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We study isolated and embedded eigenvalues in the generalized eigenvalue prob-
lem defined by two self-adjoint operators with a positive essential spectrum and a
finite number of isolated eigenvalues. The generalized eigenvalue problem deter-
mines the spectral stability of nonlinear waves in infinite-dimensional Hamiltonian
systems. The theory is based on Pontryagin’s invariant subspace theorem and ex-
tends beyond the scope of earlier papers of Pontryagin, Krein, Grillakis, and others.
Our main results are �i� the number of unstable and potentially unstable eigenvalues
equals the number of negative eigenvalues of the self-adjoint operators, �ii� the
total number of isolated eigenvalues of the generalized eigenvalue problem is
bounded from above by the total number of isolated eigenvalues of the self-adjoint
operators, and �iii� the quadratic forms defined by the two self-adjoint operators are
strictly positive on the subspace related to the continuous spectrum of the general-
ized eigenvalue problem. Applications to the localized solutions of the nonlinear
Schrödinger equations are developed from the general theory.
© 2010 American Institute of Physics. �doi:10.1063/1.3406252�

I. INTRODUCTION

Nonlinear partial differential equations that conserve energy can often be written as infinite-
dimensional Hamiltonian systems in the abstract form

du

dt
= JE��u�t��, u�t� � X , �1.1�

where J :X→X is a symplectic operator with the property J*=−J and E :X→R is a C2 functional
in a Hilbert space X. A critical point ��X of the Hamiltonian functional E, defined by E����
=0, represents a localized solution of the nonlinear partial differential equation. The spectral
stability of a localized solution � is determined by the spectrum of the non-self-adjoint eigenvalue
problem

JE����v = �v, v � X , �1.2�

which is obtained after a linearization of the Hamiltonian system �1.1�. Although the operator
JE���� is non-self-adjoint, it is related to the self-adjoint operator E���� by multiplication of the
symplectic operator J. In many specific examples, such as the nonlinear Schrödinger �NLS�
equations, the non-self-adjoint eigenvalue problem �1.2� can be rewritten as the generalized ei-
genvalue problem

Aw = �Kw, w � X , �1.3�

where A and K are self-adjoint operators and �=−�2. The critical point � is said to be spectrally
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unstable if there exists an eigenvalue � with either ��0 or Im����0. Otherwise, the critical point
is said to be weakly spectrally stable. Moreover, it is a minimizer of the Hamiltonian functional
E��� if all eigenvalues � are positive and the quadratic forms �A · , · � and �K · , · �, evaluated at the
eigenvectors of the generalized eigenvalue problem �1.3�, are strictly positive.

The same generalized eigenvalue problem �1.3� arises in the analysis of spectral stability of
equilibrium configurations for a Hamiltonian system of finitely many interacting particles.5 In this
context, X=Rn, while A and K are symmetric matrices in Rn�n for the potential and kinetic
energies, respectively. When the matrix K is positive definite, all eigenvalues � are real and
semisimple �that is, the geometric and algebraic multiplicities coincide�. By Sylvester’s inertia
law,6 the numbers of positive, zero, and negative eigenvalues of the generalized eigenvalue prob-
lem �1.3� equal the numbers of positive, zero, and negative eigenvalues of the matrix A. When K
is not positive definite, a complete classification of eigenvalues � in terms of real eigenvalues of
A and K has been developed with the use of Pontryagin’s invariant subspace theorem, originally
proved for a single negative eigenvalue of K �Ref. 29� and then extended to finitely many negative
eigenvalues.8.

Our examples in Sec. VI show that spectral stability of spatially localized solutions in NLS
equations leads to the generalized eigenvalue problem �1.3�, where A and K−1 are self-adjoint
differential operators in a constrained L2 space. There has been recently a rapidly growing se-
quence of publications about the characterization of unstable eigenvalues of this generalized
eigenvalue problem in terms of isolated eigenvalues of the operators A and K−1.4,13,15,18,23,31

Besides predictions of spectral stability or instability of spatially localized solutions in Hamil-
tonian systems, analysis of the linear eigenvalue problems is important for the studies of orbital
stability9,10 and asymptotic stability,3,27,30 the existence of stable manifolds,19,32 and the construc-
tion of self-similar solutions in nonlinear evolution equations.28

It is the purpose of this article to develop analysis of the generalized eigenvalue problem �1.3�
by using the Pontryagin space decomposition. The theory of Pontryagin spaces was developed by
Krein and his students �see books1,14� and partly used in the context of spectral stability of
spatially localized solutions by MacKay,20 Grillakis,12 and Buslaev and Perelman2 �see also a
recent application in Ref. 13�. We shall give an elegant geometric proof of Pontryagin’s invariant
subspace theorem and then apply this theorem to establish our main results.

�i� The number of unstable and potentially unstable eigenvalues of the generalized eigenvalue
problem �1.3� equals the number of negative eigenvalues of the self-adjoint operators A and
K−1.

�ii� The total number of isolated eigenvalues of the generalized eigenvalue problem �1.3� is
bounded from above by the total number of isolated eigenvalues of the self-adjoint opera-
tors A and K−1.

�iii� The quadratic forms defined by the two self-adjoint operators A and K−1 are strictly positive
on the subspace related to the continuous spectrum of the generalized eigenvalue problem
�1.3�.

The first result is a remake of the main results obtained in Refs. 4, 15, and 23, although the
method of proof presented therein is quite different than that given here. The second result gives
a new inequality on the number of isolated eigenvalues of the generalized eigenvalue problem
�1.3�, which can be useful to control the number of neutrally stable eigenvalues in the gap of the
continuous spectrum of the linearized operator associated with the stable localized solutions. The
third result has a technical significance since it establishes a similarity between Sylvester’s inertial
law used in Ref. 23 and Pontryagin’s space decomposition used here. With this construction, one
can bypass the topological theory developed in Ref. 12 and used in Ref. 15.

The structure of the paper is as follows. Formalism of the generalized eigenvalue problem and
the main results are described in Sec. II. Pontryagin’s invariant subspace theorem is proved in Sec.
III. The spectrum of a self-adjoint operator in the Pontryagin space is characterized in Sec. IV. The
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count of eigenvalues of the generalized eigenvalue problem and the proofs of the main theorems
are given in Sec. V. Section VI contains applications of our main results to spatially localized
solutions of the NLS equations.

II. FORMALISM AND THE MAIN RESULTS

Let X be a Hilbert space with the inner product �·,·�. Let L+ and L− be two real-valued
self-adjoint operators with Dom�L���X. Our two assumptions on operators L+ and L− are listed
here.

P1 The essential spectrum �e�L�� includes the absolute continuous part bounded from below
by ��	0 and, possibly, embedded eigenvalues.
P2 The discrete spectrum �d�L�� in X includes finitely many isolated eigenvalues of finite
multiplicities with p�L�� positive, z�L�� zero, and n�L�� negative eigenvalues. �These indices
can be zero and the corresponding subspaces can be empty.�

We consider the linear eigenvalue problem defined by the self-adjoint operators L� in the
form

L+u = − �w, L−w = �u, u,w � X , �2.1�

where ��C. By assumption �P1�, the kernel of L− is isolated from the essential spectrum of L−.
Let P be the orthogonal projection from X to H, where H is the constrained Hilbert space

H = �u � X: u � Ker�L−�� . �2.2�

We are only interested in nonzero eigenvalues of the spectral problem �2.1� because only
nonzero eigenvalues � determined spectral stability or instability of the underlying solution. If
��0 and u�X, then u�H so that u=Pu�Ran�L−�. As a result, we express w from the second
equation of system �2.1�

w = �PL−
−1Pu + w0, w0 � Ker�L−� . �2.3�

Substituting w into the first equation of system �2.1� and using the projection operator P, we
obtain a closed equation for u,

PL+Pu = − �2PL−
−1Pu, u � H �2.4�

and a unique expression for w0,

w0 = −
1

�
�I − P�L+Pu , �2.5�

where ��0 and �I−P� is the orthogonal projection from X to Ker�L−�.
Equation �2.4� shows that the linear eigenvalue problem �2.1� for nonzero � is equivalent to

the generalized eigenvalue problem for nonzero �,

Au = �Ku, u � H , �2.6�

where A=PL+P, K=PL−
−1P, and �=−�2. The following proposition gives an important result on

the equivalence of quadratic forms �u ,u� and �Ku ,u� for solutions of the generalized eigenvalue
problem Au=�Ku. The quadratic form �Ku ,u� will be used in the construction of the Pontryagin
space for the generalized eigenvalue problem �2.6�.

Proposition 2.1: The generalized eigenvalue problem Au=�Ku with �u ,u��
 is equivalent to
the generalized eigenvalue problem Au=�Ku with ��Ku ,u���
.

Proof: Since K is a bounded invertible self-adjoint operator with Dom�K��H, there exists
C	0 such that
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∀u � H: ��Ku,u�� � C�u,u� . �2.7�

Therefore, if u is an eigenvector of Au=�Ku and �u ,u��
, then ��Ku ,u���
. On the other hand,
A is generally an unbounded noninvertible self-adjoint operator with Dom�A��H. If u is the
eigenvector of Au=�Ku with ��Ku ,u���
, then u�Dom�A��H so that �u ,u��
. �

Finitely many isolated eigenvalues of the operators A and K−1 in H are distributed between
negative, zero, and positive eigenvalues away from their essential spectra. By the spectral theory
of self-adjoint operators, the Hilbert space H can be equivalently decomposed into two orthogonal
sums of subspaces, which are invariant with respect to the operators K and A,

H = HK
−

� HK
+

� HK
�e�K�, �2.8�

H = HA
−

� HA
0

� HA
+

� HA
�e�A�, �2.9�

where notation � �� stands for negative �positive� isolated eigenvalues, 0 for the isolated kernel,
and �e for the essential spectrum that includes the absolute continuous part and embedded eigen-
values. Since P is a projection defined by the eigenspace of L− and K=PL−

−1P, it is obvious that

dim�HK
−� = n�L−�, dim�HK

+� = p�L−�, �e�K� � �0,�−
−1� . �2.10�

The eigenvalues of A are related to the eigenvalues of L+ according to the standard variational
theory in constrained Hilbert spaces.10,4 The following proposition summarizes the main result of
the variational theory.

Proposition 2.2: Let Ker�L−�=Span�v1 ,v2 , . . . ,vn��X and define the matrix function M��� by

∀� � ��L+�: Mij��� = ��� − L+�−1vi,v j�, 1 � i, j � n . �2.11�

Let n0, z0, and p0 be the number of negative, zero, and positive eigenvalues of M��� as �↑0 and
N0=n−n0−z0− p0�0. Then,

dim�HA
−� = n�L+� − p0 − z0, dim�HA

0� = z�L+� + z0 − N0. �2.12�

Proof: According to the results in Ref. 4, all n eigenvalues of M��� are strictly decreasing
functions of � on the intervals �−
 ,�+� \�d�L+�. These functions may have infinite jump discon-
tinuities from minus infinity to plus infinity across the points of �d�L+� and have a uniform limit
to minus zero as �→−
. The count of jumps of the eigenvalues of M��� gives the count of
eigenvalues of the constrained variational problem

�� − L+�v = 	
j=1

n

� jv j, v � H, � � �− 
,�+� , �2.13�

where ��1 ,�2 , . . . ,�n� are Lagrange multipliers. Equalities �2.12� are proved in Lemma 3.4 in Ref.
4 for the case z�L+�=0 and in Theorem 2.9 of in Ref. 4 for the case z�L+��0. �

Since L+ is generally noninvertible, some eigenvalues of M��� can be unbounded as �↑0 if
Ker�L+��H. The numbers n0, z0, and p0 denote bounded eigenvalues of M��� as �↑0 so that
N0=n−n0−z0− p0�0.

If HA
0 is trivial �that is, dim�HA

0�=0�, operator A is invertible in H and we can proceed with
the analysis of the generalized eigenvalue problem �2.6�. However, if A is not invertible, we would
like to reduce the generalized eigenvalue problem to the one defined by invertible operators.

Let �−1 be the smallest �in absolute value� negative eigenvalue of K−1A. Since A has finitely
many negative eigenvalues and K has no kernel in H, there exists a small number �� �0, ��−1��
such that operator A+�K is continuously invertible in H and the generalized eigenvalue problem
�2.6� is rewritten in the shifted form
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�A + �K�u = �� + ��Ku, u � H . �2.14�

By the spectral theory, an alternative decomposition of the Hilbert space H exists for �
� �0, ��−1��,

H = HA+�K
−

� HA+�K
+

� HA+�K
�e�A+�K�, �2.15�

where �e�A+�K���A+�K. If �+	0, then �A+�K	0 for sufficiently small �	0.
Since we shift A to A+�K for sufficiently small �	0, all zero eigenvalues of A become small

nonzero eigenvalues of A+�K. We need to know how many zero eigenvalues of A becomes small
negative eigenvalues of A+�K. The following proposition gives the dimension of HA+�K

− .
Proposition 2.3: Assume that dim�HA

0�=1 and let �u1 , . . . ,un� be the Jordan chain of eigen-
vectors of (2.6) given by



Au1 = 0

Au2 = Ku1

. . .

Aun = Kun−1,
�

such that �Kuj ,u1�=0 for all j� �1,2 , . . . ,n−1� and �Kun ,u1��0. Fix �� �0, ��−1��, where �−1 is
the smallest (in absolute value) negative eigenvalue of (2.6). Then

• dim�HA+�K
− �=dim�HA

−� if n is odd and �Kun ,u1�	0 or if n is even and �Kun ,u1��0
• dim�HA+�K

− �=dim�HA
−�+1 if n is odd and �Kun ,u1��0 or if n is even and �Kun ,u1�	0.

Proof: Since we shift a self-adjoint operator A to a self-adjoint operator A+�K for a suffi-
ciently small �	0, the zero eigenvalue of operator A becomes a small real eigenvalue ���� of
operator A+�K. By perturbation theory for isolated eigenvalues of self-adjoint operators �see
Chap. VII.3 in Ref. 17�, eigenvalue ���� is a continuous function of � and

lim
�→0+

����
�n = �− 1�n+1 �Kun,u1�

�u1,u1�
. �2.16�

Since �+	0, the zero eigenvalue of A is isolated from the continuous spectrum of K−1A so that
�Kun ,u1��0 by the Fredholm theory for the generalized eigenvalue problem �2.6�. The assertion
of the proposition follows from the perturbation theory �2.16�. Since no eigenvalues of K−1A exists
in ��−1 ,0�, the eigenvalue ���� remains sign-definite for �� �0, ��−1��. �

Remark 2.4: Assumption dim�HA
0�=1 of Proposition 2.3 can be removed by considering the

Jordan block decomposition for the zero eigenvalue and by summing contributions from all Jordan
blocks.

Remark 2.5: If 0 is a semisimple eigenvalue of Au=�Ku, the statement of Proposition 2.3 can
be simplified as follows.

Let Ker�A�=span�u1 ,u2 , . . . ,un� and MK�Rn�n be the matrix with elements

�MK�ij = �Kui,uj�, 1 � i, j � n .

Then for small �	0

dim�HA+�K
− � = dim�HA

−� + dim�HMK

− � . �2.17�

For the proof, let �u1 ,u2 , . . . ,un� be a basis for Ker�A�, which is orthogonal with respect to
�K · , · � �such a basis always exists if 0 is a semisimple eigenvalue of Au=�Ku�. Then, for the jth
Jordan block, the result of Proposition 2.3 with n=1 shows that dim�HA+�K

− �=dim�HA
−�+1 if

�Kuj ,uj��0. The Equality �2.17� holds after summing contributions from all Jordan blocks for
this basis. The number of negative eigenvalues of MK is invariant with respect to the choice of
basis in Ker�A�.
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We shall now introduce notations for particular eigenvalues of the generalized eigenvalue
problem �2.6� and formulate our main results. Let Np

−�Nn
−�, Np

0�Nn
0�, and Np

+�Nn
+� be, respectively, the

numbers of negative, zero, and positive eigenvalues � of the generalized eigenvalue problem �2.6�
with the account of their algebraic multiplicities whose eigenvectors are associated with the
non-negative �nonpositive� values of the quadratic form �K · , · �. Let Nc+�Nc−� be the number of
complex eigenvalues in the upper �lower� half-plane ��C, Im���	0 �Im����0�. Because A and
K are real-valued operators, it is obvious that Nc+ =Nc−.

Theorem 1: Let assumptions (P1) and (P2) be satisfied. Eigenvalues of the generalized
eigenvalue problem (2.6) satisfy the following two equalities:

Np
− + Nn

0 + Nn
+ + Nc+ = dim�HA+�K

− � , �2.18�

Nn
− + Nn

0 + Nn
+ + Nc+ = dim�HK

−� . �2.19�

Proof: The theorem is proved in Sec. V. �

Corollary 2.6: Let Nneg=dim�HA+�K
− �+dim�HK

−� be the total negative index of the generalized
eigenvalue problem (2.6). Let Nunst=Np

−+Nn
−+2Nc+ be the total number of unstable eigenvalues

that includes N−=Np
−+Nn

− negative eigenvalues ��0 and Nc=Nc+ +Nc− complex eigenvalues with
Im����0. Then,

Nneg = Nunst + 2Nn
+ + 2Nn

0. �2.20�

Proof: The equality �2.20� follows by the sum of �2.18� and �2.19�. �

Theorem 2: Let assumptions (P1) and (P2) be satisfied. Let NA=dim�HA
−

� HA
0

� HA
+� be the

total number of isolated eigenvalues of A. Let NK=dim�HK
−

� HK
+� be the total number of isolated

eigenvalues of K. Assume that all eigenvalues of the generalized eigenvalue problem (2.6) are
isolated from the continuous spectrum. Then, isolated eigenvalues satisfy the following inequality:

Np
− + Np

0 + Np
+ + Nc+ � NA + NK. �2.21�

Proof: This theorem is proved in Sec. V. �

Corollary 2.7: Let Ntot=NA+NK be the total number of isolated eigenvalues of operators A
and K. Let Nisol=Np

−+Nn
−+Np

0 +Nn
0+Np

++Nn
++Nc+ +Nc− be the total number of isolated eigenvalues

of the generalized eigenvalue problem (2.6). Then,

Nisol � Ntot + dim�HK
−� . �2.22�

Proof: The inequality �2.22� follows by the sum of �2.19� and �2.21�. �

To prove Theorems 1 and 2, we shall prove Pontryagin’s invariant subspace theorem and
apply this theorem to the count of isolated and embedded eigenvalues for the non-self-adjoint
operator K−1A.

III. PONTRYAGIN’S INVARIANT SUBSPACE THEOREM

We develop here an abstract theory of Pontryagin spaces with sign-indefinite metric, where
the main result is Pontryagin’s invariant subspace theorem.

Definition 3.1: Let H be a Hilbert space equipped with the inner product �·,·� and the sesqui-
linear form �·,·�. �We say that a complex-valued form �u ,v� on the product space H�H is a
sesquilinear form if it is linear in u for each fixed v and linear with complex conjugate in v for
each fixed u.� The Hilbert space H is called the Pontryagin space (denoted as ��) if it can be
decomposed into the direct sum, which is orthogonal with respect to �·,·�,

H ª �� = �+ � �−, �+ � �− = � , �3.1�

where �+ is a Hilbert space with the inner product � · , · �= � · , · �, �− is a Hilbert space with the
inner product � · , · �=−� · , · �, and �=dim��−��
.
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We shall write components of an element x in the Pontryagin space �� as a vector x
= �x− ,x+�. The direct orthogonal sum �3.1� implies that any nonzero element x��� can be
uniquely represented by the sum of two terms,

∀x � ��: x = x+ + x−, �3.2�

so that

�x+,x−� = 0, �x+,x+� 	 0, �x−,x−� � 0. �3.3�

Definition 3.2: We say that � is a nonpositive subspace of �� if �x ,x��0∀x��. We say that
� is a maximal nonpositive subspace if any subspace of �� of dimension higher than dim��� is
not a nonpositive subspace of ��. Similarly, we say that � is a non-negative (neutral) subspace of
�� if �x ,x��0��x ,x�=0�∀x��.

Lemma 3.3: The dimension of the maximal nonpositive subspace of �� is �.
Proof: By contradiction, we assume that there exists a ��+1�-dimensional nonpositive sub-

space �̃. Let �e1 ,e2 , . . . ,e�� be a basis in �−. We fix two elements y1 ,y2��̃ with the same
projections to �e1 ,e2 , . . . ,e�� so that

y1 = �1e1 + �2e2 + . . . + ��e� + y1p,

y2 = �1e1 + �2e2 + . . . + ��e� + y2p,

where y1p ,y2p��+. It is clear that y1−y2=y1p−y2p��+ so that �y1p−y2p ,y1p−y2p��0. On the

other hand, y1−y2��̃ so that �y1−y2 ,y1−y2��0. Hence, y1p=y2p and y1=y2��. Therefore, �̃ is
still a �-dimensional nonpositive subspace of ��. �

Theorem 3: (Pontryagin) Let T be a self-adjoint bounded operator in �� in the sense of
�T · , · �= � · ,T · �. There exists a �-dimensional, maximal nonpositive, T-invariant subspace of ��.

There are historically two completely different approaches to the proof of this theorem. A
proof based on the theory of analytic functions was given by Pontryagin,29 while a proof based on
angular operators was given by Krein and his students �see books8,1,14�. Theorem 3 was rediscov-
ered by Grillakis12 with the use of topology. We describe a geometric proof of Theorem 3 based on
Shauder’s fixed point theorem. The proof uses the Cayley transformation of a self-adjoint operator
in �� to a unitary operator in �� �Lemma 3.4� and the Krein representation of the maximal
nonpositive subspace of �� in terms of a graph of the contraction map �Lemma 3.6�. While many
statements of our analysis are available in literature, details of the proofs are missing. Our pre-
sentation gives full details of the proof of Theorem 3 �see Ref. 13 for a similar treatment in the
case of compact operators�.

Lemma 3.4: Let T be a linear operator in �� and z�C, Im�z�	0 be a regular point of the
operator T, such that z���T�. Let U be the Cayley transform of T defined by U= �T− z̄��T−z�−1.
The operators T and U have the same invariant subspaces in ��.

Proof: Let � be a finite-dimensional invariant subspace of the operator T in ��. It follows
from z���T� that �T−z��=� then �T−z�−1�=� and �T− z̄��T−z�−1���, i.e. U���. Con-
versely, let � be an invariant subspace of the operator U. It follows from U− I= �z− z̄��T−z�−1 that
1���U� therefore �= �U− I��= �T−z�−1�. From there, ��dom�T� and �T−z��=� so
T���. �

Corollary 3.5: If T is a self-adjoint operator in ��, then U is a unitary operator in ��.
Proof: We shall prove that �Ug ,Ug�= �g ,g�, where g�dom�U�, by the explicit computation,

�Ug,Ug� = ��T − z̄�f ,�T − z̄�f� = �Tf ,Tf� − z̄�f ,Tf� − z�Tf , f� + �z�2�f , f� ,

�g,g� = ��T − z�f ,�T − z�f� = �Tf ,Tf� − z̄�f ,Tf� − z�Tf , f� + �z�2�f , f� ,

where we have introduced f �dom�T� such that f = �T−z�−1g. �

Lemma 3.6: A linear subspace ���� is a �-dimensional nonpositive subspace of �� if and
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only if it is a graph of the contraction map K :�−→�+ such that x= �x− ,Kx−�, ∀x��, and
�Kx−�� �x−�.

Proof: Let � be a �-dimensional nonpositive subspace of ��. We will show that there exist a
contraction map K :�−��+ such that � is a graph of K. Indeed, the subspace � is a graph of a
linear operator K if and only if it follows from �0,x+��� that x+=0. Since � is nonpositive with
respect to �·,·�, then �x ,x�= �x+�2− �x−�2�0, where �·� is a norm in H. As a result, 0� �x+�� �x−�
and if x−=0 then x+=0. Moreover, for any x−��−, it is true that �Kx−�� �x−� so that K is a
contraction map. Conversely, let K be a contraction map K :�−��+. Then, we have

∀x = �x−,Kx−� � �: �x,x� = �x+�2 − �x−�2 = �Kx−�2 − �x−�2 � 0,

so that the graph of K belongs to the nonpositive subspace of �� and dim���=dim����=�. �

Extending arguments of Lemma 3.6, one can prove that the subspace � is strictly negative
with respect to �·,·� if and only if it is a graph of the strictly contraction map K :�−��+ such that
x= �x− ,Kx−�, ∀x��, and �Kx−�� �x−�.

Proof of Theorem 3: Let z�C, Im�z�	0 be a regular point of the self-adjoint operator T in
��. Let U= �T− z̄��T−z�−1 be the Cayley transform of T. By Corollary 3.5, U is a unitary operator
in ��. By Lemma 3.4, T and U have the same invariant subspaces in ��. Therefore, the existence
of the maximal nonpositive invariant subspace for the self-adjoint operator T can be proved from
the existence of such a subspace for the unitary operator U. Let x= �x− ,x+� and

U = U11 U12

U21 U22
�

be the matrix representation of the operator U with respect to the decomposition �3.1�. Let �
denote a �-dimensional nonpositive subspace in ��. Since U has a trivial kernel in �� and U is

unitary in �� such that �Ux ,Ux�= �x ,x��0, then �̃=U� is also a �-dimensional nonpositive

subspace of ��. By Lemma 3.6, there exist two contraction mappings K and K̃ for subspaces �

and �̃, respectively. Therefore, the assignment �̃=U� is equivalent to the system,

� x̃−

K̃x̃−
� = U11 U12

U21 U22
�� x−

Kx−
� = ��U11 + U12K�x−

�U21 + U22K�x−
� ,

so that

U21 + U22K = K̃�U11 + U12K� . �3.4�

We shall prove that the operator �U11+U12K� is invertible. By contradiction, we assume that there

exists x−�0 such that x̃−= �U11+U12K�x−=0. Since x̃−=0 implies that x̃+=K̃x̃−=0, we obtain that
�x− ,Kx−� is an eigenvector in the kernel of U. However, U has a trivial kernel in �� so that x−

=0. Let F�K� be an operator-valued function in the form,

F�K� = �U21 + U22K��U11 + U12K�−1,

and rewrite �3.4� in the form K̃=F�K�, where F�K� is defined for any contraction operator K. By
Lemma 3.6, the operator F�K� maps the operator unit ball �K��1 to itself. Since U is a continu-
ous operator and U12 is a finite-dimensional operator, then U12 is a compact operator. Hence, the
operator ball �K��1 is a weakly compact set and the function F�K� is continuous with respect to
weak topology. By Schauder’s fixed-point principle, there exists a fixed point K0 such that
F�K0�=K0 and �K0��1. By Lemma 3.6, the graph of K0 defines the �-dimensional nonpositive
subspace �, which is invariant with respect to U. By Lemma 3.3, the �-dimensional nonpositive
subspace � is a maximal nonpositive subspace of ��. �
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IV. SPECTRUM OF A SELF-ADJOINT OPERATOR IN PONTRYAGIN SPACE

We apply here Pontryagin’s invariant subspace theorem �Theorem 3� to the product of two
bounded invertible self-adjoint operators T=BC in Pontryagin space ��, where �=dim�HC

−�. In
the context of the shifted generalized eigenvalue problem �2.14�, the operator T can be constructed
in two equivalent settings. In the first setting, B= �A+�K�−1 and C=K with �=dim�HK

−�, while in
the second setting, B=K and C= �A+�K�−1 with �=dim�HA+�K

− �. With a slight abuse of notations
�spectral parameter � here does not correspond to parameter � used in the linear eigenvalue
problem �2.1��, we shall denote eigenvalues of the operator T=BC by �. In the context of the
shifted generalized eigenvalue problem �2.14�, �= ��+��−1 in the first setting and �= ��+�� in the
second setting.

Lemma 4.1: Let H be a Hilbert space with the inner product � · , · � and B ,C :H→H be
bounded invertible self-adjoint operators in H. Define the sesquilinear form

� · , · � = �C · , · � �4.1�

and extend H to the Pontryagin space ��, where � is the finite number of negative eigenvalues of
C counted with their algebraic multiplicities. The operator T=BC is self-adjoint in �� and there
exists a �-dimensional maximal nonpositive subspace of �� which is invariant with respect to T.

Proof: It follows from the orthogonal sum decomposition in the Hilbert space H that the
quadratic form �C · , · � is strictly negative on the �-dimensional subspace HC

− and strictly positive
on the infinite-dimensional subspace HC

+
� HC

�e�C�. By continuity and Gram–Schmidt orthogonal-
ization, the Hilbert space H is extended to the Pontryagin space �� with respect to the sesquilinear
form �4.1�. The bounded operator T=BC is self-adjoint in �� since B and C are self-adjoint in H
and

�T · , · � = �CBC · , · � = �C · ,BC · � = � · ,T · � .

The existence of the �-dimensional maximal nonpositive T-invariant subspace of �� follows from
Pontryagin’s invariant subspace theorem �Theorem 3�. �

We consider now various sign-definite subspaces of ��, which are invariant with respect to
the operator T=BC. In general, these invariant sign-definite subspaces do not provide a canonical
decomposition of ��, unlike the direct orthogonal sum �3.1�.

Let Hc+�Hc−� denote the T-invariant subspace associated with complex eigenvalues � in the
upper �lower� half-plane and Hn�Hp� denote the nonpositive �non-negative� T-invariant subspace
associated with real eigenvalues �. Spectrum of T may consist of three disjoint sets: isolated and
embedded eigenvalues, continuous spectrum, and residual spectrum �see Definitions 4.2 and 4.3�.
We will show that the maximal nonpositive T-invariant subspace in Lemma 4.1 does not include
the residual and continuous spectra but may include isolated and embedded eigenvalues.

Definition 4.2: We say that � is a point of the residual spectrum of T if

Ker�T − �I� = �, Ran�T − �I����

and � is a point of the continuous spectrum of T if

Ker�T − �I� = �, Ran�T − �I� � Ran�T − �I� = ��.

Definition 4.3: We say that � is a point of the discrete spectrum of T (an eigenvalue) if

Ker�T − �I� � � .

The eigenvalue is said to be semisimple if

Ker�T − �I� = dim��k�NKer�T − �I�k�

and multiple if

Ker�T − �I� � dim��k�NKer�T − �I�k� .
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In the latter case, the eigenspace can be represented by the union of the Jordan blocks and the
canonical basis for each Jordan block is built by the generalized eigenvectors

f j � ��: Tf j = �0f j + f j−1, j = 1, . . . ,n , �4.2�

where f0=0. If n=
, the eigenvalue �0 is said to have an infinite multiplicity.
Lemma 4.4: The residual spectrum of T is empty.
Proof: By a contradiction, assume that � belongs to the residual part of the spectrum of T such

that Ker�T−�I�=� but Ran�T−�I� is not dense in ��. Let g��� be orthogonal to Ran�T−�I� so
that

∀ f � ��: 0 = ��T − �I�f ,g� = �f ,�T − �̄I�g� .

Therefore, �T− �̄I�g=0, that is, �̄ is an eigenvalue of T. Since T is real-valued operator, � is also
an eigenvalue of T and hence it cannot be in the residual part of the spectrum of T. �

Lemma 4.5: The continuous spectrum of T is real.
Proof: Let P+ and P− be orthogonal projectors to �+ and �−, respectively, so that I= P+

+ P−. Since �� are defined by the quadratic form �4.1�, the self-adjoint operator C admits the polar
decomposition C=J�C�, where J= P+− P− and �C� is a positive operator. Since J2= I and C is
self-adjoint, we have J�C�J= �C�. As a result, J�C�1/2J= �C�1/2 and the operator T=BC is similar to
the operator

�C�1/2BJ�C�1/2 = �C�1/2BJ�C�1/2�J + 2P−� = �C�1/2B�C�1/2 + 2�C�1/2BJ�C�1/2P−.

Since P− is a projection to a finite-dimensional subspace, the operator �C�1/2BJ�C�1/2 is a finite-rank
perturbation of the self-adjoint operator �C�1/2B�C�1/2. By Theorem 18 on p. 22 in, Ref. 7, the
continuous part of the self-adjoint operator �C�1/2B�C�1/2 is the same as that of �C�1/2BJ�C�1/2. By
similarity transformation, it is the same as that of T. �

Theorem 4: Let �c be an invariant subspace associated with the continuous spectrum of T.
Then, �f , f�	0 for any nonzero f ��c.

Proof: By Lemma 4.1, the operator T has a �-dimensional maximal nonpositive invariant
subspace of ��. Let us denote this subspace by �. By Lemma 4.4, the spectrum of T is decom-
posed into disjoint sets of eigenvalues and the continuous spectrum. Since any finite-dimensional
invariant subspace of T cannot be a part of �c, � and �c intersect trivially. Assume now that there
exists a nonzero f0��c such that �f0 , f0��0. Since f0��, the subspace spanned by f0 and the
basis vectors in � is a ��+1�-dimensional nonpositive subspace of ��. However, by Lemma 3.3,
the maximal dimension of any nonpositive subspace of �� is �. Therefore, �f0 , f0�	0 for any
nonzero f0��c. �

V. EIGENVALUES OF THE GENERALIZED EIGENVALUE PROBLEM

We count here isolated and embedded eigenvalues for the product operator T=BC. This
operator is self-adjoint in the Pontryagin space ��, which is defined by the sesquilinear form �4.1�
with �=dim�HC

−�. This count is used in the proofs of our main Theorems 1 and 2. We assume that
the eigenspaces associated with eigenvalues of T are represented by the union of the Jordan
blocks, according to Definition 4.3. Each Jordan block of generalized eigenvectors �4.2� is asso-
ciated with a single eigenvector of T. We start with an elementary result about the generalization
of the Fredholm theory in the Hilbert space H to that in the Pontryagin space ��.

Proposition 5.1: Let �0 be an isolated eigenvalue of T=BC associated with a one-dimensional
eigenspace H�0

=Span�f0�. Then, �0�R is algebraically simple if and only if �f0 , f0��0, while

�0�R is algebraically simple if and only if �f0 , f̄0��0.
Proof: Since B and C are bounded invertible self-adjoint operators in the Hilbert space H, the

eigenvalue problem Tf =�f in the Pontryagin space �� is rewritten as the generalized eigenvalue
problem Cf =�B−1f in the Hilbert space H. Since �0 is an isolated eigenvalue, the Fredholm
theory for the generalized eigenvalue problem implies that �0�R is algebraically simple if and
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only if �B−1f0 , f0��0, while �0�R is algebraically simple if and only if �B−1f0 , f̄0��0. Since
�0�0 �otherwise, C would not be invertible�, the condition of the Fredholm theory is equivalent

to the condition that �f0 , f0�= �Cf0 , f0��0 and �f0 , f̄0�= �Cf0 , f̄0��0, respectively. �

Lemma 5.2: Let H� and H� be eigenspaces associated with eigenvalues � and � of the
operator T in �� and �� �̄. Then H� is orthogonal to H� with respect to �·,·�.

Proof: Let n�1 and m�1 be dimensions of H� and H�, respectively. By Definition 4.3, it is
clear that

f � H� ⇔ �T − �I�nf = 0, �5.1�

g � H� ⇔ �T − �I�mg = 0. �5.2�

We should prove that �f ,g�=0 by induction for n+m�2. If n+m=2 �n=m=1�, then it follows
from systems �5.1� and �5.2� that

�� − �̄��f ,g� = 0, f � H�, g � H�,

so that �f ,g�=0 for �� �̄. Let us assume that subspaces H� and H� are orthogonal for 2�n

+m�k and prove that an extended subspace H̃� with ñ=n+1 remains orthogonal to H�. To do so,

we define f̃ = �T−�I�f and verify that

f � H̃� ⇔ �T − �I�ñ f = �T − �I�n f̃ = 0.

By the inductive assumption, we have � f̃ ,g�=0 so that

��T − �I�f ,g� = 0. �5.3�

Using systems �5.1� and �5.2� and relation �5.3�, we obtain

�� − �̄��f ,g� = 0 f � H̃�, g � H�,

so that �f ,g�=0 for all f �H̃� and g�H�. Using the same analysis, one can prove that an

extended subspace H̃� with m̃=m+1 remains orthogonal to H�. The assertion of the lemma
follows by the induction method. �

Lemma 5.3: Let H�0
be an eigenspace associated with an isolated eigenvalue �0�R of T in

�� and �f1 , f2 , . . . fn� be the Jordan chain of eigenvectors. Let H0=Span�f1 , f2 , . . . , fk��H�0
,

where k=n /2 if n is even and k= �n−1� /2 if n is odd, and H̃0=Span�f1 , f2 , . . . , fk , fk+1��H�0
.

• If n is even �n=2k�, the neutral subspace H0 is the maximal sign-definite subspace of H�0
.

• If n is odd �n=2k+1�, the subspace H̃0 is the maximal nonnegative subspace of H�0
if

�f1 , fn�	0 and the maximal nonpositive subspace of H�0
if �f1 , fn��0, while the neutral

subspace H0 is the maximal nonpositive subspace of H�0
if �f1 , fn�	0 and the maximal

nonnegative subspace of H�0
if �f1 , fn��0.

Proof: Without loss of generality, we will consider the case �0=0 �if �0�0 the same argument

is applied to the shifted self-adjoint operator T̃=T−�0I�. We will show that �f , f�=0, ∀f �H0. By
a decomposition over the basis in H0, we obtain

∀ f = 	
i=1

k

�i f i: �f , f� = 	
i=1

k

	
j=1

k

�i�̄ j�f i, f j� . �5.4�

We use that
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�f i, f j� = �Tfi+1,Tf j+1� = ¯ = �Tkfi+k,T
kf j+k� = �T2kf i+k, f j+k�

for any 1� i , j�k. In the case of even n=2k, we have

�f i, f j� = �Tnfi+k, f j+k� = 0, 1 � i, j � k .

In the case of odd n=2k+1, we have

�f i, f j� = �Tn+1f i+k+1, f j+k+1� = 0, 1 � i, j � k .

Therefore, H0 is a neutral subspace of H�0
. To show that it is the maximal neutral subspace of

H�0
, let H0�=Span�f1 , f2 , . . . , fk , fk0

�, where k+1�k0�n. Since fn+1 does not exist in the Jordan
chain �4.2� �otherwise, the algebraic multiplicity is n+1� and �0 is an isolated eigenvalue, then
�f1 , fn��0 by Proposition 5.1. It follows from the Jordan chain �4.2� that

�f1, fn� = �Tm−1fm, fn� = �fm,Tm−1fn� = �fm, fn−m+1� � 0. �5.5�

When n=2k, we have 1�n−k0+1�k, such that �fk0
, fn−k0+1��0 and the subspace H0� is sign-

indefinite in the decomposition �5.4�. When n=2k+1, we have 1�n−k0+1�k for k0�k+2 and
n−k0+1=k+1 for k0=k+1. In either case, �fk0

, fn−k0+1��0 and the subspace H0� is sign-indefinite
in the decomposition �5.4� unless k0=k+1. In the latter case, we have

�fk+1, fk+1� = �f1, fn� � 0 and �f j, fk+1� = �T2kf j+k, fn� = 0, 1 � j � k ,

so that this subspace H̃0�H0� with k0=k+1 is non-negative for �f1 , fn�	0 and nonpositive for
�f1 , fn��0. �

Remark 5.4: If �0�R is an embedded eigenvalue of T, the Jordan chain �4.2� can be truncated
at fn even if �f1 , fn�=0. Indeed, the Fredholm theory for the generalized eigenvalue problem in
Proposition 5.1 gives a necessary but not a sufficient condition for existence of the solution fn+1 in
the Jordan chain �4.2� if the eigenvalue �0 is embedded into the continuous spectrum. If �f1 , fn�
=0 but fn+1 does not exist in ��, the neutral subspaces H0 for n=2k and H̃0 for n=2k+1 in
Lemma 5.3 do not have to be the maximal nonpositive or non-negative subspaces. The construc-
tion of a maximal nonpositive subspace for embedded eigenvalues depends on the computations of
the projection matrix �f i , f j� in the eigenspace H�=Span�f1 , . . . , fn�. If �0 is an algebraically
simple embedded eigenvalue, then the corresponding eigenspace H�0

=Span�f1� is either positive
or negative or neutral, depending on the value of �f1 , f1�.

Lemma 5.5: Let �0�C, Im��0�	0 be an eigenvalue of T in ��, H�0
be the corresponding

eigenspace, and H̃�0
= �H�0

,H�̄0
����. Then, the neutral subspace H�0

is the maximal sign-

definite subspace of H̃�0
such that �f , f�=0, ∀f �H�0

.
Proof: By Lemma 5.2 with �=�=�0, the eigenspace H�0

is orthogonal to itself with respect

to �·,·�, such that H�0
is a neutral subspace of H̃�0

. It remains to prove that H�0
is the maximal

sign-definite subspace in H̃�. Let H�0
=Span�f1 , f2 , . . . , fn�, where �f1 , f2 , . . . , fn� is the Jordan

chain of eigenvectors �4.2�. Consider a subspace H̃�0
� =Span�f1 , f2 , . . . , fn , f̄ j� for any 1� j�n and

construct a linear combination of fn+1−j and f̄ j,

∀� � C: �fn+1−j + � f̄ j, fn+1−j + � f̄ j� = 2 Re��� f̄ j, fn+1−j�� . �5.6�

By Proposition 5.1, we have �fn , f̄1��0 and, by virtue of the chain �5.5�, we obtain � f̄ j , fn+1−j�
�0. As a result, the linear combination fn+1−j +� f̄ j in equality �5.6� is sign-indefinite with respect
to �·,·�. �

We shall summarize the count of the dimensions of the maximal nonpositive and non-negative
subspaces associated with eigenspaces of T in ��.

Theorem 5: Let Nn��0� �Np��0�� denote the dimension of the maximal nonpositive (non-
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negative) subspace of �� corresponding to the eigenspace H�0
for an eigenvalue �0. If �0�R is

isolated from the continuous spectrum, then

dim�H�0
� = Np��0� + Nn��0� �5.7�

and, for each Jordan block of generalized eigenvectors, we have

�i� if n=2k, then Np��0�=Nn��0�=k.
�ii� If n=2k+1 and �f1 , fn�	0, then Np��0�=k+1 and Nn��0�=k.
�iii� If n=2k+1 and �f1 , fn��0, then Np��0�=k and Nn��0�=k+1.

If �0�R is a simple embedded eigenvalue, then

�i� if �f1 , f1�	0, then Np��0�=1, Nn��0�=0.
�ii� If �f1 , f1��0, then Np��0�=0, Nn��0�=1.
�iii� If �f1 , f1�=0, then Np��0�=Nn��0�=1.

If �0�R, then dim�H�0
�=Np��0�=Nn��0�.

Proof: The assertion follows from Lemma 5.3, Remark 5.4, and Lemma 5.5. �

Remark 5.6: Note that the intersection of the maximal nonpositive and non-negative sub-
spaces of H�0

can be nonempty even for an isolated eigenvalue �0�C. For an embedded eigen-
value �0�R, equality �5.7� does not hold in case �iii� as

1 = dim�H�0
� � Np��0� + Nn��0� = 2.

If �0�R is a multiple embedded eigenvalue, computations of the projection matrix �f i , f j� is
needed in order to find the dimensions Np��0� and Nn��0�.

We can now prove Theorems 1 and 2.
Proof of Theorem 1: We use the shifted generalized eigenvalue problem �2.14� for sufficiently

small �	0 and consider the bounded operator T= �A+�K�−1K, that is, B= �A+�K�−1 and C=K. By
Lemma 4.1, the operator T is self-adjoint with respect to � · , · �= �K · , · � and it has a �-dimensional
maximal nonpositive invariant subspace, where �=dim�HK

−�. Counting all eigenvalues of the
shifted generalized eigenvalue problem �2.14� using Theorem 5, we obtain equality �2.19� from
Lemma 4.1.

Now, let B=K and C= �A+�K�−1 and consider the bounded operator T̃=K�A+�K�−1 which is
self-adjoint with respect to � · , · �= ��A+�K�−1 · , · �. The self-adjoint operator �A+�K�−1 defines the

indefinite metric in the Pontryagin space �̃�̃, where �̃=dim�HA+�K
− �. For a simple eigenvalue �0 of

the shifted eigenvalue problem �2.14�, we have

∀ f ,g � H�0
: ��A + �K�f ,g� = ��0 + ���Kf ,g� .

If �0�0 or Im��0��0, the maximal nonpositive eigenspace of T̃ in �̃�̃ associated with �0 coin-
cides with the maximal nonpositive eigenspace of T in ��. If �0�0, the maximal nonpositive

eigenspace of T̃ in �̃�̃ coincides with the maximal non-negative eigenspace of T in ��. The same
assertion holds in the case of a multiple eigenvalue �0. Therefore, the dimension of the maximal

nonpositive eigenspace of T̃ in �̃�̃ is Np
−+Nn

0+Nn
++Nc+ and equality �2.18� follows by Lemma

4.1. �

Proof of Theorem 2: Let us introduce T and �� according to the choice B= �A+�K�−1 and
C=K. Let � be a non-negative invariant subspace in ��, which is spanned by eigenvectors of the
generalized eigenvalue problem �2.6� for Np

− negative eigenvalues ��0, Np
0 zero eigenvalues �

=0, Np
+ positive isolated eigenvalues �	0, and Nc+ complex eigenvalues with Im���	0. Let us

assume that Np
−+Np

0 +Np
++Nc+ 	NA+NK and derive a contradiction.

By Gram–Schmidt orthogonalization with respect to the inner product in the Hilbert space H,
if Np

−+Np
0 +Np

++Nc+ 	NA+NK, then there exist a vector h�� such that �h , f�=0 and �h ,g�=0 for
any f �HA

−
� HA

0
� HA

+ and g�HK
−

� HK
+. Therefore, h�HA

�e�A��HK
�e�K� such that
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�Ah,h� � �+�h,h�, �Kh,h� � �−
−1�h,h� ,

and

�Ah,h� � �+�−�Kh,h� .

On the other hand, since h��, then it can be represented by h=	i=1
Np

−+Np
0+Np

++Nc+
�ihi, where

�h1 ,h2 , . . . ,hNp
−+Np

0+Np
++Nc+� is a basis in � associated with the eigenspaces of the generalized eigen-

value problem �2.6�. By Lemmas 5.2, 5.3, and 5.5, we obtain

�Ah,h� = 	
i,j

�i�̄ j�Ahi,hj� = 	
�i=�j�0

�i�̄ j�Ahi,hj� + 	
�i=�j=0

�i�̄ j�Ahi,hj� + 	
�i=�j	0

�i�̄ j�Ahi,hj�

= 	
�j�0

�� j�2�Ahj,hj� + 	
�j=0

�� j�2�Ahj,hj� + 	
�j	0

�� j�2�Ahj,hj� = 	
�j�0

� j�� j�2�Khj,hj�

+ 	
�j	0

� j�� j�2�Khj,hj� � �+�− 	
�j	0

�� j�2�Khj,hj� ,

where in the last inequality we have used the facts that �Khj ,hj��0 for any eigenvector hj �� and
that � j ��+�− for any isolated eigenvalue � j. On the other hand,

�Kh,h� = 	
i,j

�i�̄ j�Khi,hj� = 	
�j�0

�� j�2�Khj,hj� + 	
�j=0

�� j�2�Khj,hj� + 	
�j	0

�� j�2�Khj,hj�

� 	
�j	0

�� j�2�Khj,hj� .

Therefore, �Ah ,h���+�−�Kh ,h�, which is a contradiction. As a result, inequality Np
−+Np

0 +Np
+

+Nc+ �NA+NK is proved. �

Remark 5.7: Isolated eigenvalues of infinite multiplicities are excluded by the counts of
Theorems 1 and 2. Embedded eigenvalues of infinite multiplicity are possible but they may only
correspond to finitely many Jordan blocks of finite length, according to Theorem 1.

VI. APPLICATIONS OF MAIN RESULTS

We describe here two applications of our main results related to recent studies of stability of
the localized solutions in the NLS equations.

A. Solitons of the NLS equation

Consider a NLS equation in the form

i�t = − �� + F����2��, � = �x1x1

2 + . . . + �xdxd

2 , �6.1�

where �x , t��Rd�R and ��C. For a suitable nonlinear function F����2�, where F is C
 and
F�0�=0, the NLS equation �6.1� possesses a solitary wave solution �=��x�ei�t, where �	0 and
� :Rd→R is an exponentially decaying C
 function. See Ref. 21 for the existence and uniqueness
of positive radial solutions of the stationary NLS equation

− �� + �� + F��2�� = 0. �6.2�

Linearization of the NLS equation �6.1� with the ansatz,

� = ���x� + �u�x� + iw�x��e�t + �ū�x� + iw̄�x��e�̄t�ei�t, �6.3�

where ��C and �u ,w��C2, results in the linear eigenvalue problem �2.1�, where L� are
Schrödinger operators given by

L+ = − � + � + F��2� + 2�2F���2� , �6.4�
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L− = − � + � + F��2� . �6.5�

We note that L� are unbounded operators and �e�L����� with �+=�−=�	0. The kernel of L−

includes at least one eigenvector ��x� and the kernel of L+ includes at least d eigenvectors �xj
��x�,

j=1, . . . ,d. The Hilbert space is defined as X=L2�Rd ,C� and the main assumptions �P1� and �P2�
are satisfied due to the exponential decay of the functions F��2� and �2F���2�. Theorems 1 and 2
give precise count of eigenvalues of the stability problem �2.1� provided that the numbers
dim�HK

−�, dim�HA+�K
− �, NK, and NA can be computed from the count of isolated eigenvalues of

A=PL+P and K=PL−
−1P, where P is the orthogonal projection to the complement of Ker�L−�. We

illustrate these computations with two examples.
Example 1: Let ��x� be the positive radial solution of the stationary NLS equation �6.2�. By

the spectral theory, Ker�L−�=Span���, the subspace HK
− is empty, and

Ker�L+� = Span��x1
��x�, . . . ,�xd

��x�� � Ker�L−� .

• It follows by equality �2.19� that Nn
−=Nn

0=Nn
+=Nc+ =0. Therefore, the spectrum of the gener-

alized eigenvalue problem �2.6� is real-valued and all eigenvalues � are semisimple.
• Since Ker�L+��Ker�L−� and HK

− is empty, eigenvectors of Ker�L+� are in the positive sub-
space of K, so that Np

0 =z�L+�=d. By Proposition 2.3, these eigenvalues become positive
eigenvalues of A+�K for any �	0 so that dim�HA+�K

− �=dim�HA
−�.

• It follows by equality �2.18� that Np
−=dim�HA+�K

− �=dim�HA
−�. By Proposition 2.2, we have

dim�HA
−�=n�L+�− p0−z0, where p0 and z0 are the number of positive and zero values of a

scalar function M0=−�L+
−1� ,��. Since L+����x�=−��x�, we have

M0 =
1

2

d

d�
���L2

2

.
• It follows by inequality �2.21� that Np

−+Np
0 +Np

+�dim�HA
−�+dim�HA

0�+dim�HA
+�+dim�HK

+�.
By Proposition 2.2 and the previous counts, we obtain Np

+� p�L+�+ p�L−�+ p0.

Remark 6.1: If n�L+�=n�N and �d /d�����L2
2

	0, the count above gives Np
−=n�L+�−1, which

coincides with Theorem 2.1 in Ref. 11 �the case n=1 is known as the stability theorem in Ref. 9�.
If n�L+�=1, p�L+�= p�L−�=0 and �d /d�����L2

2
�0, the count above gives Np

−=1, Np
0 =d, and Np

+

=0, which is proved, with a direct variational method, in Proposition 2.1.2 �Ref. 28� and Propo-
sition 9.2 �Ref. 19� for d=1 and in Lemma 1.8 �Ref. 32� for d=3, in the context of the supercritical
power NLS equation with F= ���2q and q	2 /d.

Remark 6.2: The stability of vector solitons in the coupled NLS equations, which generalize
the scalar NLS equation �6.1�, is defined by the same linear eigenvalue problem �2.1�, where L�

are matrix Schrödinger operators. The general results for nonground state solutions are obtained in
Refs. 15 and 23 for d=1 and in Ref. 4 for d=3. Multiple and embedded eigenvalues were either
excluded from analysis by an assumption23,4 or were treated implicitly.15 The present work gen-
eralizes these results with a precise count of multiple and embedded eigenvalues.

Example 2: Let the cubic NLS equation �6.1� with F= ���2 be discretized so that ����disc,
where �disc is the second-order discrete Laplacian and � is a small parameter. We note that �disc is
a bounded operator and �c�−�disc�� �0,4d�. The Hilbert space is defined as X= l2�Zd ,C�. By the
Lyapunov–Schmidt reduction method, the solution �=�ei�t with �	0 and �� l2�Zd� bifurcates
from the limiting solution with N nonzero lattice nodes at �=0. It is proved in Ref. 24 for d=1 and
in Ref. 25 for d=2 that �d /d�����l2

2
	0, Ker�L+�=�, and Ker�L−�=Span��� for sufficiently small

��0. It follows by equalities �2.18� and �2.19� that

Np
− + Nn

+ + Nc+ = n�L+� − 1,
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Nn
− + Nn

+ + Nc+ = n�L−� ,

where it is found in Refs. 24 and 25 that n�L+�=N and n�L−��N−1. Lyapunov–Schmidt reduc-
tions give, however, more precise information than the general count above since Corollary 3.5 in
Ref. 24 for d=1 predicts that Nn

+=n�L−�, Nn
−=Nc+ =0, and Np

−=N−1−n�L−�. �This precise count is
valid only when small positive eigenvalues of L− are simple. It is shown in Ref. 25 for d=2 that
the case of multiple small positive eigenvalues of L− leads to splitting of real eigenvalues Np

− of the
generalized eigenvalue problem �2.6� to complex eigenvalues Nc+ beyond the leading-order
Lyapunov–Schmidt reduction.� Similarly, it follows by inequality �2.21� and the above count that

Np
+ � 2n�L−� + dim�HA

+� + dim�HK
+� .

If the solution � is a ground state, then N=1 and n�L−�=0. In this case, the above inequality shows
for a small �	0 that the number of edge bifurcations from the continuous spectrum of K−1A
�given by Np

+� is bounded from above by the number of edge bifurcations from the essential
spectrum of A �given by dim�HA

+�� and the numbers of edge bifurcations from the essential
spectrum of K−1 �given by dim�HK

+��. The bound above becomes less useful if N	1 and n�L−�
�0.

Remark 6.3: The Lyapunov–Schmidt reduction method was also used for continuous coupled
NLS equations with and without external potentials. See Refs. 16 and 26 for various results on the
count of unstable eigenvalues in parameter continuations of the NLS equations.

B. Vortices of the NLS equation

Consider the two-dimensional NLS equation �6.1� in polar coordinates �r ,��

i�t = − �� + F����2��, � = �rr
2 +

1

r
�r +

1

r2���
2 , �6.6�

where r	0 and �� �0,2��. Assume that the NLS equation �6.6� possesses a charge-m vortex
solution �=��r�eim�+i�t, where �	0, m�N, and � :R+→R is an exponentially decaying C


function with ��0�=0. See Ref. 22 for existence results of charge-m vortices in the cubic-quintic
NLS equation with F=−���2+ ���4. Linearization of the NLS equation �6.6� with the ansatz,

� = ���r�eim� + �+�r,��e�t + �̄−�r,��e�̄t�ei�t, �6.7�

where ��C and ��+ ,�−��C2, results in the stability problem,

�3H� = i�� , �6.8�

where �= ��+ ,�−�T, �3=diag�1,−1�, and

H = �− � + � + F��2� + �2F���2� �2F���2�e2im�

�2F���2�e−2im� − � + � + F��2� + �2F���2�
� .

Expand ��r ,�� in the Fourier series

� = 	
n�Z

��n��r�ein�

and reduce the problem to a sequence of spectral problems for ordinary differential equations,

�3Hn�n = i��n, n � Z , �6.9�

where �n= ��+
�n+m� ,�−

�n−m��T, and
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Hn = �− �rr
2 −

1

r
�r +

�n + m�2

r2
+ � + F��2� + �2F���2� �2F���2�

�2F���2� − �rr
2 −

1

r
�r +

�n − m�2

r2
+ � + F��2� + �2F���2� � .

When n=0, the stability problem �6.9� transforms into the linear eigenvalue problem �2.1�, where
L� is given by �6.4� and �6.5� with �=�rr

2 + �1 /r��r−m2 /r2 and �u ,w� are given by u=�+
�m�

+�−
�−m� and w=−i��+

�m�−�−
�−m��. When n�N, the stability problem �6.9� transforms into the linear

eigenvalue problem �2.1� with L+=Hn and L−=�3Hn�3, where

L+ = L− + 2�2F���2��1, �1 = �0 1

1 0
� ,

and �u ,w� are given by u=�n and w=−i�3�n. When −n�N, the stability problem �6.9� admits a
transformation with H−n=�1Hn�1 and �3�1=−�1�3 into the stability problem with n�N. Let us
introduce the weighted inner product for functions on r�0,

�f ,g�r = �
0




f�r�g�r�rdr .

In all cases n=0, n�N and −n�N, L� are unbounded self-adjoint differential operators and
�e�L��= ��� ,
� with �+=�−=�	0. The kernel of the linearized operators includes at least three
eigenvectors,

n = � 1: ��1 = ���r�1 �
m

r
��r��31, n = 0: �0 = ��r��31 ,

where 1= �1,1�T. The Hilbert space is defined as X=Lr
2�R+ ,C� for n=0 and X=Lr

2�R+ ,C2� for
�n�N. In all cases, the main assumptions �P1� and �P2� are satisfied due to exponential decay of
the functions F��2� and �2F���2�.

The case n=0 is similar to the case of solitons in Sec. VI A. We shall hence consider adjust-
ments in the count of eigenvalues in the case �n�N, when the stability problem �6.9� is rewritten
in the form,

� �3Hn�n = i��n

�3H−n�−n = i��−n
� n � N . �6.10�

Let L+=diag�Hn ,H−n� and L−=diag��3Hn�3 ,�3H−n�3�.
Lemma 6.4: Let � be an eigenvalue of the stability problem (6.10) with the eigenvector

��n ,0�. Then there exists another eigenvalue −� with the linearly independent eigenvector

�0 ,�1�n�. If Re���	0, there exist two more eigenvalues �̄, −�̄ with the linearly independent
eigenvectors �0 ,�1�̄n�, ��̄n ,0�.

Proof: We note that �1�3=−�3�1 and �1
2=�3

2=�0, where �0=diag�1,1�. Therefore, each
eigenvalue � of Hn with the eigenvector �n generates eigenvalue −� of H−n with the eigenvector

�−n=�1�n. When Re����0, each eigenvalue � of Hn generates also eigenvalue −�̄ of Hn with the

eigenvector �̄n and eigenvalue �̄ of H−n with the eigenvector �−n=�1�̄n. �

Theorem 6: Let Nreal be the number of real eigenvalues in the stability problem (6.10) with
Re���	0, Ncomp be the number of complex eigenvalues with Re���	0 and Im���	0, Nimag

− be the
number of purely imaginary eigenvalues with Im���	0 and ��n ,Hn�n��0, and Nzero

− be the
algebraic multiplicity of the zero eigenvalue of �3Hn�n= i��n with ��n ,Hn�n��0. Then, Nreal is
even and

1
2Nreal + Ncomp = n�Hn� − Nzero

− − Nimag
− . �6.11�
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Proof: By Lemma 6.4, the multiplicity of Nreal is even in the stability problem �6.10� and a
pair of real eigenvalues of �3Hn�n= i��n corresponds to two linearly independent eigenvectors �n

and �̄n. Because �Hn�n ,�n� is real-valued and hence zero for ��R, we have

�Hn��n � �̄n�,��n � �̄n�� = � 2 Re�Hn�n,�̄n� .

By counting multiplicities of the real negative and complex eigenvalues of the generalized eigen-
value problem �2.6� associated with the stability problem �6.10�, we have Nn

−=Np
−=Nreal and Nc+

=2Ncomp. By Lemma 6.4, a pair of purely imaginary and zero eigenvalues of the stability problem
�6.10� corresponds to two linearly independent eigenvectors ��n ,0� and �0 ,�−n�, where �−n

=�1�n and �H−n�−n ,�−n�= �Hn�n ,�n�. By counting multiplicities of the real positive and zero
eigenvalues of the generalized eigenvalue problem �2.6� associated with the stability problem
�6.10�, we have Nn

0=2Nzero
− and Nn

+=2Nimag
− . Since the spectra of Hn, �1Hn�1, and �3Hn�3 coincide,

we have n�L−�=2n�Hn�. As a result, equality �6.11� follows by equality �2.19� of Theorem 1. �

Corollary 6.5: Let A=PL+P and K=PL−
−1P, where P is an orthogonal projection to the

complement of Ker�L−�=Span�v1 , . . . ,vn�. The number of small negative eigenvalues of A+�K for
sufficiently small �	0 equals the number of non-negative eigenvalues of M��� as �↑0, where
Mij���= ���−L+�−1vi ,v j�.

Proof: The same count �6.11� follows by equality �2.18� of Theorem 1 if and only if
dim�HA+�K

− �=dim�HK
−�=n�L−�. Since the zero eigenvalue of A is isolated from the essential spec-

trum and n�L+�=n�L−�, the number of small negative eigenvalues of A+�K for sufficiently small
��0 must be equal to

dim�HA+�K
− � − dim�HA

−� = n�L+� − dim�HA
−� = p0 + z0,

where we have used equality �2.12� of Proposition 2.2. �

Example 3: Let ��r� be the fundamental charge-m vortex solution such that ��r�	0 for r
	0 and ��0�=0. By spectral theory, Ker�H0�=Span��0� and the analysis for n=0 becomes similar
to Example 1. In the case n�N, let us assume that Ker�H1�=Span��1� and Ker�Hn�=� for n
�2.

• By direct computation, we obtain ��3H1�3�−1�1=− 1
2r��r�1 and

���3H1�3�−1�1,�1� = �
0




r�2�r�dr 	 0.

Since ��3�1 ,�1�=0 and Ker��3H1�3�= ��3�1�, then �1�Ker��3H1�3�. By Propositions 2.2
and 2.3, we have Nn

0=0 for n=1 �Nn
0=0 holds also for n�2� so that p0=z0=0 for all n

�N. Corollary 6.5 is hence confirmed.
• By Theorem 6, we have

Nreal + 2Ncomp = 2n�Hn� − 2Nimag
− , �6.12�

where Nimag
− gives the total number of eigenvalues in the stability problem �6.10� with

Re���=0, Im���	0, and �Hn�n ,�n��0, while Nzero
− =Nn

0=0.

Remark 6.6: Stability of vortices was considered numerically in Ref. 22, where Lemma 6.4
was also obtained. The closure relation �6.12� was also discussed in Ref. 15 in a more general
context. Vortices in the discretized scalar NLS equation were considered with the Lyapunov–
Schmidt reduction method in Ref. 25. Although the reduced eigenvalue problems were found in a
more complicated form compared to the reduced eigenvalue problem for solitons, equality �6.12�
was confirmed for all vortex configurations considered in Ref. 25.
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