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Abstract. A new (scalar) spectral decomposition is found for the Dirac system in two dimensions
associated to the focusing Davey–Stewartson II (DSII) equation. The discrete spectrum in the
spectral problem corresponds to eigenvalues embedded into a two-dimensional essential spectrum.
We show that these embedded eigenvalues are structurally unstable under small variations of the
initial data. This instability leads to the decay of localized initial data into continuous wavepackets
prescribed by the nonlinear dynamics of the DSII equation.

1. Introduction

Gravity-capillary surfacewavepackets are described by theDavey–Stewartson (DS) system [1]
which is integrable by inverse scattering transform in the limit of shallow water [2]. In this
paper, we study the focusing DSII equation which can be written in a complex form

iut + uzz + uz̄z̄ + 4(g + ḡ)u = 0,
2gz̄ − (|u|2)z = 0,

(1.1)

wherez = x + iy, z̄ = x − iy, u(z, z̄, t) andg(z, z̄, t) are complex functions. This equation
appears as the compatibility condition for the two-dimensional Dirac system

ϕ1z̄ = −uϕ2, ϕ2z = ūϕ1, (1.2)

coupled to the equations for the time evolution of the eigenfunctions,

iϕ1t + ϕ1zz + uϕ2z̄ − uz̄ϕ2 + 4gϕ1 = 0,

−iϕ2t + ϕ2z̄z̄ + ūzϕ1 − ūϕ1z + 4ḡϕ2 = 0.
(1.3)

The DSII equation was solved formally through the∂̄ problem of complex analysis by
Fokas and Ablowitz [3] and Beals and Coifman [4]. Rigorous results on existence and
uniqueness of solutions of the initial-value problem were established under a small-norm
assumption [5]. The small-norm assumption was used to eliminate homogeneous solutions of
equations of the inverse scattering which correspond to bound states and radially symmetric
localizedwaves (lumps) of theDSII equation. When the potential in the linear systembecomes
weakly localized (inL2 but not inL1), homogeneous solutions may exist and the analysis
developed in [5] is not applicable.

The lump solutions were included formally in [3], where their weak decay rate was found,
u ∼ O(R−1) asR =

√
x2 + y2 → ∞. This result is only valid for complexified solutions

of the DSII equation (whenu and ū are not considered to be complex conjugated). The
reality conditions were incorporated in the work of Arkadievet al [6] where lumps were
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shown to decay likeu ∼ O(R−2). Multi-lump solutions were expressed as a ratio of two
determinants [6], or, in a special case, as a ratio of two polynomials [7] but their dynamical
role was left out of consideration.

Recently, structural instability of a single lump of the DSII equation was reported by
Gadyl’shin and Kiselev [8, 9]. The authors used methods of perturbation theory based on
completeness ofsquaredeigenfunctions of the Dirac system [10, 11]. A similar conclusion
was announced by Yurov who studied Darboux transformation of the Dirac system [12,13].

In this paper, we present an alternative solution of the problem of stability of multi-
lump solutions of the DSII equation. The approach generalizes our recent work on spectral
decomposition of a linear time-dependent Schrödinger equation with weakly localized (not in
L1) potentials [14]. We find a new spectral decomposition in terms ofsingleeigenfunctions of
theDiracsystem. Surprisinglyenough, the two-componentDiracsystem in twodimensionshas
a scalar spectral decomposition. In contrast, we recall that the Dirac system in one dimension
(the so-called AKNS system) has a well known 2× 2 matrix spectral decomposition [15].

Using the scalar spectral decomposition, we associate the multi-lump potentials with
eigenvalues embedded into a two-dimensional essential spectrum of the Dirac system.
Eigenvalues embedded into a one-dimensional essential spectrum occur, for instance, for the
time-dependent Schrödinger problem [14, 16]. They were found to be structurally unstable
under a small variation of the potential. Depending on the sign of the variation, they either
disappear or become resonant poles in the complex spectral plane which correspond to lump
solutions of the KPI equation [14].

For the Dirac system in two dimensions, the multi-lump potentials and embedded
eigenvalues are more exotic. The discrete spectrum of the Dirac system is separated from the
continuous spectrum contribution in the sense that the spectral data satisfy certain constraints
near the embedded eigenvalues. These constraints are met for special solutions of the DSII
equation such as lumps, but may not be satisfied for a generic combination of lumps and
radiative waves. As a result, embedded eigenvalues of the Dirac system generally disappear
under a local disturbance of the initial data. Physically, this implies that a localized initial data
of the DSII equation decays into radiation except for the cases where the data reduce to special
solutions such as lumps.

The paper is organized as follows. Elements of inverse scattering for the Dirac system
are reviewed in section 2, where we find that the discrete spectrum of the Dirac system is
prescribed by certain constraints on the spectral data. Spectral decomposition is described in
section 3 with the proof of orthogonality and completeness relations through a proper adjoint
problem. The perturbation theory for lumps is developed in section 4 where some of previous
results [8,9] are recovered. Section 5 contains concluding remarks. The appendix provides a
summary of formulae of the complex∂̄-analysis used in proofs of section 3.

2. Spectral data and inverse scattering

Here we review some results on the Dirac system (1.2) and discard henceforth the time
dependence ofu, g andϕ. The potentialu(z, z̄) is assumed to be non-integrable (u /∈ L1) with
the boundary conditions,u ∼ O(|z|−2) as|z| → ∞.

2.1. Essential spectrum of the Dirac system

We define the fundamental matrix solution of equation (1.2) in the form [6],

ϕ = [µ(z, z̄, k, k̄)eikz, χ(z, z̄, k, k̄)e−ik̄z̄], (2.1)
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wherek is a spectral parameter,µ(z, z̄, k, k̄) andχ(z, z̄, k, k̄) satisfy the system

µ1z̄ = −uµ2, µ2z = −ikµ2 + ūµ1, (2.2)

χ1z̄ = ik̄χ1 − uχ2, χ2z = ūχ1. (2.3)

It follows from equations (2.2) and (2.3) thatµ andχ are related by the symmetry constraint

χ(z, z̄, k, k̄) = σµ̄(z, z̄, k, k̄), σ =
(
0 −1
1 0

)
. (2.4)

We impose the boundary conditions forµ(z, z̄, k, k̄),

lim
|k|→∞

µ(z, z̄, k, k̄) = e1 =
(
1
0

)
. (2.5)

Solutions of equation (2.2) with boundary conditions (2.5) can be expressed through Green
functions as Fredholm inhomogeneous integral equations [3,4],

µ1(z, z̄, k, k̄) = 1− 1

2π i

∫ ∫
dz′ ∧ dz̄′

z′ − z
(uµ2)(z

′, z̄′), (2.6)

µ2(z, z̄, k, k̄) = 1

2π i

∫ ∫
dz′ ∧ dz̄′

z̄′ − z̄
(ūµ1)(z

′, z̄′)e−ik(z−z′)−ik̄(z̄−z̄′). (2.7)

Values ofk for which the homogeneous system associated to equations (2.6) and (2.7) has
bounded solutions are calledeigenvaluesof the discrete spectrum of the Dirac system. Let
us suppose that the homogeneous solutions (eigenvalues) are not supported by the potential
u(z, z̄). We evaluate the departure from analyticity ofµ in the k plane by calculating the
derivative∂µ/∂k̄ directly from the system (2.6), (2.7) [3] as

∂µ

∂k̄
= b(k, k̄)Nµ(z, z̄, k, k̄). (2.8)

Hereb(k, k̄) are the spectral data,

b(k, k̄) = 1

2π

∫ ∫
dz ∧ dz̄(ūµ1)(z, z̄)e

i(kz+k̄z̄), (2.9)

andNµ(z, z̄, k, k̄) is a solution of equation (2.2) which is linearly independent ofµ(z, z̄, k, k̄)

and satisfies the boundary condition

lim
|k|→∞

Nµ(z, z̄, k, k̄)e
i(kz+k̄z̄) = e2 =

(
0
1

)
. (2.10)

This solution can be expressed through the Fredholm inhomogeneous equations,

N1µ(z, z̄, k, k̄) = 1

2π i

∫ ∫
dz′ ∧ dz̄′

z′ − z
(uN2µ)(z

′, z̄′), (2.11)

N2µ(z, z̄, k, k̄) = e−i(kz+k̄z̄) +
1

2π i

∫ ∫
dz′ ∧ dz̄′

z̄′ − z̄
(ūN1µ)(z

′, z̄′)e−ik(z−z′)−ik̄(z̄−z̄′). (2.12)

The following reduction formula [3] connectsNµ(z, z̄, k, k̄) andµ(z, z̄, k, k̄):

Nµ(z, z̄, k, k̄) = χ(z, z̄, k, k̄)e−i(kz+k̄z̄) = σµ̄(z, z̄, k, k̄)e−i(kz+k̄z̄). (2.13)

If the potentialu(z, z̄) has the boundary valuesu ∼ O(|z|−2) as |z| → ∞ (u /∈ L1),
then the integral kernel in equation (2.9) is not absolutely integrable, while equations (2.6) and
(2.7) are still well defined. We specify complex integration in thez-plane of a non-absolutely
integrable functionf (z, z̄) according to the formula∫ ∫

dz ∧ dz̄f (z, z̄) = lim
R→∞

∫ ∫
|z|�R

dz ∧ dz̄f (z, z̄). (2.14)

The same formula is valid for integrating eigenfunctions of the Dirac system in thek plane
as well. In section 3, we use (2.14) when computing the inner products and completeness
relations for the Dirac system and its adjoint.



62 D E Pelinovsky and C Sulem

2.2. The discrete spectrum

Suppose here that integral equations (2.6) and (2.7) have homogeneous solutions at an
eigenvaluek = kj . The discrete spectrum associated to multi-lump potentials was introduced
in [3,6]. Here we review their approach and give a new result (proposition 2.1) which clarifies
the role of the discrete spectrum in the spectral problem (2.2).

For the discrete spectrum associated to the multi-lump potentials, an isolated eigenvalue
k = kj has double multiplicity with the corresponding two bound statesΦj (z, z̄) andΦ′

j (z, z̄)

[6]. The bound stateΦj (z, z̄) is a solution of the homogeneous equations,

�1j (z, z̄) = − 1

2π i

∫ ∫
dz′ ∧ dz̄′

z′ − z
(u�2j )(z

′, z̄′), (2.15)

�2j (z, z̄) = 1

2π i

∫ ∫
dz′ ∧ dz̄′

z̄′ − z̄
(ū�1j )(z

′, z̄′)e−ikj (z−z′)−ik̄j (z̄−z̄′), (2.16)

with the boundary conditions as|z| → ∞,

Φj (z, z̄) → e1

z
. (2.17)

Equivalently, this boundary condition can be written as renormalization conditions for
equations (2.15) and (2.16),

1

2π i

∫ ∫
dz ∧ dz̄(u�2j )(z, z̄) = 1, (2.18)

1

2π i

∫ ∫
dz ∧ dz̄(ū�1j )(z, z̄)e

i(kj z+k̄j z̄) = 0. (2.19)

The other (degenerate) bound stateΦ′
j (z, z̄) can be expressed in terms ofΦj (z, z̄) using

equation (2.13),

Φ′
j (z, z̄) = σΦ̄j (z, z̄)e

−i(kj z+k̄j z̄). (2.20)

The behaviour of the eigenfunctionµ(z, z̄, k, k̄) near the eigenvaluek = kj becomes
complicated due to the fact that the double eigenvalue is embedded into the two-dimensional
essential spectrum of the Dirac system (2.2). We prove the following result.

Proposition 2.1.For smooth datab(k, k̄) ∈ C1 at k �= kj , the eigenfunctionµ(z, z̄, k, k̄) has
a pole singularity atk → kj only if

b0 = 1

2π

∫ ∫
dz ∧ dz̄(z̄ū�1j )(z, z̄)e

i(kj z+k̄j z̄) = 0. (2.21)

Proof. Supposeµ(z, z̄, k, k̄) has a pole singularity atk = kj . Then, it can be shown from
equation (2.2) that the meromorphic continuation ofµ(z, z̄, k, k̄) is given by the limiting
relation

lim
k→kj

[
µ(z, z̄, k, k̄) − iΦj (z, z̄)

k − kj

]
= (z + zj )Φj (z, z̄) + cjΦ′

j (z, z̄), (2.22)

wherezj , cj are someconstants. Using equations (2.8), (2.9) and (2.13), we find the differential
relation forb(k, k̄):

∂b

∂k̄
= b(k, k̄)

2π

∫ ∫
dz ∧ dz̄(ūµ̄2)(z, z̄) − 1

2π i

∫ ∫
dz ∧ dz̄(z̄ūµ1)(z, z̄)e

i(kz+k̄z̄).
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In the limit k → kj , this equation reduces with the help of equations (2.18) and (2.22) to the
form

∂b

∂k̄
= b(k, k̄)

k̄ − k̄j
− b0

k − kj
,

whereb0 is given in equation (2.21). The reduced equation exhibits the limiting behaviour of
b(k, k̄) ask → kj ,

b(k, k̄) → −b0
k̄ − k̄j

k − kj
ln |k̄ − k̄j |. (2.23)

On the other hand, it follows from equations (2.13), (2.20) and (2.22) thatNµ(z, z̄, k, k̄) has
the limiting behaviour

Nµ(z, z̄, k, k̄) → −iΦ′
j (z, z̄)

k̄ − k̄j
. (2.24)

According to equations (2.23) and (2.24), the right-hand side of equation (2.8) is of order
O(b0|k − kj |−1 ln |k − kj |) ask → kj . On the other hand, the left-hand side of equation (2.8)
must be of order O(1) in the limit k → kj according to equation (2.22). Therefore, the
eigenfunctionµ(z, z̄, k, k̄) has a pole atk = kj only if the constraintb0 = 0 holds. �

The limiting relation (2.22) was introduced by Arkadievet al [6]. However, the authors
did not notice that the discrete spectrum is supported only by potentials which satisfy the
additional constraint (2.21). In particular, such potentials include the multi-lump solutions for
whichb(k, k̄) = 0 everywhere in thek-plane.

2.3. Expansion formulae for inverse scattering

Combining equation (2.8) for the essential spectrum and equation (2.22) for the discrete
spectrum, we reconstruct the eigenfunctionµ(z, z̄, k, k̄) [3,6],

µ(z, z̄, k, k̄) = e1 +
n∑

j=1

iΦj (z, z̄)

k − kj
+

1

2π i

∫ ∫
dk′ ∧ dk̄′

k′ − k
b(k′, k̄′)Nµ(z, z̄, k

′, k̄′), (2.25)

wheren is the number of distinct eigenvalueskj of doublemultiplicity. Atk → kj , this system
is coupled with the algebraic system for the bound states,

(z + zj )Φj (z, z̄) + cjΦ′
j (z, z̄) = e1 +

∑
l �=j

iΦl(z, z̄)

kj − kl
+

1

2π i

∫ ∫
dk ∧ dk̄

k − kj
b(k, k̄)Nµ(z, z̄, k, k̄).

(2.26)

Expansion (2.25) can be related to the inverse scattering transform for the potential
u(z, z̄) [3, 6]. It follows from equation (2.2) that the eigenfunctionµ(z, z̄, k, k̄) has the
asymptotic expansion as|k| → ∞,

µ(z, z̄, k, k̄) = e1 +
1

ik
µ∞(z, z̄) + O(|k|−2), (2.27)

whereµ2∞(z, z̄) = ū(z, z̄) and

µ1∞(z, z̄) = − 1

2π i

∫ ∫
dz′ ∧ dz̄′

z′ − z
(|u|2)(z′, z̄′).



64 D E Pelinovsky and C Sulem

We deduce from equations (2.25) and (2.27) that the potentialū(z, z̄) is expressed through the
eigenfunctions of the Dirac system in the form [3],

ū(z, z̄) = −
n∑

j=1

�2j (z, z̄) − 1

2π

∫ ∫
dk ∧ dk̄ b(k, k̄)N2µ(z, z̄, k, k̄). (2.28)

Formulae (2.6)–(2.28) constitute a standard framework for the inverse scattering transform
of the DSII equation with a new relation (2.21). The existence and uniqueness of solutions of
the Fredholm integral equations (2.6) and (2.7) and the∂̄ problem (2.8) and (2.25) were proved
in [4] and [5] under the small-norm assumption for the potentialu(x, y),(

sup
(x,y)∈R2

|u|(x, y)
)( ∫ ∫

|u(x, y)|dx dy
)
<

π

8
.

In this casen = 0 andb(k, k̄) �= 0. The nonlinear two-dimensional Fourier transform
associated to this scheme was discussed in examples 8–10 of chapter 7.7 of [17]. Indeed,
the connection formula (2.28) implies that there is a scalar spectral decomposition ofū(z, z̄)

throughN2µ(z, z̄, k, k̄) for n = 0. In order to close the decomposition, one could use
equations (2.9) and (2.13) to construct a ‘completeness relation’ for the expansion ofδ(z′ − z)

in the form,

δ(z′ − z) = − 1

2π2i

∫ ∫
dk ∧ dk̄N̄2µ(z

′, z̄′, k, k̄)N2µ(z, z̄, k, k̄).

However, we show in proposition 3.4 below that a completeness theorem for equation (2.2) is
different and is based on the set of eigenfunctions of the adjoint Dirac system.

3. Basis for a scalar spectral decomposition

In this section, we specify the adjoint problem for the Dirac system (2.2) and establish
orthogonality and completeness relations.

3.1. The adjoint system

The adjoint system for equation (2.2) is

µa
1z = ikµa

1 − uµa
2, µa

2z̄ = ūµa
1, (3.1)

which provides the balance equation,

i(k′ − k)µa
1(k

′)µ2(k) = ∂

∂z
[µa

1(k
′)µ2(k)] − ∂

∂z̄
[µa

2(k
′)µ1(k)]. (3.2)

The system (3.1) admits plane solutionsµa(z, z̄, k, k̄) and oscillatory-type solutions
N a

µ(z, z̄, k, k̄) with the boundary conditions,

lim
|k|→∞

µa(z, z̄, k, k̄) = e2, (3.3)

lim
|k|→∞

N a
µ(z, z̄, k, k̄)e

−i(kz+k̄z̄) = e1. (3.4)

The adjoint eigenfunctionsN a
µ(z, z̄, k, k̄) can be expressed through the Green functions,

Na
1µ(z, z̄) = ei(kz+k̄z̄) − 1

2π i

∫ ∫
dz′ ∧ dz̄′

z̄′ − z̄
(uNa

2µ)(z
′, z̄′)eik(z−z′)+ik̄(z̄−z̄′), (3.5)

Na
2µ(z, z̄) = 1

2π i

∫ ∫
dz′ ∧ dz̄′

z′ − z
(ūNa

1µ)(z
′, z̄′). (3.6)
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They are related to the adjoint eigenfunctionsµa(z, z̄, k, k̄) by the formula

N a
µ(z, z̄, k, k̄) = −σµ̄a(z, z̄, k, k̄)ei(kz+k̄z̄). (3.7)

Using this representation, we prove the following result.

Lemma 3.1.The spectral datab(k, k̄) are expressed in terms of the adjoint eigenfunctions as

b(k, k̄) = 1

2π

∫ ∫
dz ∧ dz̄(ūNa

1µ)(z, z̄). (3.8)

Proof. Multiplying equation (3.5) bȳuµ1(k), integrating over dz∧dz̄ and using equation (2.7),
we expressb(k, k̄) defined in equation (2.9) in the form

b(k, k̄) = 1

2π

∫ ∫
dz ∧ dz̄[ūµ1(k)N

a
1µ(k) − uµ2(k)N

a
2µ(k)]. (3.9)

On the other hand, multiplying equation (2.6) byuNa
1µ(k), integrating over dz∧dz̄, and using

equations (3.6) and (3.9), we get equation (3.8). �

Suppose now thatk = kj is an isolated double eigenvalue of equation (2.2) with the bound
statesΦj (z, z̄) andΦ′

j (z, z̄) given by equations (2.15)–(2.20). Suppose also thatk = kaj is an
eigenvalue of the adjoint system (3.1) with the adjoint bound statesΦa

j (z, z̄) andΦ
a′
j (z, z̄).

Lemma 3.2. If kj is a double eigenvalue of the Dirac system (2.2), thenkj is also a double
eigenvalue of the adjoint system (3.1).

Proof. We use equation (3.2) withµ = Φj (z, z̄) andµa = Φa
j (z, z̄) at k = kj andk′ = kaj

and integrate over dz ∧ dz̄ with the help of equation (A.3) of the appendix. The contour
contribution of the integral vanishes due to the boundary conditions (2.17) and (3.12) and the
resulting expression is

(kaj − kj )

∫ ∫
dz ∧ dz̄(�a

1j�2j )(z, z̄) = 0.

The relationkaj = kj follows from this formula if the integral is non-zero atkaj = kj (which is
proved below in equation (3.22)). The other possibility is whenkaj �= kj but�a

1j is orthogonal
to�2j . We do not consider such a non-generic situation. The other bound stateΦa′

j atkaj = kj
can be defined using the symmetry relation (see equation (3.15) below). �

The adjoint bound stateΦa
j (z, z̄) solves the homogeneous equations,

�a
1j (z, z̄) = − 1

2π i

∫ ∫
dz′ ∧ dz̄′

z̄′ − z̄
(u�a

2j )(z
′, z̄′)eikj (z−z′)+ik̄j (z̄−z̄′), (3.10)

�a
2j (z, z̄) = 1

2π i

∫ ∫
dz′ ∧ dz̄′

z′ − z
(ū�a

1j )(z
′, z̄′) (3.11)

with the boundary condition as|z| → ∞,

Φa
j (z, z̄) → e2

z
, (3.12)

and the normalization conditions,

− 1

2π i

∫ ∫
dz ∧ dz̄(ū�a

1j )(z, z̄) = 1, (3.13)

1

2π i

∫ ∫
dz ∧ dz̄(u�a

2j )(z, z̄)e
−i(kj z+k̄j z̄) = 0. (3.14)
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In addition, the bound stateΦa′
j (z, z̄) is related toΦ(z, z̄) according to the symmetry formula

Φa′
j (z, z̄) = −σΦ̄a

j (z, z̄)e
i(kj z+k̄j z̄). (3.15)

Using equations (3.1)–(3.15), we see that the adjoint eigenfunctionµa(z, z̄, k, k̄) satisfies
relations similar to those forµ(z, z̄, k, k̄),

∂µa

∂k̄
= −b̄(k, k̄)N a

µ(z, z̄, k, k̄) (3.16)

and

lim
k→kj

[
µa(z, z̄, k, k̄) +

iΦa
j (z, z̄)

k − kj

]
= (z + zj )Φa

j (z, z̄) − c̄jΦa′
j (z, z̄). (3.17)

The expansions for inverse scattering transform of the adjoint eigenfunctions can be found
in the form

µa(z, z̄, k, k̄) = e2 −
n∑

j=1

iΦa
j (z, z̄)

k − kj
− 1

2π i

∫ ∫
dk′ ∧ dk̄′

k′ − k
b̄(k′, k̄′)N a

µ(z, z̄, k
′, k̄′) (3.18)

and

(z′ + zj )Φa
j (z

′, z̄′) − c̄jΦa′
j (z

′, z̄′)

= e2 −
∑
l �=j

iΦa
l (z

′, z̄′)
kj − kl

− 1

2π i

∫ ∫
dk ∧ dk̄

k − kj
b̄(k, k̄)N a

µ(z, z̄, k, k̄). (3.19)

3.2. Orthogonality and completeness relations

Using the Dirac system (2.2) and its adjoint system (3.1), we prove the orthogonality and
completeness relations for the set of eigenfunctionsS = [N2µ(k, k̄), {�2j }nj=1] and its adjoint

setSa = [Na
1µ(k, k̄), {�a

1j }nj=1].

Proposition 3.3.The eigenfunctionsN2µ(z, z̄, k, k̄) and �2j (z, z̄) are orthogonal to the
eigenfunctionsNa

1µ(z, z̄, k, k̄) and�a
1j (z, z̄) as follows:

〈Na
1µ(k

′)|N2µ(k)〉z = −2π2iδ(k′ − k), (3.20)

〈Na
1µ(k)|�2j 〉z = 〈�a

1j |N2µ(k)〉z = 0, (3.21)

〈�a
1l|�2j 〉z = 2π iδjl, (3.22)

where the inner product is defined as

〈g(k′)|f (k)〉z =
∫ ∫

dz ∧ dz̄ g(z, z̄, k′, k̄′)f (z, z̄, k, k̄).

Proof. Using equations (2.12) and (3.5), we expand the inner product in equation (3.20) as

〈Na
1µ(k

′)|N2µ(k)〉z = I0 +
∫ ∫

dz ∧ dz̄(uNa
2µ)(z, k

′)e−i(k′z+k̄′ z̄)I1(z)

−
∫ ∫

dz ∧ dz̄(ūN1µ)(z, k)e
i(kz+k̄z̄)I1(z)

+
1

2π i

∫ ∫
dz ∧ dz̄(uNa

2µ)(z, k
′)e−i(k′z+k̄′ z̄)

×
∫ ∫

dz′ ∧ dz̄′

z̄′ − z̄
(ūN1µ)(z

′, k)ei(kz
′+k̄z̄′)[I1(z) − I1(z

′)],
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where

I0 =
∫ ∫

dz ∧ dz̄ ei(k
′−k)z+i(k̄′−k̄)z̄ = −2π2iδ(k′ − k) (3.23)

and

I1(z) = 1

2π i

∫ ∫
dz′ ∧ dz̄′

z̄′ − z̄
ei(k

′−k)z′+i(k̄′−k̄)z̄′ = 1

i(k′ − k)
ei(k

′−k)z+i(k̄′−k̄)z̄. (3.24)

The integralsI0 andI1(z) are computed in the appendix. Using these formulae, we find the
inner product in equation (3.20) in the form

〈Na
1µ(k

′)|N2µ(k)〉z = −2π2iδ(k′ − k) +
1

i(k′ − k)
R(k, k′),

where the residual termR(k, k′) is expressed in the form

R(k, k′) =
∫ ∫

dz ∧ dz̄[uNa
2µ(k

′)N2µ(k) − ūNa
1µ(k

′)N1µ(k)],

with the help of equations (2.12) and (3.5). We show thatR(k, k′) = 0 by multiplying
equation (3.6) bȳuN1µ(k), integrating over dz ∧ dz̄ and using equation (2.11).

The zero inner products in equations (3.21) and (3.22) forj �= l are obtained in a similar
way with the help of the Fredholm equations for eigenfunctionsΦj ,Φa

j ,Nµ, andN a
µ. In order

to find the non-zero inner product (3.22) forj = l we evaluate the following integral by using
the same integral equations:∫ ∫

dz ∧ dz̄ �a
1jµ2(k) = 1

i(kj − k)

∫ ∫
dz ∧ dz̄[u�a

2jµ2(k) − ū�a
1jµ1(k)]

= 1

i(k − kj )

∫ ∫
dz ∧ dz̄ ū�a

1j .

Using equation (3.13), the right-hand side identifies to1i(k−kj )
. Substituting equation (2.25) in

the left-hand side and using the zero inner products (3.21) and (3.22), we find equation (3.22)
for j = l. �

Proposition 3.4.The eigenfunctionsN2µ(z, z̄, k, k̄) and�2j (z, z̄) are complete with respect
to the adjoint eigenfunctionsNa

1µ(z, z̄, k, k̄) and�a
1j (z, z̄) according to the identity

δ(z′ − z) = − 1

2π2i

∫ ∫
dk ∧ dk̄Na

1µ(z
′, z̄′, k, k̄)N2µ(z, z̄, k, k̄)

− 1

π

n∑
j=1

�a
1j (z

′, z̄′)�2j (z, z̄). (3.25)

Proof. Using the symmetry relations (2.13) and (3.7), weexpress the integral in equation (3.25)
as

〈Na
1µ(z

′)|N2µ(z)〉k =
∫ ∫

dk ∧ dk̄ µ̄a
2(z

′, z̄′, k, k̄)µ̄1(z, z̄, k, k̄)e
ik(z′−z)+ik̄(z̄′−z̄). (3.26)

We use equations (2.25), (2.26), (3.18), and (3.19) and find the pole decomposition for the
integrand in equation (3.26),

µ̄a
2(z

′)µ̄1(z) = 1 +
n∑

j=1

i

k̄ − k̄j
[c̄j �̄

a
2j (z

′, z̄′)�̄′
1j (z, z̄) + cj �̄

a′
2j (z

′, z̄′)�̄1j (z, z̄)]
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+
n∑

j=1

i

k̄ − k̄j
(z̄ − z̄′)�̄a

2j (z
′, z̄′)�̄1j (z, z̄) +

n∑
j=1

�̄a
2j (z

′, z̄′)�̄1j (z, z̄)

(k̄ − k̄j )2

+
1

2π i

∫ ∫
dk′ ∧ dk̄′

k̄′ − k̄
[µ̄a

2(z
′)b̄N̄1µ(z) − µ̄1(z)bN̄

a
2µ(z

′)](k′, k̄′). (3.27)

We substitute (3.27) into equation (3.26) and reduce the integral to the form

〈Na
1µ(z

′)|N2µ(z)〉k = I0 − 2π
n∑

j=1

[c̄j �̄
a
2j (z

′, z̄′)�̄′
1j (z, z̄) + cj �̄

a′
2j (z

′, z̄′)�̄1j (z, z̄)]I1(kj )

+
n∑

j=1

�̄a
2j (z

′, z̄′)�̄1j (z, z̄)[2π(z̄
′ − z̄)I1(kj ) + I2(kj )]

−
∫ ∫

dk ∧ dk̄I1(k)[µ̄
a
2(z

′)b̄N̄1µ(z) − µ̄1(z)bN̄
a
2µ(z

′)](k, k̄)e−ik(z′−z)−ik̄(z̄′−z̄),

(3.28)

where the integralsI0 andI1(k) are given in equations (3.23) and (3.24) respectively, withz

andk interchanged, while the integralI2(kj ) is defined by

I2(kj ) = lim
ε→0

∫ ∫
|k−kj |�ε

dk ∧ dk̄

(k̄ − k̄j )2
eik(z

′−z)+ik̄(z̄′−z̄). (3.29)

The integralI2(k) is found in the appendix in the form,I2(kj ) = −2π(z̄′ − z̄)I1(kj ), such that
the third term in equation (3.28) vanishes. In order to express the second term in equation (3.28)
we use equations (2.26), (3.19), (2.20), and (3.15) and derive the relation

−
n∑

j=1

[c̄j �̄
a
2j (z

′, z̄′)�̄′
1j (z, z̄) + cj �̄

a′
2j (z

′z̄′)�̄1j (z, z̄)]e
ikj (z′−z)+ik̄j (z̄′−z̄)

=
n∑

j=1

[c̄j�
a′
1j (z

′, z̄′)�2j (z, z̄) + cj�
a
1j (z

′, z̄′)�′
2j (z, z̄)]

= (z′ − z)

n∑
j=1

�a
1j (z

′, z̄′)�2j (z, z̄)

+
1

2π i

n∑
j=1

∫ ∫
dk ∧ dk̄

k − kj
[�2j (z)b̄N

a
1µ(z

′) +�a
1j (z

′)bN2µ(z)](k, k̄). (3.30)

Using this expression and equations (3.23), (3.24), and (3.29), we rewrite equation (3.28) in
the form,

〈Na
1µ(z

′)|N2µ(z)〉k = −2π2iδ(z′ − z) − 2π i
n∑

j=1

�a
1j (z

′, z̄′)�2j (z, z̄)

+
i

z′ − z

∫ ∫
dk ∧ dk̄

∂

∂k̄

[(
µa
1(z

′) +
n∑

j=1

i�a
1j (z

′)

k − kj

)(
µ2(z) −

n∑
j=1

i�2j (z)

k − kj

)]
.

The last integral vanishes according to equation (A.3) of the appendix and the boundary
conditions (2.5) and (3.3). �

Ourmain result for the spectral decomposition associated to theDirac system (2.2) follows
from the above orthogonality and completeness relations.

Proposition 3.5.An arbitrary scalar functionf (z, z̄) satisfying the conditionf (z, z̄) ∼
O(|z|−2)as|z| → ∞ can be decomposed through the setS = [N2µ(z, z̄, k, k̄), {�2j (z, z̄)}nj=1].
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Proof. The spectral decomposition is defined through the orthogonality relations (3.20)–(3.22)
as

f (z, z̄) =
∫ ∫

dk ∧ dk̄ α(k, k̄)N2µ(z, z̄, k, k̄) +
n∑

j=1

αj�2j (z, z̄), (3.31)

where

α(k, k̄) = − 1

4π2
〈Na

1µ(k)|f 〉z, αj = 1

2π i
〈�a

1j |f 〉z. (3.32)

Provided the condition onf (z, z̄) is satisfied, we interchange integrationwith respect to dz∧dz̄
and dk ∧ dk̄ and use the completeness formula (3.25). �

The spectral decomposition presented here is different from that of Kiselev [10, 11]. In
the latter approach, the functionf (z, z̄) is spanned bysquaredeigenfunctions of the original
problem (1.2) defined according to oscillatory-type behaviour at infinity. In our approach, we
transformed the system (1.2) to the form (2.2) and defined the oscillatory-type eigenfunctions
according to thesingleeigenfunctionsNµ(z, z̄, k, k̄). We also notice that the (degenerate)
bound statesΦ′

j (z, z̄) are not relevant for the spectral decomposition, although they appear

implicitly through the meromorphic contributions of the eigenfunctionsNµ(z, z̄, k, k̄) at
k = kj (see section 4).

4. Perturbation theory for a single lump

We use the scalar spectral decomposition based on equation (3.31) and develop a perturbation
theory for multi-lump solutions of the DSII equation. We present formulae in the case of a
single lump (n = 1), the case of multi-lump potentials can be obtained by summing along the
indicesj , l occurring in the expressions below.

The single-lump potentialu(z, z̄) has the form [6]

u(z, z̄) = cj

|z + zj |2 + |cj |2e
i(kj z+k̄j z̄), (4.1)

wherecj , zj are complex parameters. Theassociated bound states follow fromequations (2.26)
and (3.19) as

Φj (z, z̄) = 1

|z + zj |2 + |cj |2
[

z̄ + z̄j
−c̄je−i(kj z+k̄j z̄)

]
, (4.2)

Φa
j (z, z̄) = 1

|z + zj |2 + |cj |2
[
cjei(kj z+k̄j z̄)

z̄ + z̄j

]
. (4.3)

We first consider a general perturbation to the single lump subject to the localization condition,
$u ∼ O(|z|−2) as |z| → ∞. We then derive explicit formulae for a special form of the
perturbation term$u(z, z̄).

4.1. General perturbation of a single lump

Suppose the potential is specified asuε = u(z, z̄) + ε$u(z, z̄), whereu(z, z̄) is given by
equation (4.1) and$u(z, z̄) is a perturbation term. Two bound statesΦj (z, z̄) andΦ′

j (z, z̄)

are supported by a single-lump potentialu(z, z̄) at a single pointk = kj . The spectral
decomposition given by equation (3.31) provides a basis for expansion ofµε

2(z, z̄, κ, κ̄) at
k = κ,

µε
2(z, z̄, κ, κ̄) =

∫ ∫
dk ∧ dk̄ α(k, k̄)N2µ(z, z̄, k, k̄) + αj�2j (z, z̄) (4.4)
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whereα(k, k̄) andαj are defined by equation (3.32) and depend on the parameterκ. The other
componentµε

1(z, z̄, κ, κ̄) can be expressed from equation (2.2) as

µε
1(z, z̄, κ, κ̄) =

∫ ∫
dk ∧ dk̄ α(k, k̄)N1µ(z, z̄, k, k̄) + αj�1j (z, z̄) + ε$µ1(z, z̄), (4.5)

where the remainder term$µ1(z, z̄) solves the equation

($µ1)z̄ = −$uµε
2.

We write the solution of this equation in the form

$µ1(z, z̄) = A − 1

2π i

∫ ∫
dz′ ∧ dz̄′

z′ − z
($uµε

2)(z
′, z̄′), (4.6)

subject to the boundary condition as|z| → ∞,

$µ1(z, z̄) → A + O(z−1),

whereA is an arbitrary constant. Using the explicit representation (4.6), we transform
equation (2.2) into the system of integral equations forα(k, k̄) andαj ,

α(k, k̄) = ε

4π2i(k − κ)

[ ∫ ∫
dk′ ∧ dk̄′ K(k, k̄, k′, k̄′)α(k′, k̄′) +Kj(k, k̄)αj +R(k, k̄)A

]

+O(ε2), (4.7)

αj = ε

2π(kj − κ)

[ ∫ ∫
dk ∧ dk̄ Pj (k, k̄)α(k, k̄) +Kjlαl +RjA

]
+ O(ε2), (4.8)

where

K(k, k̄, k′, k̄′) = 〈N a
µ(k)|Nµ(k

′)〉$u, Kj (k, k̄) = 〈N a
µ(k)|Φj 〉$u,

Pj (k, k̄) = 〈Φa
j |Nµ(k)〉$u, Kjl = 〈Φa

j |Φl〉$u,

and the scalar product for the squared eigenfunction is defined as [10,11]

〈f(k)|g(k′)〉h =
∫ ∫

dz ∧ dz̄[h̄(z, z̄)f1(z, z̄, k, k̄)g1(z, z̄, k
′, k̄′)

+h(z, z̄)f2(z, z̄, k, k̄)g2(z, z̄, k
′, k̄′)].

The non-homogeneous termsR(k, k̄) andRj can be computed exactly as

R(k, k̄) =
∫ ∫

dz ∧ dz̄(ūNa
1µ)(z, z̄) = 2πb(k, k̄),

Rj =
∫ ∫

dz ∧ dz̄(ū�a
1j )(z, z̄) = −2π i,

whereb(k, k̄) = 0 if n �= 0. We solve the system of equations (4.7) and (4.8) asymptotically
for κ = kj +ε$κ and$κ ∼ O(1). The leading order behaviour of the integral kernels follows
from the asymptotic representation (2.24) ask → kj ,

K(k, k̄, k′, k̄′) → K̄jj

(k̄ − k̄j )(k̄′ − k̄j )
, Kj (k, k̄) → iPjj

k̄ − k̄j
, Pj (k, k̄) → iP̄jj

k̄ − k̄j
, (4.9)

where

K̄jj = 〈Φa′
j |Φ′

j 〉$u, Pjj = 〈Φa′
j |Φj 〉$u, P̄jj = −〈Φa

j |Φ′
j 〉$u. (4.10)

Here we have used the symmetry constraints (2.20) and (3.15). The leading order ofα(k, k̄)

ask → kj follows from equation (4.7) as

α(k, k̄) → − ε$κ̄βj

2π(k − κ)(k̄ − k̄j )
,
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whereβj is not yet defined. We use equation (A.4) of the appendix to compute the integral
term, ∫ ∫

dk ∧ dk̄

(k − κ)(k̄ − k̄j )2
= 2π i

k̄j − κ̄
,

and reduce the system of integral equations (4.7) and (4.8) to an algebraic system ask → kj ,

−2π$καj = Kjjαj − P̄jjβj − 2π iA, (4.11)

2π$κ̄βj = −Pjjαj − K̄jjβj . (4.12)

If Pjj �= 0, the determinant of the above system is strictly positive. Therefore, homogeneous
solutions atA = 0 (bound states) are absent forε �= 0. This result indicates that the double
eigenvalue atk = kj disappears under a generic perturbation of the potentialu(z, z̄) with
Pjj �= 0 (see also [8]).

ForA �= 0, we find inhomogeneous solutions of equations (4.11) and (4.12),

αj = 2π iA(K̄jj + 2π$κ̄)

|Kjj + 2π$κ|2 + |Pjj |2 , βj = −2π iAPjj

|Kjj + 2π$κ|2 + |Pjj |2 . (4.13)

The eigenfunctionµε(z, z̄, κ, κ̄) given by equations (4.4) and (4.5) satisfies the boundary
condition (2.5) ifA = ε−1 and has the following asymptotic representation,

µε(z, z̄, κ, κ̄) = e1 +
2π i[2π(κ̄ − k̄j ) + εK̄jj ]Φj (z, z̄)

|2π(κ − kj ) + εKjj |2 + |εPjj |2 − 2π iεPjjΦ′
j (z, z̄)

|2π(κ − kj ) + εKjj |2 + |εPjj |2
+$µε(z, z̄), (4.14)

where the term$µε(z, z̄) is not singular in the limitε → 0 andκ → kj .
In the limit ε → 0, κ �= kj , we find a meromorphic expansion forµε(z, z̄, κ, κ̄) as

µε(z, z̄, κ, κ̄) = e1 +
iΦj (z, z̄)

κ − kj
+ ε

[
KjjΦj (z, z̄)

2π i(κ − kj )2
+

PjjΦ′
j (z, z̄)

2π i|κ − kj |2
]
+ O(ε2). (4.15)

It is clear that the double pole can be incorporated by shifting the eigenvaluekj to

kεj = kj − εKjj

2π
.

The other double-pole term in the expansion (4.15) has a non-analytic behaviour in thek-
plane and leads to the appearance of the spectral databε(κ, κ̄) = ε$b(κ, κ̄) which measures
the departure ofµε(z, z̄, κ, κ̄) from analyticity according to equation (2.8). We find from
equations (2.9) and (4.15) that the spectral data$b(κ, κ̄) has the following singular behaviour
asκ → kj :

$b(κ, κ̄) → −Pjj

2π |κ − kj |2 . (4.16)

Thus, ifPjj �= 0 the analyticity ofµε(z, z̄, κ, κ̄) is destroyed and the lump disappears. This
conclusion as well as the analytical solution (4.13) agree with the results of Gadyl’shin and
Kiselev [8,9] where the transformation of a single lump into a decaying wavepacket was also
studied.

In the other limitε �= 0 andκ → kεj we find another expansion from equation (4.14),

µε(z, z̄, κ, κ̄) = e1 − 2π i

εP̄jj

Φ′
j (z, z̄) + O(κ − kεj ). (4.17)

We conclude that the eigenfunctionµε(z, z̄, κ, κ̄) is now free of pole singularities [8, 9]. We
summarize the main result in the form of a proposition.
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Proposition 4.1.Supposeu(z, z̄) is given by equation (4.1) and$u(z, z̄) satisfies the
constraint

Pjj = 〈Φa′
j |Φj 〉$u �= 0.

Then, the potentialuε = u(z, z̄) + ε$u(z, z̄) does not support embedded eigenvalues of the
Dirac system (2.2) forε �= 0.

4.2. Explicit solution for a particular perturbation

Here we specifycj = ceiθ , wherec andθ are real, and consider a particular perturbation
$u(z, z̄) to the lumpu(z, z̄) (4.1) in the form,

$u(z, z̄) = Q(z, z̄)ei(kj z+k̄j z̄+θ),

whereQ(z, z̄) is a real function. Using equations (4.10), (4.2) and (4.3), we find explicitly the
matrix elementsKjj andPjj ,

Kjj =
∫ ∫

dz ∧ dz̄
c(z̄ + z̄j )[Q(z, z̄) − Q̄(z, z̄)]

[|z + zj |2 + c2]2 = 0,

Pjj =
∫ ∫

dz ∧ dz̄
|z + zj |2Q̄(z, z̄) + c2Q(z, z̄)

[|z + zj |2 + c2]2 = 1

2c

∫ ∫
dz ∧ dz̄(u$ū + ū$u).

The elementPjj can be seen as a correction to the field energy,

N = i

2

∫ ∫
dz ∧ dz̄|uε |2(z, z̄) = N0 + iεcPjj + O(ε

2),

whereN0 = π is the energy of the single lump solution (independent of the lump parameters
kj andcj ). Thus, a perturbation which leads to the destruction of a single lump, that is with
Pjj �= 0, changes necessarily the value for the lump energyN0.

5. Concluding remarks

The main result of our paper is the prediction of structural instability of multi-lump potentials
in the Dirac system associated to the DSII equation. The multi-lump potentials correspond
to eigenvalues embedded into a two-dimensional continuous spectrum with the spectral data
b(k, k̄) satisfying the additional constraint (2.21). In this case, there is no interaction between
lumps and continuous radiation. However, a generic initial perturbation induces coupling
between the lumps and radiation and, as a result of their interaction, the embedded eigenvalues
disappear. This result indicates that the localized multi-lump solutions decay into continuous
wavepackets in the nonlinear dynamics of the DSII equation (see also [8,9]).

This scenario is different from the two types of bifurcations of embedded eigenvalues
discussed in our previous paper [14]. The type-I bifurcation arises from the edge of the
essential spectrum when the limiting bounded (non-localized) eigenfunction is transformed
into a localized bound state. The type-II bifurcation occurs when an embedded eigenvalue
splits off the essential spectrum. Both situations persist in the spectral plane when the essential
spectrum is one-dimensional and covers either a half-axis or the whole axis. However, in the
case of the DSII equation, the essential spectrum is the whole spectral plane and embedded
eigenvalues cannot split off the essential spectrum. As a result, they disappear due to their
structural instability.
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Appendix. Formulae of the∂-analysis

Here we reproduce some formulae of the complex∂̄-analysis [17] to compute the integrals
I0, I1(z) andI2(z) defined in equations (3.23), (3.24), and (3.29). We define the complex
integration in thez-plane by∫ ∫

dz ∧ dz̄f (z, z̄) = −
∫ ∫

dz̄ ∧ dz f (z, z̄),

where dz ∧ dz̄ = −2i dx dy. The complexδ(z) distribution is defined by∫ ∫
dz ∧ dz̄f (z)δ(z − z0) = −2if (z0), (A.1)

whereδ(z) = δ(x)δ(y). In particular, theδ-distribution appears in thē∂-analysis according to
the relation [17],

∂

∂z̄

[
1

z − z0

]
= πδ(z − z0). (A.2)

Computing the integralI0, we get the formula,

I0 =
∫ ∫

dz ∧ dz̄eikz+ik̄z̄ = −2i
∫ ∫

dx dy e2iRe(k)x−2i Im(k)y = −2π2iδ(k),

which proves the identity (3.23).
Using the Green theorem [17], one has the integration identity,∫ ∫

D

dz ∧ dz̄

(
∂f1

∂z
− ∂f2

∂z̄

)
=

∫
C

(f1 dz̄ + f2 dz), (A.3)

whereD is a domain of the complex plane andC its boundary. The generalized Cauchy’s
formula has the form [17]

f (z, z̄) = 1

2π i

∫
C

f (z′, z̄′)dz′

z′ − z
+

1

2π i

∫ ∫
D

dz′ ∧ dz̄′

z′ − z

∂f

∂z̄′ , (A.4)

or, equivalently,

f (z, z̄) = − 1

2π i

∫
C

f (z′, z̄′)dz̄′

z̄′ − z̄
+

1

2π i

∫ ∫
D

dz′ ∧ dz̄′

z̄′ − z̄

∂f

∂z′ . (A.5)

In order to find the integralI1(z) we use equation (A.5) with

f (z, z̄) = 1

ik
ei(kz+k̄z̄), k �= 0

and choose the domainD to be a large ball of radiusR (see equation (2.14)). The boundary
value integral vanishes since

lim
R→∞

∫
|z|=R

dz̄

z̄
ei(kz+k̄z̄) = −2π i lim

R→∞
J0(2|k|R) = 0, (A.6)

whereJ0(z) is the Bessel function. Equation (A.5) for the functionf (z, z̄) then reduces to
equation (3.24).
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In order to compute the integralI2(z0), we apply equation (A.3) withf1 = 0 and

f2(z, z̄) = 1

z̄ − z̄0
ei(kz+k̄z̄).

The domainD is chosen as above. The boundary value integral vanishes again,

lim
R→∞

∫
|z|=R

dz

z̄
ei(kz+k̄z̄) = −2π i lim

R→∞
J−2(2|k|R) = 0, (A.7)

whereJ−2(z) is the Bessel function. Equation (A.3) for the functionf2(z, z̄) reduces to
equation (3.29).
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