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In many wave systems, propagation of steadily traveling solitons or kinks is prohibited because of
resonances with linear excitations. We show that wave systems with resonances may admit an infinite
number of traveling solitons or kinks if the closest to the real axis singularities of a limiting asymptotic
solution in the complex upper half plane are of the form z� ¼ �αþ iβ, α ≠ 0. This quite general statement
is illustrated by examples of the fifth-order Korteweg-de Vries equation, the discrete cubic-quintic Klein-
Gordon equation, and the nonlocal double sine-Gordon equations.
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Introduction.—Nonlinear localized traveling waves such
as bright or dark solitons are key concepts for many
branches of modern physics, including nonlinear optics,
theory of magnets, theory of Josephson junctions, etc. It is
known that in many dispersive systems the presence of
these nonlinear entities is strongly restricted due to reso-
nances with linear excitations. These resonances take place
in wave systems of various origin, such as the fifth-order
Korteweg-de Vries equation [1], nonlinear lattices [2–4],
and models with complex dispersion and nonlocal inter-
actions [5,6]. As a result, it is quite typical that in such wave
systems the localized excitations either do not exist at all
or they only exist for specific values of some external
parameters. In the last case, the nonlinear excitations are
called embedded solitons (i.e., solitons “embedded” into
the spectrum of linear waves). These embedded solitons
have been discovered in hydrodynamics, nonlinear optics,
and other fields of physics [7].
To give an example, consider an operator equation

Lεu ¼ FðuÞ; (1)

for a function uðξÞwhere Lε is a Fourier multiplier operator
in ξ space with even symbol L̂ðkÞ in k space, FðuÞ is a
nonlinear function and ε is a parameter. The prototypical
examples of problems leading to Eq. (1) are the generalized
Korteweg-de Vries equation,

ut þ ½FðuÞ�x þMεux ¼ 0; (2)

or discrete or nonlocal Klein-Gordon equations,

utt −Mεuþ FðuÞ ¼ 0; (3)

for uðx; tÞ, where Mε is a Fourier multiplier operator in x
space. Above, ξ ¼ x − vt is the traveling wave coordinate

and the operator Lε in Eq. (1) includes both Mε and v. We
assume that in both cases ε ¼ 0 implies a degeneration of
the problem with L0 ¼ ∂2

ξ .
Consider a solitary wave uðξÞ, which is asymptotic to the

equilibrium state u≡ 0 as ξ → �∞ (the case of a kink
wave which is asymptotic to a pair of equilibrium states
u≡ u� as ξ → �∞ can be analyzed in a similar way).
Then, the resonances correspond to the real roots of the
dispersion equation near u≡ 0

L̂εðkÞ ¼ F0ð0Þ: (4)

If, for some value of ε, there exist a single pair of real
roots k ¼ �k0 in Eq. (4), we are in a situation where the
resonance prohibits propagation of regular solitons in
Eq. (2) and Eq. (3) and the embedded solitons may appear.
In this case, the velocity v of the soliton, typically, is not
arbitrary but should be “adjusted” to avoid “gluing” with
linear modes. In general, v belongs to some discrete set.
This set may be empty (i.e., no localized waves propagate),
or include a finite or infinite number of values. The case
where Eq. (4) has more then one pair of real roots is more
complex and the presence of localized excitations in this
case is highly doubtful.
In this Letter, we address the following question: Are

there some conditions which would indicate the existence
of infinitely many embedded solitons described by Eq. (1)?
If this is possible, can we describe this infinite set
asymptotically? We answer this question positively and
present sufficient conditions for the existence of a count-
able infinite sequence of embedded solitons. These
embedded solitons are all single-humped or single-kinked.
The main assumption for our construction of embedded

solitons is that the limiting solution of Eq. (1) as ε → 0,
being extended in a complex plane, should have a pair of
symmetric singularities in the upper half plane. We give an

PRL 112, 054103 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

7 FEBRUARY 2014

0031-9007=14=112(5)=054103(5) 054103-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.054103
http://dx.doi.org/10.1103/PhysRevLett.112.054103
http://dx.doi.org/10.1103/PhysRevLett.112.054103
http://dx.doi.org/10.1103/PhysRevLett.112.054103


asymptotic formula for values fεng as n → ∞, for which
embedded solitons exist. In terms of Eq. (2) and Eq. (3),
this means a presence of an infinite number of velocities v
for localized excitations. Surprisingly, it has been observed
that the asymptotic formula predicts parameters of the
lowest embedded solitons from this sequence with reason-
able accuracy.
We note that the idea that two symmetric singularities in

the upper half plane can be related to the countable infinite
sequence of tangential intersections of stable and unstable
manifolds can be found in [8] for the primary intersection
point of the two-dimensional symplectic maps. In this
Letter, we generalize this principle to a more general class
of physically relevant systems.
Main result.—Consider Eq. (1), where uðξÞ is a real-

valued function defined on R. Assume that Lε is a real
operator which depends continuously on the real parameter
ε and satisfies L0 ¼ ∂2

ξ . The Fourier symbol L̂εðkÞ is
supposed to be an even function of k.
Now, assume that (a) the equation FðuÞ ¼ 0 has zero

solution u ¼ 0 with F0ð0Þ > 0, (b) the dispersion equa-
tion (4) has only one pair of real roots k ¼ �kðεÞ such that
kðεÞ → ∞ as ε → 0, and (c) the equation

u″ ¼ FðuÞ (5)

has an even localized solution ~uðξÞ such that ~uðξÞ → 0 as
ξ → �∞. In addition, the key assumption of our asymp-
totic theory is that the solution ~uðξÞ can be continued into
the complex plane and the closest singularities to the real
axis of ~uðξÞ in the upper half plane are given by the pair
z� ¼ �αþ iβ, with α, β > 0, which is symmetric with
respect to the imaginary axis.
Then, we expect the existence of an infinite sequence of

values fεng such that for each ε ¼ εn, Eq. (1) has a soliton
solution uðξÞ with uðξÞ → 0 as ξ → �∞, and this sequence
obeys the following asymptotic law:

kðεnÞ ∼ ðnπ þ φ0Þ=α; (6)

where φ0 is a phase constant that depends on Lε and ~u.
This result can be extended naturally to the case of the

kink solutions of Eq. (1) connecting a pair of equilibrium
states u ¼ u�, such that Fðu�Þ ¼ 0 and F0ðu−Þ ¼
F0ðuþÞ > 0. In this case, F0ðu�Þ appears instead of
F0ð0Þ in the dispersion relation (4), whereas the differential
equation (5) is assumed to have a kink solution ~uðξÞ such
that ~uðξÞ → u� as ξ → �∞.
Note that the conditions above are sufficient, but not

necessary. Another way for an infinite number of
embedded solitons to exist is associated with a sequence
of “bound states” of single solitons or kinks separated by a
number of linear oscillations “trapped” between them [2,5].
In this case, our analysis is inapplicable.

Justification.—Let us give some heuristic arguments
for justification of the main result. Introduce vðξÞ ¼
uðξÞ − ~uðξÞ, NðvÞ¼Fð ~uþvÞ−Fð ~uÞ−F0ð ~uÞv, and Hε ¼
L0 − Lε. Then, we have

½Lε − F0ð ~uÞ�v ¼ Hε ~uþ NðvÞ: (7)

Based on our assumptions, we take for granted that (a) the
function Hε ~uðξÞ can be continued into the upper complex
half plane and its closest to the real axis singularities are
z� ¼ �αþ iβ, whereas (b) the homogeneous linearized
equation

½Lε − F0ð ~uÞ�v ¼ 0 (8)

has a pair of solutions φ�
ε ðξÞ ¼ e�ikðεÞξψ�

ε ðξÞ, where kðεÞ is
the only positive root of Eq. (4) and ψ�

ε ðξÞ → 1 as ε → 0.
The latter hypothesis is quite natural, since vðξÞ ¼ e�ikðεÞξ
are solutions of ½Lε − F0ð0Þ�v ¼ 0.
Then for small ε, the term Hε ~u in the right-hand side of

the inhomogeneous equation (7) dominates and the solv-
ability condition for this inhomogeneous equation [9] can
be written approximately as the orthogonality condition

0 ¼ J�ðεÞ ≈
Z

∞

−∞
e�ikðεÞξHε ~uðξÞdξ: (9)

The asymptotic value of the integral in (9) as ε → 0 is
determined by the closest to the real axis singularities of
the integrand in the complex plane (the Darboux principle,
see [10]). Since Hε ~uðξÞ is even, bounded, and real valued
for real ξ, the main contribution comes from z� ¼ �αþ iβ.
Also we have Jþ ¼ J− ≡ J.
In the simplest case, when the integrand has poles of

order n in the points z�, the result is simply a sum of
the residues in these poles multiplied by 2πi. In a more
complicated case, the singularities z� of Hε ~u can be
rational or transcendental branch points. For both cases,
since Hε ~uðxÞ is even and real for real x, we can write

Hε ~uðξÞ ∼ C�ðεÞeiπκ=2ðξ − z�Þκ; ξ → z�; (10)

where C−ðεÞ ¼ CþðεÞ, κ is a real number, κ ≠ 0; 1; 2;…. It
is natural to assume that CþðεÞ ∼ C0ε

q as ε → 0 for some
values of C0 and q. Then, applying standard formulas [11]
in the asymptotic limit kðεÞ → ∞ as ε → 0, we conclude
that

JðεÞ ∼ 4πεqjC0je−βkðεÞ
½kðεÞ�κþ1Γð−κÞ cos ½αkðεÞ þ ϕ0�; (11)

where φ0 ¼ argðC0Þ. Consequently, zeros of JðεÞ obey the
asymptotic formula (6) with φ0 ¼ π=2 − ϕ0.
If ~uðξÞ is a symmetric kink solution of Eq. (5), the

reasoning remains the same up to the point that Hε ~uðξÞ is
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now odd in ξ. We note that the integral condition similar to
(9) appeared before in the context of existence of embedded
solitons [12].
Examples.—The validity of the main result has been

confirmed by many numerical studies. Below we give three
illustrative examples that concern problems of different
physical origins.
Example 1: Consider the equation

ε2u0000 þ u00 − uþ ru2 − u3 ¼ 0; (12)

where ε is a parameter. Equation (12) arises in hydro-
dynamics where it describes traveling waves for the fifth-
order KdV equation [1]. If ε ¼ 0 and r > 3=

ffiffiffi
2

p
, Eq. (12)

has an exact soliton solution

~uðξÞ ¼ 3ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 9

2

q
cosh ξþ r

: (13)

Closest singularities in the upper complex half-plane to the
real axis are the simple poles

z�ðrÞ ¼ �arctanh
3ffiffiffi
2

p
r
þ iπ: (14)

SinceHε ¼ −ε2∂4
ξ , we note that the singularities ofHε ~u are

situated in (14) and are poles of order n ¼ 5 ¼ −κ. The
expansion (10) holds with CðεÞ ¼ ε2C0, where C0 is purely
imaginary. Therefore, ϕ0 ¼ π=2 in Eq. (11) and φ0 ¼ 0
in Eq. (6).
The dispersion relation (4) reads as ε2k4 − k2 − 1 ¼ 0

and it has one positive root k0ðεÞ such that k0ðεÞ ∼ 1=ε as
ε → 0. According to the main result, we expect that there
exists an infinite sequence of values fεng such that Eq. (12)
has soliton solutions for ε ¼ εn with the asymptotic
formula

πnεn ∼ α ¼ arctanh
3ffiffiffi
2

p
r

as n → ∞: (15)

Numerical computations strongly support this predic-
tion. Figure 1 shows the values α=ðπεnÞ which approach
integers for larger values of n. The profiles of the three
lowest solitons corresponding to points A, B, and C are
shown on the inserts by solid lines, together with the
limiting soliton (13) by dotted lines. The discrepancy
reduces quickly for larger values of n.
Example 2: Consider the nonlocal double sine-Gordon

equation

utt ¼
Z
R
Kεðjx − yjÞuyydyþ sin uþ 2a sin 2u; (16)

where a > 0 is a parameter. In particular, this equation
arises in nonlocal Josephson electrodynamics where it

describes layered structures [6] (the second sine harmonic
is important if they include, for instance, ferromagnetic
layers, [13]). A list of possible kernels Kε which arise in
Josephson models can be found in [14]. We assume that K0

is the Dirac distribution such that Eq. (16) with ε ¼ 0
reduces to the classical double sine-Gordon equation. If we
denote the Fourier transform of Kε by K̂εðkÞ, then K̂εðkÞ →
K̂0 ¼ 1 as ε → 0.
Traveling wave solutions uðξÞ ¼ uðx − vtÞ of Eq. (16)

satisfy the equation

v2uξξ ¼
Z
R
Kεðjξ − ξ0jÞuξ0ξ0dξ0 þ sin uþ 2a sin 2u: (17)

If ε ¼ 0, Eq. (17) reads

ð1 − v2Þu″ ¼ sin uþ 2a sin 2u; (18)

where v2 < 1 is assumed. We consider 2π-kink solutions
with boundary conditions at infinity: limξ→−∞uðξÞ ¼ 0,
limξ→þ∞uðξÞ ¼ 2π. For a > 0, Eq. (18) has an exact
2π-kink solution

~uðξÞ¼ πþ2 arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ4a
p sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4a

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1−v2

p ξ

��
; (19)

and the closest singularities to the real axis are the two
logarithmic branching points z� ¼ �αþ iβ, where

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p arccoshð1þ 8aÞ; β ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p :

The dispersion relation

−v2k2 þ k2K̂εðkÞ ¼ 1þ 4a

is assumed to have a single pair of real roots k ¼ �kðεÞ for
all v2 < 1. In particular, if Kε is the Kac-Baker kernel

FIG. 1. Soliton solutions of Eq. (12) with r ¼ 2.3. Values of
α=ðπεnÞ are shown by asterisks. Profiles of the first three solitons
are shown on the inserts by solid lines, the dotted line shows the
limiting soliton (13).
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KεðjζjÞ ¼
1

2ε
exp

�
− jζj

ε

�
; K̂εðkÞ ¼

1

1þ ε2k2
; (20)

then this assumption is satisfied and

k0ðεÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

εv
; as ε → 0:

Let us present arguments that Eq. (17) with the kernel
(20) admits an infinite sequence of the 2π-kink solutions.
We note that this equation can be reduced to the system of
differential equations

v2uξξ ¼ qþ sin uþ 2a sin 2u;

−ε2qξξ þ q ¼ uξξ; (21)

where an additional variable q is introduced. For the
limiting kink ~u, we denote a solution of the second equation
of the system (21) by ~q. Now since Hε ~u ¼ ~u″ − ~q, we
understand that Hε ~u has a double pole in ~u″ at z� ¼
�αþ iβ in addition to the logarithmic branching points in
~q. Hence, n ¼ 2 ¼ −κ and the expansion (10) hold with
CðεÞ → C0 as ε → 0, whereC0 is real. Therefore, ϕ0 ¼ 0 in
Eq. (11) and φ0 ¼ π=2 in Eq. (6).
According to the main result, we expect that there exists

an infinite sequence of values fεng such that Eq. (17) with
the kernel (20) has a 2π-kink solution for ε ¼ εn with the
asymptotic formula as n → ∞,

πð1þ 2nÞεn ∼ δ ¼ ð1 − v2Þarccoshð1þ 8aÞ
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p : (22)

Using an appropriate shooting method [15], we compute
numerically the values of ε, for which there exist 2π-kink
solutions of Eq. (17) with the kernel (20). Numerical
calculations strongly confirm the existence of the sequence
fεng as well as its asymptotic properties (22). The values of
δ=ðπεnÞ for a ¼ 1=8 and v ¼ 0.1 are given in Table I and
approach closer to odd integers for larger values of n.
Evidently, each value εn depends on the parameter v;

however, from the physical viewpoint, the inverse functions
vnðεÞ are more important. Figure 2 represents the depend-
ence of the velocities vn versus ε for the first three 2π-kink
solutions. The corresponding profiles of the 2π-kinks (solid
lines) at the points A, B, and C are shown in the inserts
together with the limiting kink (19) (dotted line). The
difference between the actual kink and the limiting kink
(19) is not visible already for kinks at points B and C.

Example 3: The discrete Klein-Gordon equation is one of
the basic equations describing lattice dynamics in various
contexts, from solid state physics to biophysics [2].
Traveling waves of the discrete Klein-Gordon equation
satisfy the equation

v2uξξ ¼ ε−2½uðξþ εÞ − 2uðξÞ þ uðξ − εÞ� þ FðuÞ; (23)

where ε is the spacing between lattice sites and F is a
nonlinear function. Bistable nonlinearity

FðuÞ ¼ uð1 − u2Þð1þ γu2Þ; γ > 0; (24)

may support kinks which satisfy the boundary conditions
limξ→�∞uðξÞ ¼ �1. If γ ¼ 0, Eq. (23) corresponds to the
classical ϕ4 model, where no traveling kinks were pre-
viously found [4]. We anticipate that for γ > 0 and v fixed
there exists an infinite sequence of traveling kinks for
discrete values of parameter ε.
If ε ¼ 0, Eq. (23) reads

ð1 − v2Þu00 þ uð1 − u2Þð1þ γu2Þ ¼ 0; (25)

where v2 < 1 is assumed. Equation (25) has the exact kink
solution

~uðξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
3þ γ

p
tanhðηξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ γÞ − 2γtanh2ðηξÞ
p ; η ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ γ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − v2Þ

p ;

(26)

and for γ > 0, the closest singularities to the real axis
are the two square root branching points z� ¼ �αþ iβ,
where

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ γÞp arccosh

�
3þ 5γ

3þ γ

�
; β ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ γÞp :

TABLE I. The values of δ=ðπεnÞ for which Eq. (17) with the
kernel (20) admits the 2π-kink solution for a ¼ 1=8 and v ¼ 0.1.

1þ 2n 1 3 5 7 9 11

δ=ðπεnÞ 3.7168 4.9763 6.3699 7.8595 9.4541 11.1396

FIG. 2. Kink solutions of Eq. (17) with the kernel (20). Values
of vn versus ε are shown for the first three solutions. Profiles of
the first three kinks are shown in the inserts by solid lines, the
dotted line shows the limiting kink (19).
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Note that if γ ¼ 0, then the only singularity of the exact
solution (26) occurs at the imaginary axis; hence, no
traveling kinks exist for γ ¼ 0 [4].
If γ > 0 the dispersion relation

−v2k2 þ 4ε−2 sin2ðkε=2Þ þ 2ð1þ γÞ ¼ 0

has a single pair of real roots k ¼ �kðεÞ for v ∈ ðv0; 1Þ for
some v0 ≡ v0ðγÞ > 0. More than one pair of roots exist
(always, an odd number) for v ∈ ð0; v0Þ. We note that
kðεÞ ∼ p0=ε as ε → 0, where p0 is a positive root of the
transcendental equation −v2p2

0 þ 4 sin2ðp0=2Þ ¼ 0. This
equation has a single pair of real roots for v ∈ ð ~v0; 1Þwhere
~v0 ≈ 0.22 [4].
For the limiting kink ~u, we have

Hε ~u ¼ ~u00 − ε−2½ ~uðξþ εÞ − 2~uðξÞ þ ~uðξ − εÞ�:
The first term yields the expansion (10) with κ ¼ −5=2
and CðεÞ ∼ C0e5iπ=4 as ε → 0 near the singular points
z� ¼ �αþ iβ, where C0 is purely imaginary. The second
term yields the expansion (10) with κ ¼ −1=2 and CðεÞ ∼
ε−2C0eiπ=4 as ε → 0, where C0 is purely imaginary. Both
terms yield equal contribution in ε that depends on v.
Nevertheless, for both terms, ϕ0 ¼ −π=4 in Eq. (11) and
φ0 ¼ 3π=4 in Eq. (6).
According to the main result, we expect that there exists

an infinite sequence of values fεng such that Eq. (23) has a
kink solution for εn with the asymptotic formula

πð4nþ 3Þεn ∼ χ ¼ 4p0α as n → ∞: (27)

Using Newton’s method with the fourth-order finite-
difference approximation of the second derivative, we com-
pute numerically the values of ε, for which kink solutions of
Eq. (23) exist. Numerical calculations strongly confirm the
existence of the sequence fεng as well as its asymptotic
properties (27). The values of χ=ðπεnÞ for γ ¼ 5 and v ¼ 0.6
are given in Table II with satisfactory agreement.
Conclusion.—We have shown on three prototypical

examples that an infinite sequence of traveling solitons
or kinks in wave systems with resonances is related to
singularities in the complex plane of the leading-order
asymptotic solution. This simple but universal observation
reveals the reason why traveling solitons or kinks have
increased mobility in some nonlinear systems with reso-
nances but not in others.
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