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a b s t r a c t 

Compactons are studied in the framework of the Korteweg–de Vries (KdV) equation with 

the sublinear nonlinearity. Compactons represent localized bell-shaped waves of either po- 

larity which propagate to the same direction as waves of the linear KdV equation. Their 

amplitude and width are inverse proportional to their speed. The energetic stability of 

compactons with respect to symmetric compact perturbations with the same support is 

proven analytically. Dynamics of compactons is studied numerically, including evolution of 

pulse-like disturbances and interactions of compactons of the same or opposite polarities. 

Compactons interact inelastically, though almost restore their shapes after collisions. Com- 

pactons play a two-fold role of the long-living soliton-like structures and of the small-scale 

waves which spread the wave energy. 

© 2021 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Compactons are solitary waves of the finite length. They arise as the travelling waves in the degenerate Korteweg–de 

Vries (KdV) equation, 

∂u 

∂t 
+ 

∂u 

m 

∂x 
+ 

∂ 3 u 

n 

∂x 3 
= 0 , (1) 

where both the advection and dispersion terms are nonlinear with integer powers of m ≥ 2 and n ≥ 2 . The degenerate KdV

equation and the compactons were introduced and studied by Rosenau and Hyman [1] (see also [2] ). A variety of physical

phenomena can be described by using Eq. (1) and its modifications, e.g., the continuous limit of anharmonic oscillators in

the elasticity theory [3,4] , the magma dynamics [5] , the surface waves on vorticity discontinuities [6] , sedimentation [7] . A

review of the degenerate KdV equation and its generalizations can be found in Rosenau and Zilburg [8] . 

Properties of compactons were studied extensively, such as duality between solitons and compactons [9] , conservation 

laws [10] , Hamiltonian structure [11] , integrability [12] , and stability [13] . Ill-posedness of the time evolution of the degener-

ate KdV equation due to loss of regularity and no continuous dependence on the initial data was discussed in Ambrose et al.
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[14] (see also [15] ). Variational characterization of compactons and the proof of their stability were recently developed for 

a special version of the degenerate KdV equation in Germain et al. [16] ; in this case, existence and uniqueness of solutions

of time evolution (but not their continuous dependence on initial data) can be proven for positive initial data [17] . 

Nonlinearity of the dispersion term ( n ≥ 2 ) is crucial for existence of the compactons in Eq. (1) . If n = 1 , the travelling

wave reduction of the generalized KdV equation can be integrated once and reduce to the second-order differential equation 

with a smooth vector field, for which existence and uniqueness of solitary waves (homoclinic orbits) follows from the theory 

of differential equations. In this case, the second-order equation can further be integrated and solitary waves that decay 

to zero exponentially can be found in the analytic form [18] . It was claimed in Wazwaz [ 19 , 20 ] (summarized in Section

13.12 of the book [21] ) that compactons can be formally constructed for the modified KdV equation ( m = 3 , n = 1 ) and

related equations by matching zero and nonzero solutions of the second-order differential equation; however, the claim is 

simply wrong because it contradicts the uniqueness theory for differential equation, e.g., the second-order derivative is not 

continuous across the breaking point. 

Besides the power nonlinearity in the advective term of the generalized KdV equation (with n = 1 ), the modular power

nonlinearity of the form 

∂u 

∂t 
+ α| u | α−1 ∂u 

∂x 
+ 

∂ 3 u 

∂x 3 
= 0 , (2) 

has also been studied in literature, e.g., the Schamel equation in plasma physics with α = 1 . 5 [22] or with α ∈ (1 , 2) [23] ,

and the quadratic modular KdV equation with α = 2 [24] . Another example is the modular KdV equation [25,26] written in

the form: 

∂u 

∂t 
+ 

∂| u | 
∂x 

+ 

∂ 3 u 

∂x 3 
= 0 . (3) 

The main model for our study is the sublinear KdV equation of the form 

∂u 

∂t 
− α| u | α−1 ∂u 

∂x 
+ 

∂ 3 u 

∂x 3 
= 0 , (4) 

where α ∈ (0 , 1) . This model was proposed by Rosenau [27] , where exact expressions for compacton solutions were obtained

(see also [8, Example 3] ), as well as the conserved quantities. The first numerical simulations of compactons arising from a

pulse-like initial condition were also reported in [27] . Compactons in the sublinear Klein–Gordon and nonlinear Schrödinger 

equations were further studied in Rosenau and Kashdan [ 28 , 29 ]. 

The sublinear nonlinearity occurs in physical problems due to Bremsstrahlung radiation in plasma physics [30,31] and in 

the modeling of the chemical reactions (autocatalysis) [32,33] , for which the diffusion equation with the sublinear nonlinear 

terms is the main model. It was found long ago that such models lead to the finite-time extinction (vanishing of a solution

after some finite time) [34–36] . 

The sublinear KdV equation with α ∈ (0 , 1) was derived in [37,38] in the theory of granular chains near the harmonic

limit, for which the solitary waves has double-exponential decay to zero at infinity. Compactons represent the leading- 

order approximations of such fastly decaying solitary waves. The existence of compactons in the same model was recently 

reviewed in [39] . 

The previous preliminary results on the sublinear KdV equation with α ∈ (0 , 1) call for the systematic study of the sta-

bility and robustness of compactons. The main purpose of this work is to analyze stability of compactons and to explore propa-

gation and interactions of compactons numerically. The main results and organization of this article are explained as follows. 

Existence of compactons expressed by the trigonometric functions is reviewed in Section 2 . Compactons are classical 

(three times continuously differentiable) solutions of the sublinear KdV equation if α ∈ 

(
1 
3 , 1 

)
and weaker (twice continu- 

ously differentiable) solutions for α ∈ (0 , 1 3 ] . 

Section 3 contains analytical results on the stability of compactons. We prove that compactons are local non-degenerate 

minimizers of energy under the fixed momentum in the space of symmetric compact functions with the same support for 

every α ∈ 

(
1 
5 , 1 

)
. This result suggests energetic stability of compactons in the sublinear KdV equation. Moreover, we show 

under the same condition on α that the spectrum of linearized operator at the compacton solution is purely discrete. 

In Section 4 , we perform numerical simulations of single compactons, pulse-like initial disturbances (both wide and 

narrow), and interactions of two compactons of the same or opposite polarities in the particular cases α = 

3 
4 and α = 

2 
5 .

Although interactions of compactons are similar to interactions of solitary waves, there are important differences related to 

generation of new compactons. These small-amplitude compactons replace the dispersive waves of the linear KdV equation, 

which do not propagate in the sublinear KdV equation. 

The summary of our results is given in the concluding Section 5 . 

2. Compacton solutions 

Travelling waves are given of the form u (x, t) = U(x + ct) with real-valued constants c. If U(x ) → 0 as | x | → ∞ for solitary

waves, integration of the third-order differential equation with zero integration constant yields the second-order equation 

U 

′′ (x ) + cU(x ) − | U(x ) | α−1 U = 0 . (5) 
2 
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No solutions decaying to zero exist in (5) for c ≤ 0 , hence the travelling solitary waves of the sublinear KdV equation may

only propagate to the left with c > 0 . 

Since α ∈ (0 , 1) , the vector field in the system 

d 

dx 

[
U 

V 

]
= 

[
V 

−cU + | U| α−1 U 

]

is continuous at U = 0 but it is not Lipschitz continuous at U = 0 . By the existence-uniqueness theory for differential equa-

tion, there exists a solution to Eq. (5) ; however, the solution is not unique near U = 0 . Therefore, it is allowed in some weak

sense to concatenate nonzero solutions of Eq. (5) vanishing at some points with zero solutions, obtaining thus compactons, 

for which functions U are nonzero within an interval of a finite length denoted by supp (U) ⊂ R . 

The sublinear KdV equation is invariant under the scaling transformation 

˜ u ( ̃  x , ̃  t ) = γ
2 

1 −α u (x, t) , ˜ x = γ x, ˜ t = γ 3 t, (6) 

where both u (x, t) and ˜ u ( ̃  x , ̃  t ) satisfy Eq. (4) and γ > 0 is arbitrary parameter. If supp (U) is a single interval, then its length

can be normalized to π . Since the sublinear KdV equation is also invariant with respect to translation in x, we can set 

supp (U) = [0 , π ] . 

Integrating Eq. (5) again with the zero integration constant yields the first-order quadrature in the form: 

1 

2 

(U 

′ ) 2 + 

1 

2 

cU 

2 − 1 

α + 1 

| U| α+1 = 0 . (7) 

The nonzero part of the compacton is found by integrating Eq. (7) . The exact solution on the normalized interval [0 , π ]

denoted by U = U 1 at c = c 1 is available in trigonometric functions [8,27] : 

U 1 (x ) = ±a 1 sin 

2 
1 −α (x ) χ[0 ,π ] (x ) , a 1 = 

[
(1 − α) 2 

2(1 + α) 

] 1 
1 −α

, c 1 = 

4 

(1 − α) 2 
, (8) 

where χS is the characteristic function on the interval S ⊂ R defined by χS (x ) = 1 if x ∈ S and χS (x ) = 0 if x / ∈ S. 

Using the scaling transformation (6) with γ = π/λ, we find that the compacton U(x ) with amplitude a and speed c is

located on the interval [0 , λ] with 

a = 

[ 
2 

(1 + α) c 

] 1 
1 −α

, λ = 

2 π

(1 − α) 
√ 

c 
, (9) 

where c > 0 is now arbitrary. It follows from (9) that the amplitude a and the length λ decrease when the speed c increases.

Closer to the left edge x = 0 , the exact solution (8) behaves like U 1 (x ) ∼ x 
2 

1 −α . Since α ∈ (0 , 1) , we have U 1 (0) = U 

′ 
1 
(0) =

 

′′ 
1 
(0) = 0 , hence the compacton solution U 1 ∈ C 2 (R ) is the classical solution of Eq. (5) in spite of the breaking point at

x = 0 . Similar consideration holds near x = π because U 1 (x ) is symmetric about the point x = 

π
2 . 

On the other hand, U 

′′′ 
1 

(x ) ∼ x 
3 α−1 
1 −α , therefore, U 1 ∈ C 3 (R ) is the classical solution of Eq. (4) if and only if 

1 

3 

< α < 1 . (10) 

Due to the lack of uniqueness in Eq. (5) at U = 0 , one can combine compactons of the same and opposite polarities

in order to construct bound states of compactons and anti-compactons propagating with the same speed, as well as the 

travelling periodic waves with zero and nonzero mean values. 

If 2 
1 −α = � is an integer (e.g. for α = 

1 
2 and � = 4 ), the periodic wave U 1 (x ) = a 1 sin 

� (x ) consists of finitely many Fourier

harmonics. In general, the separation between nonzero parts of the compactons may be arbitrary and the Fourier series of 

the periodic waves may not be truncated at finitely many terms even if 2 
1 −α = � is integer. 

3. Stability of compactons 

Compactons can be obtained variationally, which is useful for understanding stability of compactons from the energetic 

point of view [16] . The sublinear KdV equation formally admits conservation of three integrals, which correspond in classical 

mechanics to mass, momentum, and energy, respectively: 

M(u ) = 

∫ 
R 

udx, (11) 

P (u ) = 

1 

2 

∫ 
R 

u 

2 dx, (12) 

and 

E(u ) = 

1 

2 

∫ 
u 

2 
x dx + 

1 

1 + α

∫ 
| u | 1+ αdx. (13) 
R R 

3 
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Eq. (5) is the Euler–Lagrange equation for the action functional 

	c (u ) = E(u ) − cP (u ) . (14) 

so that U is the critical point of 	c (u ) . The energy E(u ) is not a C 2 functional at u = 0 . Adding formally a perturbation v to
the compacton U and expanding the action functional near U give 

	c (U + v ) = 	c (U) + 

1 

2 

〈 L c v , v 〉 + . . . , (15) 

where 〈·, ·〉 is the standard inner product in L 2 (R ) and L c is given by the differential expression 

L c = −∂ 2 x − c + α| U(x ) | α−1 . (16) 

Without loss of generality, it is sufficient to consider the compacton U = U 1 given by (8) for c = c 1 , due to the scaling

transformation (6) . In addition, we consider the class of compact perturbations v with the support in supp (U 1 ) so that the

operator L c= c 1 is closed on the compact interval [0 , π ] as the differential operator L 1 : dom (L 1 ) ⊂ L 2 (0 , π) �→ L 2 (0 , π) given

by 

L 1 := −∂ 2 x −
4 

(1 − α) 2 
+ 

2 α(1 + α) 

(1 − α) 2 sin 

2 (x ) 
, x ∈ (0 , π) (17) 

and 

dom (L 1 ) := 

{
v ∈ L 2 (0 , π) : L 1 v ∈ L 2 (0 , π) 

}
. (18) 

We prove here that compactons U are local non-degenerate minimizers of energy E(u ) subject to the fixed momentum 

P (u ) in the space of symmetric compact functions with the support in supp (U) for every 

1 

5 

< α < 1 . (19) 

Since both the energy and momentum are constants of motion, Lyapunov stability theory suggests that these compactons 

are energetically stable in the time evolution of the sublinear KdV equation. 

In order to prove the statement, we first show that under the condition (19) , the spectrum of the self-adjoint operator

L 1 given by (17) and (18) is purely discrete and consists of real eigenvalues { μ1 , μ2 , μ3 , . . . } such that 

μ1 < μ2 = 0 < μ3 < . . . . (20) 

Then, we show that the operator L 1 is strictly positive under the constraint of fixed momentum P (u ) and the spatial sym-

metry of perturbations v , so that U 1 is a local non-degenerate constrained minimizer of energy. 

In order to prove (20) , we consider the spectral problem L 1 v = μv with the spectral parameter μ. The spectral problem

is defined by the differential equation with regular singular points at x = 0 and x = π (see [40] ). For each regular singular

point, indices of the Frobenius theory are given by roots of the indicial equation 

m (m − 1) − 2 α(1 + α) 

(1 − α) 2 
= 0 , (21) 

from which we obtain 

m 1 = 

1 + α

1 − α
, m 2 = − 2 α

1 − α
. (22) 

Two fundamental solutions of the spectral problem L 1 v = μv near x = 0 behave like v 1 (x ) ∼ x m 1 and v 2 (x ) ∼ x m 2 with m 1 >

0 and m 2 < 0 . The second solution is not squared integrable near x = 0 if m 2 < − 1 
2 which yields the range (19) . In this case,

the end points x = 0 and x = π are classified as the limit points by Weyl’s theory and the spectrum of L 1 is defined by the

admissible values of μ for which the two bounded solutions of the spectral problem L 1 v = μv which behave like v (x ) ∼ x m 1 

near x = 0 and v (x ) ∼ (π − x ) m 1 near x = π intersect. This intersection is not generic and occurs at a countable number of

isolated eigenvalues μ; moreover, each eigenvalue is obviously simple with only one linearly independent eigenfunction. 

It remains to prove the ordering (20) of eigenvalues. In order to compute the eigenvalues of L 1 , we use the following

substitution 

v (x ) = sin 

m 1 (x ) φ(x ) , (23) 

where φ solves the following second-order differential equation 

−φ′′ (x ) − 2(1 + α) 

(1 − α) 
cot (x ) φ′ (x ) − (3 + α) 

(1 − α) 
φ(x ) = μφ(x ) . (24) 

The first two eigenvalues and eigenfunctions are obtained from (24) explicitly: 

μ1 = −3 + α

1 − α
, φ1 (x ) = 1 
4 
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and 

μ2 = 0 , φ2 (x ) = cos (x ) . 

By Sturm–Liouville theory, since v 2 (x ) = sin 

m 1 (x ) cos (x ) has a single zero on [0 , π ] , μ2 is indeed the second eigenvalue of

L 1 on L 2 (0 , π) , so that the ordering (20) of simple eigenvalues of L 1 is proven. 

Although the ordering (20) was proven for c = c 1 , the same ordering of eigenvalues holds for every c > 0 due to the

scaling transformation (6) . Thus, the compacton U is a saddle point of 	c with simple negative and zero eigenvalues of the

quadratic form 〈 L c v , v 〉 in the space of compact functions v with supp (v ) = supp (U) . 

Next, we show that the linear operator L c is strictly positive under the constraint of fixed momentum P (u ) and the

spatial symmetry of perturbations. 

The zero eigenvalue μ2 = 0 of the linear operator L c is related to the translational symmetry. If the perturbation v is

symmetric with respect to the middle point in supp (v ) = supp (U) , then the zero eigenvalue is removed from the spectrum

of L c . Furthermore, the constraint of fixed momentum P (u ) imposes the constraint 〈 U, v 〉 = 0 on the perturbation v . In order

to show that the negative eigenvalue μ1 < 0 is removed under the constraint 〈 U, v 〉 = 0 , we need to show the validity of

the Vakhitov–Kolokolov (slope) stability condition [41] : 

〈 L −1 
c U, U〉 = 〈 ∂ c U, U〉 = 

d 

dc 
P (U) < 0 , (25) 

where we have used that L c ∂ c U = U which follows from formal differentiation of Eq. (5) in c. It follows from (6) and (9) that 

U(x ) = γ − 2 
1 −α U 1 (γ x ) , γ = 

1 

2 

(1 − α) 
√ 

c . 

Hence, we obtain 

P (U) = γ − 5 −α
1 −α P (U 1 ) , 

with P (U 1 ) > 0 . Since P (U) ∼ γ − 5 −α
1 −α and γ ∼ c 

1 
2 , the slope condition (25) is satisfied for every α ∈ (0 , 1) . 

We summarize that the linear operator L c is strictly positive under the constraint of fixed momentum P (u ) and the

spatial symmetry of perturbations v so that the compacton U is a local non-degenerate constrained minimizer of energy 

E(u ) in the space of symmetric compact perturtubations with the support in supp (U) . 

There are several loose ends in the mathematical theory of stability of compactons in the time evolution of the sublinear

KdV equation. 

First, well-posedness theory (e.g., continuous dependence on initial data) is out of reach for the sublinear KdV equation 

(see [14] for analysis of well-posedness of another compacton equation). 

Second, existence of global minimizers of energy E(u ) under the fixed L 2 norm is difficult to prove because the sub-

quadratic term of E(u ) is not controlled by Gagliardo–Nirenberg inequality (compared to the constraint on the L 1 norm

considered in [16] ). 

Third, since E(u ) is not C 2 at u = 0 , the second variation in the expansion (15) is related to the singular Sturm–Liouville

operator L c with singularities at the end points of supp (U) . This explains why the energetic stability has been obtained only

in class of compact functions with the support in supp (U) . Perturbations supported outside supp (U) do not belong to the

positive subspace of energy because the linear operator −∂ 2 x − c is not positive for c > 0 . These perturbations of the sign-

indefinite energy may change the support of the compactons and may lead to destabilization of the compacton U in the 

time evolution. 

While the mathematical stability theory is open for further studies, we give convincing numerical evidences of the sta- 

bility and robustness of compactons in the time evolution of the sublinear KdV equation. 

4. Numerical simulation 

We have picked the powers α = 

3 
4 and α = 

2 
5 which belong to the intervals (10) and (19) for numerical study of the

wave dynamics in the sublinear KdV equation. Simulations were run in a large spatial domain imposing periodic boundary 

conditions. Details of the numerical method are given in Section 4.1 . The wave dynamics observed under the two choices of

the power α is qualitatively similar. We describe in detail the case α = 

3 
4 in Sections 4.2 –4.6 and give a brief description of

the case α = 

2 
5 in Section 4.7 . 

4.1. Numerical method 

The split-step Fourier method (see, e.g., [42] ) advances from one time level to the next one in two steps. The first step

from u (x, t) to u NL (x, t + �t) , is performed according to the nonlinear transport equation 

∂u NL = α| u NL | α−1 ∂u NL 
. (26) 
∂t ∂x 

5 
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Table 1 

Relative errors in the conservation of the integrals (11) –(13) for the performed numer- 

ical simulations together with the size of the spatial domain L x , the number of grid 

points N x , and the time step �t . 

α | �M/M| | �P/P| | �E /E | L x N x �t

Fig. 1 3 / 4 1 . 2 × 10 −15 3 . 5 × 10 −10 3 . 1 × 10 −10 100.5 2 9 2 −14 

Fig. 2 3 / 4 2 . 3 × 10 −15 6 . 0 × 10 −9 3 . 2 × 10 −9 100.5 2 9 2 −14 

Fig. 3 3 / 4 1 . 2 × 10 −15 2 . 0 × 10 −11 3 . 6 × 10 −8 301.6 2 10 2 −14 

Fig. 5 3 / 4 4 . 2 × 10 −15 3 . 0 × 10 −7 9 . 3 × 10 −5 201.1 2 11 2 −17 

Fig. 6 3 / 4 4 . 3 × 10 −15 3 . 5 × 10 −7 9 . 9 × 10 −8 100.5 2 10 2 −14 

Fig. 7 3 / 4 3 . 2 × 10 −15 2 . 2 × 10 −9 1 . 4 × 10 −9 100.5 2 10 2 −14 

Fig. 8 3 / 4 2 . 7 × 10 −15 6 . 6 × 10 −7 2 . 0 × 10 −7 100.5 2 10 2 −14 

Fig. 9 2 / 5 1 . 2 × 10 −15 3 . 7 × 10 −8 2 . 3 × 10 −8 41.9 2 8 2 −14 

Fig. 10 2 / 5 2 . 3 × 10 −15 1 . 5 × 10 −6 1 . 6 × 10 −4 41.9 2 8 2 −14 

 

 

 

 

 

 

 

 

Eq. (26) is solved using the midpoint finite-difference approximation in two sub-steps, ⎧ ⎨ 

⎩ 

u NL (x, t + �t/ 2) = u (x, t) + 

�t 

2 

∂ 

∂x 

[| u (x, t) | α−1 u (x, t) 
]
, 

u NL (x, t + �t) = u (x, t) + �t 
∂ 

∂x 

[| u NL (x, t + �t/ 2) | α−1 u NL (x, t + �t/ 2) 
]
. 

(27) 

Derivatives on the right-hand-side of (27) are calculated using the Fourier transform: 

∂ f (x ) 

∂x 
= F 

−1 [ −ik F ( f (x ) ) ] , (28) 

where F(·) denotes the discrete Fourier transform along the coordinate x, and k is the corresponding array of wavenumbers. 

The second step is performed in the Fourier domain using the analytic solution to the linear KdV equation: 

u (x, t + �t) = F 

−1 
(
e −ik 3 �t F ( u NL (x, t + �t) ) 

)
. (29) 

In our simulations, a better performance (with noise reduced) was demonstrated by a modification of the described 

above method, when Eq. (26) was solved using the Runge–Kutta method in the Fourier domain, 

∂ ̂  u NL 

∂t 
= −ik F 

(| u NL | α−1 u NL 

)
, ˆ u NL (k, t) := F(u NL (x, t)) , (30) 

where the step from ˆ u NL (x, t) = ˆ u (x, t) to ˆ u NL (x, t + �t) is made using the standard fourth-order Runge–Kutta method. The

subsequent solution (29) is modified as follows, 

u (x, t + �t) = F 

−1 
(
e −ik 3 �t ˆ u NL (x, t + �t) 

)
. (31) 

Sufficiently small time steps �t were chosen to achieve approximate conservation of the mass (11) , momentum (12) , 

and energy (13) integrals. No spectral filters or wave smoothing which could damp the short-scale noise were applied. The 

short-scale instabilities were first observed in the case of the smaller power, α = 

2 
5 . These instabilities occur due to the

reduced smoothness of compacton solutions when α decreases (see Sec. 2 ). The short-scale instabilities were overpassed by 

using a coarser spatial resolution (one can also use spectral filters or modifications of the derivative operators). This trick 

stabilizes simulations with the chosen conditions. 

Table 1 presents the relative errors observed for the three conserved quantities in our numerical simulations. The corre- 

sponding size of the spatial domain, L x , the number of spatial mesh points (twice the number of the Fourier modes), N x ,

and the time step, �t, are given in the table as well. Fluctuations of the mass integrals did not exceed the level of 10 −14 in

all simulations, whereas fluctuations of the momentum and energy integrals were larger. It follows by comparison of errors 

for the similar figures, Figs. 1 and 2 for α = 

3 
4 and Figs. 9 and 10 for α = 

2 
5 , that the numerical method exhibits poorer

accuracy for the smaller value of α, which is the price for the coarser spatial resolution in order to prevent the appearance

of the short-scale numerical instabilities. 

4.2. Propagation of a single compacton ( α = 3 / 4 ) 

The initial conditions for numerical simulations of compactons were based on the exact solution (8) with (9) : 

u (x, 0) = a sin 

8 
(
πx 

λ

)
χ[0 ,λ] (x ) , λ = 

√ 

56 πa 1 / 8 , (32) 

where a := 

(
8 
7 c 

)4 
is the amplitude parameter defined in terms of the speed c > 0 . The edges of the compacton (32) are

represented by relatively smooth functions which have the power-law dependence, u (x, 0) ∼ x 8 as x → 0 . Compactons of

larger amplitude a are wider in width λ and move with smaller speed c. 
6 
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Fig. 1. Numerical simulation of a single compacton (32) with c = 1 on the interval of the length 4 λ subject to the periodic boundary conditions. The units 

of x and ct have been normalized by λ. 

Fig. 2. Evolution of compactons with perturbed supports in the periodic domain of the total length 4 λ: the wave shapes at the moment ct = 4 λ (a) and 

the evolution of small-scale background waves (b). 

Fig. 3. Evolution of a wide pulse-like initial perturbation: the long-time wave evolution (a) and the initial stage shown in semilogarithmic coordinates (b). 

7 
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Fig. 4. Parameters of the largest compactons descerned in the numerical simulations of the sublinear KdV equation with α = 3 / 4 versus the relations (35) . 

Fig. 5. Evolution of a narrow pulse-like initial perturbation: the long-time wave evolution (a) and the structure of the small-amplitude tail (b). 

 

 

 

 

 

 

 

 

 

Numerical simulation of a single compacton with the velocity c = 1 is shown on Fig. 1 . It follows from (32) that the

compacton with c = 1 has a ≈ 1 . 7 and λ ≈ 25 . 13 . The spatial domain has the total length 4 λ. It takes the time interval

T loop = 4 λ/c for the compacton to return to the initial position after moving along the periodic domain. 

Compacton (32) moves to the left during the time evolution. Wave profiles after 21, 23, and 25 cycles are superposed

with the initial profile without any visible difference on Fig. 1 . The inset shows the small-amplitude radiation to the left of

the compacton, from which it is clear that negligibly small short waves arise with time due to numerical errors. 

4.3. Stability of a single compacton under small perturbations ( α = 3 / 4 ) 

Here we study a response of a single compacton to small perturbations of its width. The initial condition is taken in the

form: 

u (x, 0) = a sin 

8 
(
πx 

ελ

)
χ[0 ,ελ] (x ) , λ = 

√ 

56 πa 1 / 8 , (33) 

where a > 0 is the amplitude parameter and ε > 0 is the deformation factor. The wave shape given by (33) coincides with

the compacton (32) if ε = 1 . If ε � = 1 but | ε − 1 | is small, the support of the compacton is slightly perturbed. 

Evolution of the initial conditions (33) with the same amplitudes a = 1 . 7 (which corresponds to c = 1 ) but with different

widths, ε = 0 . 99 and ε = 1 . 01 , is shown on Fig. 2 . A slightly altered compacton is formed at a late stage, as shown on

Fig. 2 a. The longer support ( ε = 1 . 01 ) leads eventually to a slightly higher and slower compacton, while the shorter support

( ε = 0 . 99 ) causes the opposite effect. Evolution of the radiated background waves in the range of displacements −0 . 002 ≤
8 
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Fig. 6. Numerical simulation of two compactons with the same polarity and different speeds c 1 = 1 and c 2 = 1 . 5 : (a) the (x, t) diagram, (b-c) evolution of 

min u and max u in time, and (d-e) snapshots during the first collision of the two compactons in different scales. 

 

 

 

 

 

 

 

u ≤ 0 . 002 is shown in Fig. 2 b. Note that the solutions are plotted in the reference moving with the speed of the unperturbed

compacton, c. 

At the first stage, the perturbed compactons emit long waves of different signs which propagate faster to the left. After

some time, these waves re-appear from the right edge of the computational interval due to the periodic boundary con- 

dition. At the instant ct ≈ 1 . 3 λ the emitted waves enter the interval occupied by the compacton and seem to disappear.

However, much less regular waves are radiated leftwards shortly after; they quickly acquire the chaotic character. Note that 

the amplitudes of the noisy background waves do not seem to grow in the course of the wave evolution. 

Overall, the numerical simulations on Fig. 2 , illustrate stability of a single compacton under a small perturbation of its

support. Both computations for ε = 0 . 99 and ε = 1 . 01 are qualitatively similar to each other. Though the energetic stability

of compactons is proven for the symmetric perturbations with the same support, Fig. 2 provides numerical evidences that 

compactons are stable even if the perturbations have different supports. 

4.4. Transformation of pulse-like initial disturbances ( α = 3 / 4 ) 

Here the initial conditions are taken in the form (33) , but the parameter ε differs from 1 significantly. Figs. 3 and 5 show

the outcomes of the time evolution for the stretched (ε = 3) and squeezed (ε = 0 . 5) initial condition (33) with a = 1 . 7 ,

respectively. The horizontal axes in the figures are scaled by the length λ of this compacton. 
9 
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Fig. 7. Numerical simulation of two interacting compactons with the same polarity and different speeds c 1 = 1 and c 2 = 1 . 05 : (a) the (x, t) diagram, (b-c) 

evolution of min u and max u in time, (d) the background waves and (e) the snapshots during the collision of two compactons. 

 

 

 

 

 

 

 

For Fig. 3 , the initial condition (33) shown with the green thick line is thrice wider than a compacton of the same ampli-

tude ( ε = 3 ). During the initial stage of the evolution the left slope of the hump moves leftwards and produces compactons

as shown in Fig. 3 b in semilogarithmic axes. The distances between the emerging compactons increase with time. At time

t = 120 , it becomes apparent ( Fig. 3 a) that the tail of the solution resolves into a train of compactons. 

The emergence of a train of compactons from the initial smooth data was simulated previously in the degenerate KdV 

equation, Eq. (1) , see e.g. the review [8] . The new compactons in our simulations are ordered according to the speeds, in

the opposite order of their amplitudes. The amplitude of the highest compacton is significantly greater than the amplitude 

of the initial condition. The black dashed line in Fig. 3 a marks the locus of the compacton tops if they were propagating

from the point of the initial condition with constant speeds c defined by their final amplitudes a by the formula 

c = 

8 

7 a 1 / 4 
. (34) 

According to Fig. 3 a, compactons remain to the right of the dashed line, hence they experience deceleration when they are

formed from the initial pulse-like perturbation. 

We estimated the following parameters of the largest compactons which emerge in the evolution of a pulse-like initial 

disturbance: the amplitude A at the local extremum (which may be either maximum of minimum), the width L 1 / 2 calculated
10 
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Fig. 8. The same as Fig. 6 but for two interacting compactons with opposite polarities and different speeds c 1 = 1 and c 2 = 1 . 5 . 

 

 

 

 

 

 

 

at the levels A/ 2 , and the velocity c. They are compared in Fig. 4 with the theoretical dependences: 

c = 

8 

7 | A | 1 / 4 , L 1 / 2 = 2 

√ 

56 | A | 1 / 8 arccos 

(
2 

− 1 
8 

)
. (35) 

Different symbols on Fig. 4 correspond to different numerical simulations. The parameters of four largest compactons ob- 

served in the simulation shown in Fig. 3 are plotted in Fig. 4 with triangles. One may see that they approximately follow

the theoretical curves. Some deviation from the theory may occur due to the discreteness of the data, but mainly due to the

partial overlapping between the largest compactons and other background waves. 

For Fig. 5 , the initial condition is twice narrower than a compacton of the same amplitude ( ε = 

1 
2 ). During the early

evolution, the transformed wave looks very much similar to the dispersive wave spreading described by the classical KdV 

equation (see the curve for t = 10 in Fig. 5 a). It becomes apparent during the later stage that new compactons with alter-

nating signs arise during the time evolution. Similar to Fig. 3 , the dashed black curves indicate the expected locus of the

compacton tops if they were propagating with constant speeds c which depend on the amplitudes a according to (34) . Com-

pactons experience acceleration since the compactons are now to the left of the dashed curves. Parameters of the largest 

compactons are plotted in Fig. 4 with circles. 

In contrast to the simulation on Fig. 3 , two sets of compactons emerge at the early stage of the evolution: a small

number of compactons with relatively large amplitudes and alternating polarities and a sequence of much smaller positive 

compactons which are generated by the left slope of the evolving perturbation and quickly occupy the entire computational 
11 
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Fig. 9. Similar to Fig. 1 , but for the power α = 2 / 5 (a). Normalized Fourier amplitudes in 100 instants from 0 to t = 400 λ/c are shown by different lines 

in the panel (b). The asymptotics plotted by the dashed line corresponds to the dependence (kλ) −1 − 2 
1 −α = (kλ) −

13 
3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

domain due to the high speed of small-amplitude compactons (see Fig. 5 b). These small-amplitude compactons are not 

visible in Fig. 5 a, however their amplitudes, widths and velocities approximately obey the relations for compactons (the 

parameters of three largest compactons are verified against the theory in Fig. 4 ). 

Generation of compactons as a result of disintegration of pulse-like initial perturbations resembles much the scenarios 

of soliton generation in the classical KdV equation. However, compactons move to the left and their amplitudes are inverse 

proportional to their speeds according to (34) . The small compactons with decreasing amplitudes and increasing speeds play 

the role of dispersive waves in the linear KdV equation. 

4.5. Interaction of compactons with same polarity ( α = 3 / 4 ) 

Compactons propagate with different velocities if they have different amplitudes, and hence should eventually interact 

if a faster compacton is placed behind a slower one. In contrast to the case of solitary waves, the moment when two

compactons start to interact, is defined exactly, when the boundaries of the compactons cross. 

Fig. 6 shows simulation of two compactons of the same polarity characterized by different speeds c 1 = 1 and c 2 = 1 . 5 .

At t = 0 the small compacton is located far to the left from the large one, though it propagates faster and catches up the

other compacton thanks to the periodic boundary condition, see the x − t diagram in Fig. 6 a. The diagram is plotted in

the reference moving with the speed c 1 of the slower (larger) compacton. The compactons do not exhibit any deformation 

until they encounter. The compactons collide at about t ≈ 90 and seem to restore their shapes after the collision. Long after,

they collide for the second time at t ≈ 270 in a similar manner. The deceleration (shift to the right) of the slower (larger)

compacton in the course of the collisions is obvious in Fig. 6 a. A deeper investigation reveals that the faster (smaller)

compacton experiences acceleration (shift to the left) during the collisions. 

A few snapshots of the solution during the phase of collision are shown in Fig. 6 d. The wave is one-humped and is

almost symmetric at t = 90 . The evolution of minimum and maximum of u in the simulation domain is shown in Fig. 6 b

and c respectively. The constant value of max x u before the collision is determined by the amplitude of the large compacton.

When the compactons start to interact, the wave maximum shortly jumps up for a small amount, and then drops down

more substantially. Later on, the wave maximum restores its original value, but only approximately. In general, the collision 

of compactons shown in Fig. 6 looks very similar to the overtaking interaction of KdV solitons [43,44] . 

Fig. 6 e shows the compacton tails to the left of the interacting core (note different time instants in the plots in Fig. 6 d

and e). One may clearly see that the compactons interact inelastically. In the course of the collision they generate a se-

ries of waves of the opposite polarity, instead of dispersive waves of the linear KdV equation. The small-scale waves in

Fig. 6 e behave like compactons, the estimates of their amplitudes, widths and velocities approximately follow the curves 

for compactons in Fig. 4 , see the magenta pluses. The slowest negative compacton is large enough to be seen in Fig. 6 d at

t = 100 , 110 . The small negative compactons emerge from the depression wave and get ordered according to their speeds,

as is seen on Fig. 6 e at t = 110 . 

At longer time, more small-amplitude compactons of both signs are generated through the new collisions between com- 

pactons (see dark and bright traces in Fig. 6 a), which result in irregular oscillations of the records of the wave minimum

and maximum ( Fig. 6 b,c). Note, however, that these irregular oscillations do not show the tendency to grow in amount. The

initially prescribed two compactons remain the most significant wave structures throughout the simulated time period. 
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Fig. 10. Similar to Fig. 2 , but for the power α = 2 / 5 and a five times stronger perturbation of the support length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inelastic collisions of compactons, the emergence of new small-scale compactons (fission) including compactons of the 

opposite sign, and also the disintegration of one of interacting compactons were previously observed in the numerical sim- 

ulations reported in Rosenau and Zilburg [8] , Sergyeyev et al. [13] within other compacton-carying equations. 

It is known from the classical KdV equation [43,44] that solitons of the same polarity with close velocities repel, what

leads to the second type of soliton interaction, of the exchange type. With the purpose to investigate this issue, the simu-

lation of two positive compactons with close velocities is performed, and the exchange interaction of compactons is found 

for c 1 = 1 and c 2 = 1 . 05 , see Fig. 7 . The graphs in Fig. 7 a show how the two compactons exchange their amplitudes and

undergo coordinate shifts similar to the case displayed in Fig. 6 . A few shapes of the interacting compactons are plotted in

Fig. 7 e which resemble the exchange interaction of KdV solitons [43] ; the waves do not form a single-humped wave. A sym-

metric wave appears in the course of the interaction at t ≈ 280 , which corresponds to the local minimum of the function

max x u . The deepest point of the hollow between the humps approximately corresponds to the value | A 1 − A 2 | (shown with

the horizontal dashed line in Fig. 7 e for the solution at t = 280 ). 

A detailed investigation of the picture of interaction of compactons with close velocities reveals new effects shown on 

Fig. 7 d. The small relative velocity of the compactons yields the long period of nonlinear interaction, thus the compactons

might change significantly. However, no generation of small-scale waves with amplitudes appreciably greater than the level 

of the numerical noise is observed. Instead, a wave set-down in the entire simulation domain is produced by the colliding

compactons during the period 200 � t � 400 , which may be seen in Fig. 7 d. This figure replicates the surface displayed in

Fig. 7 a, but the displacements are shown with the color in a much smaller range of magnitudes, 1 × 10 −4 (see the colorbar).

The white traces in the figure correspond to the interacting compactons, while the black area - to the set-down. The evolu-

tion in time of the set-down amplitude may be seen in the record of min x u in Fig. 7 b. It is small in magnitude, but is well

above the level of noise of the code. 

The constant set-down vanishes when the compactons detach, and the wave maximum nearly returns to the value of the 

initial condition. However, at this stage the background starts to oscillate with a small amplitude. The oscillations become 

apparent through the almost horizontal color stripes in Fig. 7 d. Besides, tiny oscillations of the functions min x u and max x u

in Figs. 7 b,c for t > 400 reveal a new wave component which emerges in the course of the collision. The strips in the x − t

diagram in Fig. 7 d possess a small inclination which corresponds to perturbations propagating to the left. However, the 

amplitude of the oscillations is not much larger than the accuracy of the simulation, thus the investigation of this dynamics

requires more efforts and lies beyond the scopes of the present work. 

4.6. Interaction of compactons with opposite polarities ( α = 3 / 4 ) 

Fig. 8 illustrates the numerical simulation of interaction of two compactons with the same speeds as in Fig. 6 but with

different polarities. Clearly, the compactons preserve their structures when collide. It follows from the x − t diagram in 

Fig. 8 a that the nonlinear shift of coordinate of the slow compacton is opposite to the case of same polarities. During the
13 
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interaction, both compactons with the opposite polarities experience accelerations. A similar picture of the phase shifts was 

observed for interacting compactons of Eq. (1) with m = 3 and n = 3 in Rosenau and Oron [45] . 

A large short-living wave occurs during the collision with the amplitude approximately equal to the sum of the com- 

pacton amplitudes | A 1 | + | A 2 | ≈ 2 . 0 , the maximum wave possesses strong vertical asymmetry, see Fig. 8 b,c. 

The collision of compactons of opposite signs occurs inelastically. A development of a train of positive compactons is 

readily seen in Fig. 8 e at t = 97 , which displays the area to the left from the interacting compactons. The estimated pa-

rameters for two of them are plotted in Fig. 4 with crosses; they correspond to compactons. Negative small-amplitude com- 

pactons may also be seen at t = 100 in between positive small-amplitude compactons. The initial compactons approximately 

restore their amplitudes after the collisions, but the presence of small-amplitude compactons result in irregular oscillations 

of the wave extremes in time. 

4.7. Compacton dynamics in the case α = 2 / 5 

Simulations reported in Sections 4.2 –4.6 (namely, stability of a single compacton, evolution of broad and narrow initial 

pulses, inelastic effects of collisions between compactons) have been reproduced in the numerical simulation of the sub- 

linear KdV equation with the power α = 

2 
5 . The effects of the compacton dynamics are qualitatively similar for α = 

3 
4 and

α = 

2 
5 . 

Since the value 2 
5 is close to the lower limit of the interval (10) when the wave smoothness decreases, one may ex-

pect that the numerical method would behave worse in this case. Indeed, the employed scheme demonstrated noticeably 

poorer accuracy due to coarser grids (see Table 1 ); it suffered from the short-scale instability for the grids with finer spatial

resolution. 

The propagation of a compacton with the velocity parameter c = 1 for 400 compacton’s lengths does not reveal any

significant distortion of the wave shape ( Fig. 9 a), while the level of the background noise is about two orders of magnitude

larger compared to the result shown in Fig. 1 . The Fourier transform of the wave profile decays slowly as the function of

the wavenumber k, but is approximately preserved within the entire simulation ( Fig. 9 b). 

Stability of compactons is also observed for the power α = 

2 
5 . The results of simulations of perturbed compactons with

ε = 0 . 95 and ε = 1 . 05 are given in Fig. 10 . Compared to Fig. 2 , small-scale waves appear quicker and travel faster in agree-

ment with the relation between amplitudes and velocities of compactons, which follows from (9) : 

c = 

2 

(1 + α) a 1 −α
. (36) 

Overall, the compacton structure persists in the time evolution of the sublinear KdV equation with α = 

2 
5 . 

The initial wide and narrow pulses within the sublinear KdV equation with α = 

2 
5 evolve into the sequence of com-

pactons of the same sign and alternating signs, respectively, similarly to Figs. 3 and 5 . Generally, compactons interact inelas-

tically and can produce trains of secondary small-amplitude compactons, though the collisions are very similar to the ones 

between solitons of the classical KdV equation, as described in Sections 4.5 and 4.6 . Two compactons of the same sign with

close velocities interact almost elastically; they form the constant setdown for some time, which later on disappears. No 

background oscillations similar to the ones shown in Fig. 7 d were observed for α = 

2 
5 . The larger speed of small-amplitude

compactons, which emerge in the initial-value problem and via inelastic collisions, lead to faster appearance of noisy back- 

ground waves in the entire domain of simulations. 

5. Conclusion 

Compactons are typically considered in the systems where the advection and dispersion terms in the corresponding evo- 

lution equation are both nonlinear. If the dispersion is linear, then the solitary waves are generally described by hyperbolic 

functions on the line which decay to zero exponentially at infinity. The generalized KdV equation is not integrable with the

exception of the quadratic and cubic powers and their linear combinations (the Gardner equation). 

Here we have studied compactons in the sublinear KdV equation. These compactons are larger in amplitude and wider 

when the speed is smaller. They may be either positive or negative, and propagate to the same direction as the dispersive

waves of the linear KdV equation. We have shown that the compactons are energetically stable with respect to symmetric 

compact perturbations with the same support. 

The key elements of the compacton dynamics have been studied numerically in this work for the particular cases α = 

3 
4 

and α = 

2 
5 of the sublinear nonlinearity. The two cases exhibit qualitatively similar wave dynamics. The stability of com- 

pactons is confirmed in the direct numerical simulations of propagating and interacting compactons. The long-term solution 

of the evolution problem for pulse-like disturbances is shown to tend to a sequence of compactons. Due to the specific rela-

tion between their amplitudes and speeds, the trains of small-amplitude compactons are ordered differently to the case of 

the classical KdV equation. Compactons with the opposite polarity may arise in the time evolution of the pulse-like initial 

data. 

Collisions of compactons are not elastic. Interacting compactons emit waves in the form of trains of small-scale com- 

pactons, but almost recover their amplitudes after collisions, so that they may persist during numerous collisions with 
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small or large compactons. The three types of collisions known for solitons have been observed in the present framework: 

overtaking and exchange interaction of compactons with the same polarity, and absorb-emit interaction of compactons with 

the opposite polarities. Similar to solitons of integrable KdV-type equations, the maximum wave field decreases when com- 

pactons of the same polarity interact, or increases in the case of opposite polarities. Compactons with the amplitudes A 1 

and A 2 result in a wave with the amplitude given by the difference of amplitudes A 1 and A 2 when they merge, where

the amplitudes may have either signs. Interacting compactons experience nonlinear shifts of coordinates. The dynamics of 

sublinear compactons demonstates much similarity with other compacton-carrying equations. 

Compactons play a twofold role in the wave evolution within the sublinear KdV equation. On the one hand, compactons 

behave similar to solitary waves: they survive in collisions with other waves and represent the long-term solution of the 

evolution problem. On the other hand, compactons play the role of dispersive waves of the linear KdV equation, when they

quickly spread the residual energy of the initial perturbation which has not been taken by large-amplitude compactons. In 

the latter role, either a slowly decaying smooth tail appears first from the left of the perturbation, which splits later on into

small-amplitude compactons or new small-amplitude compactons are emitted by inelastically interacting compactons. 
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