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Instabilities of dispersion-managed solitons in the normal dispersion regime

Dmitry E. Pelinovsky*
Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3

~Received 3 March 2000!

Dispersion-managed solitons are reviewed within a Gaussian variational approximation and an integral
evolution model. In the normal regime of the dispersion map~when the averaged path dispersion is negative!,
there are two solitons of different pulse duration and energy at a fixed propagation constant. We show that the
short soliton with a larger energy is linearly~exponentially! unstable. The other~long! soliton with a smaller
energy is linearly stable but hits a resonance with excitations of the dispersion map. The results are compared
with the results from recent publications@Bernstonet al., Opt. Lett.23, 900 ~1998!; Nijhof et al., ibid. 23,
1674 ~1998!; Grigoryan and Menyuk,ibid. 23, 609 ~1998!#.

PACS number~s!: 41.20.Jb, 42.65.Tg, 42.81.Dp
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I. INTRODUCTION

New ways in optimization of existing telecommunicatio
systems based on dispersion management technolog
tracted recently wide research interest from soliton-ba
groups @1#. The main idea was to combine a high loc
group-velocity dispersion with a low path-average disp
sion. The former feature results in the reduction of the fo
wave mixing while the latter one reduces the Gordon-H
timing jitter effects. When the path-average dispersion
small and normal, i.e., the defocusing segment in the fibe
dominant over the focusing one, a new phenomenon
branching of soliton solutions was discovered@2–5#. The
soliton propagation in this regime is not supported by
uniform-dispersion optical fiber and seems to be one of
remarkable achievements of the dispersion management
sufficiently high local dispersion.

The stability of branching soliton solutions in the norm
dispersion regime was a subject of intense and contradic
studies. Grigoryan and Menyuk announced the linear
nonlinear stability of both the branches@3#, while Berntson
et al. conjectured instability of one of the branches@2#.

In this paper, we resolve the problems of existence
stability of soliton signals in the normal regime of the d
persion map. We find, in the small-amplitude approximati
that there exist two branches of soliton solutions for differ
levels of energy and different pulse durations at a fix
propagation constant. The short pulses with larger energy
proved to be linearly unstable, while the other~long! pulses
with smaller energy are neutrally stable. We show that
transition from large-energy unstable solitons to the sta
soliton signals occurs via long-term transient oscillatio
The two branches of soliton solutions correspond to a sin
~small-energy! branchB in Fig. 1 of @3#. Depending on a
normalization condition~see Sec. IV!, this branch may be
either stable or unstable.

Our strategy to develop the small-amplitude theory
based on the combination of two analytical approaches:
Gaussian variational approximation and the integral evo
tion model.

*Email address: dmpeli@math.toronto.edu
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The Gaussian variational approximation, being inaccur
in details, is still useful for a quick and rough analysis~see
@6# for review and references!. Also, it was shown that the
method can be extended to a rigorous Gauss-Hermite ex
sion of the basic model@7#. We improve the previous result
summarized in Ref.@6# by deriving a new dynamical system
from the variational equations of a Gaussian pulse. The s
tem clearly displays the linear and nonlinear instability of t
short Gaussian pulse with larger energy.

More rigorous analysis of the problem is based on
integral evolution model obtained by Gabitov and Turits
@8# and by Ablowitz and Biondini@9#. Although this model is
more complicated from a computational point of view~see
recent papers@10,11#!, we managed to study numerically th
construction of the linear spectrum of dispersion-mana
solitons. Our results confirm the instability and transiti
scenarios predicted within the variational model. We a
deduce from this model that the soliton signals in the norm
regime of the dispersion map are in resonance with the w
continuum of linear excitations of the map. The resonan
implies usually the generation of wave packets from sta
pulses oscillating in time. The latter effects are beyo
the accuracy of the analytical model and are left for furth
studies.

II. GAUSSIAN APPROXIMATION:
NEW DYNAMICAL MODEL

We study the nonlinear Schro¨dinger equation model in the
dimensionless form@4#,

iuz1
1

2
D~z!utt1eS 1

2
D0utt1uuu2uD50, ~1!

whereu(z,t) is the envelope of an optical pulse in the r
tarded reference frame of the fiber. The small parametee
measures the length of the dispersion’s map and the inv
variance of the local dispersion. After normalization,D0 and
D(z) are assumed to be of order ofO(1), and

^D&5E
0

1

D~z!dz50, D~z11!5D~z!. ~2!
4283 ©2000 The American Physical Society



on

lu-
th
ar
th
-
on

ns
le

-

-

it
g

ar

a

ture,

-

he
s

he

-
tion

s

ss-
ical

4284 PRE 62DMITRY E. PELINOVSKY
Further physical motivations for derivation and verificati
of the model~1! can be found in@1#. Solitonlike optical
pulses are solutions of the model in the form

u~z,t !5c~z,t !ei emz, ~3!

wherem is the propagation constant andc(z,t) is a soliton
profile satisfying the boundary conditions

c~z11,t !5c~z,t ! ~4!

and

lim
t→`

c~z,t !50. ~5!

One of the conventional approximation for soliton so
tions of NLS-type equations is based on averaging
Gaussian anzatz in the Lagrangian density and further v
ing the Lagrangian density with respect to parameters of
Gaussian pulse~see@6# for review!. The Gaussian approxi
mation is the first term of the Gauss-Hermite expansi
when solving the NLS equation~1! in the limit e→0 @7#. We
apply the Gaussian anzatz in the form

u~z,t !5c~z!expS 2
a~z!22ib~z!

a~z!214b~z!2
t21 if~z!D . ~6!

Here the four parameters of the Gaussian pulse arec(z), the
amplitude,f(z), the gauge parameter,a(z), the pulse dura-
tion, andb(z), the chirp. It was found that the four equatio
for variations of the Lagrangian density can be decoup
into a system fora(z) andb(z) of the form

da

dz
5

4eEa5/2b

~a214b2!3/2
, ~7!

db

dz
5D~z!1eS D02

Ea3/2~a224b2!

2~a214b2!3/2 D . ~8!

The phase factorf(z) is expressed in terms ofa(z) and
b(z),

d

dzS f1
1

2
arctan

2b

a D5
eEa1/2~3a2120b2!

4~a214b2!3/2
, ~9!

while the amplitudec(z) is given in terms of the input en
ergy constantE as

E5
Aa214b2

A2a
c25

1

Ap
E

0

1

dzE
2`

`

dtuuu2~z,t !.0. ~10!

The stationary pulse@Eqs. ~3!–~5!# corresponds to the peri
odic solutions of the system~7! and ~8! in the form

a~z11!5a~z!, b~z11!5b~z!,

f~z11!5f~z!1em. ~11!

For simplicity, we study the periodic solutions in the lim
e→0 by using a two-step dispersion map with zero avera
e
y-
e

s

d

e,

D~z!5H D1 , 0,z,L

D2 , L,z,1,
~12!

where

m5D1L52D2~12L !.0.

The asymptotic solution in the limite→0 can be sought in
the regular form,

a~z!5as1O~e!, b~z!5E
0

z

D~z8!dz81bs1O~e!,

where as ,bs are constant. The periodic solutions appe
whenbs52m/2 andas is a root of the equation,

D05Eas
3/2F 1

~m21as
2!1/2

2
1

2m
lnS m1~m21as

2!1/2

as
D G .

~13!

In addition, the propagation constantm can be obtained as
function of E andas according to the equation

m5
1

4
Eas

1/2F 22

~m21as
2!1/2

1
5

m
lnS m1~m21as

2!1/2

as
D G .

~14!

These equations have been already derived in the litera
see @4,5# for Eq. ~13! and @7# for Eq. ~14!. However, the
relations~13! and~14! were viewed typically under the nor
malization condition,

m51, E5
1

A2S
, as5

1

S
, ~15!

whereS is called the map strength. In this normalization, t
expression~13! gives a small-amplitude limit of the result
of @2,3#, i.e., the slopeE/D0 is a function ofS. The existence
of solitons was identified both forD0.0 ~whenS,Sthr) and
for D0,0 ~whenS.Sthr), whereSthr'3.32.

In this paper, we develop a different frame to view t
soliton solutions~13! and~14!. Guided by the stability analy-
sis of solitons in generalized NLS equations@12#, we fix the
parameters of the model (D0 ,m) and construct periodic so
lutions as a one-parameter family in terms of the propaga
constantm. As a result, the parametersa andE can be found
from Eqs.~13! and~14! asas5as(m) andE5E(m). These
functions are shown in Figs. 1~a! and 1~b! for D050.02 and
m52 and in Figs. 2~a! and 2~b! for D0520.02 andm52.
Obviously, the branching occurs atD0,0 ~i.e., at the normal
regime of the dispersion map!, when the dispersion map i
defocusing on average. The two solutions coexist form
.m thr(D0 ,m) andE.Ethr(D0 ,m). Both branches I and II
correspond to the same branchB in Ref. @3# under the nor-
malization condition~15!.

In order to describe nonstationary dynamics of the Gau
ian pulse near the periodic solutions, we derive a dynam
model from Eqs.~7! and ~8! by setting,

a~z!5a0~z!1ea1~z,z!1O~e2!
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and

b~z!5E
0

z

D~z8!dz81b0~z!1eb1~z,z!1O~e2!.

Here z5ez is the distance to measure the evolution of
Gaussian pulse over many map’s periods. The coupled
tem ~7! and ~8! can be averaged over the map’s period s
ject to the periodic conditions:a1(z11,z)5a1(z,z) and
b1(z11,z)5b1(z,z). Then, the nonstationary system r
duces to the dynamical model fora0(z) andb0(z),

da0

dz
5Fa~a0 ,b0!

[
Ea0

5/2

m F 1

~a0
214b0

2!1/2
2

1

@a0
214~b01m!2#1/2G ,

~16!

FIG. 1. EnergyE ~a! and pulse durationas ~b! versus propaga-
tion constantm for the Gaussian pulse~6! at D050.02, m52.
s-
-

db0

dz
5Fb~a0 ,b0!

[D02
Ea0

3/2

4m F 4~m1b0!

@a0
214~m1b0!2#1/2

2
4b0

~a0
214b0

2!1/2

1 lnS 2b01~a014b0
2!1/2

2~m1b0!1@a0
214~m1b0!2#1/2D G . ~17!

This system has of course the same stationary solutionsa0
5as and b05bs52m/2 as those given in Eq.~13!. The
stationary solutions appear as equilibrium states in the
namical system, whose stability can be found by lineariz

a0~z!5as1Daeilz,

b0~z!5bs1Dbeilz,

where the eigenvaluel is

FIG. 2. EnergyE ~a! and pulse durationas ~b! versus propaga-
tion constantm for the Gaussian pulse~6! at D0520.02, m52.
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l2~m!52
]Fa

]b
~as!

]Fb

]a
~as!

5
2Eas

3/2

~m21as
2!3/2F3D01

Eas
3/2~m22as

2!

~m21as
2!3/2 G . ~18!

We plot l2(m) in Fig. 3 to confirm thatl2.0 for branch I
of the periodic solutions andl2,0 for branch II~cf. Fig. 2!.
Thus, the linear analysis predicts the instability of the sh
Gaussian pulses with larger energy at a fixed propaga
constantm ~branch II!. In the limit m→m thr(D0 ,m), the
instability disappears, i.e.,

lim
m→m thr

l2~m!50.

To prove this property, we notice from Eq.~17! that

]Fb

]E
~as ,bs!

dE

dm
1

]Fb

]a
~as ,bs!

da

dm
50. ~19!

Connecting Eqs.~18! and ~19!, we find the following
asymptotic approximation:

l2→S ~]Fb /]E!~]Fa /]b!

da/dm D dE

dm
. ~20!

Taking into account thatdE/dm, ]Fb /]E, and]Fa /]b are
all positive for D0,0, anda;(m2m thr)

1/2 @see Figs. 2~a!
and 2~b!#, the asymptotic approximation~20! produces the
result,l;(m2m thr)

1/4.
The nonlinear dynamics of the system~16! and ~17! is

shown in Fig. 4 forD0520.02 andm52. At a fixed value
of the energyE, there are two stationary Gaussian pulses
different durations: a short pulse is a saddle point, whil
long one is a center. Inside the separatrix loop, there
oscillations of the pulse trapped by the center point. Outs
the separatrix, the Gaussian pulse transfers to chirped li
waves.

FIG. 3. Growth ratel2 versus propagation constantm for the
Gaussian pulse~6! at D0520.02, m52. Branch II with l2,0
corresponds to the unstable Gaussian pulse.
rt
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re
e
ar

We notice that the transition scenario resembles the n
linear dynamics of unstable solitons in generalized N
equations@12#. The only difference is that the unstab
branch in generalized NLS equations is located for th
values of soliton propagation constantm, wheredE/dm,0.
Although this conventional stability criterion failed for th
dispersion-managed solitons@see Fig. 2~a!#, the instability
development shows up to be alike~cf. Fig. 4 here and Fig.
2~b! in @12#!.

III. INTEGRAL EVOLUTION MODEL:
NUMERICAL ANALYSIS

The Gaussian approximation of the optical pulse in
NLS model ~1! can be improved by summating all highe
order Gauss-Hermite solutions of the linear equation,iuz
10.5D(z)utt50 as shown in@7#. However, this analysis re
sults in a complicated infinite-dimensional system of alg
braic equations for parameters and coefficients of the Ga
Hermite expansion. Instead, we adopt a direct asympt
method@8,9# to deduce an integral evolution model valid
the limit e→0. This method is based on a Fourier solution
the NLS equation~1! given by the asymptotic expansion,

u~z,t !5u0~z,t !1eu1~z,t !1O~e2!,

where the Fourier form foru0(z,t) is

u05
1

2pE2`

`

dv W~v,z!expF2
i

2
v2S E

0

z

D~z8!dz8D 1 ivtG .
~21!

HereW(v,z) is a complex Fourier coefficient andz5ez is
the distance to measure the pulse evolution over many m
periods. By setting the periodic boundary condition f
u1(z11,t)5u1(z,t) in the Fourier form, the NLS equation
~1! can be reduced to the integral evolution model,

iWz2
1

2
D0v2W1E E

2`

`

dv1 dv2 r ~v1v2!W~v1v1!

3W~v1v2!W̄~v1v11v2!50, ~22!

FIG. 4. Phase plane (b,a) for the nonlinear dynamics of a
Gaussian pulse~6! at D0520.02, m52 andm51.
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where

r ~v1v2!5
1

4p2E0

1

dzexpS iv1v2E
0

z

D~z8!dz8D .

For the two-step dispersion map~12!, the integral kernel
r (x) is computed explicitly@8,9# as

r ~x!5
1

4p2

sinS mx

2 D
mx

2

. ~23!

It is obvious that the dynamical system~16! and~17! studied
in the previous section can be found from Eq.~22!, within
the same Gaussian approximation. This correspondence
plies that the qualitative results on instability of short Gau
ian pulses forD0,0 can be reconfirmed within a more sy
tematic theory.

In this section, we present numerical results consisting
three subsections. In the first subsection, we construct a
merical solution of the stationary problem identifying optic
solitons in the normal regime, whenD0,0. In the second
part, we analyze the linearized problem and locate num
cally the linear spectrum in the problem, indicating possi
instabilities of optical solitons. Then, we simulate the no
stationary problem described by Eq.~22! and discuss the
transformation routes from the unstable dispersion-mana
solitons.

A. Stationary solutions

The periodic-type localized solutions of the NLS equati
in the form ~3! are equivalent to stationary solutions of E
~22! in the form

W~v,z!5F~v!eimz, ~24!

whereF(v) is the real function that defines the soliton s
lution u0(z,t) according to Eq.~21!. The functionF(v)
satisfies a nonlinear integral boundary-value problem,

S m1
1

2
D0v2DF~v!5R~v!

[E E
2`

`

dv1 dv2 r ~v1v2!F~v1v1!

3F~v1v2!F~v1v11v2!,
~25!

where F(2v)5F(v) ~the symmetry condition! and
lim

v→`
F(v)50 ~the boundary condition!.

For numerical analysis, we intend to use Petviashvi
iteration scheme@13#:

F (n)~v!→F (n11)~v!

for n50,1,2, . . . . Within this scheme, the right-hand sid
R(v) can be approximated at thenth approximation by
F (n)(v) provided a certain stabilizing factor is introduce
m-
-

f
u-

l

ri-
e
-

ed

s

for convergence@see Eqs.~27! and ~28! below#. However,
the numerical scheme breaks down forD0,0 due to reso-
nances atv56v res , where

v res5A 2m

uD0u
. ~26!

Indeed forv56v res , the left-hand side of Eq.~25! van-
ishes.@Here we notice thatm.0 for the Gaussian pulse so
lutions ~6! of the NLS model~1!.# In order to avoid reso-
nances in the numerical scheme, we add and subtra
dummy positive dispersion term 0.5uD0uv2F(v) to the left-
hand side of Eq.~25!. As a result, the scheme converts to t
following map:

F (n)~v!→F (n11)~v!

5Sn
3/2S R(n)~v!1

1

2
~ uD0u2D0!v2F (n)~v!

m1
1

2
uD0uv2

D ,

~27!

whereSn is Petviashvili’s stabilizing factor given by

Sn5

E
2`

`

dvS m1
1

2
uD0uv2DF (n)2~v!

E
2`

`

dv F (n)~v!FR(n)~v!1
1

2
~ uD0u2D0!v2F (n)~v!G .

~28!

The factorSn is unity at the stationary solution and serv
therefore as an indicator for termination of the iterating p
cedure. We stop iterations whenuSn21u,1025.

To use the map~27!, we apply Simpson’s integration
method, reducing complexity due to the symmet
F(2v)5F(v). As a starting solution, the profileF(v)
can be approximated by the Gaussian pulse with parame
corresponding to the periodic solution~13! and ~14!,

F (0)~v!5~pEA2as!
1/2expS 2

1

4
asv

2D . ~29!

Table I shows iterations for the stabilizing factorSn in the
three different cases:~i! D050.02, ~ii ! D0520.02 ~branch
I!, and ~iii ! D0520.02 ~branch II!. For all the cases, the
other parameters arem51 andm52. In the first case, the
convergence is monotonic and the profile for stationary s
ton F(v) is shown in Fig. 5~a!. The numerical value for
energy of the stationary soliton is shown in Fig. 1~a! by a
bullet. In the second case, the iterations converge slowly
the stationary soliton shown in Fig. 5~b!. Sometimes, the
convergence is accompanied by a single oscillation ofSn
near unity. The numerical value for the energy is shown
Fig. 2~a! by a bullet at branch I. In the last case, however,
iterations oscillate and finally diverge. Inspection of the p
file F (n)(v) at a final iteration shows that the iteration
change the initial pulse drastically leading to its disappe
ance. Two conjectures follow from this fact. Either th
shorter soliton with larger energy at branch II does not ex
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TABLE I. Iterations of the stabilizing factorSn for D050.02 andD0520.02 ~branches I and II!.

Number of iterations Sn : D050.02 Sn : D0520.02 ~I! Sn : D0520.02 ~II !

1 0.9897 0.9957 0.9920
2 0.9971 0.9981 0.9917
3 0.9994 0.9988 0.9921
4 0.9998 0.9991 0.9942
5 0.9999 0.9993 0.9989
6 0.9994 1.0069
7 0.9995 1.0167
8 0.9996 1.0173
9 0.9997 0.9642
10 0.9997 0.8133
11 0.9998 0.7025
12 0.9998 0.6833
13 0.9999 0.6773
14 0.9999 0.6695
15 0.9999 0.6601
16 0.6499
17 0.6394
18 0.6292
19 0.6192
e
d

ar
ta

te
m

q

r

od
ge-
of
ns,
,

n
for

tion,
as a stationary solution of Eq.~25! or it is unstable within the
iterational scheme~27!. Since the short Gaussian pulse do
exist ~see Fig. 2!, we are inclined to work along the secon
conjecture. The iterational scheme~27! is not relevant for the
time-evolution problem and rigorous analysis of the line
ized problem is needed to confirm predictions of the ins
bility of the short stationary pulse.

B. Linear spectrum

There are several forms of the linear problem associa
with the NLS-type equations. We will use the matrix for
that was studied in our previous paper@14# in a simplified
form. The perturbations of the stationary solutions of E
~22! can be expressed as

W~v,z!5eimz@F~v!1w1~v!eilz1w̄2~v!e2 ilz#,
~30!

where the vectorw(v)5(w1 ,w2)T satisfies the matrix linea
problem,

lw~v!52S m1
1

2
D0v2Ds3w~v!

1E
2`

`

dv1@2K1~v,v1!s31K2~v,v1!s2#w~v1!.

~31!

Here

s35F1 0

0 21G , s25F 0 1

21 0G ,
and the integral kernels are
s

-
-

d

.

K1~v,v1!5E
2`

`

dv2 r @~v2v1!~v2v2!#F~v2!

3F~v11v22v!,

K2~v,v1!5E
2`

`

dv2 r @~v22v1!~v22v!#F~v2!

3F~v12v21v!.

Using the stationary solutionF(v) from the previous sub-
section and implementing Simpson’s integration meth
again, we solve the linear problem by using the linear al
bra packages built in Matlab 5.2. We identify two types
modes of the linear spectrum: symmetric eigenfunctio
when w(2v)5w(v), and antisymmetric eigenfunctions
whenw(2v)52w(v).

The linear spectrum for the soliton of Fig. 5~a! is shown
in Figs. 6~a! and 6~b!. It consists of three main parts:~i!
continuous spectrum,~ii ! neutral~zero! modes, and~iii ! in-
ternal ~oscillatory! modes.

When D0.0 ~the anomalous regime of the dispersio
map!, the continuous spectrum is located at the real axis
ulu.m @see Figs. 6~a! and 6~b! where m51]. Indeed, the
continuous modes are singular in the Fourier representa
i.e., w(v);d(v2V). Then, the linear problem~31! has the
continuous spectrum atl56lV , where

lV5m1
1

2
D0V2, ~32!

provided the following integral kernels are not singular:
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lim
v→V

K1~v,V2v!5
1

4p2E2`

`

dv F2~v!,

lim
v→V

K2~v,V2v!5E
2`

`

dv r ~v2!F~v1V!F~v2V!.

The neutral ~zero! modes always appear atl50 as
double degenerate states for both symmetric and asymm
eigenfunctions. However, the inaccuracy of the numer
method destroys the degeneracy of the zero modes. A
result, the two zero modes may appear either for small rea
for small imaginary values ofl. Figure 7~b! displays two
imaginary eigenvalues of order ofO(1023) that appear to be
shifted from the origin ofl due to this numerical effect
Since the zero modes are not of interest from stability po
of view, we neglect this effect and leave the scheme with
any additional modification.

FIG. 5. The profile of the stationary pulseF(v) in the
boundary-value problem~25! at D050.02 ~a! and D0520.02
~branch I! ~b!. The other parameters arem52 andm51. The dot-
ted line displays the Gaussian pulse~29! for the same paramete
values.
ric
l
a

or

t
t

The internal~oscillatory! modes are located in the gap o
the continuous spectrum as 0,ulu,m. The set of internal
modes may contain different number of eigenvalues.
have shown in a previous paper@14# that the set is empty in
the NLS limit ~which corresponds to the limitm→0 at fixed
D0.0 andm). @Note that in@14# we used the Gaussian puls
~29! for approximatingF(v) while here we substitute the
numerical result from Eq.~25!.# Then, we showed that the
number of internal modes increases with the map’s stren
S @see Eq.~15!#. In Figs. 6~a! and 6~b! for D050.02, m52,
and m51, we identify 14 internal modes for symmetr
eigenfunctions and 12 internal modes for antisymme
eigenfunctions. Still complex or imaginary eigenvaluesl are
absent that confirm stability of dispersion-managed solit
in the anomalous regime~whenD0.0).

The linear spectrum for the soliton of Fig. 5~b! is shown
in Figs. 7~a! and 7~b!. The continuous spectrum is seen
have changed drastically. WhenD0,0 ~normal regime of
the dispersion map!, the continuous spectrum covers the se
mentulu,m twice according to Eq.~32!. As a result, neutral
and internal modes, if any, become embedded in the w
continuum as seen in Figs. 7~a! and 7~b!. This indicates a

FIG. 6. The linear spectrum ofl for Eq. ~31! for symmetric~a!
and antisymmetric~b! eigenvectors. The stationary pulse corr
sponds to Fig. 5~a! at D050.02, m52, andm51.
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resonance of stationary soliton with the linear spectrum
the normal regime of the dispersion map. However, this re
nance does not result in any instability of solitons of bran
I within the linear theory. We discuss the resonance issu
Sec. IV. The two imaginary eigenvalues on Fig. 7~b! appear
from the origin as artifacts of the numerical scheme as it w
explained above. Indeed, when the step size inv is taken
smaller, we have checked that the value of imaginary~spu-
rious! eigenvalues decreases too.

At last, we would like to construct the linear spectrum f
the solitons of branch II. However, the stationary solutio
were not identified within Petviashvili’s numerical metho
Therefore, assuming that the solutions still exist, the pro
F(k) can only be approximated by the Gaussian pulse~29!
as we did in@14#. The linear spectrum is then shown in Fig
8~a! and 8~b! for D0520.02, m52, andm51. Clearly, the
continuous spectrum looks similar to that in Fig. 7~a! and it
does not possess any gap in the origin. However, we n
identify new complex eigenvalues both for symmetric a
antisymmetric eigenfunctions. These complex eigenval
have relatively large, order ofO(1021), imaginary part and
they are associated with the instability of the solitons
branch II. The numerical result for the instability eigenvalu

FIG. 7. The linear spectrum ofl for Eq. ~31! for symmetric~a!
and antisymmetric~b! eigenvectors. The stationary pulse corr
sponds to Fig. 5~b! at D0520.02, m52, andm51.
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is in a reasonable comparison with the asymptotic pred
tions that follow from the dynamical model~16! and ~17!
~see Fig. 3, branch II!. The eigenvectorsw(v) for the un-
stable~imaginary! eigenvalues are shown in Figs. 8~c! and
8~d! for the symmetric and antisymmetric eigenfunctions,
spectively. The numerical approximations of the eigenv
tors, being inaccurate in details, display clearly that the
stable modes are localized at the intermediate w
frequenciesv of the pulse spectrum~at v'4.5). Thus, the
development of the unstable eigenvectors would affect
duration of the soliton pulse in the nonlinear stage as
scribed in the next subsection.

C. Nonstationary evolution

To confirm the transition scenario, we simulate the no
stationary dynamics of unstable solitons in the integ
model ~22! by using the central-difference scheme,

V(n11)~v!2V(n21)~v!

2Dz

5 i E E
2`

`

dv1 dv2 r ~v1v2!eiD 0v1v2zn

3V(n)~v1v1!V(n)~v1v2!V̄(n)~v1v11v2!,

~33!

where

V(n)~v!5W~v,zn!expS i

2
D0v2znD

andzn5nDz. An initial iteration can be done within a for
ward scheme starting with the initial Gaussian pulse~29!
with the parameteras andE corresponding to branches I an
II at m51 on Figs. 2~a! and 2~b!. Evolution of a stable long
pulse~branch I! is shown in Figs. 9~a! and 9~b!, while that of
an unstable short pulse~branch II! is shown in Figs. 9~c! and
9~d!. The stable long Gaussian pulse quickly transits to
stationary pulse given by Eq.~24! @Fig. 5~b!#, which propa-
gates later without visible distortions. The second and th
peaks in the signal spectrum and profile@Figs. 9~a! and 9~b!#
appear in complete agreement with the profile of the stati
ary dispersion-managed soliton~cf. Fig. 1 from @9#!. Some
oscillations along the distancez are excited due to the dif
ference between the Gaussian pulse~29! and the exact sta
tionary solution of Eq.~25!. These oscillations are sma
compared to the soliton profile and they do not change
duration of the soliton pulse@see Fig. 9~a!#. The nonlinear
resonance atv res @v res510 for Fig. 9~a!# is not seen to be
excited during the signal propagation.

Evolution of the short~unstable! pulse differs drastically
from the previous picture. The pulse is being broadened d
ing the evolution, it generates the strong radiation tail a
resembles the long~stable! signal that has the first node a
v'4.5 @cf. Figs. 9~a! and 9~c!#. This transformation is ac-
companied by the intermediate oscillations around the s
ton’s shape. Thus, we confirm the analytical predictions t
the short pulses are linearly unstable and switch into lo
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FIG. 8. The linear spectrum ofl for Eq. ~31! for symmetric~a! and antisymmetric~b! eigenvectors. The stationary pulse corresponds
the Gaussian pulse~6! at D0520.02, m52, andm51 ~branch II!. The symmetric~c! and antisymmetric~d! eigenvectorsw(v) for the
unstable eigenvalues Im(l)50.073~c! and Im(l)50.076~d!.
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stable solitons via long-term oscillatory dynamics. The u
stable eigenvectors at Figs. 8~c! and 8~d! clearly match at
Fig. 9~c! with the growing deformations of the localizatio
of the pulse spectrum.

IV. DISCUSSION: RESONANCE OF DISPERSION-
MANAGED SOLITONS

We have shown that both the Gaussian variational
proximation and the integral model prescribe the instabi
of short nonlinear signals in the normal regime of the disp
sion map. This instability broadens the signal’s profi
through some intermediate oscillations. The long sign
propagate stably then.

We point out that the small-amplitude approximation co
sidered here corresponds to the asymptotic limitE/D0→0
~see branchB at Fig. 1 in @3#!. The stability of the small-
amplitude branch forD0,0 was previously under discussio
in the literature@2,3,10#. This discussion can be resolved
one takes into account the normalization condition~15! that
was used in the previous works. We have checked that
normalization condition~15! selects the pulse solution alon
-

-
y
r-

ls

-

he

the stable branch I forSthr,S,Sstab, whereSstab'6.76.
For S.Sstab, it selects solutions along the unstable branch
@see Figs. 2~a! and 2~b!#. Thus, for the intermediate ma
strengths~whenS,Sstab), the soliton signal propagates st
bly in the limit of small energies, as reported in@3#. How-
ever, if the map strengthSexceeds the valueSstab, the soli-
ton signal breaks down and switches to a longer signal
conjectured in@2#.

For both the branches, we observe the resonance app
ing between the linear wave spectrum and the stationary
nals. This resonance is related to the fact that the origil
50 is absorbed in the continuous spectrum of the lin
problem. Another way to find the resonance is to constr
the linear spectrum for the integral model~22!, W(v,z)
;W0eiV(v)z, where

V52
1

2
D0v2>0

and D0,0. Therefore, for anym.0 there existsv res such
that V(v res)5m. This resonance does not show up in t
linear theory since the discrete and continuous spectra
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FIG. 9. Propagation of the stable~a!,~b! and unstable~c!,~d! Gaussian pulses in the model~22! at D0520.02 andm52. The dotted line
displays the initial pulse~29! for branch I~a!,~b! and for branch II~c!,~d! at m51. The solid line displays the profile atz520.
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separated. However, in the nonlinear stage, the reson
generally leads to emission of wave packets and solito
decay.

Since the transformation or decay of long stable solito
for D0,0 have never been observed numerically~nor in our
simulations reported in Fig. 9!, it is likely that the effective
gap in the spectrum still appears in the nonlinear theo
Also, the truncated approximation given by the integ
model ~22! may not be valid for a correct description of th
t-

ce

pt.
-

pt.
ce
’s

s

y.
l

resonance. The latter issues remain open for further ana
cal consideration.
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