
Traveling waves in fractional models
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Abstract Fractional models of the Korteweg-de Vries (KdV) type are dis-
cussed in the context of propagation of one-dimensional traveling waves in
nonlocal nonlinear dispersive systems. Spatially periodic waves can be con-
structed by using small-amplitude expansions, fixed-point methods, and cal-
culus of variations. The existence theory is closely related to the stability
theory, both of which provide the first step towards understanding of the non-
linear dynamics of traveling periodic waves in such nonlocal systems. Recent
existence and stability results on the traveling periodic waves are reviewed
for the fractional KdV models with quadratic and cubic nonlinearities.

1 Introduction

Nonlinear dispersive systems can be analyzed by using the power expansion
of the dispersion relation near a selected wave number and the asymptotic
small-amplitude slowly varying expansion of the wave profile near a constant
equilibrium. The universal long-scale model for unidirectional wave propa-
gation which appears in many physical contexts is the Korteweg–de Vries
(KdV) equation

ut + uux + uxxx = 0, (1)

where u = u(x, t) is a scalar function in spatial coordinate x and time variable
t and all variables have been normalized for convenience of notations. In the
cases when the coefficient of the quadratic nonlinearity vanishes (which may
happen due to the symmetry with respect to the sign change in the wave
profile), the main model is written with the cubic nonlinearity and is usually
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referred to as the modified KdV (mKdV) equation

ut + u2ux + uxxx = 0. (2)

Both models correspond to the expansion of the dispersion relation for the
wave frequency ω with the wave number k up to the cubic powers via

ω(k) = c1k + c3k
3 +O(k5) as k → 0,

where c1, c3 are coefficients of the expansion. The nonlocal nonlinear disper-
sive systems of the KdV type were introduced in [1] as the way to generalize
the dispersion relation to a non-cubic power expansion, e.g.

ω(k) = c1k + c1+α|k|αk +O(|k|2αk) as k → 0,

where α ∈ (0, 2) is a parameter which models the fractional power of the
wave dispersion. This expansion defines the fractional KdV equation

ut + uux = (−∆)α/2ux (3)

and the fractional mKdV equation

ut + u2ux = (−∆)α/2ux, (4)

which are the main nonlocal nonlinear dispersive models considered here.
When α = 2, these equations reduce to the KdV equations (1) and (2). When
α = 1, these equations are referred to as the Benjamin–Ono equations, for
which (−∆)1/2ux = −Huxx is expressed by using the Hilbert transform H.

The best way to understand the nonlocal operator (−∆)α/2 called the frac-
tional Laplacian is to use the Fourier methods which depend on the spatial
domain of the wave profiles. Spatially decaying (solitary) waves are posed on
the real line R, for which we can work with the Fourier transform. Spatially
periodic waves are analyzed by using the Fourier series for periodic functions.
For convenience of notations, we will always work in the normalized periodic
domain T = R/(2πZ), for which the Fourier series and the fractional Lapla-
cian are defined by

f(x) =
∑
n∈Z

fne
inx, (−∆)α/2f(x) =

∑
n∈Z

|n|αfneinx. (5)

Since the Fourier transform is an isomorphism in the space of squared
integrable functions, the fractional models (3) and (4) are usually considered
in a subset of squared integrable functions for which some integral quantities
are conserved in the time evolution. The two basic conserved quantities have
the meaning of energy
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E(u) =
1

2

∫
T

((−∆)α/4u)2dx− 1

k(k + 1)

∫
T

uk+1dx, (6)

and momentum

F (u) =
1

2

∫
T

u2dx, (7)

where k = 2 for (3) and k = 3 for (4). Another conserved quantity having
the meaning of mass also makes sense on the periodic domain:

M(u) =

∫
T

u dx. (8)

The momentum and mass in (7) and (8) are defined in the space L2(T) of
squared integrable functions on T thanks to the Cauchy–Schwarz inequality:

‖f‖L1 ≤
√

2π‖f‖L2 , ∀f ∈ L2(T).

The first term of energy in (6) is defined in a subset of L2(T) for which
(−∆)α/4u ∈ L2(T), which coincides with the Sobolev space Hα/2(T). Func-
tions in Hα/2(T) are continuous and bounded if α > 1, for which the periodic
boundary conditions u(−π) = u(π) are satisfied at the end points of the spa-
tial domain. The second term of energy in (6) is bounded if α > (k−1)/(k+1)
due to the Sobolev inequality [6],

‖f‖Lk+1 ≤ C‖f‖Hα/2 , ∀f ∈ Hα/2(T),

where k+1 < 2/(1−α) and C > 0 is independent of f ∈ Hα/2(T). For k = 2
in (3), this yields the restriction α > 1/3, and for k = 3 in (4), this yields
the restriction α > 1/2. The fractional KdV equations (3) and (4) are hence
defined in the energy space Hα/2(T) with α > 1/3 and α > 1/2 respectively.

The initial-value problem for the fractional KdV equations must have a
unique local solution in Hα/2(T) which is continuous with respect to the
time t and to the initial data if we want the evolution model to be physically
relevant and the conserved quantities (6), (7), and (8) be useful. This leads
to the concept of well-posedness which we will review on the infinite line R.

We say that the initial-value problem for the fractional KdV equations
is locally well-posed in Hα/2(R) if for every u0 ∈ Hα/2(R), there is a
maximal existence time τ0 > 0 and a solution u ∈ C0([0, τ0), Hα/2(R))
such that u(0, ·) = u0 and for every τ ∈ (0, τ0), the solution u ∈
C0([0, τ ], Hα/2(R)) depends continuously on the initial data in a neigh-
bohood of u0 ∈ Hα/2(R). If τ0 =∞, we say that the initial-value problem
is globally well-posed.

Local well-posedness for (3) in Hs(R) was obtained for α ∈ [1, 2] in [25]
with s > (9−3α)/4. This yields the global well-posedness in the energy space
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Hα/2(R) for α ≥ 9/5. Global well-posedness in L2(R) was shown in [21] for
α ∈ (1, 2] and in [23] for α = 1. Local well-posedness in Hs(R) was obtained
for α ∈ (0, 1) in [31] for s > 3(4− α)/8 and in [34] for s > (6− 5α)/4. As a
result, the global well-posedness in the energy space Hα/2(R) was obtained
for α ∈ (6/7, 1) and it was conjectured in [31] that the global well-posedness
holds for all α ∈ (1/2, 1).

Local well-posedness for (4) in Hs(R) was shown for α ∈ (1, 2] in [26] for
s ≥ (7−3α)/4 and in [19] for s ≥ (3−α)/4. Global well-posedness hold in the
energy space Hα/2(R) for every α ∈ (1, 2]. Global existence for small initial
data in the energy space was shown for α = 1 in [27]. A finite-time blow up
for the critical value of momentum F (u) = F0 was obtained in [33].

Although the initial-value problem for (3) and (4) was considered on R,
similar (but appropriately modified) results are also relevant on T.

The main focus of this chapter is on the existence and stability of traveling
periodic waves in the fractional KdV equations. Compared to the local KdV
equations, the existence and stability results cannot be concluded with the
ODE methods. We have to deal with small-amplitude expansions, fixed-point
methods, and calculus of variations to characterize the existence and stability
of the traveling periodic waves.

The existence and stability results have already been obtained for trav-
eling solitary waves on the infinite line in the energy space Hα/2(R). Soli-
tary waves for (3) were characterized as minimizers of energy subject to the
fixed momentum in [2] for α ≥ 1 and in [32] for α > 1/2. Existence and
uniquness (modulus translations) of solitary waves was shown in [18] for (3)
with α > 1/3 and for (4) with α > 1/2 by using a different variational char-
acterization of solitary waves as minimizers of the Gagliardo–Nirenberg in-
equality. Existence results from [2, 32] combined with the local well-posedness
in the energy space from [21, 23, 31, 34] imply the orbital stability of solitary
waves in (3) for α > 1/2 in the following sense.

Let φc ∈ Hα/2(R) be the profile of the traveling solitary wave

u(x, t) = φc(x− ct)

with some speed c ∈ R. We say that the traveling solitary wave is orbitally
stable in Hα/2(R) if for every ε > 0 there exists δ > 0 such that if the
initial data u0 ∈ Hα/2(R) is close to φc as

‖u0 − φc‖Hα/2 < δ,

then the unique global solution u ∈ C0([0,∞), Hα/2(R)) to the fractional
KdV equation with u(·, 0) = u0 stays close to the orbit {φc(· − s)}s∈R as

inf
s∈R
‖u(·, t)− φc(· − s)‖Hα/2 < ε, t ≥ 0.
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The solitary waves in (3) were shown in [7] to be orbitally stable for
α > 1/2 and unstable for 1/3 < α < 1/2. The border case of α = 1/2
was left open. Similarly, the solitary waves in (4) were shown to be orbitally
stable for α > 1 and unstable for 1/2 < α < 1. Instability of solitary waves in
(4) for the border case α = 1 was shown in [33]. These results were extended
to solitary waves in all dimensions in [39]. Transverse stability of solitary
waves in the fractional models was addressed in [11].

In regards to the traveling periodic waves, we should agree to only consider
the periodic solutions with a single-lobe profile for which there exists only one
maximum (and minimum) point on T. Periodic solutions with a multiple-lobe
profile can be constructed by a scaling transformation from periodic solutions
with a single-lobe profile.

Existence and stability of such traveling periodic waves were analyzed
for (3) by using small-amplitude expansions [24] and fixed-point methods
[12]. A variational characterization of periodic waves as constrained minimiz-
ers of energy E subject to fixed momentum F and mass M was developed
in [13, 22] for (3) with α > 1/3 under some non-degeneracy condition on
the kernel of the linearized operator. Positivity of profiles of the periodic
waves was proven in [28] based on the fixed-point methods under the same
non-degeneracy condition. Positive waves were also characterized in [20] for
α > 1/2 as constrained minimizers of energy E subject to fixed momentum
F without constraint on the mass M . Minimizers of energy exist for every
positive momentum and each such minimizer is degenerate only up to the
translation symmetry.

A variational characterization of periodic waves similar to the minimiza-
tion of the Gagliardo–Nirenberg inequality was developed in [35] for (3) and
in [36] for (4). The periodic waves were characterized as constrained mini-
mizers of the quadratic part of energy E and the quadratic momentum F
subject to the fixed non-quadratic part of energy E and mass M . It was
shown in [35] for (3) that the zero-mass constraint M(u) = 0 can be set
without loss of generality to obtain all traveling periodic waves for α > 1/3
including those for which the non-degeneracy condition from [22] fails and
those which are not constrained minimizers of energy for fixed momentum in
[20]. On the other hand, a more complicated structure of traveling periodic
waves arises for (4) with three distinct branches obtained in [36]. A complete
characterization of all branches was developed in [30] but only in the local
case α = 2, for which the fractional mKdV equation (4) becomes the mKdV
equation (2). Further results on existence and stability of traveling periodic
waves in other fractional models were obtained in [5, 9].

The main purpose of this chapter is to review the recent results on the
existence and stability of the traveling periodic waves in (3) and (4). In the
sequential order of appearance, we will explain the small-amplitude expan-
sion in Section 2, the fixed-point methods in Section 3, and the variational
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characterization of periodic waves in Section 4. Section 5 specifies the crite-
ria for spectral stability of the traveling periodic waves, which also yield the
orbital stability in cases when the time evolution of the initial-value problem
is locally well-posed in the energy space Hα/2(T). Section 6 gives numerical
examples of the traveling periodic waves with the single-lobe profiles. Section
7 concludes the chapter with a list of open questions for future studies.

2 Small-amplitude expansions

A traveling wave in the fractional KdV equations is given by a solution of the
form u(x, t) = φc(x−ct), where c is the wave speed and φc is the wave profile
defined on T. Traveling wave solutions satisfy the stationary equation:

(−∆)α/2φc + cφc + b =
1

k
φkc , (9)

where b is another constant obtained after integrating (3) and (4) in x. As
before, we use k = 2 for (3) and k = 3 for (4). It follows from (9) that the
profile φc actually depends on two parameters c and b, so that we should
write φc ≡ φc,b in a general case. This is one complication in the study of the
traveling periodic waves compared to the traveling solitary waves for which
b = 0 follows from the decay of φc to zero at infinity.

For the fractional KdV equation with quadratic nonlinearity, k = 2, the
problem with appearance of the new parameter b can be resolved with a
transformation, which is usually referred as the Galilean transformation.

If φc,b is a suitable solution to (9) with k = 2 for some (c, b) satisfying
c2 + 2b ≥ 0, then

ϕω := φc,b − c−
√
c2 + 2b, ω :=

√
c2 + 2b (10)

is a solution of

(−∆)α/2ϕω − ωϕω =
1

2
ϕ2
ω. (11)

Every periodic solution ϕω of (11) for some fixed ω ≥ 0 generates a curve
of periodic solutions of (9) with k = 2 in the parameter plane (c, b) in the
region c2 + 2b ≥ 0. Moreover, if ϕω is a solution of (11) for ω > 0, then
ϕ−ω := 2ω + ϕω is a solution of (11) with ω replaced by −ω.

Since b + cφ − φ2/2 is strictly negative for c2 + 2b < 0, there exist no
periodic solutions in the region c2 + 2b < 0 with the contradiction appearing
for every φc ∈ Hα/2(T):

0 =

∫
T

(−∆)α/2φcdx = −
∫
T

(b+ cφc −
1

2
φ2c)dx > 0.
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Hence, the Galilean transformation transforms all periodic solutions of (9)
with k = 2 to the stationary equation (11) with the only parameter ω. Figure
1 shows the existence region of the single-lobe periodic solutions of (11) with
ω ≥ 1 on the (c, b) parameter plane obtained by means of (10).

-2 -1 0 1 2

c

-1

-0.5

0

0.5

1

b

Fig. 1 The existence region on the parameter plane (c, b) for the single-lobe periodic

solutions of the stationary equation (9) obtained with (10) and (11) for ω ≥ 1.

A robust method to understand the existence properties of periodic so-
lutions of (11) is based on the perturbative method which is referred to as
the small-amplitude expansions. This method describes the bifurcation of a
family of periodic solutions from the constant solution. The linear operator
Lω := (−∆)α/2 − ω in L2(T) has a purely discrete spectrum of eigenvalues.
It follows from the Fourier series (5) that eigenvalues of Lω are located at
the points {|n|α − ω, n ∈ Z}. Periodic solutions with the single-lobe profile
(defined in Section 1) correspond to the first Fourier modes with n = ±1 for
which the operator Lω has zero eigenvalue for ω = ω0 := 1. Bifurcation of
the periodic solutions with the single-lobe profile is expected for ω 6= ω0 in
either ω > ω0 or ω < ω0.

Computations of the small-amplitude expansions are fully algorithmic. We
subsitute the following expansions

ϕω(x) = aϕ1(x) + a2ϕ2(x) + a3ϕ3(x) +O(a4),

ω = ω0 + a2ω2 +O(a4)

into (11) and collect equations in powers of the formal small parameter a:

O(a) : ((−∆)α/2 − ω0)ϕ1 = 0,
O(a2) : ((−∆)α/2 − ω0)ϕ2 = 1

2ϕ
2
1,

O(a3) : ((−∆)α/2 − ω0)ϕ3 − ω2ϕ1 = ϕ1ϕ2.
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Since (−∆)α/2 has the translation symmetry and preserves even parity, we
can consider the wave profile ϕω to be even in x in order to define the transla-
tional parameter uniquely. Since a is the free amplitude parameter (positive
or negative), we normalize the leading-order solution as

ϕ1(x) = cos(x)

and require that all other corrections of the expansion of ϕω to be even and
orthogonal to ϕ1. Solving the inhomogeneous equation at O(a2) yields the
exact periodic solution as

ϕ2(x) = −1

4
+

1

4(2α − 1)
cos(2x).

The inhomogeneous equation at O(a3) admits non-periodic solutions of the
type x sin(x) unless ω2 is uniquely defined by removing the non-periodic term.
This procedure yields the exact value:

ω2 =
1

4
− 1

8(2α − 1)
.

With this value of ω2, the inhomogeneous equation at O(a3) yields the exact
periodic solution:

ϕ3(x) =
1

8(2α − 1)(3α − 1)
cos(3x).

This completes the small-amplitude expansions up to the O(a4) order.

The method of Lyapunov–Schmidt reductions can be used to justify the
small-amplitude expansions. This justification was developed in Lemma 2.1
and Theorem A.1 of [24] for α > 1/2, which is the restriction to ensure
smoothness of the nonlinear term in the domain space Hα(T) of operator
Lω. The result can be extended to every α > 1/3 by working in the form
domain Hα/2(T) of Lω. The following theorem presents the small-amplitude
expansion of the periodic function with the profile φc which solves (9) with
k = 2 and b = 0.

Theorem 1 For every α > 1/3, there exists a0 > 0 such that for every
a ∈ (−a0, a0), there exists a locally unique, even, single-lobe solution (c, φc)
of (9) with k = 2 and b = 0, which is expressed by the expansion

φc(x) = 2c+ a cos(x)− 1

4
a2 +

1

4(2α − 1)
a2 cos(2x)

+
1

8(2α − 1)(3α − 1)
a3 cos(3x) +O(a4), (12)

and



Traveling waves in fractional models 9

c = 1 +
2α+1 − 3

8(2α − 1)
a2 +O(a4). (13)

The mapping a 7→ (c, φc) is smooth near a = 0.

One striking feature follows from (13) that the single-lobe periodic solution
bifurcates to c > 1 if α > α0 and to c < 1 if α < α0, where

α0 :=
log 3

log 2
− 1 ≈ 0.585. (14)

This property was discovered in [28]. The presence of α0 implies a non-trivial
fold bifurcation of the periodic waves in the fractional KdV equation (3) with
α < α0 explored in [35]. We will elaborate more on the fold bifurcation of
the traveling periodic waves for α < α0 in Section 4. Solutions of Theorem 1
correspond to the line {(c, b) : c ≥ 1, b = 0} on Figure 1 for α > α0.

Small-amplitude expansions are also important for the fractional mKdV
equation (4), see Sections 3.1, 5.1 and Appendix A in [36]. However, the
construction of traveling periodic waves is more complicated in the cubic
case because the additional parameter b in the stationary equation (9) with
k = 3 cannot be eliminated by the Galilean transformation. As a result, three
branches of solutions coexist for α ∈ ( 1

2 , 2], see [30, 36].
The small-amplitude expansions of one of the three branches of the peri-

odic solutions can be computed for (9) with k = 3 and b = 0. The periodic
solutions with the single-lobe profile bifurcate from the constant solution
φc =

√
3c at c = 1/2, see Proposition 5.1 in [36]. It has been discovered that

the branch of the periodic solutions bifurcates to c > 1/2 if α > α0 and to
c < 1/2 if α < α0, where the threshold value of α = α0 is now given by

α0 :=
log 8− log 5

log 2
− 1 ≈ 0.678. (15)

A fold bifurcation exists for the periodic waves in the fractional mKdV equa-
tion (4) with α < α0 in addition to the pitchfork bifurcation of the three
solution branches which exists for every α ∈ (1/2, 2], see [30, 36].

3 Fixed-point methods

Fixed-point methods allow us to obtain information on the periodic solutions
of the stationary equation (9) with (c, b) away from the bifurcation point
where the periodic solutions bifurcate from the constant solutions. Positivity
of the single-lobe profile φc,b can be proven for a subset of parameters (c, b).

In order to rewrite the stationary equation (9) as the fixed-point problem,
we set b = 0 and consider c > 0, then the linear operator Lc := c+ (−∆)α/2
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in L2(T) is strictly positive and invertible with a bounded inverse. By using
the Fourier series (5), we can write the inverse operator L−1c in the form

L−1c f =
∑
n∈Z

fn
c+ |n|α

einx.

It can also be written in the convolution form

[L−1c f ](x) =

∫
T

Gc(x− y)f(y)dy,

where Gc is the Green function defined by the Fourier series

Gc(x) :=
1

2π

∑
n∈Z

einx

c+ |n|α
. (16)

Let us use the Green function Gc in order to rewrite the stationary equa-
tion (9) with k = 2, b = 0, and c > 0 as the fixed-point equation φc = Ac(φc)
for the following nonlinear operator

[Ac(φ)] (x) :=
1

2

∫
T

Gc(x− y)φ(y)2dy. (17)

Existence and positivity of the single-lobe profile φc as a fixed point of Ac in
Hα/2(T) follows from applications of the Krasnoselskii theorem in a positive
cone, see Corollary 20.1 in [17]. This was shown in Theorem 2.2 of [28] for
every c > 1 under a non-degeneracy assumption on the linearized operator

Mc := c+ (−∆)α/2 − φc.

Due to the translation invariance of the stationary equation (9) and smooth-
ness of the wave profile φc ∈ H∞(T), we have

Mc∂xφc = 0

with ∂xφc ∈ Ker(Mc). The non-degeneracy assumption

Ker(Mc) = span(∂xφc)

implies that the zero eigenvalue of Mc is simple in L2(T). It was shown
in [35] that the non-degeneracy assumption can only be satisfied if α > α0,
where α0 is given by (14), and is violated for some periodic solutions with the
single-lobe profile if α < α0. The following theorem states positivity of the
single-lobe profile φc as a fixed point of Ac in Hα/2(T) for c > 1 if α > α0.

Theorem 2 Fix α ∈ (α0, 2]. For every c > 1, there exists a fixed point
φc ∈ Hα/2(T) of the nonlinear operator Ac in (17) such that min

x∈T
φc(x) > 0

provided that Ker(Mc) = span(∂xφc) for every c > 1.
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We illustrate the proof of Theorem 2 based on the following steps.

1. For every c > 0 and every α ∈ (0, 2], the Green function Gc in (16) is even,
strictly positive on T, and monotonically decreasing away from x = 0.

This result on R was shown in Lemma A.4 in [18]. The proof on T was
developed in Theorem 1.1 in [29] by exploring relations of the Green func-
tion Gc to the Mittag–Leffler functions. A simpler proof exploring a prob-
abilistic representation of the Green function Gc was given in [40]. For
illustration, we show profiles of the Green function Gc for specific values
of c in Figure 2 for α = 0.5 (left) and α = 1.5 (right). Note that Gc(0) =∞
for α ≤ 1 and Gc(0) <∞ for α > 1.
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)
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c= 10

Fig. 2 Profiles of Gc for specific values of c are plotted versus x on T for α = 0.5 (left)

and α = 1.5 (right). Reproduced from [29].

2. For every c > 0 and α ∈ (1/2, 2], there exists a positive cone Pc ⊂ L2(T)
such that the nonlinear operator Ac : Pc 7→ Pc is compact.

We can give a precise definition of the positive cone Pc ⊂ L2(T). From
Step 1, it follows that there is mc > 0 such that Gc(x) ≥ mc for every
x ∈ T. On the other hand, it follows from (16) that Gc ∈ L2(T) for
α > 1/2, hence Mc := ‖Gc‖L2 <∞. The positive cone is then given by

Pc :=

{
φ ∈ L2(T) : φ(x) ≥ mc

Mc
‖φ‖L2

}
.

The operator Ac is bounded and continuous on L2(T) due to Young’s
convolution inequality:

‖Ac(φ)‖L2 ≤ 1

2
‖Gc‖L2‖φ2‖L1 =

1

2
Mc‖φ‖2L2 .

Moreover, it is the limit of compact operators defined by the partial sum
of the Fourier series, hence it is compact. Finally, Ac is invariant in Pc due
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to the following bound:

[Ac(φ)] (x) ≥ 1

2
mc‖φ‖2L2 ≥

mc

Mc
‖Ac(φ)‖L2 .

3. There are 0 < r− < r+ < ∞ such that there exists a fixed point of Ac
in Pc ∩ (Br+\Br−), where Br (Br) is an open (closed) ball of radius r in
L2(T).

If

r− <
2

Mc
≤ 2√

2πmc

< r+,

then bounds in Step 2 imply that

‖Ac(φ)‖L2 ≤ 1

2
Mcr−‖φ‖L2 < ‖φ‖L2 , φ ∈ Pc ∩ ∂Br−

and

‖Ac(φ)‖L2 ≥ 1

2

√
2πmcr+‖φ‖L2 > ‖φ‖L2 , φ ∈ Pc ∩ ∂Br+ ,

where ∂Br is the boundary of Br. Note that Gc(x) ≥ mc implies
Mc ≥

√
2πmc which ensures that r+ > r−. The existence of a fixed point

ofAc in Pc∩(Br+\Br−) follows from the Krasnoselskii fixed-point theorem.

4. If φc ∈ L2(T) is a fixed point for Ac, then φc ∈ H∞(T).

This result has been proven independently by several authors, see Propo-
sition 2.1 in [22], Theorem 2.2 in [28], and Proposition 2.4 in [35].

5. If α ∈ (α0, 2], the fixed point φc of Ac has the positive single-lobe profile
for every c > 1 provided that Ker(Mc) = span(∂xφc) for every c > 1.

The constraint c > 1 appears from the fact that the constant solution φ =
2c is always a fixed point of Ac in Pc∩(Br+\Br−). However, the associated
linearized operator A′c(2c) = 2cL−1c in L2(T) admits eigenvalues

{2c(c+ |n|α)−1, n ∈ Z}.

Recall that the fixed-point operator Ac(φc) is a contraction at a fixed
point φc ∈ Hα/2(T) if all eigenvalues of A′c(φc) in L2(T) are inside the
unit disk. For c ∈ (0, 1) there is only one eigenvalue of A′c(2c) outside the
unit disk, it corresponds to n = 0. At c = 1, a pair of eigenvalues of A′c(2c)
for n = ±1 crosses the unit circle and this corresponds to the bifurcation
studied in Theorem 1. For c > 1, three and more eigenvalues of A′c(2c)
are outside the unit circle and, if α > α0 ≈ 0.585, the single-lobe positive
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solution φ = φc bifurcates from the constant solution φ = 2c for c > 1 and
exists as the small-amplitude expansion (12)–(13) in Theorem 1. Since the
kernel of Mc is assumed to be non-degenerate, the number of negative
eigenvalues of Mc persists for c > 1. By Lemma 2.2 and 2.4 in [28], there
is only one negative eigenvalue ofMc for every c > 1. Hence, there is only
one eigenvalue outside the unit disk for the associated linearized operator

A′c(φc) = L−1c φc = Id− L−1c Mc.

As a result, the branch of the fixed points of Ac with a positive single-lobe
profile φc ∈ Hα/2(T) in Pc∩ (Br+\Br−) has only one eigenvalue of A′c(φc)
outside the unit disk for every c > 1, whereas any other branch of fixed
points of Ac with constant or multiple-lobe periodic profiles has three and
more eigenvalues. Hence, the branch with the positive single-lobe profile
φc does not coalesce with any other branches of fixed points of Ac and
persists for every c > 1.

The result of Theorem 2 is very useful in the numerical approximations of
the periodic solutions of the stationary equation (9) with k = 2 and b = 0
by using Petviashvili’s iteration method [28]. In fact, Petviashvili’s method
implements iterations of the operator Ac after adding a constraint which re-
moves the only eigenvalue of A′c(φc) outside the unit disk. Although it might
not be obvious why the positive solution of Theorem 2 should have the single-
lobe profile for every c > 1 far away from the bifurcation point, this follows
from Sturm’s oscillation theory for the fractional operator Mc developed in
[22] since Mc admits only one negative eigenvalue in L2(T) under the non-
degeneracy assumption Ker(Mc) = Ker(∂xφc).

Theorem 4 below suggests that Mc has exactly one negative eigenvalue
and a simple zero eigenvalue for c being close to 1 if α > α0, see (32). Hence,
the non-degeneracy assumption of Theorem 2 is satisfied for α > α0 at least
for c close to 1. On the other hand, Mc has two negative eigenvalues and a
simple zero eigenvalue for c being close to 1 if α < α0. Consequently, we are
not able to use the continuation argument in Step 5 to guarantee positivity
of the single-lobe profile φc as the fixed point of Ac for α < α0.

If the kernel ofMc remains non-degenerate, the periodic solution with the
single-lobe profile φc remains positive by Theorem 2. It follows from Theorem
3.5 in [12] that the Fourier coefficients of this periodic solution are also posi-
tive. The converse statement was obtained in Theorem 4.1 in [8]: if the profile
of the periodic solution is positive and the Fourier coefficients are positive,
then Mc has only a simple negative eigenvalue and a simple zero eigenvalue
while the rest of its spectrum is strictly positive.

It is not so easy to extend the result of Theorem 2 for k = 3. The nonlinear
operator
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[Ac(φ)](x) :=
1

3

∫
T

Gc(x− y)φ(y)3dy

can be closed either in Hα/2(T) or in L2(T) ∩ L∞(T) but the positive cone
Pc does not follow from the lower bound on [Ac(φ)](x) because the cubic
term φ3 can be negative. Although Petviashvili’s method can still be used
to approximate the periodic solutions with the positive single-lobe profile φc
for (9) with k = 3 and b = 0, the analytical proof of the existence of
positive fixed points of Ac for k = 3 is an open question for further
studies.

4 Variational characterizations

Let us summarize on the existence of periodic solutions with the single-lobe
profile φc in the stationary equation (9) with k = 2 and b = 0 given by
Theorems 1 and 2. Two small-amplitude periodic solutions exist and can be
constructed by using the periodic solution with the single-lobe profile ϕω
defined by the periodic solutions of (11) with ω > 0. One solution has the
positive single-lobe profile φc = 2c + ϕc and exists for c > 1 if α ∈ (α0, 2].
Another solution has the sign-indefinite single-lobe profile φc = ϕ−c and
exists for c < −1 if α ∈ (α0, 2]. The two solutions correspond to the following
two semi-infinite lines in Figure 1:

{(c, b) : c ≥ 1, b = 0} and {(c, b) : c ≤ −1, b = 0}.

We can ask if we can characterize all periodic solutions with the single-lobe
profile φc,b in the stationary equation (9) with k = 2, c2 + 2b ≥ 0, and
α ∈ (1/3, 2]. This task can be accomplished with a variational formulation
of the periodic solutions.

A straightforward variational formulation follows from the fact that the
stationary equation (9) is the Euler–Lagrange equation for the augmented en-
ergy Gc,b(u) := E(u)+cF (u)+bM(u), where E, F , and M are the conserved
energy, momentum, and mass in (6), (7), and (8). This suggests that the
periodic solutions of (9) can be characterized from the following constrained
minimization problem:

inf
u∈Hα/2(T)

{E(u) : F (u) = F0, M(u) = M0} . (18)

By Proposition 2.1 in [22], a local minimizer of (18) exists for k = 2 and
every α ∈ (1/3, 2] and it is a critical point of Gc,b for some (c, b). However,
some questions are not answered by the variational formulation (18):

1. What are admissible values of F0 and M0 in (18) and of c and b in (9)?
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2. Are the local minimizers C1 smooth with respect to parameters (c, b)?
3. Are the local minimizers have the single-lobe profile φc,b?

The first question is important for obtaining all periodic solutions of (9)
but the variational formulation (18) does not give a precise relation between
(c, b) and (F0,M0) as well as their admissible values.

The second question is important for characterizing the non-degeneracy of
the linearized operator

Mc,b : Hα(T) ⊂ L2(T)→ L2(T), Mc,b := (−∆)α/2 + c− φc,b. (19)

If φc,b is C1 smooth with respect to (c, b), then we have

Mc,b∂cφc,b = −φc,b and Mc,b∂bφc,b = −1, (20)

so that {1, φc,b} ∈ Range(Mc,b). Since we also have

Mc,bφc,b = −b− 1

2
φ2c,b, (21)

this would imply that {1, φc,b, φ2c,b} ∈ Range(Mc,b), in which case the result
of Lemma 3.3 in [22] suggests the non-degeneracy

Ker(Mc,b) = span(∂xφc,b). (22)

Unfortunately, C1 smoothness of local minimizers of (18) cannot be taken for
granted and it fails for α ∈ (1/3, α0) due to the fold bifurcation of the local
minimizers of (18), see [28, 35]. The fold bifurcation corresponds to the values
of (c, b) for which Ker(Mc,b) is spanned by ∂xφc,b and another eigenfunction.

The third question is important to distinguish the periodic functions with
the single-lobe profile φc,b from the constant functions. The constant func-
tions can also be the local minimizers of (18) and they may exist for values of
(F0,M0) for which the single-lobe minimizers of (18) do not exist, see [28, 35].

To answer some of these questions, a modified variational formulation was
proposed in [20]. The periodic solutions of (9) are characterized from the
following constrained minimization problem:

inf
u∈Hα/2(T)

{E(u) + bM(u) : F (u) = F0, } . (23)

By Proposition 3.1 in [20], a local minimizer of (23) exists for every α ∈
(1/2, 2], b ∈ R, and F0 > 0, and it is a critical point of Gc,b for some c 6= 0.
The restriction of α > 1/2 is similar to the stability constraint for the soli-
tary waves of the same model [7]. By Lemma 4.1 in [20], the local minimizer
of (23) is non-degenerate in the sense of (22), hence it is C1 smooth with
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respect to parameter c for fixed b ∈ R. The second question is thus answered
adequately, but the first and third questions are still open as the local mini-
mizers of (23) do not include all periodic solutions of (9) even if α ∈ (1/2, 2]
and the local minimizers of (23) could be attained at the constant functions
rather than at the periodic functions with the single-lobe profile φc,b.

In order to give a superior characterization of the periodic solutions of (9)
with k = 2, the following constrained minimization problem was considered
in [35]:

inf
u∈Hα/2(T)

{∫
T

[((−∆)α/4u)2 + cu2]dx :

∫
T

u3dx = 1,

∫
T

udx = 0

}
. (24)

The quadratic part of energy E is minimized in (24) together with the
momentum F in the same linear combination as in the augmented energy
Gc,b(u) = E(u) + cF (u) + bM(u) to fix the parameter c of the stationary
equation (9). On the other hand, the cubic part of energy E is normalized to
unity and the zero-mean constraint is used to set M(u) = 0.

The zero-mean constraint M(u) = 0 does not mean that the parameter b
in (9) is fixed to zero. On the contrary, the parameter b in (9) is uniquely
determined by the zero-mean constraint in the form:

b = b(c) :=
1

4π

∫
T

φ2cdx =
1

2π
F (φc) > 0. (25)

This unique definition of the parameter b = b(c) does not limit generality of
the periodic solutions of the stationary equation (9) with k = 2 due to the
Galilean transformation (10).

The constraint
∫
T
u3dx = 1 can be normalized for every c > −1 by using

the scaling transformation since positivity of Lc := (−∆)α/2 + c is required
for minimization of the quadratic form in (24), which suggests that

1

2

∫
T

φ3cdx = 〈((−∆)α/2 + c)φc, φc〉 > 0. (26)

Minimizers of (24) satisfy the Euler–Lagrange equation

(−∆)α/2χc + cχc = C1χ
2
c + C2,

where the Lagrange multipliers C1 and C2 are uniquely determined by

C1 = 〈((−∆)α/2 + c)χc, χc〉 > 0, C2 = − 1

2π

(∫
T

χ2
cdx

)
C1.

The Euler–Lagrange equation for χc is mapped to the stationary equation
(9) with k = 2 by the invertible transformation φc = 2C1χc with
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b = −2C1C2 = b(c).

Using positivity of Lc on the subspace of periodic functions in L2(T) with
the zero mean for c > −1 and a compact embedding of Hα/2(T) into L3(T)
for α > 1/3, the following theorem was proven, see Theorem 2.1 in [35].

Theorem 3 For every α ∈ (1/3, 2] and c ∈ (−1,∞), there exists a global
minimizer of (24) with the single-lobe profile χc ∈ Hα/2(T).

The single-lobe property of the profile χc follows from the fractional Polya–
Szegö inequality for α ≤ 2, see [15]. Compared to the other two variational
characterizations (18) and (23), the single-lobe periodic functions cannot be
mixed up with the constant functions due to the zero-mean constraint in (24).

By using Galilean transformation (10) and the small-amplitude expansions
(12) and (13) of Theorem 1, we can write the small-amplitude expansions
of the periodic solutions with the single-lobe profile φc obtained from the
minimizers of (24) in Theorem 3. Inverting (10) for the zero-mean periodic
function φc yields

φc = ϕω −
1

2π

∫
T

ϕωdx, c = −ω− 1

2π

∫
T

ϕωdx, b(c) =
1

2
(ω2− c2). (27)

from which we find

φc(x) = a cos(x)+
1

4(2α − 1)
a2 cos(2x)+

1

8(2α − 1)(3α − 1)
a3 cos(3x)+O(a4),

and

c = −1 +
1

8(2α − 1)
a2 +O(a4), b(c) =

1

4
a2 +O(a4). (28)

The threshold value α = α0 seen in (13) does not appear in the expansion
(28). As a result, the solution branch for (c, φc) obtained from the minimizers
of (24) is C1 smooth with respect to c near c = −1. It was shown in [35] that
the unique C1 continuation of minimizers of (24) in c holds for every c > −1
under the non-degeneracy assumption

Ker(Mc|{1}⊥) = span(∂xφc), (29)

where Mc is the linearized operator Mc,b with φc,b ≡ φc and b = b(c) and
Mc|{1}⊥ is its restriction to the subspace of L2 functions with zero mean
defined as

Mc|{1}⊥f :=Mcf +
1

2π

∫
T

φcfdx.

No numerical examples were found in [35] which would violate the non-
degeneracy condition (29), which suggests that the minimizers of (24) are
C1 smooth in c for every c > −1. It is still open to prove that all min-
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imizers of (24) satisfy (29) for every c ∈ (−1,∞) and α ∈ (1/3, 2].

Under the non-degeneracy assumption (29), we can fully characterize the
number of negative eigenvalues ofMc and the non-degeneracy condition (22).
This is formulated in the following theorem, and since it is important for
practical applications, we give computational details of its proof.

Theorem 4 Assume that φc ∈ Hα/2(T) obtained from Theorem 3 satisfies
(29). Then, we have the following:

� if c+ b′(c) > 0, then Mc has one simple negative eigenvalue and a simple
zero eigenvalue,

� if c+ b′(c) = 0, then Mc has one simple negative eigenvalue and a double
zero eigenvalue,

� if c+ b′(c) < 0, then Mc has two simple negative eigenvalues (or a double
negative eigenvalue) and a simple zero eigenvalue.

All other eigenvalues of Mc are strictly positive.

For the proof of Theorem 4, we use the C1 smoothness of the solution
branch (c, φc) in c and deduce the following relations:

Mc1 = c− φc, Mcφc = −b(c)− 1

2
φ2c , Mc∂cφc = −b′(c)− φc,

from which we derive

Mc(1− ∂cφc) = c+ b′(c). (30)

If c + b′(c) 6= 0, then {1, φc, φ2c} ∈ Range(Mc) and the result of Lemma 3.3
in [22] implies (22), in which case the zero eigenvalue of Mc is simple. If
c+ b′(c) = 0, then

Ker(Mc) = span(∂xφc, 1− ∂cφc),

and the zero eigenvalue of Mc is double.
Denote the number of negative eigenvalues ofMc by n(Mc) and the multi-

plicity of the zero eigenvalue ofMc by z(Mc). Since the variational problem
(24) involves two constraints and φc is obtained from a minimizer of (24)
satisfying (29), it follows from Theorem 4.1 in [37] that{

0 = n(Mc)− n0 − z0,
1 = z(Mc) + z0 − z∞,

(31)

where n0, z0 are the number of negative and zero eigenvalues of the limit
λ→ 0 of the following symmetric 2-by-2 matrix

P (λ) :=

[
〈(Mc − λI)−1φ2c , φ

2
c〉 〈(Mc − λI)−1φ2c , 1〉

〈(Mc − λI)−11, φ2c〉 〈(Mc − λI)−11, 1〉

]
,
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and z∞ is the number of eigenvalues of P (λ) diverging to infinity as λ → 0.
If c+ b′(c) 6= 0, then z∞ = 0 and we compute from (30) that

〈M−1c 1, 1〉 =
2π

c+ b′(c)
,

〈M−1c 1, φ2c〉 = 〈M−1c φ2c , 1〉 = −2b(c)〈M−1c 1, 1〉,
〈M−1c φ2c , φ

2
c〉 = −2〈φc, φ2c〉 − 2b(c)〈M−1c 1, φ2c〉,

so that

lim
λ→0

detP (λ) = − 4π

c+ b′(c)

∫
T

φ3cdx,

where
∫
T
φ3cdx > 0 due to (26). Hence, we have n(Mc) = 1 if c + b′(c) > 0

since n0 = 1 and z0 = 0 and we have n(Mc) = 2 if c+ b′(c) < 0 since n0 = 2
and z0 = 0. In both cases, z(Mc) = 1. In the degenerate case c + b′(c) = 0,
we have n(Mc) = 1 and z(Mc) = 2 since n0 = 1, z0 = 0, and z∞ = 1.

We note that the small-amplitude expansion (28) implies that

c+ b′(c) = −1 + 2(2α − 1) +O(a2) = 2α+1 − 3 +O(a2), (32)

which suggests thatMc has only one negative eigenvalue for small a if α > α0

and two negative eigenvalues for small a if α < α0, where α0 is given by (14).
The non-degeneracy condition (22) is violated in the small-amplitude limit
a→ 0 for α = α0.

For the fractional mKdV equation (4), the traveling periodic solutions with
the single-lobe profile φc,b are found from the stationary equation (9) with
k = 3, for which no Galilean transformation is available. A general variational
characterization for such periodic solutions was proposed in [30, 36]:

inf
u∈Hα/2(T)

{∫
T

[((−∆)α/4u)2 + cu2]dx :

∫
T

u4dx = 1,
1

2π

∫
T

udx = m

}
,

(33)
where c is the same speed parameter but m is a new parameter of the mean
value of the periodic solutions.

It was shown in Appendix B in [36] that a global minimizer χc,m ∈
Hα/2(T) of (33) exists for every α ∈ (1/2, 2], c ∈ (−1,∞), and m ∈
[−m0,m0], where m0 := (2π)−1/4. The minimizer has the single-lobe pro-
file if m ∈ (−m0,m0) and the constant profile if m = ±m0, which can be
checked from the Hölder inequality:∣∣∣∣∫

T

udx

∣∣∣∣ ≤ (∫
T

1
4
3 dx

) 3
4
(∫

T

u4dx

) 1
4

= (2π)
3
4 .

Minimizers of (33) satisfy the Euler–Lagrange equation
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(−∆)α/2χ+ cχ = C1χ
3 + C2,

where C1, C2 are Lagrange multipliers found from the following system of
two equations:

C1 + 2πmC2 = 〈((−∆)α/2 + c)χ, χ〉,∫
T

χ3dxC1 + 2πC2 = 2πcm.

By eliminating C2 from the second equation and substituting it into the first
equation, we obtain[

1−m
∫
T

χ3dx

]
C1 = 〈((−∆)α/2 + c)χ, χ〉 − 2πcm2.

The value of C1 is uniquely defined for c ∈ (−1,∞) and m ∈ (−m0,m0)
because both the left-hand side and the right-hand side are strictly positive:

1−m
∫
T

χ3dx =
1

2π

[(∫
T

dx

)(∫
T

χ4dx

)
−
(∫

T

χdx

)(∫
T

χ3dx

)]
=

1

16π

∫
T

∫
T

(
[χ(x)− χ(y)]

4
+ 3

[
χ2(x)− χ2(y)

]2)
dxdy

and

〈((−∆)α/2 + c)χ, χ〉 − 2πcm2 = ‖(−∆)α/4χ‖2L2 + c‖χ−m‖2L2

≥ (1 + c)‖χ−m‖2L2 ,

since 1 + c > 0 and χ is non-constant if m ∈ (−m0,m0). After the unique
(positive) value of C1 is found, any of the two equations of the system deter-
mines the unique value of C2 and φc,m :=

√
3C1χc,m becomes a solution of

the stationary equation (9) with k = 3 and

b = −
√

3C1C2 = b(c,m).

If m = 0, then the minimizer χc,m=0 ∈ Hα/2(T) of (33) generates a
solution φc ∈ Hα/2(T) of (9) with k = 3 and

b = b(c) =
1

6π

∫
T

φ3cdx. (34)

A pitchfork bifurcation exists for some c0 ∈ (−1,∞) such that the 2π-periodic
zero-mean function φc obtained from the minimizer χc,m=0 of (33) satisfies
the half-period symmetry

φc(π − x) = −φc(x), x ∈ T
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for c ∈ (−1, c0) and violates the half-period symmetry for c ∈ (c0,∞), see
[36]. This pitchfork bifurcation was earlier discovered for α = 2 in [10, 16, 38].

For m 6= 0, the pitchfork bifurcation breaks into a fold bifurcation of
two branches of the periodic solutions and a global continuation of the third
branch. The latter branch coincides with the global minimizers of (33), see
[30] for α = 2. The existence and multiplicity of critical points of (33)
in the fractional case α ∈ (1/2, 2) is an open question for further
studies.

5 Stability of the traveling periodic waves

Stability of the traveling periodic waves of the form u(x, t) = φc,b(x− ct) in
the time evolution of the fractional models (3) and (4) can be studied from
the linearization of these models. Substituting a sum of the traveling wave
φc,b(x − ct) and a perturbation v(x − ct, t) into the nonlinear systems and
truncating at the linear terms in v, we obtain a linearized equation of motion
in the form

vt = ∂xMc,bv, (35)

where Mc,b is the linearized operator given by (19).

We say that the traveling periodic wave with the profile φc,b ∈ H∞(T) is
spectrally unstable if there exists an eigenvalue λ0 of the linear operator

∂xMc,b : Hα+1(T) ⊂ L2(T)→ L2(T)

such that Re(λ0) > 0. Otherwise, the wave is spectrally stable.

One possible approach to the proof of spectral stability is to use the vari-
ational characterization (18) and to show that the traveling periodic wave
with the profile φc,b is related to a local constrained minimizer of the energy
E subject to fixed momentum F and mass M . The orthogonal complement
to the tangent plane of the two constraints in (18) is given by

L2|{1,φc,b}⊥ :=
{
v ∈ L2(T) : 〈1, v〉 = 0, 〈φc,b, v〉 = 0

}
. (36)

It has been well established in the literature, see [10, 16], that if the non-
degeneracy condition (22) is satisfied for the linearized operator Mc,b, then
the local constrained minimizers of (18) are linearly stable according to the
following definition.
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We say that the traveling periodic wave with the profile φc,b ∈ H∞(T)
is linearly stable in Hα/2(T) if for every v0 ∈ Hα/2(T) ∩ L2|{1,φc,b}⊥ ,

there exists the unique solution v ∈ C0([0,∞), Hα/2(T)) to the linearized
equation (35) and a function a ∈ C0([0,∞)) such that

‖v(t, ·)− a(t)∂xφc,b‖Hα/2 ≤ C‖v0‖Hα/2 , t ≥ 0,

for some v0-independent constant C > 0.

Linear stability implies spectral stability but the spectral stability does not
imply the linear stability. The reason why the minimization property in (18)
and the non-degeneracy (22) are sufficient for the spectral and linear stability
is the strict positivity of the operator Mc,b under the three orthogonality
conditions

〈1, v〉 = 0, 〈φc,b, v〉 = 0, 〈∂xφc,b, v〉 = 0. (37)

It follows from the linearized equation (35) that the first two orthogonality
conditions are preserved in time: if they are satisfied for t = 0, they are
satisfied for t ≥ 0. For the last orthogonality condition, we should use the
decomposition

v(t, ·) = a(t)∂xφc,b + w(t, ·), 〈∂xφc,b, w(t, ·)〉 = 0, (38)

so that w(t, ·) satisfies all three orthogonality conditions in (37) if v0 satisfies
the two orthogonality conditions:

〈1, v0〉 = 0 and 〈φc,b, v0〉 = 0.

The Lyapunov functional 〈Mc,bw(t, ·), w(t, ·)〉 is a constant of motion for the
linearized equation (35) and the linear stability follows from the conservation
and coercivity of the Lyapunov functional. Spectral stability follows from the
linear stability.

The minimization property in (18) and the non-degeneracy (22) also im-
plies the nonlinear orbital stability of the traveling periodic waves if the local
well-posedness of the nonlinear fractional models can be established in the
energy space Hα/2(T), see [4, 22]. As we discussed in the introduction, the
local well-posedness can only be obtained for sufficiently large α and hence
we will use the concept of linear stability instead of the nonlinear orbital
stability to avoid subtle issues related to the local well-posedness of the non-
linear fractional models.

The following theorem presents the state of the art in the proof of linear
stability of the traveling periodic waves in the fractional KdV models. It is
deduced from the constrained minimization problem (18), see Theorem 2.3
in [10] and Theorem 1 in [16].



Traveling waves in fractional models 23

Theorem 5 Let φc,b ∈ H∞(T) be a solution of the stationary equation (9).
Assume that φc,b is a C1 function of (c, b). Then the non-degeneracy condi-
tion (22) is satisfied and the traveling periodic wave is linearly stable if the
Jacobian of the transformation

(c, b) 7→ (F (φc,b),M(φc,b))

admits no zero eigenvalue and the number of its positive eigenvalues is equal
to the number of negative eigenvalues of Mc,b in L2(T).

For the proof of non-degeneracy in Theorem 5, we again use the relations
(20) which are deduced from the asssumption that φc,b is a C1 function of
(c, b). Together with (21) they ensure validity of the non-degeneracy condi-
tion (22) by the theory in [22] since {1, φc,b, φ2c,b} ∈ Range(Mc,b).

For the proof of linear stability in Theorem 5, we need to show that φc,b
is related to a local constrained minimizer of the variational problem (18).
For this, we need to show validity of the relations (31), where n0, z0, z∞ are
now related to the number of negative, zero, and diverging eigenvalues of the
limit λ→ 0 of the following symmetric 2-by-2 matrix

D(λ) :=

[
〈(Mc,b − λI)−1φc,b, φc,b〉 〈(Mc,b − λI)−1φc,b, 1〉
〈(Mc,b − λI)−11, φc,b〉 〈(Mc,b − λI)−11, 1〉

]
.

While P (λ) is constructed from the orthogonal complement of the tangent
plane of the two constraints in (24), the matrix D(λ) is constructed for the
constrained subspace (36) related to the two constraints in (18). By using
(20), this yields

lim
λ→0

D(λ) =

[
〈M−1c,bφc,b, φc,b〉 〈M

−1
c,bφc,b, 1〉

〈M−1c,b1, φc,b〉 〈M−1c,b1, 1〉

]
= −

[
〈∂cφc,b, φc,b〉 〈∂cφc,b, 1〉
〈∂bφc,b, φc〉 〈∂bφc,b1, 1〉

]
= −

[
∂cF (φc,b) ∂cM(φc,b)
∂bF (φc,b) ∂bM(φc,b)

]
,

where F and M are the conserved momentum and mass in (7) and (8). Since
φc,b ∈ H∞(T) is a C1 function of (c, b), we have z∞ = 0, whereas n0 and z0
coincide with the number of positive and zero eigenvalues of the Jacobian of
the transformation

(c, b) 7→ (F (φc,b),M(φc,b)).

If n0 = n(Mc,b) and z0 = 0, then the relations (31) are satisfied and φc,b
is related to a local constrained minimizer of the variational problem (18).
Hence, 〈Mc,bv, v〉 is a Lyapunov functional for the linearized equation (35)
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and φc,b is linearly stable.

We have already discussed that the assumption of Theorem 5 on the C1

smoothness of φc,b ∈ H∞(T) in (c, b) may fail at the fold bifurcation. For k =
2, the variational characterization of the profile φc,b ∈ H∞(T) is alternatively
developed by using the constrained minimization problem (24), for which
b = b(c) is related to F (φc) by (25). In this case, the linear stability of the
local constrained minimizer of (24) is determined by a scalar function b = b(c)
as in the following theorem.

Theorem 6 Let φc ∈ H∞(T) be a solution of the stationary equation (9)
obtained from a local constrained minimizer of (24) with b = b(c) given by
(25). Assume the non-degeneracy condition (29). Then the traveling periodic
wave is linearly stable if b′(c) > 0 and is linearly unstable if b′(c) ≤ 0.

The non-degeneracy condition (29) is again the key to the C1 smoothness
of φc ∈ H∞(T) in c since it yields (30). If c+ b′(c) 6= 0, then z∞ = 0 in (31)
and

〈M−1c 1, 1〉 =
2π

c+ b′(c)
,

〈M−1c 1, φc〉 = 〈M−1c φc, 1〉 = − 2πb′(c)

c+ b′(c)
,

〈M−1c φc, φc〉 = −2πb′(c)− 2π(b′(c))2

c+ b′(c)
,

so that

lim
λ→0

detD(λ) = − 4π2b′(c)

c+ b′(c)
.

We have n(Mc) = 1 if c + b′(c) > 0 and n(Mc) = 2 if c + b′(c) < 0 by
Theorem 4. In the former case, detD(λ) as λ→ 0 shows that n0 = 1, z0 = 0
if b′(c) > 0 [in which case, the periodic wave is related to a local constrained
minimizer of (18)] and n0 = 0, z0 = 1 if b′(c) < 0 [in which case, the periodic
wave is related to a local constrained saddle point of (18)]. This implies the
conclusion on linear stability if b′(c) > 0 and linear instability if b′(c) < 0 by
Theorem 2.3 in [10] and Theorem 1 in [16]. In the latter case, detD(λ) as
λ→ 0 shows that n0 = 2, z0 = 0 if b′(c) > 0 and n0 = 1, z0 = 0 if b′(c) < 0.
This yields the same stability conclusion. In the degenerate case c+b′(c) = 0,
we have n(Mc) = 1 and z(Mc) = 2 with z∞ = 1. We obtain n0 = 1, z0 = 0
if b′(c) > 0 and n0 = 0, z0 = 0 if b′(c) < 0, which yields the same stability
conclusion.

The stability threshold case is b′(c) = 0, for which the linearized equation
(35) admits the growing solution

v =
1

2
t2∂xφc − t∂cφc −M−1c ∂−1x ∂cφc,
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where ∂−1x is the anti-derivative of the zero-mean periodic functions with
the zero mean and M−1c ∂−1x ∂cφc is well-defined because 〈1, ∂cφc〉 = 0 and
〈φc, ∂cφc〉 = 0. The growing solution v(t, ·) satisfies both the constraints
〈1, v(t, ·)〉 = 0 and 〈φc, v(t, ·)〉 = 0 and ‖v(t, ·)− 1

2 t
2∂cφc‖L2 grows linearly in

t. Hence, the threshold case b′(c) = 0 is also linearly unstable.

Note that b′(c) = 2(2α−1)+O(a2) in the small-amplitude limit according
to the expansions (28). Hence, the small-amplitude periodic wave is linearly
stable for every α ∈ (1/3, 2]. Also note that

∂cF (φc) = 〈φc, ∂cφc〉 = 2πb′(c),

∂cM(φc) = 〈1, ∂cφc〉 = 0,

and

〈1,M−1c 1〉 =
2π

c+ b′(c)
.

Hence, the stability criterion in Theorem 6 can be deduced from the stability
criterion in Theorem 5 in the particular case b = b(c) for the zero-mean peri-
odic solutions. It is remarkable that the stability criterion is now defined by
the slope of the mapping c 7→ b(c) given by (25). This is the same stability
condition as in the case of solitary waves for (3), see [7].

For k = 3, the variational characterization of the traveling periodic waves
is developed by using the constrained minimization problem (33) with two
parameters (c,m) and two constraints. The function b = b(c,m) can be con-
structed from the stationary equation (9) with k = 3 in the form

b = b(c,m) =
1

6π

∫
T

φ3c,mdx− cm
(∫

T

φ4c,mdx

)1/4

, (39)

which generalizes (34) for m 6= 0. However, this function is not related to
the conserved quantities F (φc,m) and M(φc,m), hence it does not determine
the stability criterion of the traveling periodic waves in the fractional mKdV
equation (4). Moreover, there is a pitchfork bifurcation at c0 ∈ (−1,∞) in
the case of m = 0 such that three branches of periodic solutions with the
single-lobe profile coexist for c ∈ (c0,∞), two branches are minimizers of
the constrained variational problem (33) and one is the saddle point, see
[30, 36]. The only branch of periodic solutions for c ∈ (−1, c0) is the minimizer
and satisfies the half-period symmetry: φc(π − x) = −φc(x). The pitchfork
bifurcation is broken for fixedm 6= 0 with one branch being a global minimizer
for c ∈ (−1,∞) and the other two branches existing for a subset (c0,∞) with
a fold bifurcation at c0 ∈ (−1,∞), see [30].

The linear stability criterion was obtained for all three branches of the
periodic solutions in [30] and was illustrated numerically with examples in
the local case α = 2. Assuming that
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det

∣∣∣∣ ∂cF (φc,m) ∂cM(φc,m)
∂mF (φc,m) ∂mM(φc,m)

∣∣∣∣ > 0, (40)

it was proven in [30] that every local minimizer of the variational problem
(33) satisfying the non-degeneracy condition

Ker(Mc,m|{1,φ3
c,m}⊥) = span(∂xφc,m) (41)

is linearly stable similarly to Theorem 6. Moreover, the slope of ∂mb(c,m)
gives the criterion forMc,m to have a simple negative eigenvalue if ∂mb < 0,
a double zero eigenvalue if ∂mb = 0, and two simple negative eigenvalues
(or a double negative eigenvalue) if ∂mb > 0, similarly to Theorem 4. It was
also proven in [30] that every saddle point of the variational problem (33)
with (40), (41), ∂mb < 0, and Mc,m|{1,φ3

c,m}⊥ admitting only one simple
negative eigenvalue is lineary unstable. These criteria generalize the stability
analysis in Theorem 1.3 of [36], where the case m = 0 was studied for every
α ∈ (1/2, 2].

6 Examples of traveling periodic waves

For the integrable BO equation (3) with α = 1, the single-lobe periodic
solution to the stationary equation (11) is known in the exact form:

ω = coth γ, ϕω(x) =
2 sinh γ

cosh γ − cosx
− 2ω, (42)

where γ ∈ (0,∞) is a free parameter of the solution and the small-amplitude
limit of Theorem 1 corresponds to the limit γ →∞. Since∫ π

−π
ϕω(x)dx = 4π(1− ω),

we compute explicitly from (27) that

φc(x) =
2 sinh γ

cosh γ − cosx
− 2, c = ω − 2, b(c) = 2(ω − 1),

which characterize periodic solutions of the variational problem (24). Elim-
inating ω ∈ (1,∞) yields b(c) = 2(c + 1) for c ∈ (−1,∞) shown on Figure
3 (left). For comparison, Figure 3 (right) characterizes periodic solutions of
the variational problem (23) with b = 0 and F0 ≡ µ. The black curve shows
the dependence of µ from c for the constant solution φ = 2c of the stationary
equation (9) with k = 2 and b = 0. The straight (blue) line correspods to the
periodic solution with the single-lobe profile obtained from (42) by taking
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φc = 2c+ ϕc =
2 sinh γ

cosh γ − cosx
(43)

with c = coth γ. For c > 1 and µ > 4πc2, the constant solution is no longer a
minimizer of (23) and the periodic solution (43) with the positive single-lobe
profile φc becomes a minimizer of (23).
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Fig. 3 The dependence of b versus c (left) and µ versus ω = c (right) for α = 1. Reproduced

from [35].

Figure 4 (left) illustrates how the periodic solutions with the zero-mean
single-lobe profile φc are defined by the variational problem (24). The unique
solution exists for every c ∈ (−1,∞) and the dependence of b versus c is
monotonically increasing for α ∈ [1/2, 2]. By Theorem 6, this implies the
linear stability of the perodic waves. For α ∈ (1/3, 1/2), the dependence
of b versus c is not monotone. In agreement with instability of the solitary
waves [7], which correspond to the limit c → ∞, we have found numerically
for α ∈ (1/3, 1/2) that there is a single point c∗ ∈ (−1,∞) such that the
dependence of b versus c is increasing for c ∈ (−1, c∗) and decreasing for
c ∈ (c∗,∞), see [35].

Figure 4 (right) illustrates properties of the periodic solutions obtained
from the variational problem (23) with b = 0 and F0 ≡ µ. Besides the fact
that the constant solutions are global minimizers of (23) for c ∈ (0, 1), the
dependence of µ versus c for the periodic solutions with the single-lobe pro-
file bifurcates below µ0 = 4πc2 for α < 0.737 and to the left of c0 = 1 for
α < α0 ≈ 0.585. The fold bifurcation at the bottom right panel corresponds
to the point where two branches of periodic solutions meet: one branch (red
line) has two negative eigenvalues ofMc,b=0 and the other branch (blue line)
has only one simple negative eigenvalue of Mc,b=0. The branch with two
negative eigenvalues is a saddle point of (23) and a constrained minimizer
of (18). Not only the folded picture is unfolded in (24) but also the stability
criterion is clearly given by the monotonicity of the mapping c 7→ b(c). At
the same time, all periodic solutions are equivalent to each other after the
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Galilean transformation (10).
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Fig. 4 Left: the dependence of b versus c for α = 0.6 (top) and α = 0.5 (bottom). Right:

the dependence of µ versus ω = c for α = 0.6 (top) and α = 0.5 (bottom). Reproduced
from [35].

The periodic solutions of the fractional mKdV equation (4) with the single-
lobe profile are constructed from the variational problem (33) with two con-
straints. If m = 0, the branch of periodic solutions with the half-period sym-
metry φc(π − x) = −φc(x) may coexist with the two symmetric branches of
periodic solutions which violate the symmetry. Figure 5 illustrates the three
branches in the case of the modified BO equation with α = 1. The results
were obtained numerically by using Newton’s method in [36].

The top panels show the single-lobe profiles φc for three different values
of parameter c: solutions with the half-period symmetry are on the left and
solutions without the half-period symmetry are on the right. The former so-
lutions have b = 0 in the stationary equation (9) with k = 3 and the latter
solutions have b = b(c) 6= 0 given by (34). The bottom panels show the pitch-
fork bifurcation at c = c0 on the (c, b) plane (left) and the dependence of
µ := F (φc) versus c for the three branches (right). The mapping c 7→ µ is
monotonically increasing for the former solutions with b = 0, however, the
periodic solutions are linearly stable only before the pitchfork bifurcation
and linearly unstable after the bifurcation, as shown in Theorem 2.14 of [36].
The mapping c 7→ µ is monotonically decreasing for the latter solutions with
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b = b(c) 6= 0 and this implies that the periodic solutions are linearly unstable.
It was also found in [36] that the periodic solutions with b = b(c) 6= 0 pass
through the point c∗ ∈ (c0,∞), where the number of negative eigenvalues
of the linearized operator Mc,b(c) changes from 2 for c ∈ (c0, c∗) to 1 for
c ∈ (c∗,∞). However, the periodic solution with the profile φc is smoothly
continued with respect to the parameter c in the framework of the variational
problem (33) with m = 0. This shows that the fold bifurcation of the periodic
solutions is unfolded in the variational problem (33) with m = 0.
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Fig. 5 Periodic solutions of the variational problem (33) with m = 0 for α = 1. Top:
Profiles of φc with b = 0 (left) and with b = b(c) 6= 0 (right) for three different values of c.

Bottom left: Dependence of b versus c showing the pitchfork bifurcation point c0. Bottom

right: Dependence of the momentum µ = F (φc) versus c. Reproduced from [36].

Further studies of the periodic solutions of the variational problem (33)
with m 6= 0 were performed in [30] in the local case α = 2 for which the
exact periodic solutions are available in the closed form [14]. The pitchfork
bifurcation for m = 0 is very similar between the case α = 1 in Figure 5 and
the case α = 2 in the top left panel of Figure 6. The dots show the border
between two different solution forms, see [14, 30].

Other panels of Figure 6 show the broken pitchfork bifurcation for m 6= 0,
for which one branch is detached from the other two branches which coa-
lesce in the fold bifurcation. It was confirmed numerically in [30] that the
isolated branch (shown by blue curve) is related to the global minimizer of
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(33), whereas the top branch to the right of the fold bifurcation point (shown
by red curve) is a saddle point of (33) and the bottom branch to the right
of the fold bifurcation point (shown by black curve) is a local minimizer of
(33). Computations of the solution surface b = b(c,m) given by (39) have
confirmed that the two minimizers of (33) are linearly stable everywhere in
the (c,m) plane and the saddle point of (33) is linearly unstable, see [30].
These results correspond to the case α = 2 for which the solitary waves are
stable, see [7]. Stability of the minimizers of (33) for α = 1 is clearly different
and is affected by the instability of the solitary waves, see [33], which arises
in the limit c → ∞, as is seen in Figure 5. Approximations of minimiz-
ers and saddle points of (33) with α ∈ (1/2, 2) and m 6= 0 are open
questions for further studies.
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7 Conclusion

We have reviewed three methods to study existence and stability of traveling
periodic waves in the fractional KdV models.

� The first method of the small-amplitude expansions is restricted to the
periodic functions with the single-lobe profile bifurcating from the con-
stant functions. It allows us to obtain some explicit approximations to the
dependence of the wave speed from the wave amplitude, the degeneracy
of the linearized operator, and the linear stability of the traveling wave.

� The second method is based on the formulation of the existence problem
as the fixed-point iteration method. This technique allows us to control
positivity of the periodic functions with the single-lobe profile as long as
the linearized operator remains non-degenerate along the solution branch.

� The third method is based on the variational formulation, the Euler–
Lagrange equations of which give the same equation for the traveling pe-
riodic wave after some suitable scaling transformation. Three variational
formulations are possible: finding a minimum of energy subject to con-
strained mass and momentum, finding a minimum of energy with pre-
scribed mass subject to the constrained momentum, and finding a mini-
mum of the quadratic parts of the energy and momentum subject to the
constrained higher power of the energy and the mass. The third method
has showed superior performance both in quadratic and cubic case as it
allows us to characterize bifurcations of the solution branches, the degen-
eracy condition of the linearized operator, and the linear stability of the
traveling waves.

Numerical methods are also available to complement the analytical re-
sults with precise approximation away from the bifurcation points. Newton’s
method remains the best method to approximate all branches of the peri-
odic solutions with the single-lobe profiles [35, 36], although the solution
branches with the positive single-lobe profiles can also be approximated by
Petviashvili’s fixed-point iteration method [3, 28]. In the integrable cases of
the KdV and mKdV equations, one can also use the explicit solutions for the
traveling perodic waves expressed by the Jacobian elliptic functions, see [35]
and [30] respectively.

More questions are open in regards to the traveling periodic waves in the
fractional KdV models. Here is a rather incomplete list of further open ques-
tions which complements the open questions posed in the previous sections
(as the bold-face italic font).
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� Numerical results strongly suggest that minimizers of the variational prob-
lems (24) and (33) are non-degenerate in the sense of (29) and (41), with
the exception of the pitchfork bifurcation in (33) for m = 0 which has been
well understood. The non-degeneracy may be a fundamental result which
still needs further study.

� Uniqueness of minimizers in the variational problems (24) and (33) might
be related to their non-degeneracy. Since uniqueness for the solitary wave
solutions has been shown in the fractional models on the line [18], it is in-
triguing to show uniqueness of the periodic solutions both in the quadratic
and cubic models.

� Some traveling periodic waves are linearly unstable for sufficiently small
α both in (3) and (4) but well-posedness theory is not yet available in the
energy space of the fractional models. Does this mean that the instability
results are not applicable and the instability can not be observed in the
suitable function spaces for which the initial-value problem is well-posed?

� Although similar existence and stability problems have been studied
in other fractional models with quadratic and cubic nonlinearities, see
[5, 9, 20], it is rather interesting to see if the same questions can be ana-
lyzed for higher-order (quartic, quintic, etc) power nonlinearities and for
nonlinearities with several powers.

� Questions of modulational stability of the traveling periodic waves are
widely open in the context of fractional models, see [22] for some previous
results. Similarly, transverse stability of the traveling periodic waves in
multi-dimensional generalizations of the fractional models has not been
studied, see [11] for study of stability of the traveling periodic waves in
the fractional models.
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