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Abstract. We extend the global existence result for the derivative NLS equation to the case when the
initial datum includes a finite number of solitons. This is achieved by an application of the Bäcklund
transformation that removes a finite number of zeros of the scattering coefficient. By means of this
transformation, the Riemann–Hilbert problem for meromorphic functions can be formulated as the one
for analytic functions, the solvability of which was obtained recently.

1. Introduction

We consider the Cauchy problem for the derivative nonlinear Schrödinger (DNLS) equation

(1.1)

{
iut + uxx + i(|u|2u)x = 0, t ∈ R,
u|t=0 = u0,

where the subscripts denote partial derivatives and u0 is defined in H2(R) ∩ H1,1(R). Here Hm(R)
denotes the Sobolev space of distributions with square integrable derivatives up to the orderm, H1,1(R)
denotes the weighted Sobolev space given by

H1,1(R) =
{
u ∈ L2,1(R), ∂xu ∈ L2,1(R)

}
,

and the weighted space L2,1(R) is equipped with the norm

∥u∥L2,1 =

(∫
R
⟨x⟩2|u|2dx

)1/2

, ⟨x⟩ := (1 + x2)1/2.

Global well-posedness of the Cauchy problem (1.1) for u0 in H
2(R) was shown for initial datum with

small H1(R) norm in the pioneer works of Tsutsumi & Fukuda [23, 24]. Hayashi [9], and Hayashi &
Ozawa [10] extended the global well-posedness for u0 in H1(R) with small L2(R) norm. The critical
L2(R) norm corresponds to the stationary solitary waves of the DNLS equation. The question of
whether global solutions for initial datum with large L2(R) norm exist in the Cauchy problem (1.1)
was addressed very recently by using different analytical and numerical methods.

Wu [25, 26] combined the mass, momentum and energy conservation with variational arguments and
pushed up the upper bound on the L2(R)-norm of the initial datum required for existence of global
solutions. By adding a new result on orbital stability of algebraically decaying solitons [13], this upper
bound is pushed up even higher, but still within the range of the L2(R) norm of the travelling solitary
waves of the DNLS equation.

Orbital stability of one-soliton solutions was shown long ago by Colin & Ohta [2]. More recently,
the orbital stability of multi-soliton solutions was obtained in the energy space, under suitable as-
sumptions on the speeds and frequencies of the single solitons [14]. Variational characterization of the
DNLS solitary waves and further improvements of the global existence near a single solitary wave were
developed in [18]. Orbital stability of a sum of two solitary waves was obtained from the variational
characterization in [19] (see also [22] for similar results for the generalized DNLS equation).
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Numerical simulations of the DNLS equation (1.1) indicate no blow-up phenomenon for initial data
in H1(R) with any large L2(R) norm [16, 17]. The same conclusion is confirmed by means of the
asymptotic analysis of the self-similar blow-up solutions [3].

Since the DNLS equation (1.1) is formally solvable with the inverse scattering transform method [12],
one can look at other analytical tools to deal with the same question. Lipschitz continuity of the direct
and inverse scattering transform in appropriate function spaces was established very recently [15, 20]
and this result suggests global well-posedness of the Cauchy problem (1.1) without sharp constraints on
the L2(R) norm of the initial datum. The solvability of the inverse scattering transform was achieved
by using the pioneer results of Deift & Zhou [6, 28] but extended from the Zakharov–Shabat (ZS) to
the Kaup–Newell (KN) spectral problem. Simplifying assumptions were made in [15, 20] to exclude
eigenvalues and resonances in the KN spectral problem. Excluding resonances is a natural condition
to define so-called generic initial data u0 with a preserved number of eigenvalues in the perturbation
of u0. On the other hand, eigenvalues are usually excluded if the initial datum satisfies the small-norm
constraint, and it is not obvious if there exist the initial datum u0 with a large L2(R) norm that yield
no eigenvalues in the KN spectral problem.

The goal of the present paper is to extend the result from [20] to the case of a finite number of
eigenvalues in the KN spectral problem. Working with the Bäcklund transformation, similarly to
the work [4, 5] for the ZS spectral problem, we are able to develop the inverse scattering transform
technique for the initial datum with a finite number of solitons. By using the solvability result from
[20] and the invertibility of the Bäcklund transformation proved here, we are able to extend the global
well-posedness result for the Cauchy problem (1.1) to arbitrarily large initial data in H2(R)∩H1,1(R).

The main algebraic tool used in this paper is definitely not new. Imai [11] used the multi-fold
Bäcklund transformation to obtain multi-solitons and quasi-periodic solutions of the DNLS equation.
Steudel [21] gave a very nice overview of the construction of the multi-solitons with the same technique.
More recent treatments of the Bäcklund transformations for the DNLS equation can be found in further
works [8, 27]. What makes this present paper new is the way how the Bäcklund transformation can
be applied in the rigorous treatment of the inverse scattering transform and the global well-posedness
problem.

The DNLS equation appears to be a compatibility condition for C2 solutions to the KN spectral
problem

(1.2) ∂xψ =
[
−iλ2σ3 + λQ(u)

]
ψ

and the time-evolution problem

(1.3) ∂tψ =
[
−2iλ4σ3 + 2λ3Q(u) + iλ2|u|2σ3 − λ|u|2Q(u) + iλσ3Q(ux)

]
ψ,

where λ ∈ C is the (t, x)-independent spectral parameter, ψ(t, x) is the C2 vector for the wave function,
and Q(u) is the (t, x)-dependent matrix potential given by

(1.4) Q(u) =

[
0 u
−u 0

]
.

The Pauli matrices that include σ3 are given by

(1.5) σ1 =

[
0 1
1 0

]
, σ2 =

[
0 i
−i 0

]
, σ3 =

[
1 0
0 −1

]
.

A long but standard computation shows that the compatibility condition ∂t∂xψ = ∂x∂tψ for C2 solu-
tions of system (1.2) and (1.3) is equivalent to the DNLS equation iut+uxx+ i(|u|2u)x = 0 for classical
solutions u.

The following theorem presents the main result.

Theorem 1. For every u0 ∈ H2(R) ∩ H1,1(R) such that the KN spectral problem (1.2) admits no
resonances in the sense of Definition 1 and only simple eigenvalues in the sense of Definition 2, there
exists a unique global solution u(t, ·) ∈ H2(R)∩H1,1(R) of the Cauchy problem (1.1) for every t ∈ R.
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The organization of the paper is as follows. Section 2 contains the review of Jost functions and
scattering coefficients from [20]. Section 3 presents the Bäcklund transformation for the KN spectral
problem in the form suitable for our analysis. Section 4 adds the time evolution for the Bäcklund
transformation according to the DNLS equation. Section 5 gives an example of the Bäcklund transfor-
mation connecting the one-soliton and zero-soliton solutions. Section 6 completes the proof of Theorem
1. Appendix A lists useful properties of operators used in the definition of the Bäcklund transformation.
Appendix B gives a technical result on the regularity of Jost functions for the KN spectral problem.

2. Review of the direct scattering transform

We introduce Jost functions for the KN spectral problem (1.2) under some conditions on the potential
u. In this section, we freeze the time variable t and drop it from the argument list of the dependent
functions. The following two propositions were proved in the previous work (see Lemma 1, Corollary
2, and Corollary 3 in [20]). Here e1,2 are standard basis vectors in R2.

Proposition 1. Let u ∈ L1(R) ∩ L∞(R) and ∂xu ∈ L1(R). For every λ2 ∈ R, there exist unique

solutions φ±(x;λ)e
−iλ2x and ϕ±(x;λ)e

iλ2x to the KN spectral problem (1.2) with φ±(·;λ) ∈ L∞(R) and
ϕ±(·;λ) ∈ L∞(R) such that

(2.1)
φ±(x;λ) → e1,
ϕ±(x;λ) → e2,

}
as x→ ±∞.

Proposition 2. Under the same assumption on u as in Proposition 1, for every x ∈ R, the Jost
functions φ−(x; ·) and ϕ+(x; ·) are analytic in the first and third quadrant of the λ plane (where
Im(λ2) > 0), whereas the functions φ+(x; ·) and ϕ−(x; ·) are analytic in the second and fourth quadrant
of the λ plane (where Im(λ2) < 0). Furthermore, for every λ with Im(λ2) > 0 and for all u satisfying
∥u∥L1∩L∞ + ∥∂xu∥L1 ≤M there exists a constant CM which does not depend on u, such that

(2.2) ∥φ−(·;λ)∥L∞ + ∥ϕ+(·;λ)∥L∞ ≤ CM .

The two sets of Jost functions [φ±(x;λ), ψ±(x;λ)]e
−iλ2σ3x at the right and left infinity as x → ±∞

are linear independent from each other. Therefore, there exists the transfer matrix S(λ) that connects
the two sets as follows:

(2.3) [φ−(x;λ), ϕ−(x;λ)]e
−iλ2σ3x = [φ+(x;λ), ϕ+(x;λ)]e

−iλ2σ3xS(λ), λ ∈ R ∪ iR,
where x ∈ R is arbitrary. Thanks to the symmetry relations

(2.4) ϕ±(x;λ) = σ1σ3φ±(x;λ),

the transfer matrix S has the structure

(2.5) S(λ) =

[
a(λ) −b(λ)
b(λ) a(λ)

]
,

defined by the two scattering coefficients a(λ) and b(λ). Since the determinant of the transfer matrix
S(λ) is equal to unity for every λ ∈ R ∪ iR, we have the following relation between a(λ) and b(λ):

a(λ)a(λ) + b(λ)b(λ) = 1, λ ∈ R ∪ iR.(2.6)

Furthermore, scattering coefficients a(λ) and b(λ) can be written in terms of Jost functions by using
the Wronskian determinant W (η, ξ) = η1ξ2 − ξ1η2 defined for η, ξ ∈ C2:

a(λ) = W (φ−(x;λ)e
−iλ2x, ϕ+(x;λ)e

+iλ2x),(2.7a)

b(λ) = W (φ+(x;λ)e
−iλ2x, φ−(x;λ)e

−iλ2x).(2.7b)

The coefficient b(λ) is expressed by the Jost functions whose analytic domains in the λ plane are
disjoint. As a result, b(λ) cannot be continued into the complex plane of λ. On the other hand, a(λ)
can be continued analytically into the complex plane of λ, according to the following result (see Lemma
2 in [20]).
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Proposition 3. Under the same assumption on u as in Proposition 1, the scattering coefficient a(λ)
can be continued analytically into {λ ∈ C : Im(λ2) > 0} with the limit

a∞ = lim
|λ|→∞

a(λ) = e
1
2i
∥u∥2

L2 .

Similarly, a(λ) is continued analytically into {λ ∈ C : Im(λ2) < 0} with the limit

a∞ = lim
|λ|→∞

a(λ) = e−
1
2i
∥u∥2

L2 .

Since a∞ ̸= 0 if u ∈ L2(R), the following corollary holds by a theorem of complex analysis on zeros
of analytic functions.

Corollary 1. Under the same assumption on u as in Proposition 1, the scattering coefficient a(λ) has
at most finite number of zeros in {λ ∈ C : Im(λ2) > 0}.

If a potential u is sufficiently small, then one can easily deduce that a(λ) has no zeros in the domain
of its analyticity. As is explained in Remark 5 in [20], a(λ) ̸= 0 for every Im(λ2) ≥ 0 if

∥u∥2L2 +
√

∥u∥L1(2∥∂xu∥L1 + ∥u∥3
L3) < 1.

However, for sufficiently large u, the spectral coefficient a(λ) may have zeros for some Im(λ2) ≥ 0. We
distinguish two cases, according to the following definitions.

Definition 1. If a(λ0) = 0 for λ0 ∈ R∪ iR, we say that λ0 is a resonance of the spectral problem (1.2).

Definition 2. If a(λ0) = 0 for λ0 ∈ CI := {Re(λ) > 0, Im(λ) > 0}, we say that λ0 is an eigenvalue
of the spectral problem (1.2) in CI . An eigenvalue is called simple if a′(λ0) ̸= 0.

Remark 1. By the symmetry of the KN spectral problem (1.2), if a(λ0) = 0 for λ0 ∈ CI , then
a(−λ0) = 0.

Remark 2. If u ∈ H1,1(R), then the assumption of Propositions 1, 2, and 3 are satisfied so that
u ∈ L1(R) ∩L∞(R) and ∂xu ∈ L1(R). To enable the inverse scattering transform, we will work with u
in H2(R) ∩H1,1(R).

The main assumption of Theorem 1 excludes resonances but includes simple eigenvalues. Thanks to
Corollary 1, the number of eigenvalues is finite under the assumptions in Proposition 1. Therefore, the
initial datum u0 of the Cauchy problem (1.1) in H2(R) ∩H1,1(R) may include at most finitely many
solitons.

Let ZN be a subset of H2(R) ∩H1,1(R) such that a(λ) has N simple zeros in the first quadrant CI .
Zeros of a(λ) are assumed to be simple in order to simplify our presentation. This is not a restricted
assumption because the union of {ZN}N∈N is dense in space H2(R) ∩H1,1(R) thanks to the classical
result of Beals & Coifman [1]. Indeed, as is known from [12] (see also [20]), the Kaup-Newell spectral
system (1.2) can be transformed to the Zakharov–Shabat spectral system by the transformation

ψ̃(x) =

[
e

1
2i

∫∞
x |u(y)|2dy 0

0 e−
1
2i

∫∞
x |u(y)|2dy

] [
1 0

−u(x) 2iλ

]
ψ(x),

where ψ̃ satisfies

(2.8) ∂xψ̃ =
[
−iλ2σ3 + Q̃(u)

]
ψ̃, Q̃(u) =

1

2i

[
0 ue−i

∫∞
x |u(y)|2dy

−(2iux + u|u|2)ei
∫∞
x |u(y)|2dy 0

]
.

Eigenvalues of the spectral problems (1.2) and (2.8) coincide and the potential Q̃(u) is now defined in
L1(R) under the assumption that u ∈ H1,1(R). Proposition 2.30 in [1] yields the following result.

Proposition 4. The subset Z :=
∪∞

N=1 ZN is dense in H2(R) ∩H1,1(R).
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Let u ∈ ZN and a(λ) vanishes at some λj ∈ CI , j ∈ {1, 2, ..., N}. It follows from the definition of

a(λ) in (2.7a) that the Jost functions φ−(x;λj)e
−iλ2

jx and ϕ+(x;λj)e
iλ2

jx are linearly dependent. This
implies that there is a norming coefficient γj ∈ C such that

(2.9) φ−(x;λj)e
−iλ2

jx = γjϕ+(x;λj)e
iλ2

jx, x ∈ R, j ∈ {1, 2, ..., N}.

Since φ−(x;λj)e
−iλ2

jx and ϕ+(x;λj)e
iλ2

jx are uniquely determined by Proposition 1, the norming coef-
ficient γj is determined uniquely.

Remark 3. Because λj ∈ CI , the Jost functions φ−(x;λj)e
−iλ2

jx and ϕ+(x;λj)e
iλ2

jx in (2.9) decay to
zero as |x| → ∞ exponentially fast. Hence, they represent an eigenvector of the spectral problem (1.2)
for the simple eigenvalue λj ∈ CI .

3. Bäcklund transformation

In order to define the Bäcklund transformation in the simplest form, let us introduce the bilinear
form dλ that acts on C2 for a fixed λ ∈ C. If η = (η1, η2)

t and ξ = (ξ1, ξ1)
t are in C2, then

(3.1) dλ(η, ξ) := λη1ξ1 + λη2ξ2.

We further introduce

(3.2) Gλ(η) :=
dλ(η, η)

dλ(η, η)
and Sλ(η) := 2i(λ2 − λ

2
)
η1η2

dλ(η, η)
.

Useful algebraic properties of dλ, Gλ, and Sλ are reviewed in Appendix A.
The Bäcklund transformation can be expressed by using operators Gλ and Sλ. Let us first give an

informal definition of the Bäcklund transformation and then make it precise.
Suppose that u is a smooth solution of the DNLS equation and η is a smooth solution of the

KN spectral problem (1.2) associated with the potential u for a fixed λ ∈ C \{0}. The Bäcklund
transformation Bλ(η) is given as

(3.3) Bλ(η)u := Gλ(η)[−Gλ(η)u+ Sλ(η)].

We intend to show that Bλ(η)u is another smooth solution of the DNLS equation. Note that

Gλ(η) = −1 and Sλ(η) = 0 if λ ∈ R ∪ iR,

which implies Bλ(η)u = −u in this case. Therefore, it makes sense to use the Bäcklund transformation
(3.3) for a value of λ outside the continuous spectrum located on R ∪ iR, e.g. for λ ∈ CI .

The transformation (3.3) has been derived by a constructive algorithm in [27], where it is called
the 2-fold Darboux transformation. It must be noted that, since η depends on u via the KN spectral
problem (1.2), the transformation (3.3) is nonlinear in u. The function Bλ(η)u depends on variables t
and x, whereas the value of λ is fixed. The quantities u, η, as well as λ ∈ C \{0} affect Bλ(η)u, e.g.,
depending on η and λ, the transformation can be used to obtain different families of solutions from the
same solution u.

Let u(t, ·) ∈ H2(R)∩H1,1(R) be a local solution of the Cauchy problem (1.1) defined for t ∈ (−T, T )
for some T > 0. Such solutions always exist by the local well-posedness theory [10]. Assume that
u(t, ·) ∈ Z1 which means that the solution to the DNLS equation contains a single soliton related to
a simple eigenvalue λ1 ∈ CI of the KN spectral problem (1.2). By using the Bäcklund transformation
(3.3) with λ = λ1 and η being an eigenvector of the KN spectral problem (1.2) for the same λ1, we

define u(1) = Bλ1(η)u as a function of (t, x). We would like to show that

(i) u(1) ∈ H2(R) ∩H1,1(R);
(ii) u(1) ∈ Z0, that is, the new solution does not contain solitons;

(iii) Bλ1(η) has the (left) inverse so that u = [Bλ1(η)]
−1 u(1);

(iv) u(1)(t, ·) = Bλ1(η(t, ·))u(t, ·) is a solution of the DNLS equation for t ∈ (−T, T ).
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Properties (i) and (iii) are shown in Lemma 1. Property (ii) is shown in Lemma 6. Property (iv) is
shown in Lemma 9.

In order to obtain the global well-posedness of the Cauchy problem (1.1), we want to extend an
existence time T of the solution u(t, ·) ∈ Z1 to an arbitrary large number. Importantly, the global

existence of the solution u(1)(t, ·) ∈ Z0 is known from the previous works [15, 20].

Let Bλ1(η
(1)) be the inverse of Bλ1(η) for some function η(1), that is, Bλ1(η

(1))u(1) = u. Although

the choice of η(1) is generally not unique, we will show in Lemmas 2 and 7 that η(1) can be fixed as
a unique linear combination of Jost functions of the KN spectral problem (1.2) associated with the

potential u(1). By analyzing the Bäcklund transformation (3.3), we obtain from Lemma 8 the global
estimate in the form

(3.4) ∥u(t, ·)∥H2∩H1,1 = ∥Bλ1(η
(1)(t, ·))u(1)(t, ·)∥H2∩H1,1 ≤ CM ,

for every u(1)(t, ·) satisfying ∥u(1)(t, ·)∥H2∩H1,1 ≤ M , where the constant CM depends on M but does

not depend on u(1). Since ∥u(1)(t, ·)∥H2∩H1,1 is finite for all times t ∈ R (but may grow as |t| → ∞) by
the previous results [15, 20], the bound (3.4) yields the proof of Theorem 1 in the case of one soliton. By
using recursively the Bäcklund transformation (3.3), the result for any number of solitons follows from
the result for one soliton. Thus, the proof of Theorem 1 relies on the proof of the properties (i)–(iv),

the unique construction of η(1) for the inverse Bäcklund transformation Bλ1(η
(1)(t, ·)) ≡ [Bλ1(η)]

−1,
and the estimate (3.4). In the rest of this section, we prove properties (i)–(iii).

3.1. Transformation of potentials. The following lemma shows that the transformation (3.3) can

be defined as an invertible operator from u to u(1) in the same function space H2(R)∩H1,1(R). Since we
only use the KN spectral problem (1.2) here, we drop the time variable t from all function arguments.

Lemma 1. Fix λ1 ∈ CI . Given a potential u ∈ H2(R)∩H1,1(R), define η(x) := φ−(x;λ1)e
−iλ2

1x, where

φ− is the Jost function for the KN spectral problem (1.2) in Propositions 1 and 2. Then, u(1) = Bλ1(η)u
belongs to H2(R) ∩H1,1(R). Moreover, the left inverse of Bλ1(η) exists.

Proof. First, we notice that dλ1(η, η) = 0 if and only if η = 0 because Re(λ1) > 0. However, if η(x0) = 0
at a point x0 ∈ R, then the system (1.2) suggests that η′(x0) = 0 so that η(x) = 0 for every x ∈ R. Since
φ−(x;λ1) satisfies the nonzero asymptotic limit (2.1) as x → −∞, then η(x) = φ−(x;λ1)e

−iλ2
1x ̸= 0

and dλ1(η, η) ̸= 0 for every finite x ∈ R.
In order to deal with the limits as x→ ±∞, we note that Gλ(η) = Gλ(φ−) and Sλ(η) = Sλ(φ−) by

properties (A.4) and (A.5) of Appendix A. Therefore, it is sufficient to consider dλ1(φ−, φ−) instead
of dλ1(η, η). If a(λ1) ̸= 0, we claim that there exists ε0 > 0 such that

(3.5) |dλ1(φ−, φ−)| ≥ ε0, for all x ∈ R .

Indeed, since dλ1(φ−, φ−) → λ1 as x → −∞ and thanks to the arguments above, dλ1(φ−, φ−) may
only vanish in the limit x → +∞. However, it follows from the representation (2.7a) that the limit
ϕ+(x;λ1) → e2 as x → +∞, and the fact that φ−(·;λ1) ∈ L∞(R) imply that φ−,1(x;λ1) → a(λ1) as
x→ +∞ so that dλ1(φ−, φ−) 9 0 as x→ +∞. Therefore, the claim (3.5) follows.

By using the triangle inequality, the bounds (B.1)–(B.2) of Appendix B, the bound (3.5), and
|Gλ1(η)| = 1, we obtain

∥u(1)∥L2,1 ≤ ∥u∥L2,1 + ∥Sλ1(φ−)∥L2,1

≤ ∥u∥L2,1 + 2ε−1
0 |λ21 − λ

2
1|
∥∥∥φ−,1(·, λ1)φ−,2(·, λ1)

∥∥∥
L2,1

<∞.(3.6)

The norms ∥∂xu(1)∥L2,1 as well as ∥∂2xu(1)∥L2 are estimated similarly with the bounds (B.1)–(B.2) of
Appendix B and the bound (3.5).

If a(λ1) = 0, the uniform bound (3.5) is no longer valid because dλ1(φ−, φ−) → 0 as x→ +∞. The
estimate (3.6) can only be proved on the interval (−∞, R) with arbitrary R > 0. In order to extend the

estimate (3.6) on the interval (R,∞), we use (2.9) and write η(x) = φ−(x;λ1)e
−iλ2

1x = γ1ϕ+(x;λ1)e
iλ2

1x,
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so that u(1) = Bλ1(φ−)u can be rewritten as u(1) = Bλ1(ϕ+)u. Since dλ1(ϕ+, ϕ+) → λ1 as x → +∞,

we repeat the same estimates on the interval (R,∞) by using the equivalent representation of u(1).
Next, we show the existence of the left inverse for Bλ1(η)u. Let η

∗ be a vector function and define

u(2) = Bλ1(η
∗)Bλ1(η)u

= −Gλ1(η
∗)2[−Gλ1(η)

2u+Gλ1(η)Sλ1(η)] +Gλ1(η
∗)Sλ1(η

∗)

= Gλ1(η
∗)2Gλ1(η)

2u+Gλ1(η
∗)[−Gλ1(η

∗)Gλ1(η)Sλ1(η) + Sλ1(η
∗)].

Then, Bλ1(η
∗) is the left inverse of Bλ1(η)u if η∗ satisfies

(3.7) Gλ1(η
∗)2Gλ1(η)

2 = 1

and

(3.8) −Gλ1(η
∗)Gλ1(η)Sλ1(η) + Sλ1(η

∗) = 0.

System (3.7) and (3.8) is satisfied either for

(3.9) Gλ1(η
∗) = Gλ1(η), Sλ1(η

∗) = Sλ1(η)

or for

(3.10) Gλ1(η
∗) = −Gλ1(η), Sλ1(η

∗) = −Sλ1(η).

Let us show that the choice (3.10) is impossible if λ1 ∈ CI .

Since η(x) = φ−(x;λ1)e
−iλ2

1x, we have Gλ1(η) → λ1/λ1 as x→ −∞. Writing

Gλ1(η
∗) =

λ1
|η∗1 |2
|η∗2 |2

+ λ1

λ1
|η∗1 |2
|η∗2 |2

+ λ1
,

we realize that |η∗1|/|η∗2| 9 0 as x → −∞, as it would contradict to the first equation in (3.10) with
λ1 ̸= 0. From the second equation in (3.10), we can see that Sλ1(η

∗) → 0 as x → −∞ because
Sλ1(η) → 0 as x → −∞. Since |η∗1|/|η∗2| 9 0 as x → −∞, the limit Sλ1(η

∗) → 0 as x → −∞ implies

that |η∗2|/|η∗1| → 0 as x → −∞. This implies that Gλ1(η
∗) → λ1/λ1 as x → −∞, or in view of the

first equation in (3.10), we obtain Re(λ21) = 0. Since λ1 ∈ CI , then arg(λ1) = π/4. Finally writing

λ1 = |λ1|eiπ/4 and using the first equation in (3.10) yields

|η∗1|2|η2|2 + |η∗2|2|η1|2 = 0,

which cannot be satisfied with η∗ ̸= 0. This contradiction eliminates possibility of the choice (3.10).
Thus, we only have the choice (3.9) to define η∗ and to satisfy system (3.7) and (3.8). Since λ1 ∈ CI ,

the condition Gλ1(η
∗) = Gλ1(η) is equivalently written as

|η1|2|η∗1|2 = |η2|2|η∗2|2,
so that there exists a positive number k such that

(3.11) |η∗1| = k|η2|, |η∗2| = k|η1|.
On the other hand, the condition Sλ1(η

∗) = Sλ1(η) yields

η1η2
η∗1η

∗
2

=
λ1|η1|2 + λ1|η2|2

λ1|η∗1|2 + λ1|η∗2|2
,

which transforms after substitution of (3.11) to

(3.12) k2
η1η2
η∗1η

∗
2

=
λ1|η1|2 + λ1|η2|2

λ1|η2|2 + λ1|η1|2
,

where the right-hand side is of modulus one. Combining (3.11) and (3.12), we obtain the most general
solution of the system (3.9) in the form

(3.13) η∗1 = k1η2, η∗2 = k2η1,
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where k1, k2 ∈ C satisfying |k1| = |k2| = k. Thus, Bλ1(η
∗) with η∗ given by (3.13) is the left inverse of

the transformation Bλ1(η). �

In the following lemma, we specify a unique choice for the function η∗ constructed in the proof of
Lemma 1 and show that η∗ is a solution of the KN spectral problem (1.2) associated with the new

potential u(1) = Bλ1(η)u and the same value λ1.

Lemma 2. Under the same assumption as in Lemma 1, let η(1) be given by

(3.14) η
(1)
1 =

η2
dλ1(η, η)

, η
(1)
2 =

η1
dλ1

(η, η)
.

Then, η(1) is the solution of the KN spectral problem (1.2) associated with the potential u(1) = Bλ1(η)u
and the same value λ1.

Proof. We recall that η is a solution of

(3.15) ∂xη = [−iλ21σ3 + λ1Q(u)]η,

as follows from the KN spectral problem (1.2) for λ = λ1. By using system (3.15), we obtain

(3.16) ∂xdλ1(η, η) = (λ21 − λ
2
1)
[
uη1η2 − iλ1|η1|2 + iλ1|η2|2

]
.

By using (3.14), (3.15), and (3.16), we obtain

∂xη
(1)
1 + iλ21η

(1)
1 =

1

dλ1(η, η)

[
−λ1uη1 + i(λ21 − λ

2
1)η2

]
− (λ21 − λ

2
1)η2

[dλ1(η, η)]
2

[
uη1η2 − iλ1|η1|2 + iλ1|η2|2

]
=

λ1η1
[dλ1(η, η)]

2

[
−udλ1

(η, η) + 2i(λ21 − λ
2
1)η1η2

]
= λ1u

(1)η
(1)
2 .

Similarly, we obtain

∂xη
(1)
2 − iλ21η

(1)
1 =

1

dλ1
(η, η)

[
λ1uη2 − i(λ21 − λ

2
1)η1

]
+

(λ21 − λ
2
1)η1

[dλ1
(η, η)]2

[
uη1η2 + iλ1|η1|2 − iλ1|η2|2

]
= − λ1η2

[dλ1
(η, η)]2

[
−udλ1(η, η) + 2i(λ21 − λ

2
1)η1η2

]
= −λ1u(1)η(1)1 .

Thus, we have proven that η(1) satisfies the KN spectral problem (1.2) with the potential u(1) and the
same value λ = λ1. �

In the construction of Lemmas 1 and 2, the Jost function φ− was used in the choice for η. The
following lemma shows that the same potential u(1) can be equivalently obtained from all four Jost
functions of the KN spectral problem (1.2) if λ1 is selected to be a root of the scattering coefficient
a(λ).

Lemma 3. Assume that λ1 ∈ CI is chosen so that a(λ1) = 0. Given a potential u ∈ H2(R)∩H1,1(R),
it is true that

u(1)(x) = Bλ1(φ−(x;λ1)e
−iλ2

1x)u(x)(3.17a)

= Bλ1(ϕ+(x;λ1)e
iλ2

1x)u(x)(3.17b)

= Bλ1
(φ+(x;λ1)e

−iλ
2
1x)u(x)(3.17c)

= Bλ1
(ϕ−(x;λ1)e

iλ
2
1x)u(x),(3.17d)

where the four Jost functions to the KN spectral problem (1.2) are given in Propositions 1 and 2.
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Proof. Representation (3.17a) was defined in Lemma 1. If a(λ1) = 0, the representation (3.17b)
was also obtained in Lemma 1, thanks to the invariance of Gλ and Sλ under a multiplication by a
nonzero complex number a in properties (A.4) and (A.5) of Appendix A and the relation (2.9) between

φ−(x;λ1)e
−iλ2

1x and ϕ+(x;λ1)e
iλ2

1x. In order to establish (3.17c), we use the symmetry relation (2.4)
as well as properties (A.6) and (A.7) of Appendix A and obtain

Gλ1(φ−(x;λ1)) = Gλ1
(σ1σ3φ−(x;λ1)) = Gλ1

(
ϕ−(x;λ−)

)
= Gλ1

(ϕ−(x;λ−))

and

Sλ1(φ−(x;λ1)) = −Sλ1(σ1σ3φ−(x;λ1)) = −Sλ1

(
ϕ−(x;λ1)

)
= Sλ1

(ϕ−(x;λ1)).

The transformation formula (3.3) yields (3.17c). Finally, the representation (3.17d) is obtained from

the relation between φ+(x;λ1)e
−iλ

2
1x and ϕ−(x;λ1)e

iλ
2
1x in the case a(λ1) = 0 that corresponds to

a(λ1) = 0. �

3.2. Transformation of Jost functions. For values of λ ∈ C \{±λ1}, Jost functions of the KN

spectral problem (1.2) associated with the new potential u(1) = Bλ1(η)u can be constructed from the
old Jost functions by using the transformation matrix

(3.18) M [η, λ, λ1] :=
λ1

λ1

1

λ2 − λ21

[
λ2Gλ1(η)− |λ1|2 − λ

2iSλ1(η)
λ
2iSλ1(η) −λ2Gλ1(η) + |λ1|2

]
.

The following lemma presents the new Jost functions of the KN spectral problem (1.2) associated

with the new potential u(1). Since u(1) ∈ H2(R) ∩H1,1(R) by Lemma 1, the new Jost functions exist
according to Proposition 1.

Lemma 4. Under the same assumption as in Lemma 1, let us define for λ ∈ C \{±λ1,±λ1},

φ
(1)
− (x;λ) = M [φ−(x;λ1)e

−iλ2
1x, λ, λ1]φ−(x;λ),(3.19a)

φ
(1)
+ (x;λ) = M [φ+(x;λ1)e

−iλ
2
1x, λ, λ1]φ+(x;λ),(3.19b)

ϕ
(1)
+ (x;λ) = −M [ϕ+(x;λ1)e

iλ2
1x, λ, λ1]ϕ+(x;λ),(3.19c)

ϕ
(1)
− (x;λ) = −M [ϕ−(x;λ1)e

iλ
2
1x, λ, λ1]ϕ−(x;λ).(3.19d)

Then, {φ(1)
± (x;λ)e−iλ2x, ϕ

(1)
± (x;λ)eiλ

2x} are Jost functions of the KN spectral problem (1.2) associated

with the potential u(1) = Bλ1(η)u.

Proof. First, we prove that the transformations (3.19a)–(3.19d) produce solutions of the KN spectral

problem associated with the potential u(1). It is sufficient to consider the first Jost function in (3.19a).
Therefore we shall verify that

(3.20) ∂x(φ
(1)
− (x;λ)e−iλ2x) =

[
−iλ2σ3 + λQ(u(1))

]
φ
(1)
− (x;λ)e−iλ2x.

Denoting entries ofM [φ−(x;λ1)e
−iλ2

1x, λ, λ1] byMij for 1 ≤ i, j ≤ 2 and using the KN spectral problem

(1.2) for φ−(x;λ)e
−iλ2x, we obtain the four differential equations:

∂xM11 − λuM12 = λu(1)M21(3.21a)

∂xM12 + λuM11 = λu(1)M22 − 2iλ2M12(3.21b)

∂xM21 − λuM22 = −λu(1)M11 + 2iλ2M21(3.21c)

∂xM22 + λuM21 = −λu(1)M12(3.21d)

By using equation (3.16), we obtain

(3.22) ∂xGλ1(η) =
λ21 − λ

2
1

[dλ1(η, η)]
2

[
2i(λ21 − λ

2
1)|η1|2|η2|2 − dλ1(η, η)uη1η2 − dλ1

(η, η)uη1η2

]
,
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from which we verify equation (3.21a) as follows:

∂xM11 − λuM12 =
λ1

λ1

λ2

λ2 − λ21

λ21 − λ
2
1

[dλ1(η, η)]
2

[
2i(λ21 − λ

2
1)|η1|2|η2|2 − dλ1

(η, η)uη1η2

]
= λu(1)M21.

The proof of (3.21d) is based on the complex conjugate of equation (3.22) and similar computations.
Equation (3.21b) is equivalent to

∂x(Sλ1(η)) = −2i(u+ u(1))|λ1|2.

This equality holds by means of the following two explicit computations:

(3.23) ∂xSλ1(η) =
2i(λ21 − λ

2
1)

[dλ1(η, η)]
2

[
−u|λ1|2(|η1|4 − |η2|4)− 2i|λ1|2η1η2dλ1

(η, η)
]

and

(3.24) u(1) + u =
u(λ21 − λ

2
1)(|η1|4 − |η2|4)

[dλ1(η, η)]
2

+
2i(λ21 − λ

2
1)η1η2dλ1

(η, η)

[dλ1(η, η)]
2

.

Hence, we have proven (3.21b). Equation (3.21c) is obtained from complex conjugation of (3.23) and
(3.24) as well as similar computations.

Thus, the function φ
(1)
− (x;λ)e−iλ2x satisfies equation (3.20), that is, it is a solution of the KN spectral

problem (1.2) associated with the potential u(1) = Bλ1(η)u. Similar computations hold for the other

functions φ
(1)
+ (x;λ)e−iλ2x and ϕ

(1)
± (x;λ)eiλ

2x given by (3.19b)–(3.19d) are solutions of the KN spectral

problem (1.2) associated with the potential u(1) = Bλ1(η)u. Since Gλ1(η) and Sλ1(η) are bounded in

x for all considered choices for η, the functions φ
(1)
± (x;λ) and ϕ

(1)
± (x;λ) are bounded functions of x for

every λ ∈ C \{±λ1,±λ1}.
It is left to check the boundary conditions (2.1) in Proposition 1. The boundary conditions follow

from properties (A.8) and (A.9) in Appendix A as follows:

(3.25) M [e1, λ, λ1]e1 = e1, M [e2, λ, λ1]e2 = −e2.

Since u(1) ∈ H2(R) ∩ H1,1(R) satisfies the assumption of Proposition 1, the four functions (3.19a)–

(3.19d) are the unique Jost functions of the KN spectral problem (1.2) associated with u(1). �

Since the definitions (3.19a)–(3.19d) with the transformation matrix (3.18) are singular as λ →
{±λ1,±λ1}, we show that the singularity is removable, so that the definitions (3.19a)–(3.19d) can
be extended in the domains of analyticity of the Jost functions φ±(x;λ) and ϕ±(x;λ) according to
Proposition 2.

Lemma 5. Let φ
(1)
± (x;λ) and ϕ

(1)
± (x;λ) be defined by (3.19a)–(3.19d). Then, λ = ±λ1 and λ = ±λ1

are removable singularities in the corresponding domains of analyticity of φ
(1)
± (x;λ) and ϕ

(1)
± (x;λ).

Proof. It is sufficient again to consider the first Jost function φ
(1)
− (x;λ) represented by (3.19a). By

using the notations φ− = (φ−,1, φ−,2)
t and φ

(1)
− = (φ

(1)
−,1, φ

(1)
−,2)

t for the 2-vectors and dropping the

dependence on x, we obtain for λ ∈ CI ∪CIII \{±λ1}

φ
(1)
−,1(λ) =

λ1

λ1

(
λ2dλ1

(φ−, φ−)− |λ1|2dλ1(φ−, φ−)
)
φ−,1(λ)− λ(λ21 − λ

2
1)φ−,1(λ1)φ−,2(λ1)φ−,2(λ)

(λ2 − λ21) dλ1(φ−, φ−)

=
λ1

λ1

(λ2 − λ21)λ1|φ−,1(λ1)|2φ−,1(λ) + F (λ)

(λ2 − λ21) dλ1(φ−, φ−)
,

where

F (λ) := (λ2 − λ
2
1)λ1|φ−,2(λ1)|2φ−,1(λ)− λ(λ21 − λ

2
1)φ−,1(λ1)φ−,2(λ1)φ−,2(λ).
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Since φ−,1(λ) is even in λ and φ−,2(λ) is odd in λ [20], we obviously have F (λ1) = F (−λ1) = 0.

Furthermore, F is analytic in CI ∪ CIII by Proposition 2, hence F (λ) = (λ2 − λ21)F̃ (λ), where F̃ is
analytic in CI ∪ CIII . Thus, we obtain

φ
(1)
−,1(λ) =

λ1

λ1

λ1|φ−,1(λ1)|2φ−,1(λ) + F̃ (λ)

dλ1(φ−, φ−)
,

so that ±λ1 are removable singularities of φ
(1)
−,1(λ). Similar calculations show that ±λ1 are also remov-

able singularities of φ
(1)
−,2(λ). �

3.3. Transformation of scattering coefficients. We next transform the scattering coefficients a(λ)

and b(λ) given by (2.7a) and (2.7b) and show that the new potential u(1) belongs to Z0 ⊂ H2(R) ∩
H1,1(R) if the old potential u belongs to Z1 ⊂ H2(R) ∩H1,1(R) and the value λ1 ∈ CI is chosen to be
the root of a(λ) in CI . The following lemma gives the corresponding result.

Lemma 6. Let u ∈ Z1 and λ1 ∈ CI such that a(λ1) = 0. Let η(x) = φ−(x;λ1)e
−iλ2

1x, where φ− is the

Jost function of the KN spectral problem (1.2) given in Propositions 1 and 2. Then, u(1) = Bλ1(η)u
belongs to Z0.

Proof. In order to show that u(1) ∈ Z0, we show that if the only simple zero a(λ) =W (φ−(·;λ), ϕ+(·;λ))
in CI is located at λ = λ1, then a

(1)(λ) := W (φ
(1)
− (·;λ), ϕ(1)+ (·;λ)) has no zero in CI , where φ

(1)
− and

ϕ
(1)
+ are given by (3.19a) and (3.19c) in Lemma 4. This follows from the direct computation as follows:

a(1)(λ) = W (φ
(1)
− (x;λ), ϕ

(1)
+ (x;λ))(3.26a)

= W (M [φ−(x;λ1)e
−iλ2

1x, λ, λ1]φ−(x;λ),−M [ϕ+(x;λ1)e
iλ2

1x, λ, λ1]ϕ+(x;λ)(3.26b)

= W (M [φ−(x;λ1), λ, λ1]φ−(x;λ),−M [φ−(x;λ1), λ, λ1]ϕ+(x;λ))(3.26c)

= −a(λ) det (M [φ−(x;λ1), λ, λ1])(3.26d)

= −a(λ) det (M [e1, λ, λ1])(3.26e)

= a(λ)
λ21

λ
2
1

λ2 − λ
2
1

λ2 − λ21
,(3.26f)

where we have used (3.19a) and (3.19c) to get (3.26b), (2.9), (A.4), and (A.5) to get (3.26c), (2.7a) to
get (3.26d), the limit x → −∞ to get (3.26e), and (A.5), (A.8) and (A.9) to get (3.26f). Since λ1 is

the only simple zero of a(λ) in CI , then a
(1)(λ) has no zeros for λ in CI . �

Remark 4. For completeness, we also give transformation of b(λ) to b(1)(λ) as follows:

b(1)(λ) =W (e−2iλ2xφ
(1)
+ (x;λ), φ

(1)
− (x;λ))

=W (e−2iλ2xφ
(1)
+ (x;λ),M [φ−(x;λ1)e

−iλ2
1x, λ, λ1]φ−(x;λ))

=W (e−2iλ2xφ
(1)
+ (x;λ),M [ϕ+(x;λ1)e

iλ2
1x, λ, λ1][a(λ)φ+(x;λ) + ei2λ

2xb(λ)ϕ+(x;λ)])

= b(λ)W (e1,M [e2, λ, λ1]e2)

= −b(λ),

where the term with a(λ) vanishes in the limit x → +∞ because W (e1, e1) = 0 and we have used the
following limits as x→ +∞

M [ϕ+(x;λ1), λ, λ1]φ+(x;λ) →M [e2, λ, λ1]e1 =
λ21(λ

2 − λ
2
1)

λ
2
1(λ

2 − λ21)
e1

and φ
(1)
+ (x;λ) → e1.
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By Lemmas 1, 2, and 6, we have shown the existence of a sequence of invertible Bäcklund transfor-
mations Z1 → Z0 → Z1 given by

u→ Bλ1(η) → u(1) → Bλ1(η
(1)) → u.

Next, we express η(1) in Lemma 2 in terms of the new Jost functions φ
(1)
± and ϕ

(1)
± associated with u(1)

in Lemma 4.

Lemma 7. Fix λ1 ∈ CI such that a(λ1) = 0 and a′(λ1) ̸= 0. Let η and η(1) be given as in Lemmas 1

and 2. Then, η(1) is decomposed as

(3.27) η(1)(x) =
1

γ1λ1a(1)(λ1)
e−iλ2

1xφ
(1)
− (x;λ1) +

1

λ1a(1)(λ1)
eiλ

2
1xϕ

(1)
+ (x;λ1),

where the new Jost functions φ
(1)
− and ϕ

(1)
+ are constructed in Lemmas 4 and 5, γ1 ̸= 0 is the norming

constant in (2.9), and a(1)(λ1) ̸= 0 as in Lemma 6.

Proof. We use notations η(1) = (η
(1)
1 , η

(1)
2 )t and φ− = (φ−,1, φ−,2)

t for the 2-vectors. Components of

η(1) given by (3.14) are rewritten explicitly by

(3.28) η
(1)
1 (x) =

eiλ
2
1xφ−,2(x;λ1)

dλ1(φ−(x;λ1), φ−(x;λ1))
, η

(1)
2 (x) =

eiλ
2
1xφ−,1(x;λ1)

dλ1
(φ−(x;λ1), φ−(x;λ1))

.

Since lim
x→−∞

φ−(x;λ1) = e1, we have

(3.29) lim
x→−∞

e−iλ2
1xη(1)(x) =

1

dλ1
(e1, e1)

e2 =
1

λ1
e2.

By using the relation (2.9) with the norming coefficient γ1, components of η(1) can be rewritten in
the equivalent form:

(3.30) η
(1)
1 (x) =

e−iλ2
1xϕ+,2(x;λ1)

γ1dλ1(ϕ+(x;λ1), ϕ+(x;λ1))
, η

(1)
2 (x) =

e−iλ2
1xϕ+,1(x;λ1)

γ1dλ1
(ϕ+(x;λ1), ϕ+(x;λ1))

.

Since lim
x→+∞

ϕ+(x;λ1) = e2, we have

(3.31) lim
x→+∞

eiλ
2
1xη(1)(x) =

1

γ1dλ1(e2, e2)
e1 =

1

γ1λ1
e1.

By Lemma 2, η(1) is a solution of the KN spectral problem (1.2) associated with the new potential

u(1) for λ = λ1. By Lemmas 4 and 5, the two new Jost functions φ
(1)
− (x;λ) and ϕ

(1)
+ (x;λ) are analytic

at λ1. Any solution of the second-order system is a linear combination of the two linearly independent
solutions, so that we have

η(1)(x) = c1φ
(1)
− (x;λ1)e

−iλ2
1x + c2ϕ

(1)
+ (x;λ1)e

iλ2
1x,

where c1, c2 are some numerical coefficients. Thanks to the boundary conditions (2.1) and the repre-
sentation (2.7a), we obtain the boundary conditions

(3.32) lim
x→−∞

e−iλ2
1xη(1)(x) = c2a

(1)(λ1)e2, lim
x→+∞

eiλ
2
1xη(1)(x) = c1a

(1)(λ1)e1,

where we have recall that λ1 ∈ CI . Since a
(1)(λ1) ̸= 0 by Lemma 6, c1 and c2 are found uniquely from

(3.29), (3.31), and (3.32) to yield the decomposition (3.27). �

Remark 5. Instead of the decomposition (3.27), we can write

(3.33) η(1)(x) := φ
(1)
− (x;λ1)e

−iλ2
1x + γ1 ϕ

(1)
+ (x;λ1)e

iλ2
1x

because the Bäcklund transformation (3.3) is invariant if η(1) is multiplied by a nonzero constant.
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Lemma 8. Under the same conditions as in Lemma 7, for every u(1) ∈ H2(R) ∩ H1,1(R) satisfying

∥u(1)∥H2∩H1,1 ≤M for some M > 0, the transformation Bλ1(η
(1))u(1) ∈ H2(R) ∩H1,1(R) satisfies

(3.34) ∥Bλ1(η
(1))u(1)∥H2∩H1,1 ≤ CM ,

where the constant CM does not depend on u(1).

Proof. By the representation (2.7a), we have

|a(1)(λ1)| =
∣∣∣(φ(1)

−,1(x;λ1)e
−iλ2

1x + γ1 ϕ
(1)
+,1(x;λ1)e

iλ2
1x
)
ϕ
(1)
+,2(x;λ1)e

iλ2
1x

−
(
φ
(1)
−,2(x;λ1)e

−iλ2
1x + γ1 ϕ

(1)
+,2(x;λ1)e

iλ2
1x
)
ϕ
(1)
+,1(x;λ1)e

iλ2
1x
∣∣∣

≤ ∥ϕ(1)+ (·;λ1)∥L∞

(
|eiλ2

1xη
(1)
1 (x)|+ |eiλ2

1xη
(1)
2 (x)|

)
.

Since a(1)(λ1) ̸= 0 by Lemma 6 and |dλ(η, η) ≥ |Re(λ1)|(|η1|2 + |η2|2), it follows from (2.2) that there

is a constant CM > 0 independently of u(1) such that

1

|dλ1(e
iλ2

1xη(1)(x), eiλ
2
1xη(1)(x)|

≤ CM for all x ∈ R .

By using he same argument, we also obtain

|a(1)(λ1)| ≤ |γ1|−1∥φ(1)
− (·;λ1)∥L∞

(
|e−iλ2

1xη
(1)
1 (x)|+ |e−iλ2

1xη
(1)
2 (x)|

)
,

such that
1

|dλ1(e
−iλ2

1xη(1)(x), e−iλ2
1xη(1)(x)|

≤ CM for all x ∈ R .

As a consequence, by using the bound∣∣∣∣∣ η
(1)
1 η

(1)
2

dλ1(η
(1), η(1))

∣∣∣∣∣ ≤
|φ(1)

−,1(x;λ1)φ
(1)
−,2(x;λ1)|

|dλ1(e
iλ2

1xη(1), eiλ
2
1xη(1))|

+ |γ1|2
|ϕ(1)−,1(x;λ1)ϕ

(1)
−,2(x;λ1)|

|dλ1(e
−iλ2

1xη(1), e−iλ2
1xη(1))|

+|γ1|
|φ(1)

−,1(x;λ1)ϕ
(1)
−,2(x;λ1)|+ |ϕ(1)−,1(x;λ1)φ

(1)
−,2(x;λ1)|

|dλ1(η
(1), η(1))|

,

and the bounds (B.1)–(B.2) of Appendix B, we obtain

∥Sλ1(η
(1))u(1)∥L2,1 ≤ CM .

Similar to the proof of Lemma 1, this implies by the triangle inequality that

∥Bλ1(η
(1))u(1)∥L2,1 ≤ CM .

The norms ∥∂x(Bλ1(η
(1))u(1))∥L2,1 and ∥∂2x(Bλ1(η

(1))u(1))∥L2 can be estimated similarly with the use
of estimates (B.1)–(B.2) of Appendix B, so that the proof of the bound (3.34) is complete. �

4. Time evolution of the Bäcklund transformation

Here we will prove property (iv) claimed in Section 3. In other words, extending the Jost function
φ−(t, x;λ) to be time-dependent according to the linear system (1.2) and (1.3), we will prove the
following lemma, which is a time-dependent analogue of Lemma 1.

Lemma 9. Fix λ1 ∈ CI . Given a local solution u(t, ·) ∈ H2(R) ∩H1,1(R), t ∈ (−T, T ) to the Cauchy

problem (1.1) for some T > 0, define η(t, x) := φ−(t, x;λ1)e
−i(λ2

1x+2λ4
1t), where φ− is the Jost function

of the linear system (1.2) and (1.3). Then, u(1)(t, ·) = Bλ1(η(t, ·))u(t, ·) belongs to H2(R) ∩ H1,1(R)
for every t ∈ [0, T ) and satisfies the Cauchy problem (1.1) for u(1)(0, ·) = Bλ1(η(0, ·))u(0, ·).
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One way to prove Lemma 9 is to show that the time-dependent versions of the transformations
(3.19a)–(3.19d) satisfy the time evolution equation (1.3) associated with the potential u(1)(t, ·) =
Bλ1(η(t, ·))u(t, ·). By compatibility of the linear system (1.2) and (1.3) as well as smoothness of

the new Jost functions and the new potential u(1), it then follows that u(1)(t, x) is a new solution of
the DNLS equation iut + uxx + i(|u|2u)x = 0.

However, the proof of the above claim is straightforward but enormously lengthy. Therefore we will
avoid the technical proof and instead make use of the inverse scattering transform for the soliton-free
solutions to the Cauchy problem (1.1), which was developed in the recent works [15, 20]. We explain
the idea for the case of one soliton and then extend the argument to the case of finitely many solitons.

Let u(t, ·) ∈ Z1 ⊂ H2(R) ∩H1,1(R) be a local solution of the Cauchy problem (1.1) on (−T, T ) for
some T > 0. For every fixed time t ∈ (−T, T ) we find a new potential of the KN spectral problem (1.2)

by means of the Bäcklund transformation u(1)(t, ·) = Bλ1(η(t, ·))u(t, ·). If λ1 ∈ CI is taken such that

a(λ1) = 0, then u(1)(t, ·) ∈ Z0. On the other hand, let ũ(t, ·) ∈ Z0 be a solution to the Cauchy problem

(1.1) starting with the initial condition ũ(0, ·) = u(1)(0, ·) ∈ Z0. Since assumptions of [20, Theorem
1.1] are satisfied, the solution ũ(t, ·) ∈ Z0 exists for every t ∈ R, in particular, for t ∈ (−T, T ). The
following diagram illustrates the scheme.

u(0, ·) ∈ Z1

DNLS

��

// u(1)(0, ·) ∈ Z0

DNLS

((RRRRRRRRRRRRR

u(t, ·) ∈ Z1
// u(1)(t, ·) ∈ Z0

oo ? // ũ(t, ·) ∈ Z0, t ∈ (−T, T ).

Thus, the proof of Lemma 9 in the case of one soliton will rely on the proof that ũ(t, ·) = u(1)(t, ·) for
every t ∈ (−T, T ). To show this, we will first prove that the two functions have the same scattering
data.

Lemma 10. For every t ∈ (−T, T ), the potentials ũ(t, ·) and u(1)(t, ·) produce the same scattering data.

Proof. We know that both functions ũ(t, ·) and u(1)(t, ·) remain in Z0 for every t ∈ (−T, T ). Hence the
scattering data consist only of the reflection coefficient which is introduced in [20]. For the potential
u(t, ·) ∈ Z1 with t ∈ (−T, T ), we have r(t, λ) = b(t, λ)/a(t, λ) for λ ∈ R∪iR. Let us denote by

r(1)(t, λ) = b(1)(t, λ)/a(1)(t, λ) the reflection coefficient of u(1)(t, ·) ∈ Z0 for t ∈ (−T, T ). Lemma 6 and
Remark 4 tell us how the old and the new reflection coefficient are connected:

(4.1) r(1)(t, λ) = −r(t, λ)λ
2
1

λ
2
1

λ2 − λ
2
1

λ2 − λ21
, λ ∈ R ∪ iR, t ∈ (−T, T ).

If we take into account the time evolution of the reflection coefficient when the associated potential is
a solution to the DNLS equation (see [20, Eq. (5.2)]) we find

r(t, λ) = r(0, λ)e4iλ
4t, t ∈ (−T, T ),

which implies by virtue of (4.1) that

(4.2) r(1)(t, λ) = r(1)(0, λ)e4iλ
4t, t ∈ (−T, T ).

For the reflection coefficient r̃ of the potential ũ we know r(1)(0, λ) = r̃(0, λ) since u(1)(0, ·) = ũ(0, ·).
By using the trivial time evolution of the reflection coefficient [20] and the expression (4.2), we obtain

(4.3) r̃(t, λ) = r̃(0, λ)e4iλ
4t = r(1)(0, λ)e4iλ

4t = r(1)(t, λ), t ∈ (−T, T ).

The assertion of the lemma is proved. �

Corollary 2. The potential u(1)(t, ·) = Bλ1(η(t, ·))u(t, ·) is a new solution of the DNLS equation for
t ∈ (−T, T ).
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Proof. In [15, 20], existence and Lipschitz continuity of the mapping

L2,1(R ∪ iR) ⊃ X ∋ r 7→ u ∈ Z0 ⊂ H2(R) ∩H1,1(R)
was established by means of the solvability of the associated Riemann–Hilbert problem (see [15, 20] for

details on X). Therefore, the mapping is bijective and ũ(t, ·) = u(1)(t, ·) for every t ∈ (−T, T ) follows
from Lemma 10. Since ũ is a solution of the DNLS equation, so does u(1). �

The proof of Lemma 9 in the case of finitely many solitons relies on the iterative use of the argument
above. For a given u ∈ Zk, k ∈ N, we remove the distinct eigenvalues {λ1, ...λk} in CI by iterating the

Bäcklund transformation k times. We set u(0) = u and

u(l) = Bλl
(η(l−1))u(l−1), (1 ≤ l ≤ k),

such that eventually u(k) ∈ Z0. The arguments of Lemma 10 and Corollary 2 apply to the last
potential u(k). As a result, we know that the k-fold iteration of the Bäcklund transformation of a
solution u(t, ·) ∈ Zk of the Cauchy problem (1.1) for t ∈ [0, T ) produces a new solution u(k)(t, ·) of the
Cauchy problem (1.1) for u(k)(0, ·). Thus, the following diagram commutes.

u(0, ·) ∈ Zk

DNLS

��

// u(1)(0, ·) ∈ Zk−1
// · · · // u(k)(0, ·) ∈ Z0

DNLS
��

u(t, ·) ∈ Zk
// u(1)(t, ·) ∈ Zk−1

// · · · // u(k)(t, ·) ∈ Z0, t ∈ (−T, T )

Remark 6. We do not prove here that every step in the chain u→ u(1) → · · · → u(k) yields a solution
of the DNLS equation. Although this claim is likely to be true, the proof would require the inverse
scattering theory of [15, 20] to be extended to the cases of eigenvalues.

5. An example of the Bäcklund transformation

Let us give an example of the explicit Bäcklund transformation that connects the zero and one-soliton
solutions of the DNLS equation. In order to find the one-soliton solution in the explicit form, we assume
that we start with a potential uλ1,γ1(t, x) ∈ Z1 with eigenvalue λ1 ∈ CI and norming constant γ1 ̸= 0,
for which the Bäcklund transformation (3.3) in Lemma 1 yields exactly the zero solution:

(5.1) u(1) = Bλ1(η)uλ1,γ1 = 0.

For the zero solution, we know that the Jost functions of the linear system (1.2) and (1.3) are given by

φ
(1)
± (t, x;λ) = e−i(λ2x+2λ4t)e1, ϕ

(1)
± (t, x;λ) = ei(λ

2x+2λ4t)e2.

Hence, a(1)(λ) = 1 and b(1)(λ) = 0. Now we set

(5.2) η(1)(t, x) =
1

γ1λ1
e−i(λ2x+2λ4t)e1 +

1

λ1
ei(λ

2x+2λ4t)e2.

By Lemma 7, the potential uλ1,γ1 , which we started with, can be recovered by means of the inverse
Bäcklund transformation

(5.3) uλ1,γ1 = Bλ1(η
(1))0.

Explicit calculations with (5.2) and (5.3) yield the explicit expression

(5.4) uλ1,γ1(t, x) = 2i(λ21 − λ
2
1)
γ1
|γ1|

e−2i(λ2
1x+2λ4

1t)

|e−i(λ2
1x+2λ4

1t)|2
λ1|γ1|−1|e−i(λ2

1x+2λ4
1t)|2 + λ1|γ1||ei(λ

2
1x+2λ4

1t)|2

(λ1|γ1|−1|e−i(λ2
1x+2λ4

1t)|2 + λ1|γ1||ei(λ
2
1x+2λ4

1t)|2)2
,

which coincides with the one-soliton of the DNLS equation in the literature (see e.g. [12]).

Remark 7. It is less straightforward to find the explicit expressions for the Jost functions of the linear
system (1.2) and (1.3) with the one-soliton potential uλ1,γ1 because the expressions (3.19a)–(3.19d) can

only be used in one way from {φ±, ϕ±} to {φ(1)
± , ϕ

(1)
± }, which is hard to invert.



16 YUSUKE SHIMABUKURO, AARON SAALMANN, AND DMITRY E. PELINOVSKY

Remark 8. For sake of completeness, we can rewrite the one-soliton solution (5.4) in physical nota-
tions. By defining

ω = 4|λ1|4, v = −4Re(λ21), x0 =
2 ln(|γ1|)√
4ω − v2

, δ = arg(γ1) + π + 3arctan

(
Im(λ1)

Re(λ1)

)
with the obvious constraint 4ω − v2 > 0, uλ1,γ1 is rewritten in the form used in [2]:

(5.5) uλ1,γ1(t, x) = ϕω,v(x− vt− x0)e
−iδ+iωt+i v

2
(x−vt)− 3

4
i
∫ x−vt−x0
∞ |ϕω,v(y)|2dy,

where

ϕω,v(x) =

[
2
√
ω cosh(

√
4ω − v2x)− v

2(4ω − v2)

]−1/2

.

By the computations in Lemma 6 and Remark 4, we obtain

(5.6) a(λ) =
λ
2
1

λ21

λ2 − λ21

λ2 − λ
2
1

, b(λ) = 0,

for the one-soliton potential uλ1,γ1 . For the L
2(R) norm of the one-soliton (5.5) we find

∥uλ1,γ1∥2L2 = 2
√

4ω − v2
∫ ∞

−∞

dz

2
√
ω cosh(z)− v

(5.7a)

= 8 arctan

(
2
√
ω + v

2
√
ω − v

)
(5.7b)

= 8 arctan

(
Im(λ1)

Re(λ1)

)
(5.7c)

= 8 arg(λ1).(5.7d)

Here we have used an explicit integral formula found in [7, Section 2.451] in order to obtain (5.7b). The
equality between (5.7c) and (5.7d) holds because of λ1 ∈ CI . We use (5.7) to confirm the asymptotic
limit in Proposition 3,

lim
|λ|→∞

a(λ) =
λ
2
1

λ21
= e−4i arg(λ1) = e

1
2i
∥uλ1,γ1

∥2
L2 .

By using the representation (3.14) in Lemma 2, the explicit formula (5.2), as well as the relation

dλ1(η, η) = [dλ1(η
(1), η(1))]−1, we can also find the function η = (η1, η2)

t in the transformation (5.1):

(5.8) η1(t, x) =
λ1e

−i(λ
2
1x+2λ

4
1t)

λ1|e−i(λ2
1x+2λ4

1t)|2 + λ1|ei(λ
2
1x+2λ4

1t)|2

and

(5.9) η2(t, x) =
λ1e

i(λ
2
1x+2λ

4
1t)

λ1|e−i(λ2
1x+2λ4

1t)|2 + λ1|ei(λ
2
1x+2λ4

1t)|2
,

where γ1 = 1 is set for convenience. Since

dλ1(η, η) =
|λ1|2

λ1|e−i(λ2
1x+2λ4

1t)|2 + λ1|ei(λ
2
1x+2λ4

1t)|2

satisfies the constraint

−dλ1
(η, η)uλ1,γ1 + 2i(λ21 − λ

2
1)η1η2 = 0,

we confirm the transformation (5.1) by using (5.4), (5.8), and (5.9).
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6. Proof of Theorem 1

Let u0 ∈ Z1 ⊂ H2(R) ∩ H1,1(R) and λ1 ∈ CI be the only root of a(λ) in CI . From Lemma 6, if

η(x) = φ−(x;λ1)e
−iλ2

1x, where φ− is the Jost function of the KN spectral problem (1.2) associated with

u0, then u
(1)
0 = Bλ1(η)u0 belongs to Z0 ⊂ H2(R) ∩H1,1(R). Also, by Lemmas 1, 2, and Lemma 7, the

mapping is invertible with u0 = Bλ1(η
(1))u

(1)
0 , where η(1) is expressed from the new Jost functions φ

(1)
−

and ϕ
(1)
+ by the decomposition formula (3.27).

Let T > 0 be a maximal existence time for the solution u(t, ·) ∈ Z1, t ∈ (−T, T ) to the Cauchy
problem (1.1) with the initial data u0 ∈ Z1 and eigenvalue λ1. For every fixed t ∈ (−T, T ), the solution
u(t, ·) ∈ Z1 admits the Jost functions {φ±(t, x;λ), ϕ±(t, x;λ)}. For every t ∈ (−T, T ), define u(1) by
the Bäcklund transformation

u(1) := Bλ1(η)u, η(t, x) := φ−(t, x;λ1)e
−i(λ2

1x+2λ4
1t),

where we have used the boundary conditions (2.1) in the definition of φ−(t, x;λ1) for every t ∈ (−T, T ).
By construction (see Corollary 2), u(1)(t, ·) ∈ Z0, t ∈ (−T, T ) is a solution of the Cauchy problem

(1.1) with the initial data u
(1)
0 ∈ Z0. By existence and uniqueness theory [15, 20], the solution u(1)(t, ·) ∈

Z0 is uniquely continued for every t ∈ R. Let {φ(1)
± (t, x;λ), ϕ

(1)
± (t, x;λ)} be the Jost functions for

u(1)(t, x). For every t ∈ (−T, T ), we have u = Bλ1(η
(1))u(1) with

η(1)(t, x) =
1

γ1λ1a(1)(λ1)
e−i(λ2

1x+2λ4
1t)φ

(1)
− (t, x;λ1) +

1

λ1a(1)(λ1)
ei(λ

2
1x+2λ4

1t)ϕ
(1)
+ (t, x;λ1),

where a(1)(λ1) ̸= 0 thanks to Lemma 6.

On the other hand, since u(1)(t, ·) ∈ Z0 exists for every t ∈ R, the associated Jost functions

{φ(1)
± (t, x;λ), ϕ

(1)
± (t, x;λ)} exist for every t ∈ R so that we can define

ũ = Bλ1(η
(1))u(1) t ∈ R.

Since u(t, ·) = ũ(t, ·) ∈ Z1 for every t ∈ (−T, T ) by uniqueness, the extended function ũ is an unique
extension of the solution u to the same Cauchy problem (1.1) that exists globally in time thanks

to the bound (3.4) proven in Lemma 8. Indeed, by [15, 20] we have ∥u(1)(t, ·)∥H2∩H1,1 ≤ MT for
every t ∈ (−T, T ), where T > 0 is arbitrary and MT depends on T . Next, by bound (3.4) we have
∥u(t, ·)∥H2∩H1,1 ≤ CMT

for every t ∈ (−T, T ). Thus, the solution can not blow up in a finite time and
hence there exists a unique global solution u(t, ·) ∈ Z1, t ∈ R to the Cauchy problem (1.1) for every
u0 ∈ Z1 ⊂ H2(R) ∩H1,1(R).

By iterating the Bäcklund transformation k times and by the same argument as above, we obtain
the global existence of u(t, ·) ∈ Zk ⊂ H2(R) ∩H1,1(R), t ∈ R from the global existence of u(k)(t, ·) ∈
Z0 ⊂ H2(R) ∩H1,1(R), t ∈ R. This completes the proof of Theorem 1.

Appendix A. Useful properties of dλ, Sλ, and Gλ

Recall the definition (3.1) for the bilinear form dλ acting on C2 for a fixed λ ∈ C. One can easily
verify the useful algebraic properties of dλ for every η ∈ C2 and a, b ∈ C:

dλ(e1, e1) = λ, dλ(e2, e2) = λ,(A.1)

dλ(η, η) = dλ(η, η), dλ(aη, bη) = abdλ(η, η),(A.2)

dλ(σ3η, σ3η) = dλ(η, η), dλ(σ1η, σ1η) = dλ(η, η).(A.3)

where e1 = (1, 0)t and e2 = (0, 1)t are basis vectors in C2, whereas σ1 and σ3 are Pauli matrices given
by (1.5).

Next, we recall the definition (3.2) of the operators Gλ and Sλ acting on C2 for a fixed λ ∈ C. From
(A.1) and (A.2), Gλ and Sλ satisfy for every η ∈ C2 and nonzero a ∈ C:

(A.4) Gλ(e1) =
λ

λ
, Gλ(e2) =

λ

λ
, Gλ(η) = Gλ(η), Gλ(aη) = Gλ(η)
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and

(A.5) Sλ(e1) = S(e2) = 0, Sλ(aη) = Sλ(η).

From (A.3), we also have

(A.6) Gλ(σ3η) = Gλ(η), Gλ(σ1η) = Gλ(η)

and

(A.7) −Sλ(σ3η) = Sλ(η), Sλ(σ1η) = Sλ(η).

By using (A.4), one can verify the following properties for every λ ̸= λ1:

(A.8)
λ2 λ1

λ1
Gλ1(e1)− λ21

λ2 − λ21
= 1,

λ2 λ1

λ1
Gλ1(e2)− λ21

λ2 − λ21
=
λ21

λ
2
1

λ2 − λ
2
1

λ2 − λ21

and

(A.9)
λ2 λ1

λ1
Gλ1

(e2)− λ21

λ2 − λ21
= 1,

λ2 λ1

λ1
Gλ1

(e1)− λ21

λ2 − λ21
=
λ21

λ
2
1

λ2 − λ
2
1

λ2 − λ21
.

These properties are used in Section 3.

Appendix B. On regularity of Jost functions

Recall that if u ∈ H1,1(R), then u ∈ L1(R) ∩ L∞(R) and ∂xu ∈ L1(R), so that the assumptions
of Propositions 1 and 2 are satisfied. In what follows, we establish more regularity results for Jost
functions compared to what was established previously in [20].

Lemma B. For every u ∈ H2(R) ∩ H1,1(R) satisfying ∥u∥H2(R)∩H1,1(R) ≤ M for some M > 0, let

φ±(x;λ)e
−iλ2x and ϕ±(x;λ)e

+iλ2x be Jost functions of the KN spectral problem (1.2) given in Propo-
sitions 1 and 2. Fix λ1 ∈ C satisfying Im(λ21) > 0 and denote φ− := φ−(·;λ1) = (φ−,1, φ−,2)

t and
ϕ+ := ϕ+(·;λ1) = (ϕ+,1, ϕ+,2)

t. Then,

(B.1) ∥⟨x⟩φ−,2∥L2(R) + ∥⟨x⟩∂xφ−∥L2(R) + ∥⟨x⟩∂2xφ−∥L2(R) + ∥∂3xφ−∥L2(R) ≤ CM ,

and

(B.2) ∥⟨x⟩ϕ+,1∥L2(R) + ∥⟨x⟩∂xϕ+∥L2(R) + ∥⟨x⟩∂2xϕ+∥L2(R) + ∥∂3xϕ+∥L2(R) ≤ CM ,

where the constant CM does not depend on u.

Proof. We will prove the statement for φ− since the proof for ϕ+ is similar. From Proposition 1, we
know that φ− belongs to L∞(R). Let us first show that the second component φ−,2 is square integrable.
Compared with Lemma 1 in [20], where the existence of Jost functions is proved uniformly in λ, the
assertion of this proposition is easier to prove for just one λ = λ1. We can work with the integral
equation for φ−:

φ− = e1 +Kφ−,

where the operator K is given as

Kφ− = λ1

∫ x

−∞

[
1 0

0 e2iλ
2
1(x−y)

]
Q(u(y))φ−(y;λ)dy.

This integral operator can be bounded as follows,[
∥(Kφ−)1∥L∞(−∞,x0)

∥(Kφ−)2∥L2(−∞,x0)

]
≤ |λ1|∥u∥L2(−∞,x0)

[
0 1
1

2Im(λ2
1)

0

] [
∥φ−,1∥L∞(−∞,x0)

∥φ−,2∥L2(−∞,x0)

]
.

Thus, we deduce that for every fixed λ1 satisfying Im(λ21) > 0, there exists x0 ∈ R such that K
is a contraction on L∞(−∞, x0) × L2(−∞, x0). Since u ∈ L2(R), we can divide R into finitely many
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subintervals such thatK is a contraction as shown above within each subinterval. By patching solutions
together, we obtain that φ−,2 belongs to L2(R) and satisfies

(B.3) ∥φ−,2∥L2(R) ≤ CM∥u∥L2(R)

where CM does not depend on u.
Next, directly from the Kaup-Newell system (1.2), we obtain

∂xφ−,1 = λ1uφ−,2 =⇒ ∂xφ−,1 ∈ L2(R)

and

∂xφ−,2 = −λ1uφ−,1 + 2iλ21φ−,2 =⇒ ∂xφ−,2 ∈ L2(R).
Repeatedly, the Kaup-Newell system (1.2) directly implies that ∂2xφ− ∈ L2(R).

Next, in order to show xφ−,2, write

∂x(xφ−,2) = φ−,2 + x∂xφ−,2

and use the second component of the Kaup-Newell system (1.2) to get

∂x(xφ−,2) = 2iλ21xφ−,2 + φ−,2 − λxuφ−,2

which yields the integral equation

xφ−,2(x) =

∫ x

−∞
e2iλ

2
1(x−y)φ−,2(y)dy − λ1

∫ x

−∞
e2iλ

2
1(x−y)yu(y)φ−,2(y)dy.

Since the right hand side is bounded in L2(R), we have xφ−,2 in L2(R). Then, again directly from
the Kaup-Newell system (1.2), we obtain x∂xφ−, x∂

2
xφ− ∈ L2(R). Lastly, by differentiating the Kaup-

Newell system (1.2) twice and using the additional assumption u ∈ H2(R), we obtain ∂3xφ− ∈ L2(R).
Combining all estimates together, we obtain bounds (B.1) for φ−. �
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