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Abstract

We consider a system of coupled Klein–Gordon equations, which models one-dimensional nonlinear wave processes in
two-component media. We find both linear and nonlinear solutions involving the exchange of energy between the different
components of the system. The solutions are a continuum generalization of the classical example of energy exchange in
Mandelshtam’s system of coupled pendulums.
© 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

We consider the system of coupled Klein–Gordon equations in the form:

utt − uxx = fu(u,w), wtt − c2wxx = fw(u,w), (1)

where subscripts denote derivatives,f(u,w) is a potential function of nonlinear coupling, andc the ratio of the
acoustic velocities of the componentsu andw. The dimensionless system(1) describes the long-wave dynamics
of two coupled one-dimensional periodic chains of particles[1]. The elements of each chain are linked by a linear
coupling, while the chains interact via a nonlinear coupling.

The choice of the potential functionf(u,w) depends on the mathematical model of the physical system. For
instance, the coupled Klein–Gordonequations (1)with the proper choice of the functionf(u,w) can be considered
as the long-wave limit of a lattice model for one-dimensional nonlinear wave processes in a bi-layer[1a]. Similar
lattice models were proposed for the modeling of crack propagation in composites (see, for example,[2]). Many
advanced structures, such as joints, coatings and electronic packages, use bi-materials. When applied to the modeling
of bi-materials, the potential functionf(u,w) and parameterc are determined by the type of interface and materials
forming the bi-layer. In addition, we note that similar models were proposed to describe dynamical processes in
hydrogen-bonded chains (e.g.,[3–6]), molecular crystals and polymer chains as well as ferroelectrics or ferromagnets
and thin films where rotational and vibrational degrees of freedom are coupled together (e.g.,[7–12]), and in the
DNA double helix[13] (see also[14] and references therein).
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As the functionf(u,w) in such phenomenological model should be found experimentally, its analytic form is not
unique. Some suitable choices off(u,w) andc can be found to simplify the analysis. The Lie group classification
of the system(1) was carried out in[1] for c �= 1, fuw(u,w) �= 0. The general system(1) with c = 1 (and arbitrary
functions ofuandwon the right-hand side) was studied in[15], where the cases admitting Lie–Bäcklund symmetries
were found, and integrable (completely or partially) examples were presented. Iffuw(u,w) = 0, the system(1)
splits into two independent Klein–Gordon equations, whose group classification with respect to point symmetries
was given in[16] (see also[17]) and that with respect to the Lie–Bäcklund symmetries in[18].

The general system(1) is Lagrangian with the density:

L = 1
2(u

2
t + w2

t − u2
x − c2w2

x) + f(u,w).

The system exhibits two balance equations for the conserved energy and momentum:

∂

∂t

[
1

2
(u2

t + w2
t + u2

x + c2w2
x) − f(u,w)

]
− ∂

∂x
[utux + c2wtwx] = 0,

∂

∂t
[utux + wtwx] − ∂

∂x

[
1

2
(u2

t + w2
t + u2

x + c2w2
x) + f(u,w)

]
= 0.

When the potential function isf(u,w) = cos(δu−w)−1, the system(1) reduces to coupled sine-Gordon equations:

utt − uxx = −δ2 sin(u − w), wtt − c2wxx = sin(u − w), (2)

where the variableu replacesδu, compared to the system(1). The coupled sine-Gordon equations generalize the
Frenkel–Kontorova[19] dislocation model (see also[20] and references therein). Unlike the Frenkel–Kontorova
model, where the shear of one part of a crystal is considered with respect to the rigid base, the system(2) is derived
under the assumption that both parts of a crystal are deformable. In the model(2), the dimensionless parameter
δ2 is equal to the ratio of masses of particles in the “lower” and the “upper” parts of the crystal. Forδ2 → 0 and
u = 0, the system(2) reduces to the sine-Gordon equation for the variablew. Thus, there is a natural limit to the
Frenkel–Kontorova model. We also notice that system(2) with c = 1 was proposed to describe the open states in
DNA [13].

Invariant solutions of the system(2)and solutions describing dynamics of the system in the presence of additional
shear forces were constructed in[1]. It was shown that a gap appears in the spectrum of velocities of solitary waves
of the system(2) if the acoustic velocities of non-interacting chains are different (c2 �= 1). Therefore, the system
represents a filter of solitary waves (analogously to the acoustic filter in the linear theory). It was also shown that
the relative displacement of the “upper” particles with respect to the “lower” particles remains the same as in the
Frenkel–Kontorova model (by the period of the chain), whereas the absolute displacements depend on the wave
speed.

In this paper we study in detail the linear and the nonlinear wave processes involving the exchange of energy
between the two physical components of the system. In particular, we describe the full and the partial transfer of
energy between the componentsu andw in the situation when one component is initially excited (sayu), while
the other component (w) is initially at rest. The periodic and quasi-periodic processes in the wave system(2) are
analogous to the energy exchange in a system of coupled pendulums in classical mechanics[21] (see also[22]).

The paper is organized as follows. InSection 2, we construct linear solutions for exchanges of energy between
the two components. The exact nonlinear solution is found inSection 3for the casec = 1. Weakly nonlinear
solutions for the general case are derived inSection 4by means of reduction of the system(2) to coupled nonlinear
Schrödinger (NLS) equations.Section 5concludes the paper.
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2. Energy exchange in the linear approximation

In the case of small relative displacements of components, when|u − w| � 1, the coupled sine-Gordon
equations (2)reduce to the linear system:

utt − uxx = −δ2(u − w), wtt − c2wxx = u − w. (3)

Fourier solutions of the system(3) take the form:

u = U ei(kx−ωt), w = W ei(kx−ωt),

whereω = ω(k) satisfies the dispersion relation:

D(ω2, k2) = (ω2 − (δ2 + k2))(ω2 − (1 + c2k2)) − δ2 = 0 (4)

and the ratio between the two components is

α ≡ W

U
= −ω2 + k2 + δ2

δ2
= 1

−ω2 + c2k2 + 1
. (5)

Due to the symmetryk → −k andω → −ω, we consider the dispersion curve in the first quadrant:k > 0, ω > 0.
The dispersion curve consists of two branchesω1(k) andω2(k), such thatω1(0) = 0 andω2(0) = √

1 + δ2. The
typical shape of the dispersion curve is shown inFig. 1 for c = 1 (a) andc �= 1 (b). Forc = 1, ω1(k) = k and
ω2(k) = √

1 + δ2 + k2. For c < 1 andδ = 0, the two branches of the dispersion curve intersect at finitek. The
couplingδ �= 0 induces splitting of the two branches.

It is convenient to parameterize the dispersion curvesω = ω1,2(k) as follows:

ω2
1,2 = 1

2

[
ν2

1 + ν2
2 ∓

√
(ν2

1 − ν2
2)

2 + 4δ2

]
, (6)

whereν2
1 = δ2 + k2 andν2

2 = 1 + c2k2, such thatα1,2 = (ν2
1 − ω2

1,2)/δ
2 = 1/(ν2

2 − ω2
1,2). We notice thatα1 > 0

andα2 < 0. For example, ifc = 1, thenα1 = 1 andα2 = −δ−2.
There is a pronounced energy exchange between the two componentsu andw of the system(2)when two different

branches of the dispersion curve coexist for the same wavenumberk. Let us consider a general superposition of two
linear waves with the same wavenumberk but different frequenciesω1(k) andω2(k):

u = U1 ei(kx−ω1t) + U2 ei(kx−ω2t) + c.c., w = α1U1 ei(kx−ω1t) + α2U2 ei(kx−ω2t) + c.c., (7)

wherek > 0 andω1,2(k) > 0. ChoosingU1 andU2 in such a way that the solution(7) satisfies the initial condition

u(0, x) = A coskx, w(0, x) = 0,

we find

u = A

α1 + |α2| [|α2| cos(kx − ω1t) + α1 cos(kx − ω2t)], w = −2α1|α2|A
α1 + |α2| sin γ−t sin(kx − γ+t), (8)

whereγ± = (ω2 ± ω1)/2.

Fig. 1. The dispersion curve forc = 1 (a) andc �= 1 (b).
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Fig. 2. Energy exchange in the linear two-wave solution(9).

A full exchange between the two componentsu andw from zero to non-zero values occurs whenν2
1 = ν2

2 = ν2,
and thereforeα1 = −α2 = δ−1. The solution(8) in this case reduces to the form

u = A cosγ−t cos(kx − γ+t), w = −Aδ−1 sin γ−t sin(kx − γ+t). (9)

Solution(9) describes periodic exchange of energy between the two components of the coupled system with the
periodT = 2π/γ−. Here, the waves propagate with the velocityγ+/k, with the phases shifted byπ/2 and the
amplitudes varying from 0 to the maximal value with the frequencyγ−. Theu component is at maximum att = 0
and att = π/γ−, while thew component is at maximum att = π/(2γ−) and so on. Thus, there is a periodic energy
exchange between theu and thew components. Solution(9) is shown inFig. 2 for c = 1, δ = 1, A = 1, k = 1.6
in the quarter-period interval 0≤ t ≤ π/(2γ−).

Partial exchange between the two componentsu andw occurs whenν2
1 �= ν2

2. In this case, the solution(8) takes
a more complicated form:

u = U(t) cos [kx − ω2t + χ(t)], w = −2α1|α2|A
α1 + |α2| sin γ−t sin(kx − γ+t), (10)

where

U(t) = A

α1 + |α2|
√
α2

1 + α2
2 + 2α1|α2| cos(ω2 − ω1)t, χ(t) = arctan

[ |α2| sin(ω2 − ω1)t

α1 + |α2| cos(ω2 − ω1)t

]
.

It is clear from(10) that the amplitude of the wave propagating in the “upper” component varies between non-zero
values:u = (A|α1 − |α2||)/(α1 + |α2|) coskx andu = A coskx.

Solutions(9) and (10)describe the exchange of energy between the right-propagating waves. Using the symmetry
t → −t, one can obtain solutions for energy exchange between the left-propagating waves.

Combining all four possible waves with the same wavenumberk, we construct a general linear superposition for
energy exchange between the two pairs of counter-propagating waves:

u = U1 ei(kx−ω1t) + U3 ei(kx+ω1t) + U2 ei(kx−ω2t) + U4 ei(kx+ω2t) + c.c.,

w = α1(U1 ei(kx−ω1t) + U3 ei(kx+ω1t)) + α2(U2 ei(kx−ω2t) + U4 ei(kx+ω2t)) + c.c. (11)

We choose the constantsU1,2,3,4 to satisfy the initial data:

u(0, x) = A coskx, w(0, x) = 0, u̇(0, x) = ẇ(0, x) = 0

and transform the solution(11) to the form:

u = A

α1 + |α2| (|α2| cosω1t + α1 cosω2t) coskx, w = 2α1|α2|A
α1 + |α2| sinγ−t sinγ+t coskx, (12)

where notations are the same as above.
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Fig. 3. Energy exchange in the linear four-wave solution(13).

If ν2
1 = ν2

2 = ν2, then the solution(12) takes a simple form:

u = A cosγ−t cosγ+t coskx, w = Aδ−1 sinγ−t sinγ+t coskx. (13)

Sinceγ± = (ω2 ± ω1)/2, thenγ− < γ+. The linear solution(13) describes a periodic exchange of energy with
the larger periodT = 2π/γ− between the componentsu andw which represent the standing wave solutions. The
process looks similar to the energy exchange in the two-wave case. It is shown inFig. 3 for c = 1, δ = 1, A = 1,
k = 1.6 in the quarter-period interval. The amplitude of oscillations is modulated by the function coskx. For fixed
x we observe the classical pattern of beating between the components, shown inFig. 4 for the pointx = 0. The
energy exchange in the four-wave solution(13) is the continuum generalization of the classical example of beating
oscillations in a system of coupled pendulums[21] (see also[22]).

If ν2
1 �= ν2

2, then

u = U(t) cos [ω2t − χ(t)] coskx

and the “upper” component oscillates between non-zero valuesu = (A|α1 − |α2||)/(α1 + |α2|) coskx and
u = A coskx.

If γ− is small enough, i.e., if the frequenciesω1 andω2 are close for some wave numberk, then theu component
in the solutions(9) and (13)at t = π/2γ− is almost in equilibrium, and its total energy is transferred to the
w-component. Att = π/γ− it is vice versa and so on. (Notice that physical variables in the Lagrangian formulation
of the problem areu/δ andw.) If ν2 � δ, then the periodT of the energy exchange tends to infinity.

Let us now consider, when the conditionν2
1 = ν2

2 is met. This condition corresponds to the full exchange (up
to zero) between the two componentsu andw. If c = 1, this condition can be satisfied only forδ = 1, while
wavenumberk is arbitrary. Ifc �= 1, then the conditionν2

1 = ν2
2 cannot be satisfied with any wavenumberk, if

(1 − δ2)/(1 − c2) < 0. Otherwise, i.e., when(1 − δ2)/(1 − c2) ≥ 0, the conditionν2
1 = ν2

2 is satisfied for a single
value of wavenumberk = |1 − δ2|1/2|1 − c2|−1/2.

Fig. 4. Beating between the componentsu andw in the solution(13) for x = 0.
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3. Exact solutions for energy exchange at c = 1

Exact solution describing the energy exchange between the two componentsu andw of the system(2) can be
constructed ifc = 1, i.e., if the acoustic velocities of the components coincide. In this case, we introduce new
variables

p = u − w, q = u + δ2w (14)

and transform the system(2) to the form

ptt − pxx = −(1 + δ2) sinp, (15)

qtt − qxx = 0. (16)

The system decomposes into the sine-Gordonequation (15)uncoupled from the waveequation (16). The exact
periodic solution of the sine-Gordonequation (15)is (e.g.,[23])

p = 2 arcsin[κ sn(kx − ω2(k)t + θ0, κ)], (17)

whereω2(k) = √
1 + δ2 + k2 is the second branch of the dispersion curve,κ the modulus (0< κ < 1), andθ0 a

constant. The general solution of the waveequation (16)has the form

q = f(kx − ω1t) + g(kx + ω1t),

whereω1(k) = k is the first branch of the dispersion curve. We chooseg = 0 andf to have the same expression as
(17). As a result, the explicit two-wave solution describing the exchange of energy between the two componentsu

andw can be found in terms of Jacobi elliptic functions:

u = 2

1 + δ2
[arcsinφ1 + δ2 arcsinφ2],

w = 2

1 + δ2
[arcsinφ1 − arcsinφ2], φ1,2 = κ sn(kx − ω1,2t + θ0, κ). (18)

The solution(18) approaches the linear solution(8) asκ → 0. Whenδ2 = 1 (i.e.,ν2
1 = ν2

2), we prove that the
nonlinear solution(18) describes a full periodic exchange of energy between the two components of the system.
Indeed, in this case, using the addition theorems for elliptic functions (see, e.g.,[24]), we transform(18)to the form

u = arcsin

[
2κ cn(γ−t, κ)F1(t, x)

Φ(t, x)

]
, w = arcsin

[
2κ sn(γ−t, κ)F2(t, x)

Φ(t, x)

]
, (19)

where 0< κ < 1 and

F1(t, x) = dn(kx − γ+t + θ0, κ) sn(kx − γ+t + θ0, κ), F2(t, x) = dn(γ−t, κ) cn(kx − γ+t + θ0, κ),

Φ(t, x) = 1 − κ2 sn2(γ−t, κ) sn2(kx − γ+t + θ0, κ).

Since the Jacobi function dn(z, κ) has no zeros on the real axis, zeros of the nonlinear solution(19) coincide with
zeros of the functions cn(z, κ) and sn(z, κ). Zeros of the function sn(z, κ) on the real axis are located at the points
z = 2mK, while those of the function cn(z, κ) are located at the pointsz = (2n − 1)K, wherem, n ∈ Z, and

K =
∫ π/2

0
(1 − κ2 sin2φ)−1/2 dφ

is the complete elliptic integral of the first kind. The real period of these functions is equal to 4K. The time of
exchange of energy from one component to another isT = K/γ−. The nonlinear two-wave solution(19) is shown
in Fig. 5 for c = 1, δ = 1, k = 1.6, andκ2 = 0.99999. The qualitative behaviour of the nonlinear system(2) is
similar to that described in the linear approximation (seeFigs. 2 and 5).
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Fig. 5. Energy exchange in the nonlinear two-wave solution(19).

4. Weakly nonlinear solution for energy exchange

The exact solution of the system(2) for periodic exchange of energy is found only forc = 1. This condition is very
restrictive. In the general case, we can construct, however, approximate, weakly nonlinear solutions describing the
energy exchange between the componentsu andw. Weakly nonlinear solutions are found with the use of asymptotic
methods[25] by reduction of the coupled sine-Gordonequations (2)to the coupled NLS equations. The coupled
NLS equations are derived for the slow spatio-temporal evolution of the wave amplitudes. The slow evolution is
captured by the asymptotic multi-scale expansion:

(
u

w

)
= ε

(
u1

w1

)
+ ε2

(
u2

w2

)
+ ε3

(
u3

w3

)
+ O(ε4),

where(
u1

w1

)
= [A(τ, ξ)ei(kx−ω1t) + B(τ, ξ)ei(kx+ω1t)]

(
1

α1

)

+ [C(τ, ξ)ei(kx−ω2t) + D(τ, ξ)ei(kx+ω2t)]

(
1

α2

)
+ c.c. (20)

τ = εt, ξ = εx, T = ε2t, X = ε2x are the slow variables, andε a small amplitude parameter. After lengthy but
straightforward calculations, and rescalings, we arrive at the system of coupled equations for the wave amplitudes
A, B, C andD:

i(AT + vg1AX) + µ1(|A|2 + 2|B|2)A + µ2(|C|2 + |D|2)A = −1
2ε

2ω′′
1AXX,

i(BT − vg1BX) − µ1(|B|2 + 2|A|2)B − µ2(|C|2 + |D|2)B = 1
2ε

2ω′′
1BXX,

i(CT + vg2CX) + µ3(|C|2 + 2|D|2)C + µ4(|A|2 + |B|2)C = −1
2ε

2ω′′
2CXX,

i(DT − vg2DX) − µ3(|D|2 + 2|C|2)D − µ4(|A|2 + |B|2)D = 1
2ε

2ω′′
2DXX, (21)

where

vgi = k

ωi

1 + α2
i δ

2c2

1 + α2
i δ

2
, ω′′

i =
1 − v2

gi + α2
i δ

2(c2 − v2
gi) + 4ω2

i αi(vgi − (k/ωi))(vgi − c2(k/ωi))

ωi(1 + α2
i δ

2)
,

µ1 = δ2(1 − α1)
4

4ω1(1 + α2
1δ

2)
, µ2 = δ2(1 − α1)

2(1 − α2)
2

2ω1(1 + α2
1δ

2)
, µ3 = δ2(1 − α2)

4

4ω2(1 + α2
2δ

2)
,

µ4 = δ2(1 − α1)
2(1 − α2)

2

2ω2(1 + α2
2δ

2)
.
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The dispersive terms in the right-hand side of(21) are small and beyond the leading order of the asymptotic
multi-scale expansion method. Similar coupled NLS equations were recently derived in[26,26a]for two counter-
propagating waves. A system of coupled two-dimensional NLS equations for two counter-propagating waves was
derived in[27]. We notice that the coupledequations (21)are valid in the general non-resonant case, whenvg1 �= vg2
(see, for example,[28]).

The coupled NLSequations (21)have thex-independent coupled-wave solution:

A = A0 exp(iωaT ), B = B0 exp(−iωbT ), C = C0 exp(iωcT ), D = D0 exp(−iωdT ), (22)

where

ωa = µ1(|A0|2 + 2|B0|2) + µ2(|C0|2 + |D0|2), ωb = µ1(2|A0|2 + |B0|2) + µ2(|C0|2 + |D0|2),
ωc = µ3(|C0|2 + 2|D0|2) + µ4(|A0|2 + |B0|2), ωd = µ3(2|C0|2 + |D0|2) + µ4(|A0|2 + |B0|2).

Substituting(22) into (20)we obtain the solution in the form of two pairs of counter-propagating waves:

(
u

w

)
= ε(A0 ei(kx−ω1t+ωaε

2T ) + B0 ei(kx+ω1t−ωbε
2T ))

(
1

α1

)

+ ε(C0 ei(kx−ω2t+ωcε
2T ) + D0 ei(kx+ω2t−ωdε

2T ))

(
1

α2

)
+ c.c. (23)

Solution(23) describes a weakly nonlinear energy exchange between the two components. The only change com-
pared to the linear solutions discussed inSection 2is the nonlinear corrections to the frequenciesω1, ω2 of the
linear waves, whereω1(k) andω2(k) are given by(6). Forε → 0, solution(23) reduces to the linear solution(8) in
the case of two waves with

εA0 = |α2|A
2(α1 + |α2|) , εC0 = α1A

2(α1 + |α2|) , B0 = D0 = 0

and to the linear solution(12) in the case of four waves:

εA0 = εB0 = |α2|A
2(α1 + |α2|) , εC0 = εD0 = α1A

2(α1 + |α2|) .

For ε �= 0, solution(23) generalizes the linear solutions by nonlinearity-induced correction of order O(ε2) to the
frequenciesω1,2(k). For c = 1, the exact nonlinear solution(18) reduces to the weakly nonlinear solution(23) in
the asymptotic expansion asκ → 0. Using the well-known approximation (e.g.,[24])

sn(x, κ) = sinx − 1
4κ

2(x − sinx cosx) cosx + O(κ4),

we eliminate the secular terms by renormalizing the frequenciesω1,2(k) in the solution(18). As a result, we find
the asymptotic expansion with the leading order terms:

u = 2

1 + δ2
[κ sin(kx − ω1t + Ω1κ

2t + O(κ4)) + δ2κ sin(kx − ω2t + Ω2κ
2t + O(κ4)) + O(κ2)],

w = 2

1 + δ2
[κ sin(kx − ω1t + Ω1κ

2t + O(κ4)) − κ sin(kx − ω2t + Ω2κ
2t + O(κ4)) + O(κ2)],

where

Ω1 = 0, Ω2 = 1 + δ2

4ω2
.
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This expansion matches the weakly nonlinear solution(23) for c = 1 with the correspondence:

εA0 = κ

1 + δ2
, εC0 = κδ2

1 + δ2
, B0 = D0 = 0, ωa = ωb = ωd = 0,

ωcε
2 = µ3|C0|2ε2 = Ω2κ

2,

since forc = 1:

µ1 = µ2 = µ4 = 0, µ3 = (1 + δ2)3

4ω2δ4
.

5. Conclusion

The situation when the linear dispersion relation has two or more branches for the same wavenumber is typical in
multi-component systems. Many interesting phenomena can take place in such systems, including wave resonances
and gap solitons. In this paper, by considering a system of coupled Klein–Gordon equations, we have discussed the
processes involving the exchange of energy between the physical components of the system. The energy exchange
constitutes an essential feature of multi-component systems. It would be interesting to study the energy exchange
processes in other physical systems admitting a similar dispersion relation. For example, an attractive candidate is
the sine-Gordon–d’Alembert systems introduced in the study of the propagation of electroacoustic walls in elastic
ferroelectrics (see[8,9]) and magnetoacoustic domain walls in elastic ferromagnets[10] (see also[29,30]).

Harmonic waves in a scalar sine-Gordon equation are modulationally unstable with respect to amplitude variations.
Since the system(2) with c = 1 reduces to the sine-Gordonequation (15)and to the waveequation (16), the
coupled linear and nonlinear waves are expected to be modulationally unstable too. In the general case, stability of
coupled-wave solutions can be considered in the framework of coupled NLSequations (21)with the small dispersive
terms in the right-hand side of(21) (see[26,26a,27]and references there in). Analytical and numerical results on
stability of coupled-wave solutions will be published elsewhere (see[31] for the influence of modulational instability
on the two-wave solution).
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