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ABSTRACT. We consider a family of regularized defocusing nonlinear
Schrodinger (NLS) equations proposed in the context of the cubic NLS equa-
tion with a bounded dispersion relation. The time evolution is well-posed if
the black soliton is perturbed by a small perturbation in the Sobolev space
H3(R) with s > % We prove that the black soliton is spectrally stable (unsta-
ble) if the regularization parameter is below (above) some explicitly specified
threshold. We illustrate the stable and unstable dynamics of the perturbed
black solitons by using the numerical finite-difference method. The question
of orbital stability of the black soliton is left open due to the mismatch of the
function spaces for the energy and momentum conservation.

1. INTRODUCTION

Dark solitons are the depression waves propagating steadily along the continuous
wave background. The name is drawn from the realms of nonlinear optics, where
the continuous wave background supports the light of constant intensity and the
dark solitons reduce the light intensity during transmission [I7,23]. The most
extreme case in the family of dark solitons is the black soliton, for which the light
intensity drops to zero and the wave is spatially localized with zero speed. Such
standing waves are common in many models of nonlinear optics and Bose-Einstein
condensation in one, two, and three spatial dimensions [16].

The canonical model for the dark and black solitons is the defocusing nonlinear
Schrodinger (NLS) equation

(1.1) iy + P — 20902 = 0,

where ¥(t,2) : R xR — C. The exact traveling wave solutions for the dark solitons
are given by

(1.2) Y(t,x) = [ytanh(y(z — 2ct)) +icle 2, ~y:= /1 —c2,
where ¢ € (—1,1) is a free parameter for the half wave speed. For ¢ = 0, the dark
soliton (¢, ) = tanh(x)e™ 2% is referred as the black soliton.

Compared to the canonical NLS equation (I.I), we address the following family
of regularized defocusing NLS equations

(13) Z(l - /L2a;%)¢t + 1/’%90 - 2|¢|21/} = 07
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where ¢¥(t,2) : RxR — C and p > 0 is a small parameter. The model was proposed
in the context of nonlinear optics for ultra-short pulses [7[18] (see [, Section 4.1.4,
eq. (72)]) as an example of the NLS equation with a bounded dispersion relation.
The linear part of the model has the dispersion relation

k2

w(k) - 1 +/J/2k27
obtained for the Fourier modes u(t, z) ~ e**=«(k)t The additional term —ip?v;,,
in (IL3) compared to the canonical model (1) leads to the bounded dispersion
relation in the interval [0, 4 ~2] for the frequencies w. This kind of regularization of
the dispersion relation is popular in models of fluid dynamics where the canonical
Korteweg—de Vries equation is replaced by a regularized Benjamin-Bona—Mahony
equation [4]. A focusing version of the regularized NLS equation was studied in [3]
in the context of global well-posedness of the initial-value problem.

We are mainly interested in the stability of the black soliton which is the stand-
ing wave solution of the defocusing NLS equation ([3)) with nonzero boundary
conditions. If the black soliton is stable in the time evolution, as is known for the
canonical NLS equation (LI)) [BLI6LI0LT3L[14,20], then it plays an important role in
nonlinear optics as a carrier of information inside the spatially modulated periodic
waves [IB[I9L[22] (see review in [I]).

In order to study the black soliton of the model (I3]), we normalize the boundary
conditions to unity without loss of generality and consider solutions satisfying

k e R,

[(t,z)] =1 as |z|] = oo.
With the transformation

(1.4) P(t,x) = e *u(t,§), &=

x
V1=2u2
the NLS equation (L3 can be rewritten in the equivalent form as
(1.5) i(1 = 0 ue + uee +2(1 — [u*)u =0,

where
I

V1—2u2
The mapping p — € is monotonically increasing for pu € (0, %) with € — oo as
= %

The black soliton is the steady-state (time-independent) solution of the trans-
formed NLS equation ([A]). It is available in the explicit form w(¢,£) = ¢(§) =
tanh(¢), which coincides with the black soliton of the defocusing NLS equation (L))
given by ([2]) for ¢ = 0.

Local well-posedness of the regularized model (LI) can be studied in the space
of bounded smooth functions with nonzero boundary conditions at infinity. One
general method is to consider a decomposition u(t,&) = ¢(§) + v(t, &), where the
perturbation v(t,-) is a continuous function of ¢ in Sobolev spaces with respect to
the spatial coordinate [I1L[12,[24]. This is our first result presented in Theorem [II

€=

Theorem 1. For every vy € H*(R) with s > 3, there exist the mazimal ezistence
time 79 € (0,00] and a unique solution of the NLS equation ([LH) in the form
u =@+ v, where p(£) = tanh(¢) and v € C1([0,70), H*(R)) such that v(0,-) = vo.
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Moreover, for any T € (0,79), the solution v € C([0,7], H*(R)) depends Lipschitz
continuously on the initial data in some neighborhood of vy € H*(R).

Replacing the solution u of Theorem [Il with ¢ + v, where p(§) = tanh() is the
black soliton and v := U + iV is a small perturbation allows us to reformulate the
stability of the black soliton at the level of linearized approximation. Separation of
the real part U and the imaginary part V gives the following linearized equations:

(1.6) (1-E)Uy=L_V, (1- €0V, = — L, U,
where the linear operators Ly in L?(R) with Dom(L4) C L?(R) are defined by the
differential expressions

L, = —8? + 602 — 2,

L= -0} +2p -2

Separation of variables in system (L0 gives the spectral stability problem in the
form

0 L_ u | oo | U L. V=\1- 62852)[],
(L7) [ Ly 0 ] [ v ] =ML-€9) [ v } T LU =M1- @RV
It is natural to consider the spectral problem (7)) for fixed € # 0 in H}(R) x H}(R),
where H!(R) is the Hilbert space equipped with the associated inner product

(1.8) (f.9)c == / [Fo+ 7] de,

and the induced norm || - ||c :== /(,-)e. The Hilbert space H!(R) for fixed € # 0
is equivalent to H'(R), which is the form domain of L, in L?(R) and is a subset
of the form domain of L_ in L?(R). The inner product and the norm in L?(R)
correspond to € = 0 and we use notations (-,-) and || - || instead of (-,-)o and || - |o.

The essential spectrum of the spectral stability problem (7)) can be found in the
limit |£] — oo since |p(€)| — 1 exponentially fast. By using the Fourier transform,
we find that the essential spectrum is located at

(1.9)
11 c (oL
_ ,k\/4—|—k2 rerb marael € 2]
=41 —1—|—62k27 - ) 2 2 :| . 1 )
1|— , , € —, 00 .
VAae2 — 1 v/4e2 — 1 V2

Hence, the essential spectrum is neutrally stable and the stability or instability of
the black soliton depends on isolated eigenvalues A outside o..

Remark 1. We say that the black soliton ¢ is spectrally unstable if the spectral
problem (7)) admits an isolated eigenvalue Ay € C with the corresponding eigen-
function (U,V) € H'(R) x H'(R) such that Re(\¢) > 0. The black soliton is
spectrally stable if no such eigenvalue exists.

Remark 2. Isolated eigenvalues may exist on iR\o. but such eigenvalues do not
contribute to spectral instability of the black soliton.

Our second result is the following stability theorem, which is the main result of
this paper.

Theorem 2. Let g = (5/8)'/*. The black soliton is spectrally stable for e € (0, ¢
and spectrally unstable for e € (eg, 00).
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Remark 3. The stability threshold ¢y = (5/8)'/* is approximately ¢y ~ 0.89. In
view of the transformation (4], the stability threshold in the original NLS model

([@T3) is given by

1 = _ V5 ossad

VB +2v5
The black soliton is spectrally stable for u € (0, ug] and spectrally unstable for
w € (po, 1), where pg = % ~ 0.7071.

It is tempting to extend the spectral stability of Theorem Rlto the orbital stability
of the black soliton similar to [B,[1014] for the canonical NLS equation (LIl). The
proof of orbital stability of the black soliton was also developed for other NLS
models such as the quintic NLS equation [2], the coupled NLS systems [§], and the
NLS equation with intensity-dependent dispersion [21]. Orbital stability is usually
proven with the use of conserved quantities. Our third result specifies the conserved
quantities of the regularized NLS equation (5.

Theorem 3. Let u = ¢ + v with v € C1([0,70), H*(R)) be the local solution in
Theorem [ with s > % Then, energy

(1.10) B = [ [luel + (1= )] e
and momentum
(111) Pu) = Z/R [(auf — ﬂgu) + € (ﬁ£u§§ — ﬂggUg)} d€

are well-defined for s > 1 and s > 2 respectively, and their values are independent
Oft S [O, 7'0).

Remark 4. Besides the energy and momentum conservation, the NLS equation (L5
admits also mass conservation,

(1.12) M) = [ [Pugl + uf? = 1] de

if the solution u = ¢ + v with v € C*([0,79), H*(R)) and s > 1 satisfies v(t,-) €
LY(R) for t € [0,79). The mass conservation plays no role in the proof of orbital
stability of the black soliton in the canonical NLS equation (LI [5l14].

Remark 5. The proof of orbital stability of the black soliton is an open problem for
the regularized NLS equation ([LH]) because of the mismatch between the energy and
momentum spaces. The energy arguments only provide control of the perturbation
in the weighted H'(R) spaces with the exponential weight [14], where the weight
is needed due to the lack of coercivity of the quadratic form associated with the
linearized operator L_, see also [2L[I0,21]. However, the momentum conservation is
not defined in the weighted H'(R) space and the energy arguments do not control
perturbations in the weighted H?(R) space.

Remark 6. Orbital stability of the black soliton with respect to spatially odd per-
turbations can be proven in the weighted H*(IR) space independently on the values
of € in (0,00). The proof is based on the decomposition

E(p+U+iV) = E(p) = Q_(U) + Q- (V) + |In|?,
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where
Q) = [ (Wl ~201 = Ui
and
n:=2Up+U?>+V?e L*R).
The perturbation U + iV € H is defined in the weighted space with odd spatial
symmetry:

H={feH..(R): feL*R), 1-¢2fel?R), f(-z)=—f(z), zeR}.
Since the negative eigenvalue of L_ in H corresponds to the spatially even eigenfunc-
tion, L_ is nonnegative in H and the zero eigenvalue of L_ with the eigenfunction
@ € H is isolated from the strictly positive rest of its spectrum. Coercivity of the
energy difference holds under a single orthogonality constraint

(@, Vg = /R[w’V’ + (1 — ?)pV]de =0

and it allows to control the H-norm of U+iV € H and the L?(R)-norm of n € L*(R),
see [14121]. The single orthogonality constraint can be satisfied in time ¢ > 0 by
choosing the phase parameter 6(t) in the orbit {e ?[p + U + iV]}ger /272

The remainder of this paper is organized as follows. Section [2] presents the proof
of Theorems[Iland[Bl Section[lis devoted to the proof of Theorem [l The numerical
illustrations of the stable and unstable dynamics of the perturbed black soliton are
contained in Section @ Section [ concludes the paper with a summary and the
discussion of further directions.

2. LOCAL WELL-POSEDNESS AND CONSERVED QUANTITIES

Let us write u = ¢ + v, where p(§) = tanh(¢), and reduce the NLS equation
(T3 to the evolutionary form:

(21) vy =i(1—0Z) 7" [vee + 2(1 — 20°)v — 20°0 — 20(v* + 2[v|*) — 2[v[?v]

where we have used ¢” + 2(1 — ¢?)¢ = 0 for p(¢) = tanh(£). The proof of The-
orem [Tl follows from the contraction mapping principle according to the following
arguments.

Proof of Theorem [Il. We recall that H*(R) forms a Banach algebra with respect to
pointwise multiplication if s > % Hence,

F(v) = vge +2(1 — 2¢0%)v — 2¢0%0 — 20(v? + 2|v|?) — 2[v|*v

is an operator from H*(R) to H*~2(R) which maps any fixed bounded ball B(vg) C
H?*(R) centered at vy € H*(R) into a bounded set in H*~2(R), and moreover is
Lipschitz continuous on B(vg). Furthermore, (1 — 62852)_1 is a bounded operator

from H*72(R) to H*(R) for every e > 0. The integral formulation of the evolution
equation (2] is given by

u(t,) = v +i/0 (1—€202) " Fu(t',-))dt'.

It follows from the contraction mapping principle that there exists a local solution
v € C[0,t0], H*(R)) of the integral equation for sufficiently small ¢y > 0. More-
over, since the operator (1 — 62852)71]‘7 : H°(R) — H*(R) maps the bounded
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ball B(vg) € H*(R) into a bounded set in H*(R), the solution v belongs to
C1([0,t0], H*(R)). Continuing smoothly the local solution to the maximal time
70 > 0 (which could be finite or infinite) yields the solution v € C([0,79), H*(R))
stated in Theorem [I1

Lipschitz continuous dependence of v € C1([0,%0], H*(R)) on the initial data
in some neighborhood of vy € H*(R) is obtained from the contraction principle
by Gronwall’s estimates. Iterating the estimates to every 7 € (0,79), we obtain
Lipschitz continuous dependence of v € C1([0,7], H*(R)) on the initial data in
some neighborhood of vy € H*(R). O

By using the transformation u = ¢ + v, we can rewrite (LI0), (LII)), and (TI2)
in the form:

E(p+v) = E(p) + E(v),
P(p+v) = P(p) + P(v),
M(p+v) = M(p) + M(v),

with

B(w) = [ Il = 201 = 26%) 1 + ¢2(02 + 57) + 260+ ) + ol

R
P(v) = i/R[Zw’(@ —v) + (Dvg — Vev) + 26°¢" (Vg — v¢) + € (Vevee — Deeve)]dE,
NI() = / (o — ")+ 1) + Juel? + [u]2)de,

where we have used ¢” 4+ 2(1 — ¢?)¢ = 0. The proof of Theorem [Jis obtained from
specific computations for the NLS equation (21]).

Proof of Theorem Bl The energy functional E(v) : H¥(R) — R is smooth in v and
v for s > 1. The evolution equation (ZI]) can be cast to the Hamiltonian form
(2.2) % = —i(1 = *87) ' VuE(v),

where V3 E(v) = —F(v) is the variational derivative of E(v) with respect to .
Since the operator (1 — 62852)_1 : L%(R) — L%(R) is self-adjoint, the energy E(v) is
constant in time ¢ € [0, 1) for the solution v € C1([0,79), H*(R)) with s > 1 which
exists by Theorem [

The momentum functional P(v) : H*(R) — R is smooth in v and o for s > 2.
To prove its conservation, we consider the solution v € C1([0,79), H*(R)) for s > 2
which exists by Theorem [l Since P(¢) = 0, we can work equivalently with P(u) =
P(v). Differentiating (IB) in &, multiplying it by @, adding the complex conjugate,
and integrating in & over R yield:

’L/R [U(1 = 202 )uge — u(l — 07 e | dé

+/ [ﬂu&g + uﬂggg] d€ + 2/ [TLU{ + uug — 3|u\2(|u|2)5] d¢ = 0.
R R
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Multiplying (L3) by e, adding the complex conjugate, and integrating in £ over
R yield

i/R [ae(1 — 6283)%5 —ug(l— 628§)ﬁt] d¢

+ /R [Gguge + ugtice] d€ + Z/R [teu + uett — [ul?(Jul?)¢] d€ = 0.

Subtracting the two equations and integrating by parts under the boundary con-
ditions u(t,§) — +1 as £ — oo give conservation of P(u) = P(v) in time
te [0, To). O

Remark 7. The mass functional M (v) : H*(R) — R is smooth in v and o for s > 1
under the additional condition v € L!(R) since ¢(£) — +1 as £ — +o0. Assuming
the existence of the solution v € C1([0,7), H*(R)) for s > 1 such that v(t,-) €
LY(R) for t € [0,79), we can prove conservation of M (v) as follows. Multiplying
(CH) by @, subtracting the complex conjugate, and integrating in £ over R yield

Z/R [’I_L(l — 628§)ut +u(l - 62852)1_1,25] dé + /]R [ﬂUEE - Uﬂgg] d¢ = 0.

Integrating by parts under the boundary conditions u(t,£) — +1 as £ — Fo0o gives
conservation of M (u) in time ¢ € [0, 79).

3. SPECTRAL STABILITY AND INSTABILITY OF THE BLACK SOLITON

In order to prove Theorem [2 we first clarify the spectral properties of the
Schrédinger operator Ly : Dom(L,) C L?*(R) — L*(R), where L, = —5‘? +
602 — 2 = —(9? 4+ 4 — 6 sech®(¢). As is well-known, any Schrédinger opera-
tor with bounded potential can be extended to its form domain, hence we can
write Ly : H'(R) — H~'(R). Similarly, we can consider bounded operators
(1—€02)71/? : L*(R) — H*(R) and (1 — ¢?9)~"/2 : H-'(R) — L*(R). By
compositing the three operators above, we obtain a bounded operator

Lo=(1-€03)7 V2L (1—e03) 2 L*(R) - L*(R).

Coercivity of Ly : HY(R) — H '(R) and £, : L?(R) — L?(R) is obtained in
Lemma Bl

Lemma 3.1. There exists C > 0 such that

(3.1) (LyUU) > C\U||?,  for every U € HY(R) : (U, ') =0

and

(3.2) (LW, W) > C|W|?,  for every W € L*(R) : (W, W) =0,

where (L U,U) is the dual action of L,U € H"*(R) on U € HY(R) and Wy :=
(1 202) 2.

Proof. We have L,¢' =0 and ¢’ € H'(R) due to the translational invariance and
the exponential decay of ¢'(£§) — 0 as || — oo. Since ¢/'(§) > 0 for all £ € R,
the zero eigenvalue of L, in L?(R) is the lowest eigenvalue separated from the rest
of the spectrum in L?(R) by a gap. The spectral theorem implies the coercivity

bound B)).
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By using the transformation U = (1 — 62852)71/2W between U € H'(R) and
W e L3(R), we get L, Wy = 0 with Wy := (1 — 6852)1/290' € L*(R). The zero
eigenvalue of £, in L?(R) is separated from the continuous spectrum of £, by a

gap:
N B [4,67%], €€ (0,3),
Uc(‘CJr)_ {1—}—62]{127 kGR}— { [6_2,4], 66(%,00).
The coercivity bound @) in L*(R) implies a coercivity bound in H!(R), that is,
(L U,U) > C||U|?, forevery U e H (R): (U,¢')=0.

This bound is equivalent to ([.2)) since if U = (1 — 62((9?)71/2”/, then (L LU, U) =
(LyW, W), U2 = W2, and (U, ") = (W, Wo). O

By Lemma [B1] we can define the constrained operator
T = Lolpweyr = L2(R) oy — L2(R) iy

Thanks to the bound [B2]), 73 is invertible and strictly positive with a bounded
and strictly positive inverse 7, L

In addition to Lemma [B.I] we also need a technical computation related to the
Schrédinger operator L_ : Dom(L_) C L*(R) — L?(R), where L_ = —852 + 2¢p? —
2= —5‘52 — 2 sech?(€). The technical computation is given by Lemma
Lemma 3.2. The linear inhomogeneous equation

(3.3) L_V,=(1-¢€03)¢

admits a unique even and bounded solution V, satisfying

8
(90/7 V<ﬂ)€ =-1+ 554'

Hence (¢',Vy)e < 0 if € € [0,e0] and (¢',Vy)e > 0 if € € (e9,00), where €y :=
(5/8)!/1.

Proof. A general solution V,, of the linear equation (3:3) can be found in the explicit
form by substitutions as

Vo(€) = —5(14+26) 4 Sesech(€) + cx tanh(€) + c2 € banh() — 1]

where ¢; and ¢y are arbitrary constants. If V,, is required to be even and bounded,
then ¢; = 0 and ¢y = 0 respectively. Although V,, ¢ L?(R), the inner product
(¢, V,)e makes sense due to the exponential decay of ¢’'(§) — 0 as |{| — oo and
can be computed explicitly:

Vel = /R (1= 46 )sech™ () + 6esech (6)] | =51+ 26%) + Selsechi®(€)| e

48
= —(14+26%)(1 — 4€?) + 26%(1 — 4e?) — 4€*(1 + 26%) + Ee‘*

which yields the result. (|
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We are now ready to prove Theorem 21

Proof of Theorem 2l By Fredholm’s theory, if there exists a solution of the spectral
problem ([[7) in H'(R) x HY(R) for A # 0, then the component V satisfies the
orthogonality condition (¢’, V). = 0. We will show that an eigenvalue Ay € C\iR
exists if and only if € € (e, 00). Since, for every eigenvalue \g, —\g is also an
eigenvalue, this will prove the theorem.

For any eigenvalue \g # 0, the corresponding eigenvector (U,V) € H!(R) x
HY(R) must satisfy (¢, V). = 0. The second equation of the system (7)) can be
written in the form

(3.4) Li(1—€3)2U = -Xo(1 - 203)" 2V,
where the right-hand side is orthogonal to Wy = (1 — 62852)1/ 2’ since
(1= )2V, Wo) = (1 = 05) 2V, (1 = €82)/20') = (V. ¢)e = 0.
Furthermore, we have
(1= E0)V2U,Wo) = (1= €02) /U, (1 = €07)'2¢) = (U, ).

One can select the eigenfunction uniquely by requiring that (U, ¢’). = 0 after adding
a multiple of ¢’ to U. With this convention, £ in 4] can be replaced by 7. so
that equation ([B4]) can be solved in the form

(1 - E02)PU = = XoT; '(1 - 202)'/?V.
Substituting this formula into the first equation of the system (7)) yields
LV =-XN1-ER) T M1 —07)"*V.

Since this eigenvalue problem is self-adjoint and (1 — 62852)1/27:1(1 - 62652)1/2 :
HY(R) — H~1(R) is a strictly positive operator by Lemma B.I] we obtain A3 € R,
ie. \g € RUR. Therefore, \g is an eigenvalue in C\iR if and only if —\% < 0.
Consequently, such an eigenvalue exists if and only if

(L_V.V)

3.5 inf < 0.
(3:3) Vs H)EI(R)\{O} (1= 2)V2T N1 — 202)/2V, V)
LP/»V e=0

Since the denominator is strictly positive by Lemma B3] the sign of the left-hand
side of (3.5) is determined by the sign of —p3 in a simpler variational problem
(L_V,V)

1n
venl®nor ||V]?
(S"lﬂv)e =0

(3.6) —pp =

As is shown in [20], the sign of —u3 in (3.6) depends on the sign of
lim (L-—=A)"'(1=€292)¢’, (1-€207)¢") = lim ((L_—\)"'L_V,, (1-€%87)¢’)
A—0~ A—0~
= (thv @,)57

which changes the sign if € = . The following dichotomy exists (see [20, Theorem
1.1)):

(i) _:“g >0 if (‘Pla V«p)e <0,
(i) —pd < 0if (¢, Vy)e > 0.
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In case (i), the condition (B.3)) is not satisfied so that no isolated eigenvalue Ag with
Re(Ag) > 0 of the spectral problem (7)) exists. This is the spectral stability case
which corresponds to € € (0, ¢]. In case (ii), the condition ([B.0)) is satisfied so that
there exists an isolated positive eigenvalue A\g € R. This is the spectral instability
case which corresponds to € € (e, 00). O

4. NUMERICAL ILLUSTRATIONS

We approximate solutions of the NLS equation (L5 numerically by using a finite-
difference method. The line R is truncated on the symmetric interval [—L, L] for
sufficiently large L > 0 subject to the Neumann boundary conditions u¢(t, —L) =
ug(t, L) = 0 for every ¢ > 0. One can also use the inhomogeneous Dirichlet condi-
tions u(t, =L) = 1 as an alternative truncation, which we do not report here.

Representing the solution u(t,£) as a column vector u(t) on an equally spaced
grid of 2K + 1 grid points on the interval [—L, L] yields the evolutionary problem
in the form

) 9 du 9
(4.1) i(1—e¢ AN)E+ANu+2(1—|u| Ju =0,
where u(t) : R — C?(+1 and Ay € MEK+DX2K+D) i the matrix approximation
of the central difference for the second spatial derivative which incorporates the
Neumann boundary conditions at the end points,

Ug+1 — 2Up + Ug—1

(Anu)y = 2 , 2 <k <2K,
and
2(us — uy 2(ugk — u2K 41
(Ayu); = %7 (Anu)arcy1 = %
As is well-known, the discretization error of the central difference has the order of
O(h?).

Iterations in time are performed with the Crank—Nicholson method over an
equally spaced temporal grid with the time step 7. The numerical approxima-
tion of u(t) at the time level t,, = m7 is denoted by u™). The Crank-Nicolson
method is given by the iterative rule:

<1 Ay — %TAN —ir(1— u<m+1>|2)> u(m+D

(4.2) = (1 — AN + %AN +ir(1 — |u<m>2)> u™),

for integer m > 0. As is also well-known, the discretization error of the Crank—
Nicolson method has the global error of O(72) and the stability of iterations is
unconditional with respect to the time step 7 relative to h.

Iterations of the nonlinear system (L2) are fully implicit. In order to make
them explicit, we invert the matrix in the left side at each iteration m by using the
previous value of [u(™ |2,

a(m+1)

. —1 .
= (1_62AN_%AN_1'T(1_u<’”>|2)> (1—62AN+%AN+¢T(1_|u<m>|2)) ul™),
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FIGURE 1. Numerical approximation of the dynamics of the per-
turbed black soliton for e = 0.5. Top left: The profile of |u| versus
¢ for time ¢t = 0 (blue line) and time ¢ = 50 (black dots). Top
right: The maximal value of [Im(u)| versus ¢. Bottom: the solu-
tion surface for Im(u) on the (¢,£) plane.

and use Heun’s predictor—corrector method for u(”+1) to restore the second-order
accuracy of the time iterations. The initial data was chosen as

u® = tanh(&;) + iasech? (&),

where @ > 0 is the amplitude factor for the perturbation to the black soliton.
The perturbation is needed to observe the stable versus unstable dynamics of the
perturbed black soliton in the time evolution since spatially odd perturbations to
the black soliton are orbitally stable, see Remark We have chosen L = 20,
K =400, and a = 0.01.

Figure [[] shows the outcomes of the numerical simulations for e = 0.5. According
to Theorem ] the black soliton is spectrally stable for this value of € since ¢y =
(5/8)1/4 ~ 0.89. Indeed, we observe that the initial perturbation pushes the black
soliton to the right for a small distance (top left panel) but the fluctuation of
the imaginary part of the solution is bounded in the time evolution (top right
panel). The solution surface for the imaginary part (bottom panel) shows that the
perturbations to the black soliton are pushed towards the boundaries during the
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FIGURE 2. The same as on Figure [l but for e = 1

time evolution where they are reflected due to the Neumann boundary conditions.
The perturbed black soliton preserves its shape in the case € = 0.5.

In comparison with the stable dynamics of the perturbed black soliton for € =
0.5 < €g, Figure 21 shows the unstable dynamics for e = 1 > ¢y. The perturbations
to the black soliton in Im(u) grow from the initial value of a = 0.01 towards the
unit magnitude. As a result, the black soliton is completely destroyed in the time
evolution and the final profile of |u| versus & for ¢t = 10 (black dots on the top left
panel) shows non-solitonic solutions.

We have performed computations for e closer to ¢y and observed the same stable
and unstable dynamics of the perturbed black soliton similar to Figures [l and 2
The actual value of the instability threshold depends generally on the half-length
L of the truncated interval [—L, L].

Finally, we can also inspect the time evolution of the perturbed black soliton in
the canonical defocusing NLS equation (ILI]) which corresponds to the NLS model
([TA) with e = 0. Figure Bl shows that the perturbed black soliton is stable in
the time evolution but the perturbations become noisy in the time evolution due
to multiple reflections from the boundaries. This dynamics agrees well with the
property of the NLS equation (ILI) that the imaginary part of the perturbation
is not controlled in the Sobolev space of H!(R) since the energy and momentum
are not coercive in H'(R). In comparison, perturbations of the black soliton in
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FIGURE 3. The same as on Figure [T but for e = 0

the regularized NLS equation ([LH) with € > 0 are well-defined in the space H'(RR)
as a continuously differentiable function of time and the imaginary part of the
perturbations shown in Figures [l and [2lis much smoother in the spatial coordinate
compared to the one shown in Figure [l

5. DI1sSCcussION

We have shown analytically and illustrated numerically that the regularized NLS
equation (LI) admits smooth time-dependent solutions near the black soliton with
perturbations defined in C1([0, 1), H*(R)) with s > . We have shown the spectral
stability of the black soliton for € < ¢y := (5/8)'/* and spectral instability for € > ¢.
The question of orbital stability of the black soliton is left open since the energy
conservation can be used to control a weighted H!(R) norm of the perturbation,
whereas the momentum conservation is only defined for perturbations in H*(R)
with s > 2, see Remark [l

Among further directions of the research, one can consider generalizations of the
regularized NLS equation with cubic nonlinearity in the form

(5.1) i(1— €202 — 6%|ul*)us + tuge + 2(1 — Ju*)u = 0,

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1230 DMITRY E. PELINOVSKY AND MICHAEL PLUM

with two parameters € > 0 and § € [0,1]. The case ¢ = 0 and 6 = 1 was considered
in [2I] as the NLS model with intensity-dependent dispersion,

(5.2) i(1 — |u®)us + tge + 2(1 — Jul*)u = 0.

We proved in [21] that the perturbations to the black soliton were controlled in
a weighted H'(R) space from the energy and momentum conservation of the NLS
model (52)). Spectral stability of the black soliton was also proven by characterizing
the purely discrete spectrum of the spectral stability problem. The question of
local well-posedness for the perturbations of the black soliton was left open since
the black soliton satisfies the boundary conditions u (¢, x) — +1 as x — Fo00, where
the evolution equation (B.2]) is singular.

In the combined NLS model (&) with sufficiently small ¢ > 0 and 6 € (0,1),
one can achieve both the local well-posedness and the spectral stability of the black
soliton. Although the orbital stability problem might still be out of reach for e > 0
due to the mismatch between the function spaces for the energy and momentum
conservation, the combined model (GE1I) can be used to study the limit 6 — 1 and
to shed more light on the well-posedness theory for the NLS model ([5.2]).
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