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Instabilities of dispersion-managed solitons in the normal dispersion regime
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Dispersion-managed solitons are reviewed within a Gaussian variational approximation and an integral
evolution model. In the normal regime of the dispersion rhapen the averaged path dispersion is negative
there are two solitons of different pulse duration and energy at a fixed propagation constant. We show that the
short soliton with a larger energy is linearlgxponentially unstable. The othettong) soliton with a smaller
energy is linearly stable but hits a resonance with excitations of the dispersion map. The results are compared
with the results from recent publicatiofiBernstonet al,, Opt. Lett. 23, 900 (1998; Nijhof et al, ibid. 23,
1674(1998; Grigoryan and Menyukibid. 23, 609 (1998 ].

PACS numbes): 41.20.Jb, 42.65.Tg, 42.81.Dp

[. INTRODUCTION The Gaussian variational approximation, being inaccurate
in details, is still useful for a quick and rough analy&se
New ways in optimization of existing telecommunication [6] for review and referencgsAlso, it was shown that the
systems based on dispersion management technology dpethod can be extended to a rigorous Gauss-Hermite expan-
tracted recently wide research interest from soliton-basegion of the basic modgl]. We improve the previous results
groups[1]. The main idea was to combine a high local SUmmarized in Ref.6] by deriving a new dynamical system
group-velocity dispersion with a low path-average disper{from the variational equations of a Gaussian pulse. The sys-
sion. The former feature results in the reduction of the fourtem clearly displays the linear and nonlinear instability of the
wave mixing while the latter one reduces the Gordon-Haughort Gaussian pulse with larger energy.
timing jitter effects. When the path-average dispersion is More rigorous analysis of the problem is based on the
small and normal, i.e., the defocusing segment in the fiber igtegral evolution model obtained by Gabitov and Turitsyn
dominant over the focusing one, a new phenomenon of8] and by Ablowitz and Biondinji9]. Although this model is
branching of soliton solutions was discoverf#+-5]. The  more complicated from a computational point of vi¢see
soliton propagation in this regime is not supported by arecent papergl0,11]), we managed to study numerically the
uniform-dispersion optical fiber and seems to be one of th€onstruction of the linear spectrum of dispersion-managed
remarkable achievements of the dispersion management wifiplitons. Our results confirm the instability and transition
sufficiently high local dispersion. scenarios predicted within the variational model. We also
The Stab|||ty of branching soliton solutions in the normal deduce from this model that the soliton signals in the normal
dispersion regime was a subject of intense and contradictorfegime of the dispersion map are in resonance with the wave
studies. Grigoryan and Menyuk announced the linear ang§ontinuum of linear excitations of the map. The resonance
nonlinear stability of both the branchg3], while Berntson  implies usually the generation of wave packets from stable
et al. conjectured instability of one of the brancHés. pulses oscillating in time. The latter effects are beyond
In this paper, we resolve the problems of existence andhe accuracy of the analytical model and are left for further
stability of soliton signals in the normal regime of the dis- studies.
persion map. We find, in the small-amplitude approximation,

that there exist two branches of soliton solutions for different II. GAUSSIAN APPROXIMATION:

levels of energy and different pulse durations at a fixed NEW DYNAMICAL MODEL

propagation constant. The short pulses with larger energy are _ . _ _
proved to be linearly unstable, while the ottimg) pulses We study the nonlinear Schadimger equation model in the

with smaller energy are neutrally stable. We show that thélimensionless fornp4],

transition from large-energy unstable solitons to the stable

soliton signals occurs via long-term transient oscillations. ) 1 1 5
The two branches of soliton solutions correspond to a single iuz+ 5D(Z)uy+ f(gDOUtt+|u| u
(small-energy branchB in Fig. 1 of [3]. Depending on a

normalization condition(see Sec. Iy, this branch may be whereu(z,t) is the envelope of an optical pulse in the re-

either stable or unstable. . tarded reference frame of the fiber. The small parameter

bageltjdr osr:r?riggortr?bi?\i\t/iilr?%ft?vsoS;zlll-f}gﬁ)lgmfo;ﬁgg t'r‘:‘(raneasures the length of the dispersion’s map and the inverse
, . L y bp ' Variance of the local dispersion. After normalizati@n, and

Gaussian variational approximation and the integral evolu- d to be of ord d

tion model. D(z) are assumed to be of order ©f1), an

=0, Y

1
D=szdz=0, D(z+1)=D(z). 2
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Further physical motivations for derivation and verification D,, 0<z<L
of the model(1) can be found in[1]. Solitonlike optical D(z)= D L<z<l (12
pulses are solutions of the model in the form 2 =L

u(z,) =Yz, (3 Where
where u is the propagation constant agdz,t) is a soliton m=D,L=-D5(1-L)>0.

profile satisfying the boundary conditions The asymptotic solution in the limié—0 can be sought in

P(z+ 1) =(z,1) (4) the regular form,

and a(2)=agt+O(e), ,8(z)=JOZD(Z’)dz’Jr,BSJrO(e),
limy(z,t)=0. (5)

t—oo

where ag,B; are constant. The periodic solutions appear

One of the conventional approximation for soliton solu-When Bs=—m/2 andas is a root of the equation,

tions of NLS-type equations is based on averaging the 5 212
Gaussian anzatz in the Lagrangian density and further vary- Do=E 32 1 _i —m+(m o) )

ing the Lagrangian density with respect to parameters of the * [(m?+a?)¥2 2m as

Gaussian pulsésee[6] for review). The Gaussian approxi- (13
mation is the first term of the Gauss-Hermite expansions

when solving the NLS equatiofi) in the limit e—0 [7]. We  In addition, the propagation constgatcan be obtained as a

In

apply the Gaussian anzatz in the form function of E and a5 according to the equation
a(2)—-2ip(z) , 1 . -2 5 m+(m2+a§)1’2)
u(z,t)y=c(z)expp ————t°+ig(z)|. (6 =—-Ea|——F—+=-In| —— |.

14
Here the four parameters of the Gaussian pulse @y the 19
amplitude,¢(z), the gauge parametex(z), the pulse dura- These equations have been already derived in the literature,
tion, andB(z), the chirp. It was found that the four equations see[4,5] for Eq. (13) and [7] for Eq. (14). However, the
for variations of the Lagrangian density can be decoupledelations(13) and(14) were viewed typically under the nor-

into a system for(z) and 8(z) of the form malization condition,
da  4eEa®’B . . e 1 B 15
E_UCVZT,BZ)‘W, (7 m=1, _\/?S’ AT g (15
dg Ea®% a?—42) whereSis called the map strength. In this normalization, the
E:D(ZHG Do————535 |- (8)  expression13) gives a small-amplitude limit of the results
2(a”+4p%) of [2,3], i.e., the slop&/Dy is a function ofS. The existence

of solitons was identified both fd,>0 (whenS<S,;,,) and
for Dy<0 (whenS>S,,,), whereS;,,~3.32.
In this paper, we develop a different frame to view the
soliton solutiong13) and(14). Guided by the stability analy-
_ eEa'(3a®+205%) (9  sis of solitons in generalized NLS equatidiig], we fix the
A(a?+4p%)%2 parameters of the modeDg,m) and construct periodic so-
lutions as a one-parameter family in terms of the propagation
while the amplitudec(z) is given in terms of the input en- constanfu. As a result, the parametesisandE can be found
ergy constant as from Eqgs.(13) and(14) asas=ag(ux) andE=E(u). These
functions are shown in Figs(d) and Xb) for Dy=0.02 and
Va®+4p% | 1 (1 (= ) m=2 and in Figs. 2a) and 2b) for Dy=—0.02 andm=2.
E= 2a ¢ :\/_;fo dzf_wdt|u| (z)>0. (10 Obviously, the branching occurs@5<0 (i.e., at the normal
regime of the dispersion mapwhen the dispersion map is
The stationary pulsgEgs. (3)—(5)] corresponds to the peri- defocusing on average. The two solutions coexist gor

The phase factory(z) is expressed in terms af(z) and

B(2),

+1 tZB
¢ Sarctan—-

dz

odic solutions of the systertY) and(8) in the form > pinr(Do,m) and E>Ey, (Do, m). Both branches | and Il
correspond to the same branBhn Ref.[3] under the nor-
a(z+1l)=a(z), B(z+1)=p(2), malization condition(15).
In order to describe nonstationary dynamics of the Gauss-
P(z+1)=d(2)+ €en. (11 ian pulse near the periodic solutions, we derive a dynamical

model from Eqs(7) and(8) by setting,
For simplicity, we study the periodic solutions in the limit

e—0 by using a two-step dispersion map with zero average, a(2)=ag({)+ eay(z,0)+0O(€)
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FIG. 1. Energ)E (a) and pulse duratiomg (b) versus propaga-
tion constantu for the Gaussian puls@) at D;=0.02, m=2.

and

B<z>=fozmz')dz'+ﬁ0<§>+eﬁl<z,§>+0<e2

Here {=e€z is the distance to measure the evolution of a
Gaussian pulse over many map’s periods. The coupled sys-
tem (7) and(8) can be averaged over the map’s period sub-

).
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o
-
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FIG. 2. EnergyE (a) and pulse duratiom (b) versus propaga-
tion constantu for the Gaussian pulsg) at Dy=—0.02, m=2.

dg
4z ~F el Bo)
D _Eaglz 4(m+ Bg) B 48,
©am | [aZ+a(mtBe)A] M2 (adt4pR)H2

| ( 2ﬁ0+(a0+4,33)1/2 ) . (17)

"\ 2(mt Bo) + [al+4(m+ Bo) ]2

ject to the periodic conditionsa(z+1,{) = @y(z,{) and _ _ _
B1(z+1,0)=B1(z,¢). Then, the nonstationary system re- This system has of course the same stationary solutigns

duces to the dynamical model far() and By(¢),

dao _

dg Fu(a01B0)

_Eag”? 1 1
M | (ad+4B5)Y2 [ad+4(Bo+m)?]H2|

=ag and By=Bs=—m/2 as those given in Eq13). The
stationary solutions appear as equilibrium states in the dy-
namical system, whose stability can be found by linearizing

ag({)=agt Aae™,
Bo({)=Bs+ABe™,

(16) where the eigenvalug is
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FIG. 4. Phase planeB(«) for the nonlinear dynamics of a

FIG. 3. Growth raten? versus propagation constaat for the .
propag A Gaussian pulsés) at Dp=—0.02, m=2 andu=1.

Gaussian pulsé6) at Dy=—0.02, m=2. Branch Il withA\?<0

corresponds to the unstable Gaussian pulse. . . .
We notice that the transition scenario resembles the non-

linear dynamics of unstable solitons in generalized NLS

AN(p)=— ( 9 equations[12]. The only difference is that the unstable
,3 branch in generalized NLS equations is located for those
32 ¥ 2 2 values of soliton propagation constant wheredE/du<0.
__ 2Ea b Eag(m™—ay) (19  Although this conventional stability criterion failed for the
(m?+ a?)%? 0 (m?+ a?)%? dispersion-managed solitorisee Fig. 2a)], the instability

development shows up to be alikef. Fig. 4 here and Fig.
We plot\2(u) in Fig. 3 to confirm thati?>0 for branch | 2(b) in [12]).
of the periodic solutions and?<0 for branch lI(cf. Fig. 2).
Thus, the linear analysis predicts the instability of the short . INTEGRAL EVOLUTION MODEL:
Gaussian pulses with larger energy at a fixed propagation NUMERICAL ANALYSIS
constanty (branch 1). In the limit u— uh(Dg,m), the

instability disappears, i.e., The Gaussian approximation of the optical pulse in the

NLS model(1) can be improved by summating all higher-
lim A2(u)=0. order Gauss-Hermite solultions of the Iinegr equati_imr},
+0.5D(2)u=0 as shown in7]. However, this analysis re-

S sults in a complicated infinite-dimensional system of alge-
To prove this property, we notice from E(L.7) that braic equations for parameters and coefficients of the Gauss-
Hermite expansion. Instead, we adopt a direct asymptotic
aFB dE aF method[8,9] to deduce an integral evolution model valid in
JE g (@ s,ﬁs)d ( S”BS)d : (19 the limit e—0. This method is based on a Fourier solution of

the NLS equatior(1) given by the asymptotic expansion,

Connecting Egs.(18) and (19), we find the following

asymptotic approximation: U(ZO=Uo(z,D) + eur(z,) + O(e?),

(0F 41 9E)(9F ,19B) | dE
da/du du’

A2 (20

+iwt].

where the Fourier form foug(z,t) is
1 (= i z
uoz—f de(w,g)ex;{——wz(f D(z')dZ
2 —x 2 0
Taking into account thadE/du, dF z/JE, anddF,/dpB are 21)
all positive forDy<0, anda~ (u— )2 [see Figs. @)
and 2b)], the asymptotic approximatio(20) produces the HereW(w,{) is a complex Fourier coefficient ant= ez is
result, A~ (u— wn) Y4 the distance to measure the pulse evolution over many map’s
The nonlinear dynamics of the systefh6) and (17) is  periods. By setting the periodic boundary condition for
shown in Fig. 4 folD,=—0.02 andm=2. At a fixed value u;(z+1t)=u;y(zt) in the Fourier form, the NLS equation
of the energyE, there are two stationary Gaussian pulses of(1) can be reduced to the integral evolution model,
different durations: a short pulse is a saddle point, while a 1
long one is a center. Inside the separatrix loop, there are ;v _ = 2
oscillations of the pulse trapped by the center point. Outside ' 7 Poe W+f j doy dop M (@y02) W@+ @)
the separatrix, the Gaussian pulse transfers to chirped linear o
waves. XW(w+ w)W(w+ o+ w,)=0, (22
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where for convergencdsee Eqs(27) and (28) below]. However,
the numerical scheme breaks down f@2§<0 due to reso-
nances atv=* w5, Where

1 1 z
r(wlwz):—f dzexp(iwlwzf D(z')dZ
47%Jo 0

[ 2p
For the two-step dispersion mafi2), the integral kernel @res™ N[ (26
r(x) is computed explicithy{8,9] as
Indeed forw=* w,es, the left-hand side of Eq(25) van-

sin m() ishes.[Here we notice that.>0 for the Gaussian pulse so-
2 lutions (6) of the NLS model(1).] In order to avoid reso-
r(X)ZFT' (23) nances in the numerical scheme, we add and subtract a
& > dummy positive dispersion term Q% w?® (w) to the left-

hand side of Eq(25). As a result, the scheme converts to the

It is obvious that the dynamical systgii6) and(17) studied following map:

in the previous section can be found f_rom EQ2), within () DO )
the same Gaussian approximation. This correspondence im-

plies that the qualitative results on instability of short Gauss- 1 5
ian pulses folD,<0 can be reconfirmed within a more sys- R (w)+ §(|Do|— Do) 0?®"(w)
tematic theory. =g%2 ,
In this section, we present numerical results consisting of E 2
; - . p+ 5|Dolw
three subsections. In the first subsection, we construct a nu- 2

merical solution of the stationary problem identifying optical 27)
solitons in the normal regime, wheD,<0. In the second

part, we analyze the linearized problem and locate numeriyneres, is Petviashvili's stabilizing factor given by
cally the linear spectrum in the problem, indicating possible

instabilities of optical solitons. Then, we simulate the non- o
stationary problem described by E(2) and discuss the f dow
transformation routes from the unstable dispersion—managegn: -~

solitons. J’ do & (o)

1
o 31D 07w

- .
R™(w)+ 5 (|Do| ~ Do) 0?®™(w)

A. Stationary solutions (28

The periodic-type localized solutions of the NLS equation
in the form (3) are equivalent to stationary solutions of Eq.
(22) in the form

The factorS, is unity at the stationary solution and serves
therefore as an indicator for termination of the iterating pro-
cedure. We stop iterations whég,—1|<10°.
W(w,l)=D(w)er, (24) To use the map27), we apply Simpson’s integration
method, reducing complexity due to the symmetry:
where®(w) is the real function that defines the soliton so- ®(—w)=®(w). As a starting solution, the profilé(w)
lution ug(z,t) according to Eq.(21). The function ®(w) can be approximated by the Gaussian pulse with parameters

satisfies a nonlinear integral boundary-value problem, corresponding to the periodic solutioh3) and(14),
1 2 (0) 12 1 2
w+ EDOw d(w)=R(w) PV (w)=(7E2as) ' ex 7 as0” . (29

Table | shows iterations for the stabilizing fac®y in the
_ * three different casegi) D,=0.02, (ii)) Dg=—0.02 (branch
_f f_wdwldwzr(wlw2)¢(w+wl) 1), and (i) Do=—0.02 (branch 1). For all the cases, the
other parameters are=1 andm=2. In the first case, the
XP(w+ w,)P(w+ w;+wy), convergence is monotonic and the profile for stationary soli-
(250  ton ®(w) is shown in Fig. $a). The numerical value for
energy of the stationary soliton is shown in Figa)lby a
where ®(—w)=®(w) (the symmetry condition and bullet. In the second case, the iterations converge slowly to

lim _®()=0 (the boundary condition the stationary soliton shown in Fig.(. Sometimes, the
For numerical analysis, we intend to use Petviashvili'sconvergence is accompanied by a single oscillatiorSof -
iteration schem¢13]: near unity. The numerical value for the energy is shown in

Fig. 2(a) by a bullet at branch I. In the last case, however, the
DM ()P (w) iterations oscillate and finally diverge. Inspection of the pro-
file ®(™(w) at a final iteration shows that the iterations
for n=0,1,2 ... . Within this scheme, the right-hand side change the initial pulse drastically leading to its disappear-

R(w) can be approximated at theth approximation by ance. Two conjectures follow from this fact. Either the
®"(w) provided a certain stabilizing factor is introduced shorter soliton with larger energy at branch Il does not exist
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TABLE I. lterations of the stabilizing facto$, for Dy=0.02 andD,= —0.02 (branches | and ]I

Number of iterations S,: Dy=0.02 S,: Dpy=-0.02(]) S,: Dy=-0.02(Il)
1 0.9897 0.9957 0.9920
2 0.9971 0.9981 0.9917
3 0.9994 0.9988 0.9921
4 0.9998 0.9991 0.9942
5 0.9999 0.9993 0.9989
6 0.9994 1.0069
7 0.9995 1.0167
8 0.9996 1.0173
9 0.9997 0.9642
10 0.9997 0.8133
11 0.9998 0.7025
12 0.9998 0.6833
13 0.9999 0.6773
14 0.9999 0.6695
15 0.9999 0.6601
16 0.6499
17 0.6394
18 0.6292
19 0.6192

as a stationary solution of E€R5) or it is unstable within the o0

iterational schemé27). Since the short Gaussian pulse does Kl(wvwl):f dwy rM(w—w)(0—wy)|P(w,)
exist (see Fig. 2, we are inclined to work along the second o

conjecture. The iterational scherf®) is not relevant for the X P (w14 wr— ),

time-evolution problem and rigorous analysis of the linear-

ized problem is needed to confirm predictions of the insta-

bility of the short stationary pulse. %
Katw,0)= | dogrl(0,- 00— )10 (0;)

B. Linear spectrum

. . XP(w1—wyr+ w).
There are several forms of the linear problem associated (017wt @)

with the NLS-type equations. We will use the matrix form

that was studied in our previous paféd#d] in a simplified jging the stationary solutiof(w) from the previous sub-
form. The perturbations of the stationary solutions of EQ.qaction and implementing Simpson's integration method
(22) can be expressed as again, we solve the linear problem by using the linear alge-
bra packages built in Matlab 5.2. We identify two types of
modes of the linear spectrum: symmetric eigenfunctions,
when w(—w)=w(w), and antisymmetric eigenfunctions,
whenw(—w)=—w(w).
The linear spectrum for the soliton of Fig(a is shown

W(w=§)=e‘“g[q)(w)+W1(w)e”‘§+wz(w)e*“§],
(30

where the vectow(w)=(w;,w,)" satisfies the matrix linear

problem, in Figs. Ga) and Gb). It consists of three main partsi)

1 continuous spectruniji) neutral(zerg modes, andiii) in-

A0 = — |+ =Daw?| oaw ternal (oscillatory) modes. _ _ _
(@) I Rt )03 (@) When Dy>0 (the anomalous regime of the dispersion

. map), the continuous spectrum is located at the real axis for
+f dw[ 2K (@, 01) 03+ Ko @, 1) oo ]W(w1). IN|>pu [see Figs. @) and b) where u=1]. Indeed, the
—» continuous modes are singular in the Fourier representation,
(31) i.e.,w(w)~8(w—Q). Then, the linear problert81) has the
continuous spectrum at=*\, where

Here

1 O
0 -1

3= , o=

1
0 1 >\Q:M+§DOQZ, (32
-1 0}

and the integral kernels are provided the following integral kernels are not singular:
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FIG. 5. The profile of the stationary pulsé(w) in the FIG. 6. The linear spectrum of for Eq. (31) for symmetric(a)
boundary-value problen{25) at Dy=0.02 (a) and D= —0.02 and antisymmetridb) eigenvectors. The stationary pulse corre-
. =0. o=—0. ! 10 " h
(branch) (b). The other parameters ane=2 andu=1. The dot- sponds to Fig. &) atD=0.02, m=2, andu=1.

ted line displays the Gaussian pulg9) for the same parameter ) ) ]
values. The internal(oscillatory modes are located in the gap of

the continuous spectrum as<Q\|<u. The set of internal
1 modes may contain different number of eigenvalues. We
. IR 2 have shown in a previous pagdd] that the set is empty in
lim Ky, Q=)= 4W2de“’¢ (@), the NLS limit (which corresponds to the limjiz— 0 at fixed
Dy>0 andm). [Note that in[14] we used the Gaussian pulse
(29) for approximating®(w) while here we substitute the
numerical result from Eq(25).] Then, we showed that the
number of internal modes increases with the map’s strength
S[see Eq(15)]. In Figs. 6a) and Gb) for D;=0.02, m=2,
and u=1, we identify 14 internal modes for symmetric
The neutral (zero modes always appear at=0 as eigenfunctions and 12 internal modes for antisymmetric
double degenerate states for both symmetric and asymmetr@genfunctions. Still complex or imaginary eigenvalieare
eigenfunctions. However, the inaccuracy of the numericabbsent that confirm stability of dispersion-managed solitons
method destroys the degeneracy of the zero modes. Asia the anomalous regim@vhenDy>0).
result, the two zero modes may appear either for small real or The linear spectrum for the soliton of Fig(h is shown
for small imaginary values ok. Figure {b) displays two in Figs. 1a) and 7b). The continuous spectrum is seen to
imaginary eigenvalues of order 6f(10 ) that appear to be have changed drastically. Wheéh,<0 (normal regime of
shifted from the origin ofA due to this numerical effect. the dispersion magpthe continuous spectrum covers the seg-
Since the zero modes are not of interest from stability pointment|\ | < u twice according to Eq(32). As a result, neutral
of view, we neglect this effect and leave the scheme withoutind internal modes, if any, become embedded in the wave
any additional modification. continuum as seen in Figs(af and 7b). This indicates a

w—

lim Kz(w,Q—w)zf dor(w?)®(w+Q)P(w—Q).

w—Q
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! : - : - ' is in a reasonable comparison with the asymptotic predic-
0sl @ | tions that follow from the dynamical modéll6) and (17)
(see Fig. 3, branch )l The eigenvectorsv(w) for the un-
stable(imaginary eigenvalues are shown in Figs(c8and

04k j 8(d) for the symmetric and antisymmetric eigenfunctions, re-
spectively. The numerical approximations of the eigenvec-
tors, being inaccurate in details, display clearly that the un-
of  ww wx stable modes are localized at the intermediate wave
frequenciesw of the pulse spectrurfat w~4.5). Thus, the
development of the unstable eigenvectors would affect the
y 1 duration of the soliton pulse in the nonlinear stage as de-
scribed in the next subsection.

06

IMAGINARY PART

0.2

C. Nonstationary evolution

15 To confirm the transition scenario, we simulate the non-
REAL PART . . . . .
stationary dynamics of unstable solitons in the integral
oo model (22) by using the central-difference scheme,
g . . (b) ] V(n+ l)(w) _V(nfl)(w)
2A¢
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FIG. 7. The linear spectrum of for Eq. (31) for symmetric(a) ~ and{n=nAZ. An initial iteration can be done within a for-

and antisymmetriob) eigenvectors. The stationary pulse corre- Ward scheme starting with the initial Gaussian pul&6)
sponds to Fig. &) at Dy=—0.02, m=2, andu=1. with the parametess andE corresponding to branches | and

Il at =1 on Figs. 2a) and Zb). Evolution of a stable long

resonance of stationary soliton with the linear spectrum irpulse(branch ) is shown in Figs. @) and 9b), while that of
the normal regime of the dispersion map. However, this resoan unstable short pulgbranch I) is shown in Figs. &) and
nance does not result in any instability of solitons of branch9(d). The stable long Gaussian pulse quickly transits to the
| within the linear theory. We discuss the resonance issue istationary pulse given by E¢24) [Fig. 5b)], which propa-
Sec. IV. The two imaginary eigenvalues on Figb)7appear gates later without visible distortions. The second and third
from the origin as artifacts of the numerical scheme as it wapeaks in the signal spectrum and profifégs. 9a) and 9b)]
explained above. Indeed, when the step sizeviis taken appear in complete agreement with the profile of the station-
smaller, we have checked that the value of imaginapu-  ary dispersion-managed solitd¢of. Fig. 1 from[9]). Some
rious) eigenvalues decreases too. oscillations along the distanceare excited due to the dif-

At last, we would like to construct the linear spectrum for ference between the Gaussian pul28) and the exact sta-
the solitons of branch Il. However, the stationary solutionstionary solution of Eq.(25). These oscillations are small
were not identified within Petviashvili's numerical method. compared to the soliton profile and they do not change the
Therefore, assuming that the solutions still exist, the profileduration of the soliton pulsgsee Fig. @)]. The nonlinear
@ (k) can only be approximated by the Gaussian p(&#  resonance ab,es [ wes= 10 for Fig. 9a)] is not seen to be
as we did i 14]. The linear spectrum is then shown in Figs. excited during the signal propagation.
8(a) and 8b) for Dg=—0.02,m=2, andu=1. Clearly, the Evolution of the shor{unstable pulse differs drastically
continuous spectrum looks similar to that in Figaj7and it ~ from the previous picture. The pulse is being broadened dur-
does not possess any gap in the origin. However, we nowng the evolution, it generates the strong radiation tail and
identify new complex eigenvalues both for symmetric andresembles the longstablg signal that has the first node at
antisymmetric eigenfunctions. These complex eigenvalues~4.5 [cf. Figs. 9a) and 9c¢)]. This transformation is ac-
have relatively large, order dd(10™ 1), imaginary part and companied by the intermediate oscillations around the soli-
they are associated with the instability of the solitons ofton’s shape. Thus, we confirm the analytical predictions that
branch Il. The numerical result for the instability eigenvaluesthe short pulses are linearly unstable and switch into long



PRE 62 INSTABILITIES OF DISPERSION-MANAGED . .. 4291
008 . 0.035
'% * @ @
E 0.06- ] 0.03 E
3
g ooaf .
0025
002} J
:’o_: 0.02 4
* * o
O M e e ke ok Bk ok Aok ok Aok ok Mk ok ok ek M M M E
* % E
Qo015 4
_0.02} J
0.01 4
_0.04F 4
-0.08| 1 0.008
*
008 \ . . \ X . . . . o . . . .

20 25 30 35

-5 -4 -3 -2 -1 [) 1 2 3 4 5 1
WAVE FREQUENCY

REAL PART

0.012 T T T T T

®) (d)
0.08[ B
001 -

0.04 b

IMAGINARY PART

0.008 A
0.02| i

Fk

O # oM e bk ok ok sk ke ke ok bk Mk Mk K

k3
¥
%
3

0.006 b

L

EIGENVECTOR

-0.02- b
0.004 bl

~0.04F g

0.002[ i
-0.06 b

_0.08 I L L I H L I L L 0 L 1 1 1 L
-5 -4 -3 -2 -1 0 1 2 3 4 5 0 5 10 15 20 25 30 35
REAL PART

WAVE FREQUENCY

FIG. 8. The linear spectrum af for Eq. (31) for symmetric(a) and antisymmetri¢b) eigenvectors. The stationary pulse corresponds to
the Gaussian pulsg) at Dy=—0.02, m=2, andu=1 (branch I). The symmetriac) and antisymmetri¢d) eigenvectorsv(w) for the
unstable eigenvalues Imj=0.073(c) and Im(\)=0.076(d).

stable solitons via long-term oscillatory dynamics. The un-the stable branch | fo&,,<S<Sgap, Where Sgi,,~6.76.

stable eigenvectors at Figs(cB and 8d) clearly match at
Fig. 9c) with the growing deformations of the localization
of the pulse spectrum.

IV. DISCUSSION: RESONANCE OF DISPERSION-

For S> S, it selects solutions along the unstable branch I
[see Figs. @) and Zb)]. Thus, for the intermediate map
strengthswhen S<Sq,,,), the soliton signal propagates sta-
bly in the limit of small energies, as reported [iB]. How-
ever, if the map strengt8 exceeds the valugg,,y,, the soli-

ton signal breaks down and switches to a longer signal, as
conjectured i 2].

We have shown that both the Gaussian variational ap- For both the branches, we observe the resonance appear-
proximation and the integral model prescribe the instabilitying between the linear wave spectrum and the stationary sig-
of short nonlinear signals in the normal regime of the dispernals. This resonance is related to the fact that the omgin
sion map. This instability broadens the signal’s profile=0 is absorbed in the continuous spectrum of the linear
through some intermediate oscillations. The long signalgroblem. Another way to find the resonance is to construct
propagate stably then. the linear spectrum for the integral moded2), W(w,?)

We point out that the small-amplitude approximation con-~Wqe'H“)¢ where
sidered here corresponds to the asymptotic liEfiDy,— 0
(see branciB at Fig. 1 in[3]). The stability of the small-
amplitude branch fob <0 was previously under discussion
in the literature]2,3,10. This discussion can be resolved if
one takes into account the normalization conditi@B) that andDy<<0. Therefore, for anyu>0 there existsw,¢s SUCh
was used in the previous works. We have checked that thihat ) (w,es) = u. This resonance does not show up in the
normalization conditior{15) selects the pulse solution along linear theory since the discrete and continuous spectra are

MANAGED SOLITONS

1
Q:_EDowzko
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FIG. 9. Propagation of the stabla),(b) and unstabléc),(d) Gaussian pulses in the mod@P) at D,= —0.02 andm=2. The dotted line
displays the initial puls€29) for branch I(a),(b) and for branch li(c),(d) at w=1. The solid line displays the profile &t 20.

separated. However, in the nonlinear stage, the resonancesonance. The latter issues remain open for further analyti-
generally leads to emission of wave packets and soliton'sal consideration.

decay.
Since the transformation or decay of long stable solitons ACKNOWLEDGMENTS
for Do<0 have never been observed numericéatlgr in our The author thanks S. Turitsyn and G. Biondini for bring-

simulations reported in Fig.)9it is likely that the effective  ing the present problem to his attention as well as T. Lakoba,
gap in the spectrum still appears in the nonlinear theoryC. Pare, and C. Sulem for collaboration and valuable re-
Also, the truncated approximation given by the integralmarks. Figure 9 was prepared by using computational ca-
model (22) may not be valid for a correct description of the pacities of Institute of Optics at Rochester, NY.
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