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Abstract. The problem of interaction of a smooth noniinear two-dimensional wave field and
a'large-amplitude quasi-plane solitary wave is considered in the framework of the Kadomtsev—
Petviashvili equation by means of the asymptotic multiscale technique. It is shown that their
interaction results in an essential transformation of a nonlinear wave field including the birth,
death and translation of soliton components of the field spectrum.

1. Imtroduction

In two-dimensional isotropic media with weak positive dispersion, the dynamics of quasi-
one-dimensional waves is described by the Kadomtsev~Petviashvili equation (KP) [1]

(du, + 12000, + texex), = 3uy, ' 1

which belongs to the class of integrable equations of mathematical physics [2]. Recent
investigations of this equation [3-8] reveal that the interaction of plane and two-dimensionat
solitary waves possesses a number of properties which are different from those of the usual
soliton interactions in one-dimensional integrable systems {9,10]. Firstly, it was found
[3.6, 7] that one-dimensional solitons can transform into periodic chains of two-dimensional
solitons due to instability with Tespect to long-wave transversal perturbations which has
been known for positive-dispersion media since the pioneering work of Kadomtsev and
Petviashvili [1]. However, the chains of two-dimensional solitons are also unstable with
respect to modulation of their fronts and decay into new chains with longer periods [6].
On the other hand, the inverse processes of merging solitary waves are also possible as a
result of their resonant interaction {4,5]. Such cascades of soliton decaying instabilities and
their resonant mergings should lead to the formation of a complex multiperiodic structure
of a nonlinear wave field in positive-dispersion media. Analysis of the appearance of such
" a structure has not been carried out until now.

In the present paper we consider the problem of a quasi-plane solitary wave
transformation on a smooth extended wave field. Using a modification of an asymptotic
multiscale technique (see [11,12]) we analyse the general features of soliton—wave field
interaction which becomes more complicated due to development of unstable transversal
perturbations on the solitary wave front. A new approach to a description of the wave
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processes in two spatial dimensions is based on a separation of the nonlinear wave field
into two components. The first (‘fast”) component is concentrated at a planar large-amplitude
soliton with small transversal perturbations and is described by the inhomogeneous Eckhaus
equation [12-14]. The second (‘slow’) component is distributed within a small smooth wave
field outside the large-amplitude soliton and is described by the original Kp equation.

All equations derived in the framework of our asymptotic multiscale approach are
integrable, which fits well into a general ideology developed in the papers [11,12].
Therefore, the soliton—wave field interaction can be described in an explicit form. Indeed,
the homogeneous Eckhaus equation was found to be integrable by Kundu [13] and its explicit
soliton solutions were investigated in detail by Calogero and de Lillo [14]. However, in
our case we deal with the equation where spatial and temporal variables are mutually
replaced [8]. This difference has an important consequence. We will show that the
inhomogeneous Eckhaus equation with replaced spatial and temporal variables possesses
active and dissipative properties caused by the energy flow which enters a fast soliton from
the wave field initially given and re-emits from the soliton as soliton radiation.

Qur analysis reveals the essential transformation of a two-dimensional nonlinear
wave field as a result of interaction with an individual large-amplitude soliton. Such a
transformation includes the birth, death and translation of soliton components of the extended
wave field. From a mathematical point of view, the fast soliton generates the Backlund-
Darboux transformation [15] which transforms the unperturbed field in front of the soliton
into a perturbed field behind it. On the other hand, the corresponding transformation of
the quasi-plane soliton also takes place and is represented by the change of transversal
modulation of its front. As a result, the fast and slow components of a common wave field
represent a close self-consistent system with full momentum and energy conserved.

2. Asymptotic description of soliton propagation

Let us consider the following multiscale expansion of solutions to (1)

u=ugE)+ € unpn(t, 3, X, ¥, T, 7). @

n=1

Here the basic term 1y = 1/ cosh?(§) describes the quasi-plane soliton with unit amplitude,
the variable & = x —r—xp(Y, T, ) corresponds to its moving coordinate, the slow variables
X =ex, Y =€y, T =¢t, v = €t determine the spatial and temporal variations of the
soliton and small-amplitede wave field, and € « 1 is a small parameter.

By substiiuting the expansion (2) into (1) we obtam the system of linear equations for
congecutive calculation of corrections w,,:

Luyp = Hypp(uo, 12, .. ., lin—1y72) nxzl. 3)
Here the linearized operator I on the soliton g has the form
k 2 a2 g4 32
L= 12— -3—
“hag T oaE )t g T

and the right-hand side operators H,,; are expressed by the lower-order corrections, except
the case 1 = 1 for which Hy» = 0. Let us choose the solution of the homogeneous
equation (3) at # = 1 in the following form:

a2 1
uip = (@(¥, T, 7) exp(iy) + cc) TS (Cosh(§)) . “4)
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The function uqy describes a perturbation to the quasi-plane soliton ug, which is
oscillating intensively along the transversal coordinate and is tocalized along the longitudinal
cocrdinate. Slow variables ¥, T and t determine the modulation of such a quasi-harmonic
wansversal perturbation and the non-stationary effects caused by development of the solitary
wave instability.

Using the explicit form of functions up. iy and sclving the inhomogeneous
equations (3) for n > 2 by means of the technique of separating variables, we can
consecutively find higher-order terms of the series (2). The corresponding expressions
are presented in our previous paper [8]. It is important to point out that, in a general case,
solutions of (3) contain terms which grow algebraically and exponentially as § —» d=co.
The algebraically growing terms appear in the order of O(e?) and describe a wave field
extending “outside the soliton and varying along the X-axis. The exponentially growing
terms must be removed because they lead to divergences of the asymptotic series.

The conditions of removing the exponentially growing terms are represented by the
equations imposed on the parameters of the soliton and its perturbation. For our problem,
the non-trivial equations appear when we include terms up to the order of O(e?). Note that
the amplitude of soliton perturbation has an order of O(¢!/2) that corresponds to the sifuation
in the nonlinear Schridinger equation where the coefficient before a cubic nonlinear term
is identically equal to zero (see [12]). ’

On applying the technique outlined above, we found that the varying part of soliton
velocity (xor) 15 expressed by an explicit formula

xor = lal* +€(3lal* + L@t + u7)lx=x,) + O (5)
and the amplitude of transversal perturbations on the soliton front (a) obeys the equation
—iay +arr +alal* + a(ut + 6" )x=x, + ) =0. : (6)

Here #* = € %uls100 are the components of extended wave field in front of the quasi-
plane soliton and behind it, respectively, and X (T) is the soliton coordinate in a fixed

_reference frame so that X; = T + O(e). The scheme of the problem under consideration is
depicted in figure 1.

Figore 1. Scheme of asymp'totic approach for
X description of the fast soliton-smooth wave field
interaction.

It can readily be shown that, outside the soliton, components u® = (X, Y, 1)
satisfy (1) which is rewritten in slow variables as follows

(4% + 1200 + w5y )y = 3ugy . (N

On the other hand, at the soliton position, these components are related by boundary
condition

(4™ — w")lxos, = 2(1aP)y + e[3(al’) + (6 + 1) xes] + O(E). ®
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Since components u* do not depend upon 7', the radiation escaping from the fast soliton
remains behind it. As a result, the component 4t = U(X, Y, ) is completely determined
by an initial distribution of the wave field. Therefore, the set of equations (5)-(8) is closed
and, in the leading order of our asymptotic expansions, it reduces to the following Eckhaus
equation with a given potential U/(X, Y, t):

—iay +arr +alal* + 2a(jal), + 2aU(X(T), ¥, 1) = 0. ©)

Note that the dependence of function a(¥, T, t) on 7 is implicit because dynamics of the
perturbations localized on the fast soliton occurs mainly on the scale of the time variable T.

Let ug consider the integral properties of the set of equations (7)—(9). If the function a
is supposed to be localized along the transversal coordinate ¥, we can introduce a functional
which has the sense of the varying part of the projection of soliton momentum on the x-axis:

+00
Po= [ [3iaa; —ara) +lar + Half] ar.
-CQ

Then, we can readily find from (9) that

dP; oo
7=/ _, (aB)r[(1af)y + UKD, ¥, D] Y .

This formula implies that the radiation escaping from the fast soliton always leads to loss
of soliton momentum, while the incoming field Y can lead both to loss and to storing
of momentum on the fast soliton. On the other hand, a change of momentum in a
localized component of the wave field should be compensated by the corresponding change
of momentum in an extended component.

Indeed, the x-projection of momentum of the smooth wave field described by (7) has

the form
+e0 -
P= %/f () dx dy
—e0

where
uy = u" (X, ¥, 000X — X) +u~ (X, ¥, D)(1 - 6(X — X))

and #(x)} is the unit (Heaviside) function. Then, direct calculations give

= [ 4 = e 07 = 22

dpP, /"" o dp;

Thus, the fast soliton and the extended wave field represent a close system so that the
full momentum (and energy) of this system do not change as a result of nonlinear wave
transformations. )
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3. Reduction to the Backlund-Darboux scheme

We now consider solutions to the sct of equations (5), {7}—(9) and assume that function U/

is smgoth throughout the X-axis. As the soliton coordinate X is proportional to the time

variable T in a leading order of asymptotic expansions and functions u* do not depend

upon 7T, variable T can be replaced in (8) and (9) by variable X. It corresponds to the

choice of a spatial scale in the fixed reference frame for the description of dynamics of
the perturbations localized on the moving soliton. Let us introduce the transformation of

dependent variables [14]

ad =

lal* = xo = 310g(f) (10)

- Jx
v2f 2f

Since the function [a? is -real, f is real, t0o. On replacing the dependent variables,
equation (9} transforms to the linear inhomogeneous Schridinger equation for function g:

igr = gxx +2Ug (1)

while function f is related to g by the formula

X
f=C+f lg[*dX . (12)

Here € is an arbitrary constant of integration.

There exists the direct relationship between a general solution to (9) and exact solutions
to the KP equation. First of all, equation {7) for function U/ (X, ¥, ) is a solvability condition
of a pair of linear partial differential equations (Lax pair) one of which is presented by
(11) [2]. It means that the implicit dependence of functions a, f and g on t can be
determined by the other linear differential equation

gz’+gXXX+3ng+%(Ux+nydX)g=O, (119

Furthermore, equation (8) can be rewritten in new variables as
u” =U+ (log(fxx (13)

where we neglect terms of the order of O(¢). Equation (13) determines the instant profile
of wave field u~ which is formed behind the moving quasi-plane soliton as a result of
its radiation. We remind the reader that the evolution of this distribution along the slow
variable T obeys the KP equation (7).

Together with the formulae (11), (117) and (12), the expression (13) is nothing other than
the Backlund-Darboux transformation [15] from one solution of the KP equation u* = U
to the other solution 1™, Thus, the interaction of a large-amplitude soliton and an extended
wave field can be regarded as the transformation of smooth small-amplitude nonlinear waves
occurring in accordance with the Backlund-Darboux transformation. On the other hand,
this interaction also results in transformation of transversal perturbations localized on the
large-amplitude soliton and described by amplitude a.



608 K A Gorshkov and D E Pelinovsky

4. General solutions of approximate equations and related transformation of the
nonlinear wave field

In a one-dimensional case, interaction of a fast soliton and a smooth wave field reduces to a
small phase shift of nonlinear waves along the x-axis. Indeed, equation (8) at 4 = 0 implies
that the wave field behind the soliton »~ differs from the wave field in front of the soliton
ut by a small value of the order of O(¢). Moreover, this small correction corresponds
exactly to the coordinate translation of the smooth wave field appearing under the action of
the fast soliton

00
u‘=u+(X+ef uodé’,t).
-0

On the other hand, it follows from (5) that the fast soliton also acquires a phase shift
when it moves along the smooth distribution of 4*. This phase shift is found to be

X
Ax:e[ whdX.

-0

After interaction, the fast soliton is described by the function

+o0
u=uo(x—t—-sf u‘i‘d}().
—0

Note that such a trivial result of the interaction of one-dimensional nonlinear waves is well
known for many integrable equations of mathematical physics [9, 10].

The dynamics of nonlinear waves in a two-dimensional case is cardinaily different. In
what follows we analyse the characteristic types of the soliton—wave field interaction in
the presence of transvessal perturbations at the soliton front (@ # 0). For this purpose we
express potential u™ by a superposition of two terms (the so-called solvable and unsolvable
components [16]):

w* = Up+ (og(Fx))xy - (14)

Here the term Uy describes wave disturbances of the continuous spectrum while the function
Fy corresponds to soliton solutions and is expressed in a general form by the determinant
of the Nth order

X

Fy = det (c,,a,,,,, + gngn dX

) (15)
—00 1€n,mSN

Each partial function g, in determinant F satisfies the shortened equations (11) and
(11") where the function U is replaced by Up. Furthermore, the dressing method as well
as the Backlund-Darboux transformation method [15,16] allow us to express a general
solution to the complete equations (11), (11"} and (12) by the same set of partial functions
gn for 1 € n € N and an additional function gy;; which represents a general solution
to the shortened equations (11) and (11’). Omitting details of applying this technique, we
write the corresponding expressions for functions g and f:

_Gw _ Eyn




Wave field transformation 609

where
X
Crdpm + gagn dX 1€ N 1€<m<N
—g0
Gy =det X an
f gN+1g:,dX n=N+1 1<m<gN
-0
&n I€<ngE< N+l m=N+1

and Fy.1 is given by (15) with the substitution N — N + 1. Using eqution (16) we easily
find that the wave field behind the soliton &~ is expressed by the determinant Fy4; of the
(N -+ 1)th order:

w™ = Up + (log(Fn41))xx - (18)

Thus, in a general case, the interaction of a fast soliton with a small transversal
perturbation and 2 smooth wave field gives rise to a new component of the nonlinear
wave specirum which is described by the function gy..;- Note that each function g, being
a solution- of linear partial differential equations generates a non-stationary multisoliton
distribution of a nonlinear wave field [6]. Therefore, the wave field 1~ behind the fast
soliton can have a more complicated form than the wave field «™ and may contain new plane
solitons and two-dimensional solitary waves with transversely modulated fronts which are
generated by a new function gyyi. Such an enlargement of the nonlinear wave spectrum is
caused by the development of unstable perturbations on the background of a large-amplitude
soliton and its transformation to a quasi-plane modulated wave. During this transformation
part of the soliton momentum goes into the extended field in the form of small-amplitude
radiation [8]. _

Besides such a general type of soliton-wave fleld interaction, there exist other types
when the spectrum of nonlinear waves either transforms in a trivial manner like that in the
one-dimensional case or transforms with the death of a soliton component. These types
are also described by (16) and (18) but the function g4 becomes dependent on g, for
somen S N. ,

Indeed, such a dependence decreases the order of determinants Gy and Fy.y. So, for
gn+1 = &y we can readily show that the following relations are met:

Gy =CyGy_y Fyy1 = (Cy + Cny1)Fy — CoFy_1.

As aresult, at Cyy1 5 —Cy the field #~ is given by the same expression (14) as #™* but
the constant Cy in determinant Fyy is replaced by CyCn41/(Cy + Cy1)- In this case, the
wave field structure does not change excepting the trivial shift of phase constants in soliton
components. However, if Cya = —Cy we reveal a more essential transformation of the
smooth wave field because now the distribution of #~ is determined by the determinant
Fy_1 which is different from Fy by ‘loss’ of the function gy. The corresponding soliton
component of the original wave field u™ is absorbed by the large-amplitude soliton when it
moves along this field.

Thus, in positive-dispersion media the interaction of quasi-plane solitons and extended
wave fields may lead to the transformation of a number of soliton components as well as of
their qualitative structure due to processes of decaying instability and resonant merging of
solitary waves. The asymptotic approach described in this paper enables us to regard these
processes as a self-consistent transformation of a nonlinear wave field occurring under the
action of an individual solitary wave moving along the extended field.
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