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Abstract. We reformulate the Gross–Pitaevskii equation with a parabolic
potential as a discrete dynamical system using the basis of Hermite functions.
We consider small amplitude stationary solutions with a single zero, known as
dark solitons, and examine their existence and linear stability. Furthermore
we prove, under appropriate conditions, the persistence of a periodic motion
in a neighborhood of such solutions when the parabolic potential is perturbed
by a small bounded and spatially decaying potential. Our results on existence,
stability and nonlinear dynamics of the relevant solutions are corroborated by
numerical computations.

1. Introduction

We study the Gross-Pitaevskii (GP) equation with parabolic and bounded po-
tentials in the form

(1.1) iUT = −1

2
UXX + γ2X2U + νV (X)U + σ|U |2U,

where the solution U(X,T ) : R×R+ 7→ C decays to zero as |X | → ∞, the potential
V (X) is bounded and decaying, the strength constants γ and ν are real-valued,
and the nonlinear parameter σ is normalized to σ = 1 (σ = −1) for the defocusing
(focusing) cubic nonlinearity. This equation is of particular interest in the context
of Bose-Einstein condensates, i.e., dilute alkali vapors at near-zero temperatures,
where many recent papers have addressed the dynamics of localized dips in the
ground state trapped by a magnetically induced parabolic potential, see, e.g., the
recent review [12]. The question that we study concerns whether the localized
density dips oscillate periodically near the center point X = 0 of the parabolic
potential. If the motion of a localized dip is truly periodic, the frequency of periodic
oscillations is of interest [4], while if the periodic oscillations are destroyed due to
emission of radiation, the gradual change in the amplitude of oscillations is to be
understood [17]. Numerical simulations show that solutions experience radiation
and amplitude changes if the confining parabolic potential with γ 6= 0 is perturbed
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by a bounded periodic potential with ν 6= 0, while they exhibit no radiation and
time-periodic oscillations in the case of purely parabolic confinement with γ 6= 0
and ν = 0 [19].

If σ = 1 and γ, ν are small, a localized dip on the ground state of the GP
equation (1.1) is approximated near the center by the so-called dark soliton of
the defocusing nonlinear Schrödinger (NLS) equation, which is the reason why we
use the term “dark soliton” for this localized solution. In our previous paper [18]
we studied the persistence and stability of a dark soliton in the presence of an
exponentially decaying potential, where methods of Lyapunov–Schmidt reductions,
Evans functions and the stability theory in Pontryagin space were employed. These
methods can not be applied to the GP equation (1.1) with small non-zero γ since
the parabolic potential deforms drastically the spectrum of the linearized problem:
the continuous spectral band at γ = 0 becomes an infinite sequence of isolated
eigenvalues for γ 6= 0. Therefore, we do not consider here the limit γ → 0. Moreover,
we transform the GP equation (1.1) to the γ-independent form

(1.2) iut = −1

2
uxx +

1

2
x2u+ δW (x)u + σ|u|2u,

through the rescaling transformation x = λX , t = λ2T , u(x, t) = λ−1U(X,T ),
δ = λ−2ν, W (x) = V (λ−1x), and λ = 21/4γ1/2.

The substitution u(x, t) = e−
i
2
t−iµtφ(x) reduces equation (1.2) to the second-

order non-autonomous ODE

(1.3) −1

2
φ′′(x) +

1

2
x2φ(x) + δW (x)φ(x) + σφ3(x) =

(

µ+
1

2

)

φ(x),

where φ : R 7→ R. A strong solution of the ODE (1.3) is called a dark soliton if φ(x)
has a single zero on x ∈ R and it decays to zero sufficiently rapidly as |x| → ∞.
If δ = 0, a classification of all localized solutions of the second-order ODE (1.3)
with a shooting method is suggested in recent work [2]. Construction of stationary
solutions with the Hermite–Gaussian modes is considered in [11].

We consider solutions of the GP equation (1.2) with W ∈ L2(R) in space

(1.4) H1(R) = {u ∈ H1(R) : xu ∈ L2(R)}
equipped with the squared norm

(1.5) ‖u‖2
H1

=

∫

R

(

|u′(x)|2 + (x2 + 1)|u(x)|2
)

dx.

Global existence of solutions of the GP equation (1.2) with W ∈ L2(R) has been
proved in space u ∈ H1(R) for all t ∈ R+ (see Proposition 2.2 in [5]).

If δ = 0, a stationary solution of the GP equation (1.2) can be extended to the
time-periodic solution using the explicit transformation

(1.6) u(x, t) = eip(t)x− i
2
p(t)q(t)− i

2
t−iµt−iθφ(x− q(t)),

where q̇ = p, ṗ = −q, and θ is an arbitrary parameter. The system of time-evolution
equations for (p, q) is equivalent to the harmonic oscillator equation q̈+q = 0, which
has the explicit solution

(1.7) q(t) = s cos(t+ ϕ), p(t) = −s sin(t+ ϕ),

where parameters (s, ϕ) are arbitrary. The periodic solution (1.6)–(1.7) persists for
any values of µ ∈ R, for which the stationary solution φ(x) exists.
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Our work is devoted to the study of periodic solutions of the GP equation (1.2)
in a local neighborhood of the stationary solutions of the ODE (1.3) for parameter
values (µ, δ) near the point (1, 0). The special value µ = 1 corresponds to the
second eigenvalue of the linear Schrödinger operator

(1.8) L = −1

2
∂2

x +
1

2
x2 − 1

2

with the eigenfunction φ(x) = εxe−x2/2. Here ε is a parameter of the family of
stationary solutions of the nonlinear ODE (1.3), which bifurcates from the small-
amplitude eigenmode by means of a standard local bifurcation [7]. We will show
that, under some assumptions on W (x), a periodic solution (1.6)–(1.7) persists
along a bifurcation curve δ = δ∗(µ) near the point (µ, δ) = (1, 0). The period T of
the δ-perturbed periodic solution is close to T0 = 2π.

To formulate the main result of this paper, we introduce a linearized problem

associated to the stationary solution u(x, t) = e−
i
2
t−iµtφ(x) of the GP equation

(1.2) in the form

(1.9) L+v = Ωw, L−w = Ωv,

where L± are Schrödinger operators,

(1.10)

{

L+ = − 1
2∂

2
x + 1

2x
2 − 1

2 − µ+ δW (x) + 3σφ2(x),
L− = − 1

2∂
2
x + 1

2x
2 − 1

2 − µ+ δW (x) + σφ2(x),

which admit closed self-adjoint extensions in L2(R) with the domain in H2(R),
where

(1.11) H2(R) = {u ∈ H2(R) : xu′ ∈ L2(R), x2u ∈ L2(R)}.
Our main result is now formulated as follows.

Theorem 1.1. Assume that W ∈ L2(R) ∩ L∞(R). There exists ε0 > 0 and
δ0 > 0, such that the ODE (1.3) admits a unique family of solutions for any ε ∈
[0, ε0) and δ ∈ [0, δ0) with the property

(1.12) ‖φ− εxe−x2/2‖H1
≤ C1ε

(

δ + ε2
)

, |µ− 1| ≤ C2

(

δ + ε2
)

,

for some (ε,δ)-independent constants C1, C2 > 0. Moreover, assuming that the
conditions (3.17) and (3.18) below are met, there exists a curve δ = δ∗(ε) in a
neighborhood of the point (ε, δ) = (0, 0), such that |δ∗(ε)| ≤ C3ε

2 for some C3 > 0,
along which the linearized problem (1.9) admits an L2-normalized solution (v0, w0)
for eigenvalue Ω0 = 1 and the GP equation (1.2) admits a family of time-periodic

space-localized solutions in the form u(x, t) = e−
i
2
t−iµt−iθv(x, t) with the properties

v ∈ H1(R) for any t ∈ R, v
(

x, t+ 2π
Ω

)

= v(x, t) for all (x, t) ∈ R2, |Ω−1| ≤ C0ε
2s2,

and

(1.13) ‖v(·, t) − φ(x) − εsv0(x) cos(Ωt+ ϕ) + iεsw0(x) sin(Ωt+ ϕ)‖H1
≤ Cεs2,

where s ∈ [0, s0), θ and ϕ are arbitrary parameters, and C0, C are (ε, s)-independent
positive constants.

Remark 1.2. Similarly to the explicit solution (1.6)–(1.7), the periodic solution
of Theorem 1.1 is parametrized by θ, ϕ, and s, in addition to the small parameter
ε. Parameters θ and ϕ can be set to zero because of the two obvious symmetries of
the GP equation (1.2): the gauge invariance u(x, t) 7→ u(x, t)eiθ0 , ∀θ0 ∈ R and the
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translation invariance u(x, t) 7→ u(x, t − t0), ∀t0 ∈ R. The parameter s measures
the small amplitude of periodic oscillations.

Remark 1.3. Theorem 1.1 holds also if δ = 0 with v0 = φ′(x) and w0 =
−xφ(x). In this case, the exact solution (1.6)–(1.7) exists and shows that the
periodic solution can be continued for any ε ∈ R and s ∈ R. In addition, the exact
solution shows that C0 = 0, such that Ω = 1 for any ε ∈ R and s ∈ R.

Although the explicit solution (1.6)–(1.7) persists for all µ ∈ R, the persistence
of periodic orbits of the GP equation (1.2) with δ 6= 0 is proved in Theorem 1.1 only
near µ = 1 along the bifurcation curve δ = δ∗(µ). This is due to the fact that the
curve δ = δ∗(µ) in the neighborhood of the point (µ, δ) = (1, 0) is the only curve
(except the line δ = 0), where we can prove rigorously the non-resonance conditions
nΩ0 6= Ωm, ∀n,m ∈ N, where Ω0 = 1 is the eigenvalue of the eigenmode (v0, w0)
in the linearized problem (1.9) and Ωm 6= 1, m ∈ N are other eigenvalues of the
linearized problem (1.9) near the point (µ, δ) = (1, 0). We do not have control of the
non-resonance conditions far from the point (µ, δ) = (1, 0) and away from the curve
δ = δ∗(µ). Although the proof of Theorem 1.1 is a modification of the proof of the
Lyapunov Center Theorem for persistence of periodic orbits in a neighborhood of
an elliptic stationary point [15, Chapter II], it is, nevertheless, complicated by the
presence of translational eigenmodes associated with the double zero eigenvalue of
the linearized problem and by the infinite-dimensional setting of the problem.

Our strategy for the proof of Theorem 1.1 is to use a complete set of Hermite
functions and to reformulate the evolution problem for the GP equation (1.2) as an
infinite-dimensional discrete dynamical system for coefficients of the decomposition
(Section 2). This technical trick is motivated by the fact that the spectrum of the
linearized problem associated with the parabolic potential is purely discrete, such
that the components of the decomposition are normal modes of the linearized sys-
tem. Existence of stationary solutions φ(x) of the ODE (1.3) and spectral stability
of stationary solutions in the linearized problem are studied in the framework of the
discrete dynamical system (Section 3). The proof of existence of periodic solutions
of the GP equation (1.2) relies on the construction of periodic orbits in the discrete
dynamical system (Section 4). The analytical results are verified with numerical
approximations of solutions of the ODE (1.3), eigenvalues of the linearized problem
(1.9) and solutions of the GP equation (1.2) (Section 5). We would like to note that
the same results can be obtained with the PDE formulation of the time-evolution
problem, if the convergence of the series of eigenfunctions of the linearized problem
(1.9) can be proven.

Our main result is in agreement with Theorem 2.1 in [8], where the Newton par-
ticle equation is obtained in a more general context of multi-dimensional confining
potentials and arbitrary nonlinear functions of the GP equation

(1.14) iψ̇ = −∇2ψ + V (x)ψ − f(ψ).

Newton’s equation is derived for parameters (a, b) of the solitary wave solution of
the unperturbed equation (1.14) with V (x) ≡ 0 and it takes the form

(1.15) ȧ = 2b, ḃ = −∇V (a).
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Adopting our notations for the time variable and the potential function V (a) =
a2 + δW (a), we rewrite Newton’s equation (1.15) in the explicit form

ä+ a =
δ

2
W ′(a),

which recovers the bound |Ω − 1| . δ for the frequency of the periodic solution of
Theorem 1.1. If |δ∗(ε)| . ε2, then |Ω − 1| . ε2, in agreement with Theorem 1.1.

There are several differences between results of Theorem 2.1 in [8] and our The-
orem 1.1. First, Newton’s equation (1.15) is valid on finite time intervals. Second,
its derivation is carried out in the limit where the localization length of the sta-
tionary solution φ(x) is much smaller than the confinement length of the potential
V (x). Third, the exact periodicity is not guaranteed by the periodic solutions of
Newton’s equation (1.15) because of the remainder terms. In our case, the result of
Theorem 1.1 is valid for all time intervals, the localization and confinement lengths
are of the same order, and the exact periodicity is guaranteed for all times. On
the other hand, our results are valid only near the linear limit of the GP equation
(1.2).

We recall that the 2π-oscillations of dark solitons in the GP equation (1.2)
with δ = 0 were predicted from the Ehrenfest Theorem in much earlier papers (see
references in [4] and [8]). However, it was argued that the period T0 = 2π is not
observed in numerical simulations of oscillations of dark solitons for σ = 1 and
small γ [4, 17, 19]. It was suggested in this work (see review in [12]) that dark

solitons oscillate with a larger period T1 = 2
√

2π. (From a qualitative point of view,
Ω0 = 1 corresponds to a frequency of oscillations of the ground state supporting
a dark soliton, while Ω1 = 1√

2
corresponds to a frequency of oscillations of the

dark soliton near the center of the ground state.) Our numerical results show that
both eigenvalues Ω0 = 1 and Ω1 = 1√

2
occur in the spectrum of the linearized

problem (1.9) as µ→ ∞ but the non-resonance conditions nΩ1 6= Ωm for n,m ≥ 2
are violated for the frequency Ω1 = 1√

2
as n,m → ∞. (The resonance conditions

are also violated for Ω0 = 1 in the limit µ → ∞ but the existence of a periodic
solution with the frequency Ω0 = 1 is guaranteed by the exact solution (1.6)–(1.7).)
Therefore, at the present time, we cannot construct periodic solutions with period
T1 = 2

√
2π in the limit µ → ∞.

Acknowledgement. The first author thanks W. Craig for informing him
about the results of [6], V. Konotop for useful discussions of [4], and A. Sukhorukov
for informing him about the exact transformation (1.6).

2. Formalism of the discrete dynamical system

The set of Hermite functions is defined by the standard expressions [1, Chapter
22]:

(2.1) φn(x) =
1

√

2nn!
√
π
Hn(x)e−x2/2, ∀n = 0, 1, 2, 3, ...,

where Hn(x) denote the Hermite polynomials, e.g. H0 = 1, H1 = 2x, H2 = 4x2−2,
H3 = 8x3 − 12x, etc. Since the Hermite functions are eigenfunctions of the linear
Schrödinger equation

(2.2) −1

2
φ′′n(x) +

1

2
x2φn(x) =

(

n+
1

2

)

φn(x),
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the Sturm–Liouville theory implies that the set of Hermite functions {φn(x)}∞n=0

forms an orthogonal basis in L2(R). The normalization coefficients in the expres-
sions (2.1) ensure that the Hermite functions satisfy orthonormality conditions

(2.3) (φn, φm) = δn,m.

We represent a solution u(x, t) of the GP equation (1.2) by the series of eigenfunc-
tions

(2.4) u(x, t) = e−
i
2
t

∞
∑

n=0

an(t)φn(x)

where the components (a0, a1, a2, ...) form a vector a on N. When the series rep-
resentation (2.4) is substituted to the GP equation (1.2), the PDE problem is
converted to the discrete dynamical system

(2.5) iȧn = nan + δ

∞
∑

m=0

Wn,mam + σ

∞
∑

n1,n2,n3=0

Kn,n1,n2,n3
an1

ān2
an3

,

where Wn,m = (φn,Wφm) and Kn,n1,n2,n3
= (φn, φn1

φn2
φn3

). Let l2s(N) be a
weighted discrete l2-space equipped with the squared norm

(2.6) ‖a‖2
l2s

=

∞
∑

n=0

(1 + n)2s|an|2 <∞,

for some s ∈ R. Since the set {φn(x)}∞n=0 forms an orthonormal basis in L2(R), we
note the isometry ‖u‖2

L2 = ‖a‖2
l2 , so that u ∈ L2(R) if and only if a ∈ l2(N). The

quantity

(2.7) Q = ‖u‖2
L2 = ‖a‖2

l2

is constant in the time evolution of the GP equation (1.2) and the discrete dy-
namical system (2.5). Both systems are also Hamiltonian with the time-conserved
Hamiltonian function in the form

E =
1

2

∫

R

(

|ux|2 + x2|u|2 + |u|2 + 2δW (x)|u|2 + σ|u|4
)

dx

=

∞
∑

n=0

n|an|2 + δ

∞
∑

n,m=0

Wn,manām + σ

∞
∑

n,n1,n2,n3=0

Kn,n1,n2,n3
anan1

ān2
ān3

.

The Hamiltonian function E is bounded if W ∈ L∞(R) and u ∈ H1(R). The
following results establish the equivalence between H1(R) for u and l21/2(N) for a

and determine the phase space for the discrete dynamical system (2.5).

Lemma 2.1. Let u(x) =
∞
∑

m=0
anφn(x). Then u ∈ H1(R) if and only if a ∈

l21/2(N).
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Proof. It follows directly that

‖u‖2
H1

=

∫

R

(

|u′(x)|2 + (x2 + 1)|u(x)|2
)

dx

=

∞
∑

n1,n2=0

an1
ān2

∫

R

[

φ′n1
(x)φ′n2

(x) + (x2 + 1)φn1
(x)φn2

(x)
]

dx

= 2

∞
∑

n1,n2=0

an1
ān2

(1 + n2)(φn1
, φn2

) = 2‖a‖2
l2
1/2

,

where the orthogonality relations (2.3) have been used. �

Remark 2.2. By the same method, we can prove that u ∈ H2(R) if and only if
a ∈ l21(N). A more general correspondence between Hn(R) and l2n/2(N) for positive

integer n was recently obtained in [20].

Lemma 2.3. Assume that W ∈ L2(R). The vector field of the dynamical system
(2.5) maps l21/2(N) to l2−1/2(N)

Proof. The vector field of the dynamical system (2.5) is decomposed into
three parts represented by functions f(a), δg(a) and σh(a), where

fn = nan, gn =
∞
∑

m=0

Wn,mam, hn =
∞
∑

n1,n2,n3=0

Kn,n1,n2,n3
an1

ān2
an3

.

The first part satisfies the estimate

‖f(a)‖2
l2s

=

∞
∑

n=0

(1 + n)2sn2|an|2 ≤ ‖a‖2
l2s+1

,

such that f : l2s+1(N) 7→ l2s(N) for all s ∈ R. If a ∈ l21/2(N), then s = − 1
2 . Since

|Wn,m| ≤ ‖W‖L2‖φnφm‖L2 ≤ ‖W‖L2‖φn‖L4‖φm‖L4,

the second part satisfies the estimate

‖g(a)‖2
l2s

=

∞
∑

n=0

(1 + n)2s
∞
∑

m1,m2=0

Wn,m1
Wn,m2

am1
ām2

≤ ‖W‖2
L2

( ∞
∑

n=0

(1 + n)2s‖φn‖2
L4

)( ∞
∑

m=0

‖φm‖L4|am|
)2

≤ ‖W‖2
L2

( ∞
∑

n=0

(1 + n)2s‖φn‖2
L4

)( ∞
∑

m=0

(1 +m)−2(s+1)‖φm‖2
L4

)

‖a‖2
l2s+1

.

By the main result of [6], there exists a constant C > 0 such that

(2.8) ‖φn‖4
L4 ≤ C

log(2 + n)√
1 + n

, ∀n ∈ N.

Therefore, the series
∑∞

n=0(1 + n)2s‖φn‖2
L4 and

∑∞
m=0(1 +m)−2(s+1)‖φm‖2

L4 con-

verge for all − 5
8 < s < − 3

8 , such that g : l2s+1(N) 7→ l2s(N) for all − 5
8 < s < − 3

8 .
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The value s = − 1
2 is a middle point of this interval. Finally, the last part of the

vector field satisfies the estimate

‖h(a)‖2
l2s

=

∞
∑

n=0

(1 + n)2s
∞
∑

n1,n2,n3=0

∞
∑

m1,m2,m3=0

Kn,n1,n2,n3
Kn,m1,m2,m3

an1
ān2

an3
ām1

am2
ām3

=

∞
∑

n=0

(1 + n)2s
∣

∣

(

φnu, |u|2
)
∣

∣

2 ≤
( ∞
∑

n=0

(1 + n)2s‖uφn‖2
L2

)

‖u‖4
L4

≤
( ∞
∑

n=0

(1 + n)2s‖φn‖2
L4

)

‖u‖6
L4,

where u(x) =
∞
∑

n=0
anφn(x) and the series

∑∞
n=0(1+n)2s‖φn‖2

L4 converges if s = − 1
2 .

By the Sobolev embedding, we have

‖u‖4
L4 ≤ ‖u‖2

L∞
‖u‖2

L2 ≤ C0‖u‖4
H1 ≤ C0‖u‖4

H1
,

for some C0 > 0. Since the norm in H1(R) for the function u(x) is equivalent to
the norm in l21/2(Z) for the vector a by Lemma 2.1, we obtain that h : l21/2(N) 7→
l2−1/2(N). The triangle inequality applied to the nonlinear vector field f(a)+δg(a)+

σh(a) concludes the proof of the lemma. �

Theorem 2.4. Assume that W ∈ L2(R). There exists a global solution a(t) ∈
C1(R, l21/2(N)) of the discrete dynamical system (2.5).

Proof. By Proposition 2.2 in [5], there exists a global solution

u(t) ∈ C1(R,H1(R))

of the GP equation (1.2) if W ∈ L2(R). By Lemma 2.1, the trajectory u(t) ∈ H1(R)
is equivalent to the trajectory a(t) ∈ l21/2(N) on t ∈ R. By Lemma 2.3, the vector

field of the discrete dynamical system (2.5) acts on the phase space l21/2(N) ⊂ l2(N).

The system is hence equivalent to the GP equation (1.2) due to standard orthogonal
projections in L2(R). �

3. Existence and stability of stationary solutions

Stationary solutions of the dynamical system (2.5) take the form a(t) = Ae−iµt,
where A is a time-independent vector and µ is a parameter of the solution. By

Lemma 2.1, if A ∈ l21/2(N) and φ(x) =
∞
∑

n=0
Anφn(x), then φ ∈ H1(R) is a stationary

solution of the GP equation (1.2), that is φ(x) satisfies the ODE (1.3). By Lemma
2.3, the vector A is found as a root of the infinite-dimensional cubic vector field
F : l21/2(N) × R

2 7→ l2−1/2(N), where the n-th component of F(A;µ, δ) is given by

(3.1) Fn = (µ− n)An − δ

∞
∑

m=0

Wn,mAm − σ

∞
∑

n1,n2,n3=0

Kn,n1,n2,n3
An1

Ān2
An3

.

The Jacobian operator DAF(0;µ, 0) is a diagonal matrix with entries µ − n and
it admits a one-dimensional kernel if µ = n0 for any non-negative integer n0. The
corresponding eigenvector is en0

, the unit vector in l2(N). According to local bifur-
cation theory [7], each eigenvector of DAF(0;n0, 0) can be uniquely continued in a
local neighborhood of the point A = 0 ∈ l21/2(N) and (µ, δ) = (n0, 0) ∈ R

2. We are
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particularly interested in the second eigenvalue n0 = 1 with the second eigenvector
e1, which corresponds to the dark soliton φ(x) with a single zero. (Other bifurca-
tions of stationary localized solutions φ(x) are considered in [2, 10, 11].) Details
of this bifurcation are given in the following proposition.

Proposition 1. Assume that W ∈ L2(R) and consider real-valued roots A ∈
l21/2(N) of the vector field F(A;µ, δ). There exists ε0 > 0 and δ0 > 0, such that

the solution set of F(A;µ, δ) = 0 includes a unique family of solutions for any
ε ∈ [0, ε0) and δ ∈ [0, δ0) with the property
(3.2)

‖A− εe1‖l2
1/2

≤ C1ε
(

δ + ε2
)

,
∣

∣µ− 1 − ε2σK1,1,1,1 − δW1,1

∣

∣ ≤ C2

(

δ + ε2
)2
,

for some (ε,δ)-independent constants C1, C2 > 0. Moreover, if σ 6= 0, the solution
A is smooth with respect to µ for sufficiently small (ε,δ) and d

dµ‖A‖2
l2 6= 0.

Proof. Both F(A;µ, δ) and DAF(A;µ, δ) are continuous in a local neigh-
borhood of A = 0 ∈ l21/2(N) and (µ, δ) = (1, 0) ∈ R

2. At the point A = 0

and (µ, δ) = (1, 0), the operator has a one-dimensional kernel with the eigenvec-
tor e1 ∈ l2(N). By using the method of Lyapunov–Schmidt reductions [7], we set

A = ε
[

e1 + Ã
]

and µ = 1 + µ̃, where (Ã, e1) = 0, that is Ã1 = 0. The orthogonal

projection of equation (3.1) to e1 gives a bifurcation equation for µ̃

µ̃ = δ

(

W1,1 +

∞
∑

m=0

W1,mÃm

)

+ σε2

[

K1,1,1,1 + 3

∞
∑

n1=0

K1,1,1,nÃn1

+3

∞
∑

n1,n2=0

K1,1,n1,n2
Ãn1

Ãn2
+

∞
∑

n1,n2,n3=0

K1,n1,n2,n3
Ãn1

Ãn2
Ãn3

]

.

Let P1 be an orthogonal projection to the complement of e1 in l2(N). Then, the
inverse of P1DAF(0; 1, 0)P1 exists and is a bounded operator from l2−1/2(N) to

l21/2(N). By the Implicit Function Theorem in space l21/2(N) × R2, there exists a

unique smooth solution Ã in the neighborhood of Ã = 0 ∈ l21/2(N) parameterized

by (ε, δ) in the neighborhood of (0, 0) ∈ R2, such that ‖Ã‖l2
1/2

≤ C1(δ+ε
2) for some

C1 > 0. By the Implicit Function Theorem in R×R2, there exists a unique smooth
solution µ̃ of the bifurcation equation in the neighborhood of µ̃ = 0 for (ε, δ) near
the point (0, 0) ∈ R2, such that |µ̃ − ε2σK1,1,1,1 − δW1,1| ≤ C2(δ + ε2)2 for some

C2 > 0. Since ‖A‖2
l2 = ε2 + O(ε2(ε2 + δ)) and µ− 1 = 3σε2

4
√

2π
+ δW1,1 + O(ε2 + δ)2,

where the value K1,1,1,1 = 3
4
√

2π
is computed in Table I, then d

dµ‖A‖2
l2 6= 0 near

(µ, δ) = (1, 0) for σ 6= 0. �

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
Kn,n,n,n

1√
2π

3
4
√

2π
41

64
√

2π
147

256
√

2π
8649

16384
√

2π
32307

65536
√

2π

K1,n,n,1
1

2
√

2π
3

4
√

2π
7

16
√

2π
11

32
√

2π
75

256
√

2π
133

512
√

2π

K0,1,1,n
1

2
√

2π
0 1

8
√

π
0 − 3

√
3

32
√

π
0

Table I: Numerical values for Kn,n,n,n = ‖φn‖4
L4 , K1,n,n,1 = (φ2

1, φ
2
n), and

K0,1,1,n = (φ0φn, φ
2
1).
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Spectral stability of the stationary solution e−iµtA is studied with the expansion

(3.3) a(t) = e−iµt
[

A + (B− C) eiΩt +
(

B̄ + C̄
)

e−iΩ̄t + O(‖B‖2 + ‖C‖2)
]

,

where the spectral parameter Ω ∈ C and the eigenvector (B,C) ∈ l2(N,C2) satisfy
the linear problem

(3.4) L+B = ΩC, L−C = ΩB,

associated with matrix operators L±. Their n-th components are defined in the
form
{

(L+B)n = (n− µ)Bn + δ
∑∞

m=0Wn,mBm + 3σ
∑∞

m=0 Vn,mBm,

(L−C)n = (n− µ)Cn + δ
∑∞

m=0Wn,mCm + σ
∑∞

m=0 Vn,mCm,

where Vn,m =
∑∞

n2,n3=0Kn,m,n2,n3
An2

An3
. We have used here the symmetry of

the coefficients Kn,n1,n2,n3
with respect to the interchange of (n1, n2, n3).

Lemma 3.1. Assume that W ∈ L2(R) ∩ L∞(R) and let A ∈ l21/2(N) be a

real-valued root of the vector field F(A;µ, δ). Operators L+ and L− admit closed
self-adjoint extensions in l2(N) with the domain in l21(N).

Proof. The diagonal unbounded part of L± maps l21(N) to l2(N). We need
to show that the non-diagonal parts of L± represent bounded perturbations from
l2(N) to l2(N) if A ∈ l21/2(N) and W ∈ L2(R) ∩ L∞(R). This is done by using

computations similar to those in the proof of Lemma 2.3:

∞
∑

n=0

∣

∣

∣

∣

∣

∞
∑

m=0

Wn,mBm

∣

∣

∣

∣

∣

2

=

∞
∑

n=0

|(φn,Wv)|2

= ‖Wv‖2
L2 ≤ ‖W‖2

L∞‖v‖2
L2 = ‖W‖2

L∞

∞
∑

n=0

|Bn|2

and

∞
∑

n=0

∣

∣

∣

∣

∣

∞
∑

m=0

Vn,mBm

∣

∣

∣

∣

∣

2

=

∞
∑

n=0

|(φn, u
2v)|2

= ‖u2v‖2
L2 ≤ ‖u‖4

L∞‖v‖2
L2 ≤ C‖u‖4

H1

∞
∑

n=0

|Bn|2,

where u =
∑∞

n=0Anφn(x) ∈ H1(R), v =
∑∞

n=0Bnφn(x) ∈ L2(R), and C > 0. �

Remark 3.2. The result of Lemma 3.1 is obvious from the equivalence between
the space H2(R) for the function v(x) and the space l21(N) for the vector B, see
Remark 2.2. The matrix operators L± represent the action of differential operators
L± given by (1.10) on the basis of Hermite functions (2.1) in H2(R).

Remark 3.3. The linear problem (3.4) has eigenvalue Ω = 0 of geometric
multiplicity one and algebraic multiplicity two due to the exact solution

(3.5) L−A = 0, L+∂µA = A,
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where the smoothness of A with respect to µ near µ = 1 is guaranteed by Propo-
sition 1. Eigenvectors for the double zero eigenvalue are represented by the expan-
sions

(3.6) A = εe1 + O(ε(ε2 + δ)), ∂µA =
4
√

2π

3σε
e1 + O(ε−1(ε2 + δ)),

where ε and δ are sufficiently small. As a result, 〈A, ∂µA〉 = 4
√

2π
3σ + O(ε2 + δ).

When A = 0 and (µ, δ) = (1, 0), the spectrum of the eigenvalue problem (3.4)
is known in the explicit form. It consists of eigenvalues Ω = 0 and Ω = ±1 of
geometric and algebraic multiplicities two and simple eigenvalues Ω = ±m for all
m = 2, 3, .... The double zero eigenvalue persists for any ε and δ according to the
exact solution (3.5). Let us enumerate the non-zero eigenvalues as {±Ωm}∞m=0 such
that Ω0 = Ω1 = 1 and Ωm = m, m ≥ 2 for ε = 0 and δ = 0. Splitting of non-zero
eigenvalues in a local neighborhood of A = 0 and (µ, δ) = (1, 0) is described by the
following proposition.

Proposition 2. Let A ∈ l21/2(N) be defined by Proposition 1 for sufficiently

small ε and δ and for W ∈ L2(R)∩L∞(R). Non-zero real eigenvalues {Ωm}∞m=2 of
the linear problem (3.4) for any ε ∈ [0, ε0) and δ ∈ [0, δ0) satisfy the bound
(3.7)
∣

∣Ωm −m+ ε2σ (K1,1,1,1 − 2Km+1,1,1,m+1) + δ (W1,1 −Wm+1,m+1)
∣

∣ ≤ C2

(

ε2 + δ
)2
,

for some (ε,δ,m)-independent constant C2 > 0. If δ = 0, then Ω0 = 1 and Ω1

satisfies the bound
∣

∣

∣

∣

Ω1 − 1 +
ε2σ

8
√

2π

∣

∣

∣

∣

≤ C1ε
4(3.8)

for some ε-independent constant C1 > 0. If W0,0 6= W1,1 6= W2,2, there exists a
curve δ = δ∗(ε) with the property

(3.9)

∣

∣

∣

∣

δ∗(ε) −
ε2σ

8
√

2π

3W1,1 − 2W2,2 −W0,0

(W1,1 −W0,0)(W1,1 −W2,2)

∣

∣

∣

∣

≤ C0ε
4,

such that Ω0 = 1 and Ω1 satisfies the bound

(3.10)

∣

∣

∣

∣

Ω1 − 1 +
ε2σ

8
√

2π

(

1 +
(3W1,1 − 2W2,2 −W0,0)(W0,0 −W2,2)

(W1,1 −W0,0)(W1,1 −W2,2)

)∣

∣

∣

∣

≤ C1ε
4

for some ε-independent constants C0, C1 > 0.

Proof. Since the essential spectrum of the matrix operators L± is empty and
the potential terms are bounded perturbations to the unbounded diagonal terms,
isolated eigenvalues split according to the standard perturbation theory for isolated
eigenvalues [9, Chapter 7]. The eigenvectors for a simple eigenvalue Ω = m with
m = 2, 3, ... are expanded as follows

B = em+1 + B̃, C = em+1 + C̃, Ω = m+ Ω̃.

Projections to the component n = m+ 1 gives the linear system at principal order

m
“

B̃m+1 − C̃m+1

”

= δ (W1,1 − Wm+1,m+1) + σε
2 (K1,1,1,1 − 3Km+1,1,1,m+1) + Ω̃,

m
“

C̃m+1 − B̃m+1

”

= δ (W1,1 − Wm+1,m+1) + σε
2 (K1,1,1,1 − Km+1,1,1,m+1) + Ω̃.

The linear system has a solution if and only if Ω̃ = σε2 (2Km+1,1,1,m+1 −K1,1,1,1)+
δ (Wm+1,m+1 −W1,1). By Lemma 3.1, the potentials of the linear operators L± are
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bounded perturbations from l2(N) to l2(N). Therefore, there exists a constant
C2 > 0 uniformly in m, such that the eigenvalues {Ωm}∞m=2 persist according to
the expansion (3.7).

The eigenvectors for the double eigenvalue Ω = 1 are expanded as follows

B = αe0 + βe2 + B̃, C = −αe0 + βe2 + C̃, Ω = 1 + Ω̃,

where (α, β) are arbitrary parameters. Projections to the components n = 0 and
n = 2 give the linear system at principal order

“

B̃0 + C̃0

”

= δ (W0,0α + W0,2β − W1,1α) + σε
2 (3K0;1,1,0α + 3K0,1,1,2β − K1,1,1,1α) + Ω̃α,

−

“

B̃0 + C̃0

”

= δ (W0,0α − W0,2β − W1,1α) + σε
2 (K0,1,1,0α − K0,1,1,2β − K1,1,1,1α) + Ω̃α,

“

B̃2 − C̃2

”

= δ (W1,1β − W2,0α − W2,2β) + σε
2 (K1,1,1,1β − 3K2,1,1,0α − 3K2,1,1,2β) + Ω̃β,

−

“

B̃2 − C̃2

”

= δ (W1,1β + W2,0α − W2,2β) + σε
2 (K1,1,1,1β + K2,1,1,0α − K2,1,1,2β) + Ω̃β.

The linear system has a solution if and only if (α, β) satisfies a homogeneous system

δ (W1,1 −W0,0)α+ σε2 (K1,1,1,1α− 2K0,1,1,0α−K0,1,1,2β) = Ω̃α,

δ (W2,2 −W1,1)β + σε2 (−K1,1,1,1β +K2,1,1,0α+ 2K2,1,1,2β) = Ω̃β.

The homogeneous system for (α, β) has a non-zero solution if and only if Ω̃ satisfies
a quadratic equation

Ω̃2 + Ω̃
`

δ(W0,0 − W2,2) + 2σε
2(K0,1,1,0 − K2,1,1,2)

´

+ δ
2(W0,0 − W1,1)(W1,1 − W2,2)

+δσε
2 [(W0,0 − W1,1)(K1,1,1,1 − 2K2,1,1,2) + (W1,1 − W2,2)(2K0,1,1,0 − K1,1,1,1)]

+σ
2
ε
4 [(K1,1,1,1 − 2K2,1,1,2)(2K0,1,1,0 − K1,1,1,1) + K0,1,1,2K2,1,1,0] = 0.

Using the explicit values from Table I, we rewrite the quadratic equation above in
the explicit form

Ω̃2 + Ω̃

(

δ(W0,0 −W2,2) +
σε2

8
√

2π

)

+ δ2(W0,0 −W1,1)(W1,1 −W2,2)

+
δσε2

8
√

2π
(3W1,1 − 2W2,2 −W0,0) = 0.(3.11)

If δ = 0, one root is zero, while the other root satisfies the asymptotic expansion
(3.8). The zero root persists for any ε ∈ R according to the exact eigenvector of
the linear problem (3.4) with elements Bn = (φn, φ

′) and Cn = −(φn, xφ), see
Remark 1.3. If δ 6= 0, one root of the quadratic equation (3.11) is zero at the
curve δ = δ∗(ε), where δ∗(ε) satisfies the expansion (3.9). Persistence of the curve
δ = δ∗(ε) is proved with the Implicit Function Theorem and the perturbation theory
for isolated eigenvalues. The other non-zero root of the quadratic equation (3.11)
satisfies the asymptotic expansion (3.10). �

Corollary 1. Let (Bm,Cm) be an eigenvector of the linear problem (3.4) for
the eigenvalue Ωm ∈ R+, m = 0, 1, 2, 3, ... in Proposition 2. If δ = 0, the eigenvalue
Ω0 has positive signature of 〈B0, L+B0〉, the eigenvalue Ω1 has negative signature of
〈B1, L+B1〉, while all other eigenvalues Ωm with m = 2, 3, ... have positive signature
of 〈Bm, L+Bm〉. If δ = δ∗(ε), the signature of Ω0 and Ω1 remains the same if

(3.12)
W1,1 −W0,0√
2(W1,1 −W2,2)

> 1

and it is opposite, otherwise.
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Proof. If δ = 0, the homogeneous system for (α, β) has a one-parameter

family of solutions with β = −
√

2α for Ω̃ = 0 and α = −
√

2β for Ω̃ = − σε2

8
√

2π
.

Therefore, 〈B0, L+B0〉 = −|α|2 + |β|2 + O(ε2) > 0 and 〈B1, L+B1〉 = −|α|2 +
|β|2 + O(ε2) < 0 for sufficiently small ε. For all other eigenvalues, 〈Bm, L+Bm〉 =
m+ O(ε2) for m = 2, 3, .... If δ = δ∗(ε), we obtain the solution of the homogeneous
system for (α, β) in the form

β =
W1,1 −W0,0√
2(W1,1 −W2,2)

α

for Ω̃ = 0 and

β =

√
2(W1,1 −W2,2)

W1,1 −W0,0
α

for

Ω̃ = − ε2σ

8
√

2π

(

1 +
(3W1,1 − 2W2,2 −W0,0)(W0,0 −W2,2)

(W1,1 −W0,0)(W1,1 −W2,2)

)

.

This finishes the proof of the corollary. �

Lemma 3.4. Let {(Bm,Cm)}∞m=0 be a set of real-valued eigenvectors of the
linear problem (3.4) for the set of positive eigenvalues {Ωm}∞m=0. If all positive
eigenvalues are distinct, the set of eigenvectors is symplectically orthogonal such
that

(3.13) 〈Bm′ ,Cm〉 = 0, ∀m′ 6= m 〈Bm,Cm〉 6= 0, ∀m = 0, 1, 2, 3...

In addition, two eigenvectors {(0,A), (∂µA,0)} for the double zero eigenvalue Ω =
0 are symplectically orthogonal to other eigenvectors and 〈A, ∂µA〉 6= 0 for suffi-
ciently small ε and δ. The set of eigenvectors

(3.14) {(Bm,Cm)}∞m=0 ⊕ {(Bm,−Cm)}∞m=0 ⊕ {(0,A), (∂µA,0)}
forms an orthogonal basis in l2(N,R2) with respect to the symplectic projections
(3.13).

Proof. Since L± are self-adjoint in l2(N) and Ωm is a real eigenvalue, then the
eigenvector (Bm,Cm) of the linear problem (3.4) can be chosen to be real-valued.
The orthogonality relations (3.13) follow by direct computations from the linear
problem (3.4) for distinct eigenvalues Ωm′ 6= Ωm for all m′ 6= m. By the Fredholm
Alternative Theorem, 〈Bm,Cm〉 6= 0 if the eigenvalue Ωm is simple. By Remark
3.3, 〈A, ∂µA〉 6= 0 for sufficiently small ε and δ. By Proposition 2, the eigenvectors
of the set (3.14) are represented for sufficiently small ε and δ by the standard basis
{em}∞m=0 ⊕ {em}∞m=0 perturbed by a bounded perturbation in l2(N) of the order
O(ε2 + δ). In addition

(3.15) Ωm = m+ O(ε2 + δ), 〈Bm,Cm〉 =
〈Bm, L+Bm〉

Ωm
= 1 + O(m−1(ε2 + δ)),

for all m ≥ 2 and sufficiently small ε and δ, uniformly in m. Since no other
eigenvalues exist and the essential spectrum is empty, the set of linearly independent
eigenvectors (3.14) is complete in l2(N,R2). According to the Banach Theorem
for non-self-adjoint operators [16], the set is a basis if and only if the spectral
projections are bounded from below by a non-zero constant in the limit m →
∞. The latter condition follows from the uniform asymptotic distribution (3.15).
Therefore, the set (3.14) is a basis in l2(N,R2). �
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Lemma 3.5. If δ = 0, the eigenvalue Ω0 = 1 is non-resonant with respect to
the eigenvalues {Ωm}m∈N for sufficiently small ε in the sense that there exists a
ε-independent constant C > 0 such that

(3.16) |Ωm − n| ≥ Cε2

uniformly in m,n ∈ N. If δ = δ∗(ε) and

(3.17)
3W1,1 − 2W2,2 −W0,0

(W1,1 −W0,0)(W1,1 −W2,2)
> 0, W1,1 > Wm+1,m+1, m = 2, 3, 4, ...

and

(3.18) 1 +
(3W1,1 − 2W2,2 −W0,0)(W0,0 −W2,2)

(W1,1 −W0,0)(W1,1 −W2,2)
6= 0,

then the uniform bound (3.16) is also valid for sufficiently small ε.

Proof. If δ = 0, the uniform bound (3.16) follows from the bounds (3.7) and
(3.8) if K1,1,1,1 − 2Km+1,1,1,m+1 > 0 for m = 2, 3, .... Indeed, the first few values
are found from Table I to be positive and monotonically increasing, e.g.

K1,1,1,1 − 2K3,1,1,3 =
1

16
√

2π
,

K1,1,1,1 − 2K4,1,1,4 =
21

128
√

2π
,

K1,1,1,1 − 2K5,1,1,5 =
59

256
√

2π
.

According to the main theorem in [6], the sequence {‖φn‖L4}n∈N is monotonically
decreasing to zero with the bound (2.8). Since Km+1,1,1,m+1 ≤ ‖φ1‖2

L4‖φm+1‖2
L4,

then

K1,1,1,1 − 2Km+1,1,1,m+1 ≥ ‖φ1‖2
L4

(

‖φ1‖2
L4 − 2‖φm+1‖2

L4

)

, ∀m = 2, 3, ...

Since ‖φm+1‖2
L4 decays monotonically to zero as m→ ∞, there exists M ≥ 2, such

that the lower bound above is strictly positive for m ≥M . If δ = δ∗(ε), the uniform
bound (3.16) follows from the bounds (3.7) and (3.10) under the conditions (3.17)
since δ(W1,1 −Wm+1,m+1) has the same sign as ε2σ(K1,1,1,1 − 2Km+1,1,1,m+1). �

Theorem 3.6. There exists ε0 > 0, such that the periodic solution (1.6)–(1.7)
of the GP equation (1.2) with ε ∈ (0, ε0) and δ = 0 is spectrally stable for any
values of (s, ϕ, θ).

Proof. By explicit transformation, the stability of the periodic solution (1.6)–
(1.7) with period T0 = 2π and parameters (s, ϕ, θ) is equivalent to the stability of

the stationary solution e−
i
2

t−iµtφ(x) in the 2π-period Poincare map. The Floquet
multipliers of the Poincare map are given by the set {ei2πΩm}m∈N and they are
different from 1 and from each other for ε 6= 0 due to the explicit values (3.7) and
(3.8). Therefore, the Floquet multipliers are simple and remain on the imaginary
axis for sufficiently small ε > 0. �
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4. Existence of periodic solutions

We shall use the discrete dynamical system of Section 2 and the asymptotic
expansions for eigenvalues and eigenvectors of Section 3 to study periodic solutions
a(t+ T ) = a(t) with some period T near T0 = 2π. The main part of the section is
devoted to the proof of Theorem 1.1. Related remarks are formulated at the end
of the section.
Proof of Theorem 1.1: Let A ∈ l21/2(N) be a real-valued root of F(A;µ, δ) = 0

defined by Proposition 1. We use a decomposition a(t) = e−iµt [A + B(t) + iC(t)]
with real-valued vectors B and C to rewrite the discrete dynamical system (2.5) in
the form

Ḃ = L−C + σN−(B,C), −Ċ = L+B + σN+(B,C),(4.1)

where the operators L± are defined below (3.4) and the vector fields N±(B,C)
contains quadratic and cubic terms with respect to (B,C). By Theorem 2.4,
the initial-value problem for system (4.1) is globally well-posed with a solution
B(t),C(t) ∈ C1(R, l11/2(N)). By Proposition 2, there exists a curve δ = δ∗(ε) such

that all eigenvalues are distinct under the conditions (3.17) and (3.18). By Lemma
3.4, a solution (B,C) of the discrete system (4.1) with δ = δ∗(ε) can be uniquely
represented by the series of eigenvectors (3.14) associated with the linear problem
(3.4):

{

B(t) =
∑∞

m=0 bm(t)Bm +
∑∞

m=0 b̄m(t)Bm + α(t)∂µA,

C(t) = i
∑∞

m=0 bm(t)Cm − i
∑∞

m=0 b̄m(t)Cm + β(t)A,
(4.2)

where b0(t) and b(t) = (b1, b2, ...) are complex-valued, while α(t) and β(t) are
real-valued. Because of the asymptotic distribution (3.15) and the equivalence of
norms

∞
∑

n=0

(1 + n)|Bn| ∼ 〈B, L+B〉 = 2

∞
∑

m=0

Ωm〈Cm,Bm〉|bm|2 + |α|2〈A, ∂µA〉

∼
∑

n∈N

(1 + n)|bn|2,

B ∈ l21/2(N) holds if and only if b ∈ l21/2(N). The linear part of system (4.1) becomes

block-diagonal in the representation (4.2), yielding the evolution equations

(4.3) ḃm − iΩmbm = σNm(b0,b, α, β), ∀m = 0, 1, 2, 3...

and

(4.4) α̇ = σS0(b0,b, α, β), β̇ + α = σS1(b0,b, α, β),

where

Nm(b0,b, α, β) =
〈Cm,N−(B,C)〉 + i〈Bm,N+(B,C)〉

2〈Cm,Bm〉
and

S0(b0,b, α, β) =
〈A,N−(B,C)〉

〈A, ∂µA〉 , S1(b0,b, α, β) = −〈∂µA,N+(B,C)〉
〈A, ∂µA〉 .
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Using the conserved quantity Q in (2.7) and the decomposition (4.2), one can
integrate the first equation of system (4.4) in the form

(4.5) α =
QA − ‖B‖2

l2 − ‖C‖2
l2

2〈A, ∂µA〉 ,

where QA = Q− ‖A‖2
l2 is constant in time t ∈ R. As a result, the first equation of

system (4.4) is redundant, while the second equation can be rewritten explicitly in
the form

(4.6) β̇ =
‖B‖2

l2 + ‖C‖2
l2 − 2σ〈∂µA,N+(B,C)〉 −QA

2〈A, ∂µA〉 .

We are now ready to apply the method of Lyapunov–Schmidt reductions. We
should work in the space C1

per(R) of T -periodic functions b0(t), b(t) ∈ l21/2(N), α(t)

and β(t), where T is close to T0 = 2π. The period T0 corresponds to the eigenvalue
Ω0 = 1 which persists for any ε ∈ R if δ = δ∗(ε), by Proposition 2. Let ε and s be
sufficiently small. We shall prove that there exist solutions of system (4.3), (4.5)
and (4.6) which are T -periodic on t ∈ R satisfying the bounds

(4.7) |b0(t)| ≤ εsC0, ‖b(t)‖l2
1/2

≤ εs2Cb, |α(t)| ≤ ε2s2Cα, |β(t)| ≤ ε2s2Cβ ,

for all t ∈ R and some (ε, s)-independent constants C0, Cb, Cα, Cβ > 0. If b0(t),
b(t) ∈ l21/2(N), α(t) and β(t) are T -periodic functions on t ∈ R satisfying the

bounds (4.7), then B(t),C(t) ∈ l21/2(N) are T -periodic functions of t ∈ R satisfying

the bound

(4.8) ‖B(t)‖l2
1/2

+ ‖C(t)‖l2
1/2

≤ Cεs, ∀t ∈ R,

for some (ε, s)-independent constant C > 0. Here we recall the expansion (3.6)
for A, ∂µA and the fact that the eigenvectors Bm and Cm are uniformly close to
the unit vectors em for sufficiently small ε. Since N±(B,C) is cubic with respect
(A,B,C), contains quadratic terms in (B,C), and maps l21/2(N,R

2) to l2−1/2(N,R
2),

we obtain the bound

(4.9) ‖N±(B(t),C(t))‖l2
−1/2

≤ C±ε
3s2, ∀t ∈ R,

for some (ε, s)-independent constants C± > 0.
If β(t) is T -periodic, then QA is found from the condition

(4.10) QA =
1

T

∫ T

0

(

‖B‖2
l2 + ‖C‖2

l2 − 2σ〈∂µA,N+(B,C)〉
)

dt.

Equation (4.10) is a scalar equation for QA, where the right-hand-side is small
because of the bounds (4.8) and (4.9). Therefore, there exists a unique solution QA

of equation (4.10), such that |QA| ≤ CQε
2s2 for some CQ > 0. Under the condition

(4.10), there exists a unique T -periodic mean-zero solution β(t) of equation (4.6),
such that |β(t)| ≤ ε2s2Cβ for some Cβ > 0, which is the last bound in (4.7). The
function α(t) is uniquely defined by the explicit representation (4.5) and it hence
satisfies the bound |α(t)| ≤ ε2s2Cα for some Cα > 0, which is the third bound in
(4.7).

Consider now system (4.3) for m ∈ N. By Lemma 3.5, Ωm − m = O(ε2)
uniformly in m ∈ N for sufficiently small ε. By the Implicit Function Theorem in
space C1

per(R, l
2
1/2(N)) × C1

per(R), there exists a unique T -periodic solution b(t) ∈
l21/2(N) for any T -periodic function b0(t). Because of the uniform bound (4.9) and
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the fact that Ω → 1 as s→ 0, we obtain ‖b(t)‖l2
1/2

≤ εs2Cb for some Cb > 0, which

is the second bound in (4.7).
Eliminating the components b, α and β from equation (4.3) for n = 0, we

obtain a reduced evolution problem for b0(t) in the form

(4.11) ḃ0 = ib0 +R(b0),

where R(b0) is a remainder term. Explicit computations of N0(b0,b, α, β) show
that

(4.12) R(b0) = ε
[

iK1(ε)b
2
0 + iK2(ε)b̄

2
0 + iK3(ε)|b0|2

]

+ O
(

|b0|3, ε|b0|‖b‖
)

,

where K1,2,3 are real-valued constants which are bounded for sufficiently small ε.
We are looking for a T -periodic function b0(t) which satisfies the evolution problem
(4.11), has the leading order b0 ∼ εseit+iϕ, where ϕ ∈ R is arbitrary, and satisfies
the bound |b0(t)| ≤ εsC0 for some C0 > 0. By the normal form analysis of the
ODE (4.11) (see [14, Chapter 3]), the quadratic terms in the remainder (4.12)
do not change the frequency Ω of oscillations of the periodic function b0(t) at
the leading order and therefore, |Ω − 1| ≤ CΩε

2s2 for some CΩ > 0. Since the
Hamiltonian function of the discrete system (2.5) is constant in time, it remains
constant when the function b0(t) solves the reduced evolution problem (4.11) and
all other functions are expressed through β0(t). By the normal form analysis of
Hamiltonian systems, there exists a two-dimensional invariant manifold of system
(4.11) filled with periodic solutions of frequencies close to Ω = 1 and parameterized
by (s, ϕ). �

Remark 4.1. Theorem 1.1 is reminiscent of an infinite-dimensional analogue of
the Lyapunov Center Theorem for persistence of periodic orbits in a neighborhood
of an elliptic stationary point (see [15, Chapter II]). However, due to the symme-
tries, a double zero eigenvalue occurs in the linear problem (3.4), and the proof
of Theorem 1.1 is complicated by the analysis of the associated two-dimensional
subspace. Similar theorems on persistence of k-dimensional tori in n-dimensional
Hamiltonian system with k− 1 additional conserved quantities were studied in the
theorem of Nekhoroshev (see Theorem 2.3 in [3]).

Remark 4.2. If δ = 0, the periodic solution (1.6)–(1.7) has the smallest fre-
quency in the focusing case σ = −1, since Ω1 > 1 in the bound (3.8) for sufficiently
small ε. However, the frequency Ω0 = 1 is not the smallest one in the defocusing
case σ = 1 since Ω1 < 1 in the bound (3.8). Persistence of the periodic solution
for the smallest frequency Ω1 can not be proved by a simple application of the
Lyapunov Center Theorem since the bounds (3.10) and (3.8) do not guarantee that
the non-resonance conditions nΩ1 6= Ωm are satisfied for all n ∈ N and m = 2, 3, ....
By the same reason, persistence of quasi-periodic oscillations with two and more
frequencies {Ω0,Ω1,Ω2, ...} can not be proved for small ε with the same method.

Remark 4.3. Persistence of quasi-periodic oscillations on the tori along the
Cantor set of parameter values was proved in [13, Section 2.5] for the GP equation
(1.2) with the Hartree nonlinear function and δ 6= 0. Our main result is sharper
since the periodic orbit constructed in Theorem 1.1 is continuous with respect to
the parameter ε. The periodic orbit corresponds to 2-periodic solutions of the GP
equation (1.1).
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5. Numerical Results

We illustrate the results of our manuscript through some relevant numerical
computations. We start by considering the case δ = 0 in the GP equation (1.2).
First, we identify the relevant branch of stationary solutions of the ODE (1.3).
To do so, we use a fixed point method (Newton-Raphson iteration) to solve a dis-
cretized boundary-value problem. A central difference approximation is applied to
the second-order derivatives with typical spacings ∆x = 0.025 and ∆x = 0.1. We
are using a sufficiently large computational domain [−L,L] such that the bound-
ary conditions do not affect the approximation within the considered numerical
precision. The solutions φ(x) are obtained, using continuation, as a function of
parameter µ. The continuation of solution branches is performed from the linear
limit µ = 1, both for the cases σ = 1 and σ = −1. The results are shown in Figure
1, illustrating the quantity Q = ‖φ‖2

L2 as a function of µ. The numerical findings
are also compared to the asymptotic result (3.2) of Proposition 1 indicating the
good agreement between the two results for a fairly wide parametric window.

Once the corresponding numerical solution is identified (for a given σ and µ),
the linear eigenvalue problem (1.9) is approximated numerically. We use again
a discretization of differential operators on a finite grid, such that the spectral
problem (1.9) becomes a matrix eigenvalue problem that is solved through standard
numerical linear algebra routines. The relevant lowest eigenvalues are presented in
Figure 2 and are also compared with the corresponding asymptotic results (3.7)
and (3.8) of Proposition 2. The dashed lines show the limiting values

(5.1) σ = 1 : Ω0 = 1, lim
µ→∞

Ω1 =
1√
2
, lim

µ→∞
Ωm =

√

m(m+ 1)√
2

, ∀m ≥ 2.

Once again, the good agreement offers us a quantitative handle on the relevant
eigenvalues.

Since the limit µ → ∞ of the normalized equation (1.2) corresponds to the
limit γ → 0 in the original GP equation (1.1), we notice that the eigenvalue Ω1 =
1√
2

corresponds to the frequency studied in [12, 17]. Because the non-resonance

condition n 6=
√

m(m+ 1) for all n,m ∈ N is violated in the limit n,m → ∞, the
linear eigenmode corresponding to the smallest eigenvalue Ω0 = 1√

2
for σ = 1 may

not result in the periodic solution of the GP equation (1.2) with δ = 0.
We have also examined periodic oscillations of dark solitons in the numerical

simulations of the GP equation (1.2) with δ = 0. A typical example is shown in
Figure 3 for σ = 1 and µ = 1.1 for the initial condition u(x, 0) = φ(x) + sφ′(x)
with s = 10−3. The top left panel shows the space-time contour plot of |u(x, t)|2,
clearly highlighting that this is a small (imperceptible, at the scale of this panel)
perturbation of a stable stationary solution φ(x). The bottom left panel shows
the space-time contour plot of |u(x, t)|2 − φ2(x), emphasizing the time-periodic
oscillations of the perturbation to the stationary solution. The periodic oscillations
are also visible on the top right panel where |u(x0, t)|2 is plotted versus t for x0 = 2.
Finally, the bottom right panel illustrates the Fourier transform of the time series
of |u(x0, t)|2 (normalized to its maximum). It shows a high peak of the frequency
spectrum near the value Ω = 1. These results agree with Theorem 3.6 on stability
of the exact periodic solutions (1.6)–(1.7) in the GP equation (1.2) with δ = 0.

Finally, we have considered oscillations of the dark soliton in the parabolic po-
tential perturbed by the decaying potential W (x) = sech2(x). Since W0,0 ≈ 0.726,
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Figure 1. Branches of dark solitons versus µ both for the case
of σ = −1 (when µ < 1) and σ = 1 (when µ > 1) for δ = 0.
The numerically obtained solution is shown by solid line and the
asymptotic solution (3.2) is shown by dash-dotted line.
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Figure 2. Smallest purely imaginary eigenvalues of the linear
eigenvalue problem (1.9) versus µ for δ = 0. The numerically ob-
tained eigenvalues are shown by solid lines, the asymptotic results
(3.7) and (3.8) are shown by dash-dotted lines, and the asymptotic
results (5.1) are shown by dashed lines.
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Figure 3. An example of the time-periodic solution of the Gross-
Pitaevskii equation (1.2) for σ = 1, δ = 0, µ = 1.1 and u(x, 0) =
φ(x) + sφ′(x) with s = 10−3. The top left panel shows the space-
time contour plot of |u(x, t)|2, the bottom left panel shows the
space-time contour of |u(x, t)|2 −φ2(x). The top right panel shows
the time evolution of |u(x0, t)|2 with x0 = 2, while the bottom right
panel shows the Fourier transform of the time series of |u(x0, t)|2,
featuring a peak at Ω ≈ 1.

W1,1 ≈ 0.402, and W2,2 ≈ 0.314, the constraints (3.17) and (3.18) are satisfied.
According to the solution of the linear system for (α, β) in the proof of Proposition
2, we set the initial condition in the form

u(x, 0) = εφ1(x) + εs (φ0(x) + rφ2(x)) , r ≈ W1,1 −W0,0√
2(W1,1 −W2,2)

≈ −2.603

with ε = 0.5 and s = 0.1. Since δ∗(ε) ≈ 0.258ε2 ≈ 0.065, we performed two compu-
tations with δ = 0.05 and δ = 0.15 shown on Figure 4. We can see from the figure
that evolution of the initial data leads slowly to periodic steady-state oscillations.
The Fourier spectrum of these oscillations suggest that the main frequency of the
oscillations is Ω = 1, according to Theorem 1.1. We recall from the theorem that
the true periodic solution occurs only along the one-parameter curve δ = δ∗(ε) on
the two-parameter plane, while it remains open to prove existence of true periodic
solutions for other values of (ε, δ) near the curve δ = δ∗(ε).
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Figure 4. Same as the right panel of Fig. 3, but for the potential
W (x) = sech2(x) with δ = 0.05 (left panels) and δ = 0.15 (right
panels). The central peak of the Fourier transform occurs at Ω ≈ 1.
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