of the results of the paper may be summarized as
follows:

(i) The resonance mechanism investigated links the processes in the water inte-
rior to near-surface motions. Even small variations in the surface current velocity
noticeably modulate the intensity of short gravity and gravity–capillary wind waves
and thus create signatures easily detectable by microwave radars and by the unaided
eye (e.g. Robinson 1985). The asymptotic solutions derived enable one to describe
quantitatively the amplification of the internal wave manifestations beyond the range
of validity of linear theory.

(ii) The theory predicts the appearance of new types of internal solitary waves in
the shelf zone, quite distinct from the KdV and mKdV solitons. Thus, it may be
helpful in interpreting field data that do not fit the classical models.

The analysis of the derived equations carried out in the paper is in no way
exhaustive. The consideration was confined to the plane solitary wave solutions and
their straightforward oblique generalizations (see the Appendix). The oblique solitons
obtained enable one to construct the resonant soliton triads to model the Mach stem
phenomenon for the waves under consideration similarly to Miles (1977). The picture
of such interactions is expected to be very rich, because of the non-trivial dependence
of the solitary wave width and velocity on the amplitude and direction, and, therefore,
in our opinion, it merits a special investigation.

In our study of the phenomenon of the resonance, for the sake of simplicity
and clarity of presentation, we have neglected one of the major factors usually
influencing internal wave dynamics in the shelf zone – the depth variations. Taking
into account the smooth non-uniformity of the water depth and, if necessary, of the
surface current, although straightforward, entails more cumbersome formulae in the
derivation process. The resulting set of equations differs from the system (1.1) only in
the slow time dependence of the coefficients. Although the complete analysis of such
a system is hardly possible at present, an important class of problems concerned with
the adiabatic evolution of solitary waves can be successfully treated by the available
perturbation techniques utilizing the closed form solutions obtained. This, however,
will be a subject of a separate investigation.

It should be mentioned that carrying out a quite similar analysis for the case
of the interaction between an internal gravity mode and bottom boundary current
leads to the same system (4.1) for the plane waves but does not allow one to obtain
its weakly two-dimensional version (1.1). This is due to the qualitative difference in
the boundary conditions at the bottom and the free surface for the viscous modes
essential for regularizing the non-planar solutions (see Voronovich et al. 1997 for
details). The intensification of the near-bottom motions by small-amplitude internal
waves seems to be of importance in the context of sediment transport.

A number of less straightforward implications of the paper may be found by
applying the main ‘physical’ idea of the work – consideration of the nonlinear wave–
critical layer interaction as a wave–wave one – to some other situations where the
shear flow is strongly localized and stable, the concept of vorticity waves is applicable
and a weakly dispersive mode of a different nature exists and admits direct resonance.
We mention just a few such examples, seemingly the most interesting in the context
of geophysical fluid dynamics: wave–shear current interaction in the deep ocean
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for the situations where the subsurface current is in resonance with internal waves
governed by a Benjamin–Ono-type equation; in very shallow basins the dispersion
effects due to rotation may prevail and such a situation may result in a similar direct
resonant coupling of the vorticity mode and an internal gravity one described by
the Ostrovsky equation (see Ostrovsky 1978; Ostrovsky & Stepanyants 1989) with
or without KdV-type dispersion. At larger scales similar resonance may occur for
continental shelf waves and vorticity waves in the boundary layer currents of the
type described recently in Shrira & Voronovich (1996). Despite some mathematical
similarity provided by the same underlying idea the above problems are physically
essentially distinct and each requires a special study of its own.
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Appendix. Three-dimensional wave motion
The full three-dimensional nonlinear system (1.1) is much more complex to inves-

tigate than its reduced two-dimensional version (4.1): its detailed study lies beyond
the scopes of the present work. While the reduced system has at least four con-
serving quantities: P [u, w], H[u, w] given by (5.1) plus the integrals of the wave
masses,

A =

∫ +∞

−∞
a dx, B =

∫ +∞

−∞
b dx, (A 1)

we have not found any explicit integrals for the full system yet. Still some use-
ful information on the nature and prospective regimes of wave dynamics can be
extracted from the system (1.1) by comparatively simple means. Let us again con-
sider a perturbation consisting of a pair of oblique harmonic waves of very small
amplitude:

a ∼ â exp[ik(x− ct) + ipy], b ∼ b̂ exp[ik(x− ct) + ipy].

Substitution into (1.1) yields the linear dispersion relation

c = c1,2 = 1
2

[
∆− k2 + p2 ±

(
4 + (∆− k2 + p2)2

)1/2
]
. (A 2)

Straightforward calculations immediately indicate that unlike (4.2) solutions of (A 2)
can have an arbitrary value and, thus, there are no gaps in the spectrum of the
linear waves in the system. Thus, a fully localized three-dimensional solution of (1.1)
moving with an arbitrary speed would always be in resonance with some small-
amplitude wave, the result being the emission of resonant linear waves and, therefore,
radiative damping of the three-dimensional wave (see Voronovich et al. 1997 for a
thorough discussion). So, fully localized stationary solutions to (1.1) are very unlikely
to exist.

It is worthwhile noting that the likely absence of three-dimensional solitary waves
may be explained based on the specific dispersive properties of internal waves which
lead to the squares of the stream- and spanwise components of the wavevector
entering (A 2) with different signs. If these properties were different and be the signs
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in front of k2 and p2 the same, the gaps in the spectrum of linear oblique waves
would exist as well, resulting, probably, in solitary waves localized in all directions. In
contrast, vorticity waves occurring in a shear flow of uniform density can exist in the
form of three-dimensional solitary waves or ‘spikes’, an example being constructed
numerically in Voronovich et al. (1997).

Still, the system (1.1), except for plane solitary waves advancing streamwise, admits
similar solutions propagating in oblique directions. The latter can be easily found by
looking for solutions of the form

a = as(x+ qy − vt), b = bs(x+ qy − vt), (A 3)

where q = tan θ and θ is the angle between the directions of the mean flow velocity
and that of the wave propagation. Substitution of (A 3) into (1.1) and successive
integration gives us exactly (4.4) with the renormalized mismatch parameter

∆→ ∆q = ∆+ q2. (A 4)

An analysis of the nonlinear potential, which in this case has an additional parameter
q, indicates that again there exist two families of steady solitary waves. The ‘fast’ ones
propagate with the constant velocity lying inside the interval (c+; v+), while the speed
of the ‘slow’ ones lies in the interval (c−; max{0, ∆q}) where now

c± = 1
2

[
∆+ q2 ±

(
4 +

(
∆+ q2

)2
)1/2

]
(A 5a)

and

v+ = 1
2

[
∆+ q2 +

(
16
3

+
(
∆+ q2

)2
)1/2

]
. (A 5b)

With ∆ fixed, one can easily see from (A 5) that as the angle of wave propagation θ
grows from zero to ±π/2 the values of c±, v+ also grow. The limiting behaviour at
very large values of q = tan θ is given by the expressions

c+ → q2 + ∆+
1

q2
, v+ → q2 + ∆+

4

3q2
, c− → − 1

q2
at |q| → ∞. (A 6)

Therefore, oblique solitons, in general, prove to advance with greater speeds than the
streamwise ones, while the gaps in the spectrum, where they can exist, become more
and more narrow (see figure 6). It is interesting to note that the limiting amplitude of
the ‘fast’ solitons which is still equal to v+/2 also grows, so the oblique solitary waves
may have larger amplitudes than those moving exactly streamwise.

As the scaling (3.3) was based on the assumption of the spanwise motion scale
being much larger than the streamwise one, it is understood that the asymptotic
procedure leading to (1.1) is valid only at moderate values of q and therefore at
angles not too close to π/2.

The simple solutions obtained above by renormalization of parameters of the
streamwise plane solitary waves provide the building blocks for constructing some
truly three-dimensional solutions of the resonant triad type first considered for the KP
solitons. The picture of such interactions is expected to be much richer than within
the framework of the KP equation because of the more complicated dependence
of the solitary wave width and velocity on the amplitude and direction of wave
propagation.
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