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Abstract. A new (scalar) spectral decomposition is found for the Dirac system in two dimensions
associated to the focusing Davey—Stewartson Il (DSIl) equation. The discrete spectrum in the
spectral problem corresponds to eigenvalues embedded into a two-dimensional essential spectrum.
We show that these embedded eigenvalues are structurally unstable under small variations of the
initial data. This instability leads to the decay of localized initial data into continuous wavepackets
prescribed by the nonlinear dynamics of the DSII equation.

1. Introduction

Gravity-capillary surface wavepackets are described by the Davey—Stewartson (DS) system [1]
which is integrable by inverse scattering transform in the limit of shallow water [2]. In this
paper, we study the focusing DSII equation which can be written in a complex form

i, +u, +uzz+4(g+gu=0,
2g: — (Jul»). =0,

wherez = x +iy,z = x — iy, u(z,z,t) andg(z, z, t) are complex functions. This equation
appears as the compatibility condition for the two-dimensional Dirac system

(1.1)

1z = —u@z, $2, = U, (1.2)
coupled to the equations for the time evolution of the eigenfunctions,

i1 + Q100 + U@z — uz g2 +4gp1 = 0,

—iga + @ozz + il 1 — i1, + 4892 = 0.

The DSII equation was solved formally through the@roblem of complex analysis by
Fokas and Ablowitz [3] and Beals and Coifman [4]. Rigorous results on existence and
unigueness of solutions of the initial-value problem were established under a small-norm
assumption [5]. The small-norm assumption was used to eliminate homogeneous solutions of
equations of the inverse scattering which correspond to bound states and radially symmetric
localized waves (lumps) of the DSII equation. When the potential in the linear system becomes
weakly localized (inL? but not in L), homogeneous solutions may exist and the analysis
developed in [5] is not applicable.

The lump solutions were included formally in [3], where their weak decay rate was found,

u ~ O(R™Y) asR = \/x2+y2 — oco. This result is only valid for complexified solutions
of the DSII equation (whem and i« are not considered to be complex conjugated). The
reality conditions were incorporated in the work of Arkadieval [6] where lumps were

(1.3)
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shown to decay like: ~ O(R~?). Multi-lump solutions were expressed as a ratio of two
determinants [6], or, in a special case, as a ratio of two polynomials [7] but their dynamical
role was left out of consideration.

Recently, structural instability of a single lump of the DSII equation was reported by
Gadyl'shin and Kiselev [8,9]. The authors used methods of perturbation theory based on
completeness adquaredeigenfunctions of the Dirac system [10, 11]. A similar conclusion
was announced by Yurov who studied Darboux transformation of the Dirac system [12, 13].

In this paper, we present an alternative solution of the problem of stability of multi-
lump solutions of the DSII equation. The approach generalizes our recent work on spectral
decomposition of a linear time-dependent Sctinger equation with weakly localized (not in
LY) potentials [14]. We find a new spectral decomposition in ternssngfleeigenfunctions of
the Dirac system. Surprisingly enough, the two-component Dirac system in two dimensions has
a scalar spectral decomposition. In contrast, we recall that the Dirac system in one dimension
(the so-called AKNS system) has a well knowix 2 matrix spectral decomposition [15].

Using the scalar spectral decomposition, we associate the multi-lump potentials with
eigenvalues embedded into a two-dimensional essential spectrum of the Dirac system.
Eigenvalues embedded into a one-dimensional essential spectrum occur, for instance, for the
time-dependent Scédinger problem [14,16]. They were found to be structurally unstable
under a small variation of the potential. Depending on the sign of the variation, they either
disappear or become resonant poles in the complex spectral plane which correspond to lump
solutions of the KPI equation [14].

For the Dirac system in two dimensions, the multi-lump potentials and embedded
eigenvalues are more exotic. The discrete spectrum of the Dirac system is separated from the
continuous spectrum contribution in the sense that the spectral data satisfy certain constraints
near the embedded eigenvalues. These constraints are met for special solutions of the DSII
equation such as lumps, but may not be satisfied for a generic combination of lumps and
radiative waves. As a result, embedded eigenvalues of the Dirac system generally disappear
under a local disturbance of the initial data. Physically, this implies that a localized initial data
of the DSII equation decays into radiation except for the cases where the data reduce to special
solutions such as lumps.

The paper is organized as follows. Elements of inverse scattering for the Dirac system
are reviewed in section 2, where we find that the discrete spectrum of the Dirac system is
prescribed by certain constraints on the spectral data. Spectral decomposition is described in
section 3 with the proof of orthogonality and completeness relations through a proper adjoint
problem. The perturbation theory for lumps is developed in section 4 where some of previous
results [8, 9] are recovered. Section 5 contains concluding remarks. The appendix provides a
summary of formulae of the compl@xanalysis used in proofs of section 3.

2. Spectral data and inverse scattering

Here we review some results on the Dirac system (1.2) and discard henceforth the time
dependence of, g andy. The potentiali(z, 7) is assumed to be non-integrableg L1) with
the boundary conditions, ~ O(|z|~?) as|z| — oco.

2.1. Essential spectrum of the Dirac system

We define the fundamental matrix solution of equation (1.2) in the form [6],

o = [z 7, k, e, x(z, 7, k, be *], 2.1)
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wherek is a spectral parametei(z, z, k, k) andx(z, z, k, k) satisfy the system

Mz = —Up2, Mor = —ikpp + iy, (2.2)

X1z = ikx1 —uxz, X2: = Ux1. (2.3)
It follows from equations (2.2) and (2.3) thatandx are related by the symmetry constraint

. - -7 -1

X@ 5k B =0 kB, o= (2 5 ) (2.4)

We impose the boundary conditions fe(z, z, k, k),
. I 1
|k||ILnoo n(z, z,k k) =e1 = <0> . (2.5)

Solutions of equation (2.2) with boundary conditions (2.5) can be expressed through Green
functions as Fredholm inhomogeneous integral equations [3, 4],

o 1 [[dAdZ .
ni(z, 2, k, k) =1~ 7//,—(uuz)(z .7, (2.6)
Tl 7 —Z
- 1 dz’ A d7’ - N iE
S f f T 0 () (2, e ke ke, @.7)
Tl =2

Values ofk for which the homogeneous system associated to equations (2.6) and (2.7) has
bounded solutions are call@iigenvaluef the discrete spectrum of the Dirac system. Let
us suppose that the homogeneous solutions (eigenvalues) are not supported by the potential
u(z, 7). We evaluate the departure from analyticity @fin the k plane by calculating the
derivatived ./ 9k directly from the system (2.6), (2.7) [3] as

0 - _
a—g = b(k, )N, (z. 7. k. k). (2.8)
Hereb(k, k) are the spectral data,
_ 1 o
bk, k) = Z/ dz A dZ(iipg)(z, 7)€ ), (2.9)

andN,(z, Z, k, k) is a solution of equation (2.2) which is linearly independent¢f, z, k, k)
and satisfies the boundary condition

lim N,(z, 7,k k&) = ) = <0> . (2.10)
k|00 1
This solution can be expressed through the Fredholm inhomogeneous equations,
I 1 dz’ A dZ’ _
Mtz = o [ [ A e ), (2.11)
2ri 7=z
- T 1 dz’ A dZ’ T S
NZ/,L(Zs zZ, k, k) — g ikztkz) 4 — // Z_ _Z (I/_tNllu)(Z/, Z/)e_'k(z_z )—ik(z—Z ). (212)
2mi 7 -z
The following reduction formula [3] connecls), (z, z, k, k) andp(z, z, k, k):
N,z 7.k k) = x(2. 7.k, e "¢ = g fu(z, 7, k, k)e ¢+, (2.13)

If the potentialu(z, 7) has the boundary values ~ O(|z|™®) as|z| — oo (u ¢ LY),
then the integral kernel in equation (2.9) is not absolutely integrable, while equations (2.6) and
(2.7) are still well defined. We specify complex integration in gfane of a non-absolutely
integrable functionf (z, z) according to the formula

/ de A G2f(2. D) = lim // dz A dZ £ (2, 7). (2.14)
=0 [zI<R

The same formula is valid for integrating eigenfunctions of the Dirac system ik giane
as well. In section 3, we use (2.14) when computing the inner products and completeness
relations for the Dirac system and its adjoint.
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2.2. The discrete spectrum

Suppose here that integral equations (2.6) and (2.7) have homogeneous solutions at an
eigenvalue = k;. The discrete spectrum associated to multi-lump potentials was introduced
in [3,6]. Here we review their approach and give a new result (proposition 2.1) which clarifies
the role of the discrete spectrum in the spectral problem (2.2).

For the discrete spectrum associated to the multi-lump potentials, an isolated eigenvalue
k = k; has double multiplicity with the corresponding two bound stdie&, z) and®’,(z, 7)
[6]. The bound stat@;(z, z) is a solution of the homogeneous equations,

_ 1 dz’ A dZ’ ;o
®4;(z,2) = _Z_m/f ﬁ(uq)zj')(Z 22, (2.15)

1 dz' A dZ o
®y(z,7) = 2_// = (1)) (7, 7)e MG (2.16)
Tl 7 —2Z
with the boundary conditions as| — oo,
(.5 > (217)

Equivalently, this boundary condition can be written as renormalization conditions for
equations (2.15) and (2.16),

1
= / / dz A dZ(uds)) (2, 3) = 1, (2.18)
2]

1 o
Z_m// dz A dZ(#®1;)(z, 2)€® 59 = 0. (2.19)

The other (degenerate) bound stdi&(z, z) can be expressed in terms @f;(z, z) using
equation (2.13),

®'(2,2) = 0®;(z, e b, (2.20)

The behaviour of the eigenfunctigi(z, z, k, k) near the eigenvalug = k; becomes
complicated due to the fact that the double eigenvalue is embedded into the two-dimensional
essential spectrum of the Dirac system (2.2). We prove the following result.

Proposition 2.1. For smooth data(k, k) € C* atk # k;, the eigenfunctiom(z, z, k, k) has
a pole singularity ak — k; only if

1 . =
o= / / dz A dZ(za®1)) (2, %D = 0, (2.21)

Proof. Supposeu(z, z, k, k) has a pole singularity d = ;. Then, it can be shown from

equation (2.2) that the meromorphic continuationut, z, k, k) is given by the limiting

relation

iqZ'j (Z, Z)
k—k;

wherez;, c; are some constants. Using equations (2.8), (2.9) and (2.13), we find the differential

relation forb(k, k):

b bk, k B} 1 _\ itketiz
9 _ N )// dz A dZ(itji2) (2, 2) — —// dz A dZ(Ziipa)(z, 7).
ok 27 27i

Jm [u(z, 2k k) — ] = (2+z)®;(2.2) +;®(2, D), (2.22)




Spectral decomposition for the Dirac system 63

In the limitk — k;, this equation reduces with the help of equations (2.18) and (2.22) to the
form

b blk.k)  bo

ok k—k k—k;

whereby is given in equation (2.21). The reduced equation exhibits the limiting behaviour of
bk, k) ask — k;j,

k—
b(k, k) — bok K Inlk — k. (2.23)
.I
On the other hand, it follows from equations (2.13), (2.20) and (2.22)N¥hdt, 7, k, k) has
the limiting behaviour
- —i®'(z,2)
NM(Z,Z,k, k) —_ . (224)
k—k;
According to equations (2.23) and (2.24), the right-hand side of equation (2.8) is of order
O(bglk — kjr1 In |k — k;|) ask — k;. On the other hand, the left-hand side of equation (2.8)
must be of order @) in the limit k — k; according to equation (2.22). Therefore, the
eigenfunctionu(z, z, k, k) has a pole at = k; only if the constrainby = 0 holds. O

The limiting relation (2.22) was introduced by Arkadieval [6]. However, the authors
did not notice that the discrete spectrum is supported only by potentials which satisfy the
additional constraint (2.21). In particular, such potentials include the multi-lump solutions for
whichb(k, k) = 0 everywhere in thé-plane.

2.3. Expansion formulae for inverse scattering

Combining equation (2.8) for the essential spectrum and equation (2.22) for the discrete
spectrum, we reconstruct the eigenfunction, z, &, k) [3, 6],

nz. 2k, k)_el+z"1>f(Z Do [[ 2w Nzl B @29

wheren is the number of distinct eigenvalukesof double multiplicity. Atk — &;, this system
is coupled with the algebraic system for the bound states,

i dk A dk - -
@D e d = et Y 2 o [ [ SR DN, 2 kD
£ T !

(2.26)

Expansion (2.25) can be related to the inverse scattering transform for the potential
u(z,z) [3,6]. It follows from equation (2.2) that the eigenfunctigitz, z, k, k) has the
asymptotic expansion ak| — oo,

_ 1
w2 k) = e1+ (2, 0) + O(|k|72), (2.27)

whereuss(z, 7) = i(z, 7) and

d dz’
M2, ) =~ // <A Z(| 7).
7T|
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We deduce from equations (2.25) and (2.27) that the potential) is expressed through the
eigenfunctions of the Dirac system in the form [3],

n 1 o _
(.5 = =) Pyy(z.2) - 5/ dk A dk b(k, k)N (z, 2. k. k). (2.28)
j=1

Formulae (2.6)—(2.28) constitute a standard framework for the inverse scattering transform
of the DSII equation with a new relation (2.21). The existence and uniqueness of solutions of
the Fredholm integral equations (2.6) and (2.7) andtheblem (2.8) and (2.25) were proved
in [4] and [5] under the small-norm assumption for the potential y),

( sup Iul(x,y))</ lu(x, y)| dx dy) < %
(x,y)eR?

In this casen = 0 andb(k, k) # 0. The nonlinear two-dimensional Fourier transform
associated to this scheme was discussed in examples 8-10 of chapter 7.7 of [17]. Indeed,
the connection formula (2.28) implies that there is a scalar spectral decomposiiian of
through Ny, (z, 7.k, k) for n = 0. In order to close the decomposition, one could use
equations (2.9) and (2.13) to construct a ‘completeness relation’ for the expansigh-et)

in the form,

1 - - _
87 —2) = o g / dk A dkN2, (2, 2, k, k)N (z, 2, k, k).

However, we show in proposition 3.4 below that a completeness theorem for equation (2.2) is
different and is based on the set of eigenfunctions of the adjoint Dirac system.

3. Basis for a scalar spectral decomposition

In this section, we specify the adjoint problem for the Dirac system (2.2) and establish
orthogonality and completeness relations.

3.1. The adjoint system

The adjoint system for equation (2.2) is

uq, = ikpg —ups, K: = upg, (3.1)
which provides the balance equation,

H ! a ! 8 a / a a /

(k" — k)py (k) pa(k) = a—z[,ul(k Yu2(k)] — a—z[u«z(k Jua(k)]. (3.2)

The system (3.1) admits plane solutiops (z, z, k, k) and oscillatory-type solutions
Nj(z, 2.k, k) with the boundary conditions,

|/<||iinOo Bz, Z, k, k) = ep, (3.3)
|k||i£>noo N;i(z, 2, k, fe 1t — ¢ (3.4)

The adjoint eigenfunctiondV; (z, z, k, k) can be expressed through the Green functions,

fo T 1 dz’' A d7’ ; AT
N]a# (Z’ Z) — el(kz+kz) _ Z // Z_/ _Z (MNSM)(Z/, Z/)elk(z—z )+ik(z—2 )’ (35)
JT g —Z

1 ffddAdT L,
ng_(z, Z) = Z—m//ﬁ(uNlﬂ)(z ,Z)- (36)
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They are related to the adjoint eigenfunctiqifsz, z, k, k) by the formula
Nz, 2.k, k) = —oi® (2, 2, k, k)@ ®= ). (3.7)
Using this representation, we prove the following result.

Lemma 3.1. The spectral dat&(k, k) are expressed in terms of the adjoint eigenfunctions as

bk, k) = %/ dz A dZ(@NY))(z. 2). (3.8)

Proof. Multiplying equation (3.5) byi 1 (k), integrating over dAdz and using equation (2.7),
we expres$(k, k) defined in equation (2.9) in the form

- 1
b D) = 5 / dz A Az (NS, (k) — ua(k)NG, ()] (39)

On the other hand, multiplying equation (2.6)dy7, (k), integrating over dA dz, and using
equations (3.6) and (3.9), we get equation (3.8). O

Suppose now thdt = k; is an isolated double eigenvalue of equation (2.2) with the bound
states®; (z, z) and®’(z, z) given by equations (2.15)—(2.20). Suppose alsokhatk is an
eigenvalue of the adjoint system (3.1) with the adjoint bound stbfes, z) and®}'(z, 2).

Lemma 3.2.1f k; is a double eigenvalue of the Dirac system (2.2), theis also a double
eigenvalue of the adjoint system (3.1).

Proof. We use equation (3.2) with = ®;(z,z) andp® = ®9(z,z) atk = k; andk’ = k§

and integrate over A dz with the help of equation (A.3) of the appendix. The contour
contribution of the integral vanishes due to the boundary conditions (2.17) and (3.12) and the
resulting expression is

(k4 —kj)// dz A dz(®F;P2))(z,2) = 0.

The relationk} = k; follows from this formula if the integral is non-zero/dt = k; (which is
proved below in equation (3.22)). The other possibility is wkeg k; but df; is orthogonal
to ®,;. We do not consider such a non-generic situation. The other boundbstate; = k;
can be defined using the symmetry relation (see equation (3.15) below).

The adjoint bound stat®’(z, 2) solves the homogeneous equations,

o R N
‘le(z’“z‘%/ / S @) F)e D), (3.10)
a = 1 dZ//\dZ/ - a /7 =/

(Dzj(Z,Z) = %// I (M¢1j)(Z,Z) (3.11)

with the boundary condition dg| — oo,
_ e
®(z,2) — ?2 (3.12)
and the normalization conditions,

1
—%ff dz A dZ(@®;)(z.2) = 1, (3.13)

1 o
5 / / dz A dZ(u®;)(z, e 'GP = 0. (3.14)
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In addition, the bound staté?f(z, 7) is related to®(z, z) according to the symmetry formula
®(2,7) = —o®(z, b0, (3.15)

Using equations (3.1)—(3.15), we see that the adjoint eigenfunefian z, &, k) satisfies
relations similar to those fqu(z, z, k, k),

o oo -
= bk N[ 2.k ) (3.16)

and

9z, 2) - -
k||m [H (2,2, k, k) + j—k] =(z +zj)<I>‘;(z, 7) — cj<I>‘;’(z, 2). (3.17)
J
The expansions for inverse scattering transform of the adjoint eigenfunctions can be found
in the form

_ I<I>“(z 2) dk’ A dk’
1 (2,2, k, k) =ez—Z =5 // — b(k/ KN (z, 2, K k') (3.18)

j=1
and
(@ +2))®j(,7) — ;99 (., 7)
i®9(z,7) dk A dk
=ey — - b k, k N“ k, k 3.19
e ;kj—k, o [[ FEC B DN ERD. (319

3.2. Orthogonality and completeness relations

Using the Dirac system (2.2) and its adjoint system (3.1), we prove the orthogonality and
completeness relations for the set of eigenfuncti®rs[N,, (k, k), {P2;};_;] and its adjoint

SetS” = [Nfﬂ(k9 12)9 {CD?_]}I;zl]

Proposition 3.3. The eigenfunctionsVy, (z, z, k, k) and ®,;(z,z) are orthogonal to the
eigenfunctiong\/fu(z, z,k, k) and <I>‘{j (z, 7) as follows:

(N, (k)| Noy, (k). = =27 %18 (k' — k), (3.20)
(N, (k)| @) = (@4 N2 (K)). = O, (3.21)
(@Y1 D2)), = 2mid1, (3.22)

where the inner product is defined as

(g1 f (k). = / dz AdZg(z, 2, k' k) f(z, 2, k, k).
Proof. Using equations (2.12) and (3.5), we expand the inner product in equation (3.20) as
(N5, (N ). = T+ [ [ b2 A g, e, k0 = 1o
- / dz A d2(@N,) (2, ST 1 2)
1 = a I\ i (K z+k'Z
+2_71i // dz A dz(uN3,)(z, k')e 1Kz +k'z)

dz’ A d7’ ko
* f f i - ; @N1) (@ e (@) - 1@,
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where
Io= / dz A dz d®-PHERDT = _27 251 — k) (3.23)
and
l dZ//\dZ/'/ RV N A1) l St A A
I - el(k —k)zZ'+ik'=k)z _ el(k —k)z+i(k —k)z. 3.24
1@ = o / 72 i — 1) (3:29)

The integrals/y and I;(z) are computed in the appendix. Using these formulae, we find the
inner product in equation (3.20) in the form

a / H / 1 /
(NL RNz (0): = =2 *18(K — k) + Rk K,

where the residual terR (k, k) is expressed in the form
Rk, k) = / dz A dZ[uNfM(k’)Nzu(k) — ﬁNfM(k/)Nl,l k)],

with the help of equations (2.12) and (3.5). We show tR&k, k') = 0 by multiplying
equation (3.6) byt N1, (k), integrating over d A dz and using equation (2.11).

The zero inner products in equations (3.21) and (3.22) fgr! are obtained in a similar
way with the help of the Fredholm equations for eigenfunctidns®, IV,,, andN,;. In order
to find the non-zero inner product (3.22) fpe= [ we evaluate the following integral by using
the same integral equations:

1
// dz A dz q)?_jﬂz(k) = m // dz A dZ[uq)ngZ(k) - IZ(DLL,LL]_(/C)]
J

1
=— dz A dz adf ..
ik — k) / en By
Using equation (3.13), the right-hand side identifieg@t_ém. Substituting equation (2.25) in

the left-hand side and using the zero inner products (3.121) and (3.22), we find equation (3.22)
forj =1. a

Proposition 3.4. The eigenfunction#/z, (z, z, k, k) and d,;(z, 7) are complete with respect
to the adjoint eigenfunctions7, (z, z, k, k) and @9z, 2) according to the identity

1 - - _
3 -2 =5 // dk A RN, (2, 7'k F)Nau(z, 2, k. B)

1 n
DL CRAL N CE (3.25)
j=1

Proof. Using the symmetry relations (2.13) and (3.7), we express the integral in equation (3.25)
as

(N, () Ngu ()i = / dk A dk 332, 2k, k)jia(z, Z, k, k)t —mkE=D, (3.26)
We use equations (2.25), (2.26), (3.18), and (3.19) and find the pole decomposition for the
integrand in equation (3.26),

[
k—k;

n
A5 =1+ [6;®%; (2, 2) P} (2, D) +¢; Y2, 2P (2, 2)]
j=1
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<I>‘§j 7,z )d>1,(z 2)

—7)®4 (@, 7)®1;(z, 2) +2=; iy
dk’ A di ) )
Yo / / - [Mz(z )bN1,(z) — 1 (z)bNS, (D] (K K). (3.27)

We substitute (3.27) into equat|on (3.26) and reduce the integral to the form

(N, @) INg () = To — 2 Y [¢;94(2, Z) Py, (2. 2) +¢; D42, Z) Pa; (2, D) (k)
j=1

+ Z @52, 2)P1;(z, D2 (@ — 2 (k) + Ia(k;)]

- / / dk A dk I () [A%(2)b N1, (2) — A1(2)bNS, ()] (k, k)e k& =a-kE=D)
(3.28)

where the integralg, and/;(k) are given in equations (3.23) and (3.24) respectively, with
andk interchanged, while the integral(k;) is defined by

Io(kj) = lim / / N o), (3.29)
=0 Ji—k;1ze (k — k)2

The integrall>(k) is found in the appendix in the fornfi (k;) = —27(z' — 2)I1(k;), such that
the third term in equation (3.28) vanishes. In order to express the second term in equation (3.28)
we use equations (2.26), (3.19), (2.20), and (3.15) and derive the relation

n o =
= D 16,5, )Pz, D) + ¢ 85 (') Dy (2, D)) ITED
n
= ) [6;®55(2 . 2P (2. 2) + ¢;®;(2. ) DY (2. 2)]
j=1

=@ -2 Z @ (2, 2)P2j(z, 2)

dk _
ZmZ / / rd [q>2,(z)bN1M(z)+q> (Z)bN2, (D] (k, k). (3.30)

Using this expression and equations (3.23), (3.24), and (3.29), we rewrite equation (3.28) in
the form,

(N1, () IN2 (D)) = —27%8(7 — 2) — 2nmi Z 1,(Z, ) D2;(z, 2)
i

9 "] (2) 1Dy (2)
dk Adk—| [ néEH+ )y —L— - ;ﬂ
/ o |:<M1(Z) ‘;:1 & ><M2(Z) ;:1 =k
The last integral vanishes according to equation (A.3) of the appendix and the boundary

conditions (2.5) and (3.3). a

Our main result for the spectral decomposition associated to the Dirac system (2.2) follows
from the above orthogonality and completeness relations.

+
7=z

Proposition 3.5. An arbitrary scalar functionf(z, z) satisfying the conditionf(z,z) ~
O(|z|7?) as|z| — oo can be decomposed throughthe$et [ N2, (z, Z, k, k), {®2;(z, 2)};;1].
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Proof. The spectral decomposition is defined through the orthogonality relations (3.20)—(3.22)
as

f(z,2) = // dk A dk (k. KNy (2. 2, k. k) + Y ot ®o;(z. 7). (3.31)
j=1
where
7 1 a 1 a 2
a(k, k) = —P(Nlu(k)lfh, aj = ﬁ(q)lﬂf)F (3.32)
Provided the condition oyi(z, ) is satisfied, we interchange integration with respect todf,
and c A dk and use the completeness formula (3.25). a

The spectral decomposition presented here is different from that of Kiselev [10, 11]. In
the latter approach, the functiof(z, z) is spanned bgquaredeigenfunctions of the original
problem (1.2) defined according to oscillatory-type behaviour at infinity. In our approach, we
transformed the system (1.2) to the form (2.2) and defined the oscillatory-type eigenfunctions
according to thesingle eigenfunctionsV,, (z, Z, k, k). We also notice that the (degenerate)
bound state®’;(z, z) are not relevant for the spectral decomposition, although they appear
implicitly through the meromorphic contributions of the eigenfunctiavs(z, z, k, k) at
k = k; (see section 4).

4. Perturbation theory for a single lump

We use the scalar spectral decomposition based on equation (3.31) and develop a perturbation
theory for multi-lump solutions of the DSII equation. We present formulae in the case of a
single lump = 1), the case of multi-lump potentials can be obtained by summing along the
indicesj, [ occurring in the expressions below.
The single-lump potential(z, z) has the form [6]
Cj P
el(k,z+k,z)’ 4.1
|z +z;12+c;|? (4-1)
wherec;, z; are complex parameters. The associated bound states follow from equations (2.26)
and (3.19) as

u(z,z) =

. 1 z+z;
®(2,0)=— > | | 4.2
(@2 2+ 22+ |c; 12 |:_Cjel(k,»z+k,z)i| (4-2)

_ l C4ei(k,‘2+];jz)
Uz, ) =———— | 'L, . . 4.3
9z, 2) PEPRCEYRNT [ ez (4.3)

We first consider a general perturbation to the single lump subject to the localization condition,
Au ~ O(|z]7?) as|z| — oo. We then derive explicit formulae for a special form of the
perturbation term\u(z, 7).

4.1. General perturbation of a single lump

Suppose the potential is specifiedi#s = u(z, z) + €Au(z, z), whereu(z, z) is given by
equation (4.1) and\u(z, z) is a perturbation term. Two bound stat®s(z, 7) and<I>’j(z, 2)

are supported by a single-lump potentidk, z) at a single poinik = k;. The spectral
decomposition given by equation (3.31) provides a basis for expansipg(ofz, «, k) at

k =k,

ws(z, 2, ke, i) = // dk A dk a(k, k)Na,(z, 7, k, k) + a; P2(z, 2) (4.4)
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whereuw (k, k) ande; are defined by equation (3.32) and depend on the parameTiére other
componen(z, z, k, k) can be expressed from equation (2.2) as

1§ (2. 2, Kk, i) = / dk A di a(k, k)N (2. 2, ko k) + o ®1;(2, 2) + €Apa(z, 2), (4.5)
where the remainder termu; (z, 7) solves the equation

(Apa)z = —Aups.
We write the solution of this equation in the form
_ 1 dz’ A dZ’ o
Api(z,7) = A — o // - (Aup5) (', 7)), (4.6)
i 7 -z
subject to the boundary condition g$ — oo,
Apa(z,2) > A+0@E ),

where A is an arbitrary constant. Using the explicit representation (4.6), we transform
equation (2.2) into the system of integral equationsx@r, k) ande;,

A € / 7 o1 1./ A 1 A
ak, k) = m[/ dk’ A dk K(k,k,k,k)a(k,k)+Kj(k,k)aj+R(k,k)A}

+0(e?), (4.7)
€ - - -
o = P [ // dk A dk P;(k, k)a(k, k) + K jjoy + RjA] +0(e?), (4.8)
where
Kk, k' K) = (NGRIN K aws K k) = (NG (R)I® ) aus
Pj(k’ l;) = <‘I)?|N/L(k)>Aua Kjl = (¢?|(I)Z)Aua

and the scalar product for the squared eigenfunction is defined as [10, 11]
F0lg®On = [ [ dz A dilic. D itz 2k e KR
+h(z, 2) f2(2. 2. k. k) ga(z. 2, k' KD)].

The non-homogeneous termsk, k) andR; can be computed exactly as

Rk, B) = / / dz A dEGNE, ) (2, 3) = 2k, B),

R = [ [ dendzaogyc. o) = -2

whereb(k, k) = 0 if n # 0. We solve the system of equations (4.7) and (4.8) asymptotically
fork = k;j +e Ak andAk ~ O(1). The leading order behaviour of the integral kernels follows
from the asymptotic representation (2.24%as k|,

- - K _ P, _ i P
K,k k' k) > ——=—— K;jtk,k) > =L, Pjk,k) > =—L, (4.9
(k —k;)(k' — k;) k—k; k—k;
where
K= (@19) aus Pjj = (®1® ) aus Pj; = —(®5|®) au- (4.10)

Here we have used the symmetry constraints (2.20) and (3.15). The leading osdér iof
ask — k; follows from equation (4.7) as

GAIZﬂj

atk, k) —> — —
2w (k — k)(k —k;)
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whereg; is not yet defined. We use equation (A.4) of the appendix to compute the integral

term,
/f dk ndk  2ni
k—i)k —kj)2  kj—ic’

and reduce the system of integral equations (4.7) and (4.8) to an algebraic system/ias
ZnAEﬁj:—ijaj—ijﬁj. (412)
If P;; # 0, the determinant of the above system is strictly positive. Therefore, homogeneous
solutions atA = 0 (bound states) are absent togz 0. This result indicates that the double
eigenvalue ak = k; disappears under a generic perturbation of the potemtialz) with
P;; # 0 (see also [8]).
For A # 0, we find inhomogeneous solutions of equations (4.11) and (4.12),
2niA(K jj + 2 Ak) p —2miAP;;
o; = s = .
DK+ 2t Ak 2+ | P 2 DK+ 2T Ak 2+ | P 2
The eigenfunctioru(z, z, k, k) given by equations (4.4) and (4.5) satisfies the boundary
condition (2.5) ifA = ¢~ and has the following asymptotic representation,

(4.13)

WG K B) = ey + 227 (k — 12,») +eI€jj]<I>j(z, ) Znierj{)’j(Z, 2)
|27 (k — k]) +€ij|2 + |6ij|2 |27 (k — k,) +EK.,'j|2 + |€ij|2
+ApS(z,2), (4.14)

where the term\ p° (z, z) is not singular in the limit¢ — 0 and« — k;.

Inthe limite — 0,k # k;, we find a meromorphic expansion faf (z, z, k, k) as
i®;(.2) , [K;®2) P22

2ni(k —kj)? 2wk — k;|?
Itis clear that the double pole can be incorporated by shifting the eigenvatoe
Eij
2r

The other double-pole term in the expansion (4.15) has a non-analytic behaviourkin the
plane and leads to the appearance of the spectrabfiatai) = € Ab(k, k) which measures
the departure of(z, z, k, k) from analyticity according to equation (2.8). We find from

equations (2.9) and (4.15) that the spectral deié&, i) has the following singular behaviour
ask — k;:

pe(z, 2,k k) = e+ } +0(e?). (4.15)

K—kj

kS =k —

—Pjj
. 4.16
27|k — k;|? ( )
Thus, if P;; # 0 the analyticity ofu(z, zZ, «, k) is destroyed and the lump disappears. This
conclusion as well as the analytical solution (4.13) agree with the results of Gadyl'shin and
Kiselev [8, 9] where the transformation of a single lump into a decaying wavepacket was also
studied.
In the other limite 0 andk — kj we find another expansion from equation (4.14),
(e F ) = eg — 2
p(z, 2,k k) =e1— —=
Pjj
We conclude that the eigenfunctigii(z, z, «, i) is now free of pole singularities [8, 9]. We
summarize the main result in the form of a proposition.

Ab(k, k) —

®’(z,2) + Ok — k7). (4.17)
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Proposition 4.1. Supposeu(z, z7) is given by equation (4.1) and\u(z, z) satisfies the
constraint

Pjj = (®1®;)au # 0.

Then, the potential® = u(z, z7) + €eAu(z, 7) does not support embedded eigenvalues of the
Dirac system (2.2) foe £ 0.

4.2. Explicit solution for a particular perturbation

Here we specify; = c€?, wherec andé are real, and consider a particular perturbation
Au(z, z) to the lumpu(z, z) (4.1) in the form,
Au(z, 2) = Q(z, HELhH,

whereQ(z, 7) is a real function. Using equations (4.10), (4.2) and (4.3), we find explicitly the
matrix element¥ ;; and P;;,

K, - // g p g CEFIN0GE D - 06 2] _

[z + 2,7+ 22

120 = 2 = 1
ij=//dz/\dZ|Z+Z-’| 0(z,2) +c20(z, 2) 22_/ dz A dZ(u AT + i Au).
C

[Iz +z;1? + ¢?]?

The elemeniP;; can be seen as a correction to the field energy,
[ _ _ .
N = 5/ dz A dZ|u€)?(z,7) = No + iecPj; + O(e?),

whereNy = 7 is the energy of the single lump solution (independent of the lump parameters
k; andc;). Thus, a perturbation which leads to the destruction of a single lump, that is with
P;; # 0, changes necessarily the value for the lump enakgy

5. Concluding remarks

The main result of our paper is the prediction of structural instability of multi-lump potentials

in the Dirac system associated to the DSII equation. The multi-lump potentials correspond
to eigenvalues embedded into a two-dimensional continuous spectrum with the spectral data
b(k, k) satisfying the additional constraint (2.21). In this case, there is no interaction between
lumps and continuous radiation. However, a generic initial perturbation induces coupling
between the lumps and radiation and, as a result of their interaction, the embedded eigenvalues
disappear. This result indicates that the localized multi-lump solutions decay into continuous
wavepackets in the nonlinear dynamics of the DSII equation (see also [8, 9]).

This scenario is different from the two types of bifurcations of embedded eigenvalues
discussed in our previous paper [14]. The type-l bifurcation arises from the edge of the
essential spectrum when the limiting bounded (non-localized) eigenfunction is transformed
into a localized bound state. The type-Il bifurcation occurs when an embedded eigenvalue
splits off the essential spectrum. Both situations persist in the spectral plane when the essential
spectrum is one-dimensional and covers either a half-axis or the whole axis. However, in the
case of the DSII equation, the essential spectrum is the whole spectral plane and embedded
eigenvalues cannot split off the essential spectrum. As a result, they disappear due to their
structural instability.
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Appendix. Formulae of the 8-analysis

Here we reproduce some formulae of the comgleanalysis [17] to compute the integrals
Io, I1(z) and I,(z) defined in equations (3.23), (3.24), and (3.29). We define the complex
integration in thez-plane by

[[angren == [[dangrea,
where ¢ A dz = —2idx dy. The complex(z) distribution is defined by
f dz A d2(2)8(z — 20) = ~2if (z0), (A1)

wheres(z) = 8(x)8(y). In particular, theS-distribution appears in the-analysis according to
the relation [17],

i_ |: ! ] =7m8(z — 20)- (A.2)

0z Lz— 20
Computing the integraly, we get the formula,

Io = / dz A dZeikui/Ez _ —Zi/ dx dy g?iRe)x—2iimk)y _ —271'2i8(k),

which proves the identity (3.23).
Using the Green theorem [17], one has the integration identity,

f dz A dz <af1 afz) f(fldz+f2dz) (A.3)
0z

where D is a domain of the complex plane agdits boundary. The generalized Cauchy’s
formula has the form [17]

f(z/ ) dz 1 /‘/‘ dz’ Ad7 of
—0 - A4
f@2= 271| -z 271i p 7 —z 97’ (A-4)
or, equivalently,
f(@.7) // dz’ A d7’
— A.5
f@ o= 2m 77—z 2m p I —2 Bz (A-5)

In order to find the integraﬂl(z) we use equation (A.5) with
1 ., -
fz,2) = Ee'“‘”’“), k #0

and choose the domaid to be a large ball of radiuR (see equation (2.14)). The boundary
value integral vanishes since

R—o00

. a7 uis .
lim f D — _oqi fim Jo(2lk|R) = 0, (A.6)
lz]=R Z R— o0

where Jo(z) is the Bessel function. Equation (A.5) for the functigiz, 7) then reduces to
equation (3.24).
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In order to compute the integral(zo), we apply equation (A.3) withf; = 0 and

fo(z,2) = BRI
Z—20

The domainD is chosen as above. The boundary value integral vanishes again,

. dz ...z .
lim f BN [(C O R 1!|m J_2(2lk|R) =0, (A.7)
| —00

R— z|=R Z

where J_5(z) is the Bessel function. Equation (A.3) for the functigh(z, z7) reduces to
equation (3.29).
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