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Hamiltonian averaging for solitons with nonlinearity management
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We revisit the averaged equation, derived in Pelinowstkgl. [Phys. Rev. Lett91, 240201(2003] from the
nonlinear SchrodinggiNLS) equation with the nonlinearity management. We show that this averaged equation
is valid only at the initial time interval, while a new Hamiltonian averaged NLS equation can be used at longer
time intervals. Using the new averaged equation, we construct numerically matter-wave solitons in the context
of the Bose-Einstein condensates under the Feshbach resonance management. We show that there is no
threshold on the existence of dark solitons of large amplitudes, whereas such a threshold exists for bright

solitons.
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We address the nonlinear Schroding®iLS) equation . 2 t
- - : . , = e i7oa(lAx) _!
with the nonlinearity management, consideredir2], u(x,t)=e v(xt), =7, (4)

iUg = = Uy + VXU + yolulPu + ly<£)|u|2u, (1)  where y_4(7) is the mean-zero antiderivative of(7). By
€ \€ eliminating [v|? from the problem, the local transformation

wheree<1, v, is the averaged nonlinearity coefficient and (4) reduces the NLS equatiqd) to the form

v(7), 7=t/ € is a mean-zero periodic function with the unit

period. The potential/(x)=302x? corresponds to the para-

bolic magnetic trap for the Bose-Einstein condensates. Al- =YL (vH?+ 2vl2Jv[Fv, (5)

though Eq.(1) is written in one spatial dimensio(for rea-

sons of simplicity, the generalization of our method and Wherelv[; stands for(ju[?), and ¥2; stands for(y_)2 The

results to multidimensions is straightforward. Additionally, it standard averaging methd#] is applied for decomposition

is worth mentioning that the recent development of trapping®f v(x,t) into a slowly varying partv(x,t) and a small, fast-

and cooling techniques has enabled experimental realizationgrying partv,(x, 7):

of quasi-one-dimensional condensaf@k and, thus, the re-

duction of the fully three-dimensional NLS equation to an v(X,1) = W(X,t) + vy (X, 7,W(X,1)). (6)

effective one-dimensionallD) model is relevanf4] (see i )

also a rigorous derivation ifB]). Importantly, as the regime From the condition thab,(x, 7,w) does not grow inr, we

of quasi-1D condensates is experimentally tractable, imporderive a new averaged NLS equation:

tant experimental studies on 1D matter-wave dgdkand

bright [5] solitons have subsequently been per?o?med. Fie We= = Wooet VOOW + yolw2w = [ (W2 + 2w wiE,Jw,

nally, it should be noticed that the model Eq) is also (7)

relevant in the context of nonlinear opti@e a layered struc-

ture in which Kerr nonlinearity alternates between self-where u is the mean value of?,(7). The averaged NLS

focusing and self-defocusip@s has been discussed[8j. equation has a standard Hamiltonian form, with the Hamil-
In [2], we derived an averaged equation for standingtonian

waves (solitong under nonlinearity management, based on

the nonlocal transformation that removed the large fast varia-

tions of the nonlinearity coefficieng(7):

iV =~ vkt V(X + ')’O|U|ZU +2i 7—1(Uzv_xx+ 2|Ux|zv + viﬁj

%

= [ [+ VOO + 3ol + o
R

u(x,t) = e 9%y (x,t), (2 (8)
where We would like to comment on the validity of the new
Hamiltonian averaged equati@id) in connection to the av-
1 vty 2 e eraged equation, derived j&]. Although the averaged equa-
¢(X*t)‘; 07 . o[ t)dt’ () tion (6) in [2] gives the condition that the correction

v1(X, 7,w) does not grow secularly in, the nonlocal terng3)
There exists an equivalent local transformation that servemm the transformatioq2) has a nonzero mean value in the
the same purpose, first order ofe. The nonzero mean value leads to a linear
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FIG. 1. (a) Example of a dark soliton solution fas=-0.5,02=0.02,,=0.1, andyl=2.5\s‘%. The dashed curve shows the result from
Eq. (10) and the solid curve shows the result from ELL) of [2]. The potential is shown by the dashed-dotted lili¢ Continuation branch
of dark soliton solutions as a function ¢f for the same parameters.

growth in 7 for ¢(x,t) and to a quadratic growth infor the  Since the numerical approximations of the bound states,
second-order correction termy(x,7,w) in the extended de- shown in Figs. 1-3 of2], are only valid for the initial time
composition: interval, it is important to revisit the numerical approxima-
tions of the bound states within the new Hamiltonian aver-
aged NLS equation?), which is valid on longer time inter-
As a result, the validity of the averaged equatinin [2] is  Vvals. In the context of Bose-Einstein condensates under the
destroyed on the time scale of order=t=0(1). When deal- Feshbach resonance managemgljt the standing waves
ing with nonlocal transformations such as E2) and hence correspond to matter-wave bright and dark solitons.
with nonlocal integro-differential equations, one cannot use Using the standard standing wave ansat(x,t)
the scalar decompositiori6) and (9), but rather vector de- =¢(x)€*", we find the ODE problem fog(x):
compositions forw(x,t) and ¢(x,t). The modified averaging
procedure for the derivation of the Hamiltonian averaged - ¢"+ wd+V(X)d+ yod> — 4u[2¢%(¢')? + ¢*¢"] = 0.
NLS equation(7) from the nonlocal transformatiof?) and (10)
(3) will be published elsewhergl0].

The comments above explain why the averaged equations For the time-dependent nonlinearity coefficient, we use
(8) and (11) in [2] have no obvious Hamiltonian structure, the sinusoidal functiony(7)=vysin(2w7), such that u
while the original NLS equatioril) is a Hamiltonian system. =y§/(8772). Figure Xa) shows the profile of the dark soliton

v(X,t) = W(X,t) + evy(X, 7, W) + €v(X, 7,W). )
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FIG. 2. Same as in Fig. 1, but for a bright soliton solution branch. The case 6f5,02=0.4, y,=-0.32, andy; =1 is shown in the left
panel.
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¢(x) from Eq. (10) (dashed curve for 0=-0.5,0?
=0.02,y,=0.1, andy,=2.5Vy,. The solid line shows the

PHYSICAL REVIEW EO0, 047604(2004)

the amplitudes of the bright soliton solutions in the new av-
eraged equatio(iL0), i.e., the solution family terminates at a

bound state of Eq(1l) in [2] for the same parameters. So- nonzero value ofy,.
lution families of these two equations are continued on Fig. we conclude that the new Hamiltonian averaged NLS

1(b) as a function ofy, for the same parameter set.
It is clearly seen from Figs.(&) and Xb) that the dark

soliton solutions remain structurally very close to the one
obtained in[2]. However, there is a nontrivial difference oc-

curing for large amplitudes of the dark solitonsys— 0. In

that case, contrary to what was numerically predicted on th

basis of Eq(11) of [2], there isno thresholdor the existence

equationg(7) and (10) improve the averaging results 2]
for longer time intervals. Additionally, there is, typically, no

Shreshold for the existence of dark soliton solutions of large

amplitudes, whereas such a threshold typically exists for
gright soliton solutions. Nevertheless, the differences be-
tween previous averaged equationg2hand new averaged

of dark solitons of large amplitudes, i.e., such solutions mayquationg7) and(10) are not observable in the case of mod-
exist for arbitrarily smally,. It should be noted that in all the erate values of the average nonlinearity coefficient. This fact

numerical results of2], y; was scaled by\s‘% (e.g., 7
=0.5 in[2] should be read/;=0.5Vyy).

Figures 2a) and 2b) show similar results for the bright
soliton profile ¢(x) for w=0.5,0?=0.4, y,=-0.32, andy,
=1. The difference between solutions of E40) (dashed
curve and of Eqg.(11) in [2] (solid curve is, again, only
observable for bright solitons of large amplitudes)gs- 0.
Contrary to the dark soliton case, there existhrasholdon

justifies the very good agreement between the direct numeri-
cal simulations of the NLS equatigft) and the results of the
averaging approximatiotsee Figs. 4 and 5 if2]).
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