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Abstract
Bifurcations of self-similar solutions for reversing interfaces are studied in 
the slow diffusion equation with strong absorption. The self-similar solutions 
bifurcate from the time-independent solutions for standing interfaces. We show 
that such bifurcations occur at particular points in parameter space (characterizing 
the exponents in the diffusion and absorption terms) where the confluent 
hypergeometric functions satisfying Kummer’s differential equation truncate to 
finite polynomials. A two-scale asymptotic method is employed to obtain the 
local dependencies of the self-similar reversing interfaces near the bifurcation 
points. The asymptotic results are shown to be in excellent agreement with 
numerical approximations of the self-similar solutions.
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1. Introduction

We address reversing interfaces in the following slow diffusion equation with strong absorption

∂h
∂t

=
∂

∂x

(
hm ∂h

∂x

)
− hn, (1.1)

where h(x, t) is a positive function on a compact support, e.g. a concentration of some spe-
cies, and x and t denote space and time, respectively. Restricting the exponents to the ranges 
m  >  0 and n  <  1 limits our interest to the case of slow diffusion [15] and strong absorption 
[16, 18, 19], respectively. The restriction m  >  0 implies that the edges of the compact support 
propagate with a finite speed [9], whilst for n  <  1 compactly supported solutions go extinct in 
a finite time [5]. These two results suggest that, for certain choices of initial data which lead 
to an initial expansion of the compact support, reversing of interfaces can occur. Here, we use 
the term ‘reversing of interfaces’ to describe scenarios in which an advancing interface gives 
way to a receding interface; the term ‘anti-reversing’ of an interface describes the converse, 
i.e. a receding interface giving way to an advancing one, see figure 1. Such scenarios have 
been examined in this range of exponents previously in [7, 8]. For the limiting case when 
m  +  n  =  1 it has been shown, in [10], that solutions can exhibit reversing interfaces but cannot 
display a ‘waiting time’ where an interface remains static for some finite time and then begins 
to move. These ‘waiting-time’ solutions have also been studied for the slow diffusion equa-
tion but in absence of absorption in [17, 21]. The behaviour of solutions local to the extinc-
tion time has also been examined in the limiting case when m  +  n  =  1 in [11, 12] and in the 
general case m  >  0 and n  <  1 in [6].

The slow diffusion equation with strong absorption, (1.1), is relevant in a wide variety of 
different physical processes and can be used as a model for: (i) the slow spreading of a slender 
viscous film over a horizontal plate subject to the action of gravity and a constant evaporation 
rate [2] (when m  =  3 and n  =  0); (ii) the dispersion of a biological population subject to a con-
stant death-rate [14] (when m  =  2 and n  =  0); (iii) nonlinear heat conduction along a rod with 
a constant rate of heat loss [15] (when m  =  4 and n  =  0), and; (iv) fluid flows in porous media 
with a drainage rate driven by gravity or background flows [3, 23] (when m  =  1 and n  =  0).

Let us denote the location of the left interface by x = s(t). It was proven in [5] that com-
pact initial data with a single maximum generates a compact solution in a simply-connected 
region for all time before the compact support shrinks to a point. If m  >  0, 0  <  n  <  1, and 
m  +  n  >  1, it was proved in [9] that the position of the interface, s(t), is a Lipschitz continuous 
function of time. By invoking mass conservation at the interface, it was also shown that s(t) 
satisfies the following interface equation [9]:

ds
dt

= lim
x↘s(t)

{
−hm−1 ∂h

∂x if s′(t) � 0,

hn
(
∂h
∂x

)−1
if s′(t) � 0,

 (1.2)

where the spatial derivatives are not well defined as x ↘ s(t). The analysis of [5, 9, 19] on 
weak solutions to the slow diffusion equation (1.1) was restricted to the range 0  <  n  <  1, in 
which case the zero solution satisfies (1.1) on the infinite line. The weak formulation of the 
slow diffusion equation (1.1) was also considered in the range 1 − m < n � 0 (for m  >  1) in 
[18], where existence of weak solutions was proven for the modified equation

∂h
∂t

=
∂

∂x

(
hm ∂h

∂x

)
− hnχ{h>0}. (1.3)
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The modification involves the characteristic function χ and is included to ensure that the zero 
solution satisfies (1.3) on the infinite line. Under suitable conditions on the initial data, it was 
proven in [18] that the weak solutions are classical at the points (x, t), for which h is posi-
tive. Hence, the positive solution of the slow diffusion equation (1.3) with m  >  0, n  <  1, and 
m  +  n  >  1 can be closed at the left interface x = s(t) subject to the interface equation (1.2).

A numerical method for time-dependent simulations of the slow diffusion equation (1.3) 
was developed in section  6 of our previous work [8], where reversing of an interface is 
observed in numerical simulations with n  =  0. These simulations were compared with the 
self-similar solutions and it was shown that the reversing event was accurately described by 
for a variety of different initial data.

We note that conditions (1.2) are not sufficient to close (1.3) on their own. An additional 
boundary condition is also needed. The boundary condition could be an interface equation at 
a right interface, or a Dirichlet or Neumann condition elsewhere. However, such details are 
not important for our purposes because the self-similar solutions that we examine are to be 
understood in a local sense only (both local to the left interface and local to a reversing event).

After selecting the origin of the spatial and temporal coordinates such that the region of 
positive h lies in x  >  0 and the reversing or anti-reversing event occurs at t  =  0 (at which time 
the interface is located at x  =  0), a plausible local behaviour of interfaces is provided by the 
self-similar solutions in the form suggested in [7],

h(x, t) = (±t)
1

1−n H±(ξ), ξ = x(±t)−
m+1−n
2(1−n) for ± t > 0, (1.4)

Figure 1. Panel (a): schematic scenario of one possible evolution of the compact support 
(blue region) of a solution to (1.1). Regions in the (x∗, t∗)-plane corresponding to 
extinction time, reversing and anti-reversing events are highlighted. Panel (b): possible 
snapshots of the profile of h(x, t) (in the local (x, t)-coordinate system highlighted in 
red in panel (a)) at three different times local to the reversing event. Panel (c): the 
corresponding solution profiles H± in the self-similar coordinate system defined in 
(1.4).

J M Foster et alNonlinearity 31 (2018) 4621
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where the functions H± satisfy the following ordinary differential equations (ODEs):

d
dξ

(
Hm

−
dH−

dξ

)
− m + 1 − n

2(1 − n)
ξ

dH−

dξ
= Hn

− − 1
1 − n

H− (1.5)

and

d
dξ

(
Hm

+

dH+

dξ

)
+

m + 1 − n
2(1 − n)

ξ
dH+

dξ
= Hn

+ +
1

1 − n
H+. (1.6)

It is assumed that H± are positive for ξ > ξ̂±, where ξ̂± are both constants with ξ̂+ being 
relevant for t  >  0 whilst ξ̂− is relevant for t  <  0. Henceforth, we denote the location of the left 
interface for positive and negative time by s+ (t) and s−(t) respectively. The form of the self-
similar solution (1.4) implies that the interface after and before a reversing or anti-reversing 
event is located at the positions given by

s±(t) = ξ̂±(±t)
m+1−n
2(1−n) . (1.7)

See figure 1 for a sketch of the solutions, including the interface locations, in the various dif-
ferent coordinate systems. Owing to (1.7), in addition to requiring m  >  0 and n  <  1, we are 
also restricted to m  +  n  >  1 so that s±(t) has a physically reasonable behaviour in time with 
limt→±0 s′±(t) = 0. For technical reasons described below (3.8), we also restrict the range of 
n to −1 � n < 1, which includes the most interesting case for many physical applications, 
namely n  =  0.

The conditions (1.2) and (1.7) imply that solutions to (1.5) and (1.6) are required to satisfy 
H± ↘ 0 as ξ ↘ ξ̂± and

±m + 1 − n
2(1 − n)

ξ̂± = lim
ξ↘ξ̂±



−Hm−1

±
dH±

dξ if ± ξ̂± < 0,

Hn
±

(
dH±

dξ

)−1
if ± ξ̂± > 0.

 (1.8)

For reasons that will become clear shortly the far-field condition

H± ∼
(
ξ

A

) 2
m+1−n

as ξ → +∞ (1.9)

completes the specification of the relevant boundary value problems for the system (1.5) and 
(1.6). The constant A  >  0 is determined from solving equation (1.5) and the same A is taken 
while solving equation (1.6). Requiring identical far-field behaviours in the solution of both 
(1.5) and (1.6) is tantamount to ensuring continuity of h(x, t) across t  =  0 with

lim
t→0

h(x, t) =
( x

A

) 2
m+1−n

. (1.10)

Existence of suitable solutions to the boundary-value problem (1.5), (1.6), (1.8) and (1.9) 
was first suggested in [7]. This was elaborated in [8] with an analytic shooting method that 
made use of invariant manifold theory for dynamical systems in appropriately rescaled vari-
ables near the small and large values of H±. It was also shown in [8] that the self-similar solu-
tions (1.4) are observed in the numerical simulations of the time-dependent problem related to 
the slow diffusion equation (1.1).

We note the existence of an exact solution to (1.5) and (1.6) in the form

H±(ξ) =

(
(m + 1 − n)2

2(m + n + 1)
ξ2
) 1

m+1−n

. (1.11)
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The conditions (1.8) and (1.9) are satisfied with ξ̂± = 0 and A  =  AQ, where

AQ :=
(

2(m + 1 + n)
(m + 1 − n)2

)1/2

. (1.12)

It is straightforward to verify that in the original spatial and temporal variables given by (1.4) 
the exact solution (1.11) corresponds to a time-independent solution to the slow diffusion 
equation (1.1) given by

h(x) =
(
(m + 1 − n)2

2(m + 1 + n)
x2
) 1

m+1−n

. (1.13)

Hence, the interface is static for the exact solution in (1.11) or (1.13). Although this solution 
does not constitute a reversing or anti-reversing interface solution, it does play a central role 
in the bifurcation analysis. Henceforth we refer to (1.11) as the primary branch of self-similar 
solutions to (1.5) and (1.6).

Given that there is a key difference between the boundary-value problems for H− and H+ , 
namely that A in (1.9) is found whilst solving for H− and then imposed to determine the solu-
tion H+ , we shall provide local analysis of the asymptotic expansions as ξ ↘ ξ̂±. Two types of 
the leading-order balance may occur here. The first possibility is the usual balance for porous-
medium equations, in which the absorption term, −hn, is negligible, i.e.

d
dξ

(
Hm

±
dH±

dξ

)
∼ ∓m + 1 − n

2(1 − n)
ξ̂±

dH±

dξ
. (1.14)

The balance (1.14) is valid for ±ξ̂± < 0 and yields the following local behaviour

H± ∼

(
∓m(m + 1 − n)ξ̂±

2(1 − n)
(ξ − ξ̂±)

)1/m

as ξ ↘ ξ̂±. (1.15)

The second possibility arises when the diffusion term is negligible, i.e.

±m + 1 − n
2(1 − n)

ξ̂±
dH±

dξ
∼ Hn

±. (1.16)

The balance (1.16) is valid for ±ξ̂± > 0 and yields the following local behaviour

H±(ξ) ∼

[
± 2(1 − n)2

(m + 1 − n)ξ̂±
(ξ − ξ̂±)

]1/(1−n)

as ξ ↘ ξ̂±. (1.17)

The asymptotic behaviours (1.15) and (1.17) were proven rigorously in [8] by using dynami-
cal system methods, and they satisfy the relevant boundary conditions (1.8).

Unlike the ODEs (1.5) and (1.6) and the dominant balance (1.14), the balance (1.16) is of 
first order and the corresponding local behaviour, (1.17), contains only one degree of free-
dom, namely ±ξ̂±. We should therefore check for the presence of a second degree of freedom 
(in higher order terms) in the usual way by the Liouville–Green (JWKB) method [4], i.e. by 
linearising the ODEs (1.5) and (1.6) about (1.17). We do so by writing H± = Ĥ± + H̃±, sub-
stituting into (1.5) and (1.6) and truncating at terms of O(H̃2

±). On doing so, and on substitut-
ing the leading order behaviour (1.17) for Ĥ±, we derive a second-order linear homogeneous 
ODE for H̃± with the following local behaviour

J M Foster et alNonlinearity 31 (2018) 4621
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H̃±(ξ) ∼ exp


 |ξ̂±|

2

(
(m + 1 − n)|ξ̂±|

2(1 − n)2

) m
1−n (

ξ − ξ̂±

)− m+n−1
1−n


 . (1.18)

In the limit ξ ↘ ξ̂± this does not satisfy the requirement that |H̃±| � |Ĥ±|, hence the second 
degree of freedom is inadmissible. Thus, each of the balances (1.14) and (1.16) contains only 
one degree of freedom, namely ξ̂±.

As ξ → +∞ the behaviour (1.9) arises from the balance

±m + 1 − n
2(1 − n)

ξ
dH±

dξ
∼ ± 1

1 − n
H±. (1.19)

Since the dominant balance (1.19) is again of first order we employ the Liouville–Green 
(JWKB) method [4] for a second time to reinstate the second possible degree of freedom that 
may be contain in the higher order terms of the behaviour (1.9). Carrying out the same lin-
earisation procedure as described above but this time substituting the leading order behaviour 
(1.9) in place of Ĥ± we derive a second order linear homogeneous ODE for H̃± with the fol-
lowing asymptotic behaviour

H̃±(ξ) ∼ exp

(
∓
(

m + 1 − n
2(1 − n)

A
m

m+1−n

)2

ξ
2(1−n)
m+1−n

)
. (1.20)

Here, we find that the requirement |H̃±| � |Ĥ±| in the limit ξ → +∞ is met for the ODE (1.6) 
whereas it is violated for the ODE (1.5). Thus, the far-field behaviour (1.9) for H− contains 
only a single degree of freedom, namely A. Again, the behaviour (1.9) was justified in [8] by 
using dynamical system methods.

In summary, the ODEs (1.5) and (1.6) are to be solved subject to the boundary conditions 
(1.8) and hence (1.15) or (1.17) as ξ ↘ ξ̂±, where ξ̂± is determined as a part of the solution 
H±. In terms of the dynamics of the PDE (1.1), the local behaviour of the solutions switches 
from

h(x, t) ∼ (−ms′(t)[x − s(t)])
1
m with s′(t) < 0, (1.21)

as in (1.15), to

h(x, t) ∼
(

1 − n
s′(t)

[x − s(t)]
) 1

1−n

with s′(t) > 0, (1.22)

as in (1.17) at a reversing event, or, vice versa at an anti-reversing event. The parameter A 
in the boundary condition (1.9) is determined as a part of the solution H− by using a single-
parameter shooting from either ξ ↘ ξ̂− or ξ → +∞. Contrastingly, for the purposes of solv-
ing for H+ the value of A is prescribed to be the same as the one found from the solution H−.

A numerical shooting method was developed in [8] for the case n  =  0 to connect the near-
field and far-field behaviours for (1.5). The connection is possible only for some isolated 
values of A denoted by A*. This shooting method was used here to obtain a diagram of some 
possible self-similar solutions in the (A, m)-plane for few selected values of n, see figure 2. 
For each point on the curves depicted there is a unique value of ξ̂− which is positive on the red 
curves (corresponding to a solution that advances for t  <  0), negative on blue curves (corre-
sponding to a solution that recedes for t  <  0), and zero on black curves (corresponding to a 
solution with a static interface for t  <  0). Figure 3 shows details of the bifurcations in the case 

J M Foster et alNonlinearity 31 (2018) 4621
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n  =  0. A short summary of how the plots in figures 2 and 3 were produced is given in section 6 
and full details can be found in [8].

Note that the red curves in figure  2 correspond to reversing interfaces only if they are 
located above the black curves, in which case both ξ̂− and ξ̂+ are positive. However, if the red 
curves are located below the black curves, then ξ̂− > 0 and ξ̂+ < 0, which corresponds to an 
advancing interface that instantaneously pauses before continuing its advancing. Similarly, 
if the blue curves are located below the black curves, they corresponds to the anti-reversing 
interfaces with ξ̂− < 0 and ξ̂+ < 0. If the blue curves are located above the black curves, then 
ξ̂− < 0 and ξ̂+ > 0, which corresponds to a receding interface that instantaneously pauses 
before continuing its receding.

The subtlety explained above (regarding the physical relevance of red and blue curves that 
lie above/below the black curve in figures 2 and 3) occurs because a valid solution to the ODE 
(1.6) for H+ can be obtained for every value of A in the behaviour (1.9). It was shown in [8] 

Figure 2. The special values of A  =  A* (as a function of m) in the behaviour (1.9) that 
correspond to a solution of the ODE (1.5) with the near field behaviours (1.15) and 
(1.17). The red, blue and black curves indicate values of A* that are associated with 
solutions with ξ̂− > 0 (advancing for t  <  0), ξ̂− < 0 (receding for t  <  0), and ξ̂− = 0 
respectively. The values of m2, m3, and m4 are given in (1.23). Note that solutions 
with A  >  AQ have ξ̂+ > 0 whereas those with A  <  AQ have ξ̂+ < 0. Thus there is a 
difference in the physical interpretation between solutions that reside above the black 
curve to those that reside below it.

J M Foster et alNonlinearity 31 (2018) 4621
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that ξ̂+ is a monotonic increasing function of A with the following properties: if A  <  AQ then 
ξ̂+ < 0, if A  >  AQ then ξ̂+ > 0 whereas if A  =  AQ then ξ̂+ = 0. Thus, if a valid solution to 
(1.5) can be found, a related solution to (1.6) can always be constructed for the same value of 
A  =  A*.

The rather exotic patterns visible in figures 2 and 3 depict the existence of bifurcating solu-
tions from the black curve that corresponds to the case ξ̂− = 0, and hence to the exact solution 
(1.11). In particular, we see that bifurcations appear to occur at

m = mk := (2k − 1)(1 − n), k = 2, 3, 4, . . . . (1.23)

It is natural to conjecture that there is a countable number of bifurcations as m increases 
beyond the values shown in figure 2.

The present paper addresses bifurcations of self-similar solutions for reversing and anti-
reversing interfaces from the exact solution (1.11). We refer to the bifurcating solutions as 
the secondary branches, which emerge from the primary branch. Since the existence of self-
similar solutions is defined by the ODE (1.5), the rest of this work focusses on analysis of this 
equation only. Although our methods work for every −1 � n < 1, m  >  0, and m  +  n  >  1, we 
will simplify many details by considering the case n  =  0 and m  >  1.

Our approach is based on a two-scale asymptotic construction that approximates the bifur-
cating solutions. Figure 4 shows a representative case where the numerical solution for H− 
(black solid line) is compared with the asymptotic behaviours (1.9) (blue dashed line) and 
(1.15) (red dashed line). The inner scale captures the local behaviour of the solution H− near 
the interface location ξ̂− in the limit when ξ̂− is small. The outer scale is used to describe the 
solution H− in the bulk of the semi-infinite line (ξ̂−,∞). The later solutions rely on the lineari-
zation of the ODE (1.5) near the exact solution (1.11), which can be transformed to the classi-
cal Kummer’s differential equation [20, 25]. Matching conditions between the two scales can 
be satisfied when m is selected near the bifurcation points (1.23).

The paper is organized as follows. The next section, section 2, gives a quick review of prop-
erties of Kummer’s differential equation. Then, in section 3 we present linearization of the 

Figure 3. Details of the relevant bifurcations for the panel (b) of figure  2 near the 
bifurcation points m2, m3 and m4 given by (1.23).

J M Foster et alNonlinearity 31 (2018) 4621
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ODE (1.5) at the exact solution (1.11). Connection between the linearization and Kummer’s 
differential equation is reported in section 4. Subsequently, section 5 describes the two-scale 
asymptotic method that allows us to obtain the secondary branches near the bifurcation points 
by superposing the bifurcating mode on the primary branch. In section 6 we compare the 
predictions of the asymptotic method to numerical solutions and observe a good agreement 
between the two. Finally, section 7 offers physical interpretations of new self-similar solutions 
obtained in this work.

2. Kummer’s differential equation

Here we give a review of some properties of Kummer’s differential equation  defined as 
follows:

z
d2w
dz2 + (b − z)

dw
dz

− aw = 0, z ∈ R+, (2.1)

where a, b ∈ R are parameters. Solutions of Kummer’s ODE are confluent hypergeometric 
functions. We refer the reader to either chapter 13 in [1] or section 9.2 in [13] for a review of 
confluent hypergeometric functions.

The second-order ODE (2.1) has a regular singular point at z  =  0 with two indices

σ1 = 0, σ2 = 1 − b,

and in what follows we consider b  >  1 when σ2 < σ1. If b  >  1, there exists a unique (up to a 
multiplicative constant) bounded solution at z  =  0 given by the following Kummer’s function 
[20]

M(z; a, b) := 1 +
a
b

z
1!

+
a(a + 1)
b(b + 1)

z2

2!
+

a(a + 1)(a + 2)
b(b + 1)(b + 2)

z3

3!
+ · · · . (2.2)

The other singular point of the second-order ODE (2.1) is in the far-field where z → ∞ and 
it is an irregular point with two linearly independent solutions

Figure 4. The numerical solution H− (black solid line) for m  =  2.99 and n  =  0 with a 
schematic representation of the two asymptotic scales. The blue dashed line is the far-
field behaviour (1.9) and the red dashed line is the near field behaviour (1.15).

J M Foster et alNonlinearity 31 (2018) 4621
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{
w1(z) ∼ z−a,
w2(z) ∼ za−bez as z → ∞. (2.3)

There exists a unique (up to a multiplicative constant) solution with the algebraic growth at 
infinity given by the following Tricomi function [25]

U(z; a, b) :=
Γ(1 − b)

Γ(1 + a − b)
M(z; a, b) +

Γ(b − 1)
Γ(a)

z1−bM(z; 1 + a − b, 2 − b),

 

(2.4)

such that the function U(z; a, b) satisfies the asymptotic expansion at infinity (see 13.1.8 in 
[1]):

U(z; a, b) = z−a [1 +O(|z|−1)
]

as z → +∞. (2.5)

If a is not a non-positive integer and b  >  1, then U(z; a, b) is singular as z → 0:

U(z; a, b) =
Γ(b − 1)
Γ(a)

z1−b [1 +O(z)] as z → 0, (2.6)

whereas M(z; a, b) diverges at infinity (see 13.1.4 in [1]):

M(z; a, b) =
Γ(b)
Γ(a)

za−bez [1 +O(|z|−1)
]

as z → +∞. (2.7)

If a is a non-positive integer, that is, if a  =  −k with k ∈ {0, 1, 2, ...}, then Kummer’s func-
tion M(z; a, b) is truncated into a polynomial of degree k so that M(z; a, b) and U(z; a, b) are 
linearly dependent.

Kummer’s differential equation (2.1) is the main ingredient for our analytical method for 
bifurcations of self-similar solutions. In section 3, we reduce a linearisation of the ODE (1.5) 
at the exact solution (1.11) to equation (2.1). In section 4, we obtain the connection formulas 
between M(z; a, b) and U(z; a, b) for a non-positive integer a, which represent the bifurcation 
points (1.23). These technical details are used in the main part, section 5, where we develop 
the two-scale asymptotic method for the bifurcating solutions.

3. Linearization about the exact solution

In order to interrogate the structure of the bifurcating solutions of the ODE (1.5) local to the 
primary branch (1.11) we now linearize (1.5) about (1.11). By using the definition (1.12), we 
can rewrite the exact solution (1.11) in the form:

HQ(r) = r
2

m+1−n , (3.1)

where r := ξ/AQ. By writing H− = HQ + H and dropping terms of O
(

H2
)
, we obtain the 

following homogeneous linear equation for H valid on r  >  0:

(m + 1 − n)2

2(m + 1 + n)
d2

dr2

(
r

2m
m+1−n H

)
− m + 1 − n

2(1 − n)
r

dH
dr

+
1

1 − n
H − nr−

2(1−n)
m+1−n H = 0.

 

(3.2)

It is necessary to equip the differential equation (3.2) with suitable boundary conditions near 
the two singular points at r  =  0 and as r → ∞. We will show here that there exists two sets of 
two linearly independent solutions to (3.2) which behave as follows:
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{
H(1)(r) ∼ r

1+n−m
m+1−n ,

H(2)(r) ∼ r
−2(n+m)

m+1−n ,
as r ↘ 0 (3.3)

and




H(I)(r) ∼ r
2

m+1−n ,

H(II)(r) ∼ r−
3(m+1)−n

m+1−n exp
(

m+1+n
2(1−n)2 r

2(1−n)
m+1−n

)
,

as r → +∞. (3.4)

In order to justify the asymptotic behaviours (3.3), we use the following transformation of 
the independent variable

y :=
m + 1 − n

1 − n
r

1−n
m+1−n (3.5)

and rewrite the linear homogeneous equation (3.2) for u(y) = H(r) in the form

(m + 1 − n)2

2(m + 1 + n)

[
d2u
dy2 +

3m
(1 − n)y

du
dy

+
2(m + n)(m − n − 1)

(1 − n)2y2 u(y)
]

−1
2

y
du
dy

+
1

1 − n
u(y) = 0,

 

(3.6)

where y  >  0. Use of the Frobenius method (see chapter 4 in [24]) reveals that y  =  0 is a regu-
lar singular point of the differential equation (3.6) with two indices σ1,2 given by the indicial 
equation

σ(σ − 1) +
3m

1 − n
σ +

2(m + n)(m − n − 1)
(1 − n)2 = 0 (3.7)

with the two solutions:

σ1 =
1 + n − m

1 − n
, σ2 = −2(n + m)

1 − n
. (3.8)

We note that σ2 < σ1 for m  +  3n  +  1  >  0, which is satisfied if m  +  n  >  1 and 1 + n � 0. 
Therefore, in what follows, we assume that −1 � n < 1.

As follows from the Frobenius method, there exists two linearly independent solutions of 
the differential equation (3.6) with the following asymptotic behaviours:

{
u(1)(y) ∼ y

1+n−m
1−n ,

u(2)(y) ∼ y−
2(n+m)

1−n ,
as y ↘ 0, (3.9)

which justifies (3.3) by the transformation (3.5).
In order to justify the asymptotic behaviours (3.4), we use the following transformation of 

the dependent variable

u(y) = y−
3m

2(1−n) exp

(
m + 1 + n

4(m + 1 − n)2 y2
)

v(y) (3.10)

and rewrite the linear homogeneous equation (3.6) in the form
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−d2v
dy2 +

[
m2 + 2m + 6mn + 8n2 + 8n

4(1 − n)2y2 − (3m + 5 − n)(m + 1 + n)
2(1 − n)(m + 1 − n)2

+
(m + 1 + n)2y2

4(m + 1 − n)4

]
v(y) = 0.

 

(3.11)

The linear equation  (3.11) is known in quantum mechanics as the stationary Schrödinger 
equation for the multi-dimensional harmonic oscillator [22]. Owing to the harmonic confine-
ment of the quantum oscillator, there is only one linear independent solution of the differential 
equation (3.11) that decays to zero as y → ∞; the other solution grows rapidly as y → ∞. By 
using the Liouville–Green (JWKB) method [4], it can be shown that the two linearly indepen-
dent solutions behave as follows:





v(I)(y) ∼ y
3m+4

2(1−n) exp
(
− m+1+n

4(m+1−n)2 y2
)

,

v(II)(y) ∼ y−
3m+6−2n

2(1−n) exp
(

m+1+n
4(m+1−n)2 y2

)
,

as y → +∞, (3.12)

which justifies (3.4) by the transformations (3.5) and (3.10).
We note that the solution H(I) in (3.4) matches the asymptotic behavior (1.9), whereas 

the solution H(II) grows too fast as r → ∞ and must hence be removed. Thus, in agreement 
with the invariant manifold result of theorem 1.2 in [8], there is a unique (up to a normalizing 
constant) solution of the linear homogeneous equation (3.2) which satisfies suitable behaviour 
(1.9) at infinity.

4. Connection between linearization and Kummer’s equation

The stationary Schrödinger equation (3.11) for the multi-dimensional harmonic oscillator is 
solved in quantum mechanics at the admissible energy levels [22]. These energy levels cor-
respond to the eigenfunctions v in the function space L2(R+). For the function H satisfying 
the linear equation (3.2), the admissible energy levels arise from the condition that the alge-
braically growing solution H(I) in (3.4) at infinity is connected to the slowest algebraically 
growing solution H(1) in (3.3) at zero.

In contrast to a conventional treatment of the stationary Schrödinger equation (3.11), we 
keep both algebraically growing solutions H(1) and H(2) in (3.3) as both play a role in the con-
text of the bifurcating solutions to the ODE (1.5). On the other hand, only the algebraically 
growing solution H(I) in (3.4) is allowed by the asymptotic behavior (1.9). Therefore, we only 
keep one solution v(I) to the stationary Schrödinger equation (3.11) and continue this solution 
from infinity to zero. Only the latter solution plays a role for the bifurcating solutions to the 
ODE (1.5), as we will show in section 5.

In order to construct the solution v(I) to (3.11), we reduce the stationary Schrödinger equa-
tion (3.11) to the Kummer differential equation (2.1). To do so, we use the following transfor-
mation of the dependent and independent variables

z :=
(m + 1 + n)

2(m + 1 − n)2 y2, v(y) := z
m+2+2n
4(1−n) exp

(
− z

2

)
w(z) (4.1)

and rewrite the linear homogeneous equation (3.11) in the form

z
d2w
dz2 +

[
m + 3 + n
2(1 − n)

− z
]

dw
dz

+
m + 1 − n
2(1 − n)

w(z) = 0, (4.2)
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which coincides with Kummer’s equation (2.1) for

a := −m + 1 − n
2(1 − n)

, b :=
m + 3 + n
2(1 − n)

. (4.3)

Kummer’s function M(z; a, b) defined by (2.2) behaves near zero like the slowest grow-
ing solution H(1) in (3.3) after the transformations (3.5), (3.10) and (4.1) have been used. If 
a is not a non-positive integer, then M(z; a, b) satisfies (2.7), which corresponds to the fastest 
growing solution H(II) in (3.4) at infinity. On the other hand, if a is a non-positive integer, then 
M(z; a, b) is truncated into a polynomial, which corresponds to the slowest growing solution 
H(I) in (3.4) at infinity. Since the latter is the only one admissible by the asymptotic behaviour 
(1.9), we record the bifurcation points as follows:

ak := −k, bk := k +
1 + n
1 − n

, k ∈ {0, 1, 2, ...}, (4.4)

in which case,

m = mk := (2k − 1)(1 − n), k ∈ {0, 1, 2, ...}. (4.5)

Note that the bifurcation points given by (4.5) coincide with (1.23) for k = 2, 3, 4, . . .. Since 
we are only interested in values of m  >  0 and n  <  1, the point at m0  =  n  −  1  <  0 can be 
ignored. We also show in section  5.3.1 that no new branches bifurcate from the point at 
m1  =  1  −  n  >  0.

Let us state explicitly the polynomials arising at the first four bifurcation points:

k = 1 : M (z; a1, b1) = 1 − 1 − n
2

z, (4.6)

k = 2 : M (z; a2, b2) = 1 − 2(1 − n)
3 − n

z +
(1 − n)2

2(3 − n)(2 − n)
z2, (4.7)

k = 3 : M (z; a3, b3) = 1 − 3(1 − n)
2(2 − n)

z +
3(1 − n)2

2(2 − n)(5 − 3n)
z2

− (1 − n)3

4(2 − n)(5 − 3n)(3 − 2n)
z3,

 

(4.8)

k = 4 : M(z; a4, b4) = 1 − 4(1 − n)
5 − 3n

z +
13(1 − n)2

(5 − 3n)(3 − 2n)
z2

− 2(1 − n)3

(5 − 3n)(3 − 2n)(7 − 5n)
z3 +

(1 − n)4

4(5 − 3n)(3 − 2n)(7 − 5n)(4 − 3n)
z4.

 

(4.9)

For every a and b, Tricomi’s function U(z; a, b) defined by (2.4) is the only solution of the 
Kummer’s differential equation (2.1) satisfying the asymptotic behaviour (2.5), which corre-
sponds to the slowest growing solution H(I) in (3.4), after the transformations (3.5), (3.10) and 
(4.1) have been used. If a is not a non-positive integer and b  >  1, then U(z; a, b) satisfies (2.6), 
which corresponds to the fastest growing solution H(2) in (3.3). By using (2.6), we define

B(m) := lim
z→0

zb−1U(z; a, b) =
Γ(b − 1)
Γ(a)

. (4.10)
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This quantity determines the fast growth of U(z; a, b) near z  =  0 for b  >  1 (which is satisfied 
in our case under the condition m  +  n  >  1 and −1 � n < 1 leading to m  +  3n  +  1  >  0). By 
using (4.3) and the following continuation formula for the Gamma function (see 8.334 in [13])

Γ(x)Γ(1 − x) =
π

sinπx
, (4.11)

we compute B(m) in (4.10) explicitly:

B(m) =
Γ
(

m+1+3n
2(1−n)

)

Γ
(
−m+1−n

2(1−n)

)

= π−1Γ

(
m + 1 + 3n

2(1 − n)

)
Γ

(
m + 3 − 3n

2(1 − n)

)
sin

(
π(m + 3 − 3n)

2(1 − n)

)
.

 

(4.12)

We note that B(mk)  =  0 at the bifurcation point mk in (4.5) and

B′(mk) =
1

2(1 − n)
(−1)k+1Γ

(
k +

2n
1 − n

)
Γ(k + 1). (4.13)

In the rest of this section, we compute the limit of U(z; ak, bk) as z → 0 for ak, bk given by 
(4.4) for which B(mk)  =  0. After the transformations (3.5), (3.10) and (4.1) have been used, 
this limit of the Tricomi function U(z; ak, bk) corresponds to the slowest growing solution H(1) 
in (3.3) at zero. Hence, we define E(mk) := limz→0 U(z; ak, bk) and prove that

E(mk) = (−1)k Γ (2k + 1 + p)
Γ (k + 1 + p)

= (−1)k(2k + p)(2k − 1 + p) . . . (k + 1 + p),
 (4.14)

where p = 2n/(1 − n) and we have used Γ(x + 1) = xΓ(x) for every x ∈ R. In order to jus-
tify (4.14), we need to consider both terms in the representation (2.4). The first term has the 
limit z → 0 characterized by the quantity

C(mk) := lim
m→mk

Γ(1 − b)
Γ(1 + a − b)

=
Γ
(
−m+1+3n

2(1−n)

)

Γ
(
−m+1+n

1−n

)

= lim
m→mk

Γ
(

m+2
1−n

)

Γ
(

m+3+n
2(1−n)

)
sin

(
π(m+2)

1−n

)

sin
(

π(m+3+n)
2(1−n)

)

 

(4.15)

where we have used (4.3) and (4.11). With the definition of p = 2n/(1 − n), we compute the 
limit m → mk  for C(mk) as follows:

C(mk) =

{
(−1)k Γ(2k+1+p)

Γ(k+1+p) , p /∈ Z
2(−1)k (2k+p)!

(k+p)! , p ∈ Z, k + p ∈ N,
 (4.16)

where we have used Γ(k + 1) = k! for k ∈ N. The second term in (2.4) has zero limit z → 0 if 
p /∈ Z (which ensures that bk  −  1 is not an integer). Therefore, the formula (4.14) is justified 
from (4.16) with the relation E(mk) = C(mk) if p /∈ Z.

However, when p ∈ Z, we have

z1−bk M(z; 1 + ak − bk, 2 − bk) = z−k−pM(z;−2k − p, 1 − k − p) (4.17)
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and since  −2k  −  p  <  1  −  k  −  p, the function (4.17) is not defined if 1  −  k  −  p is a non- 
positive integer. In order to resolve the singularity, we note the limit 9.214 in [13] for k + p ∈ N:

lim
b→bk

M(z; 1 + a − b, 2 − b)
Γ(2 − b)

=

(
a − 1
k + p

)
zk+pM(z; a, bk). (4.18)

By using (4.18), we can first take the limit m → mk  for the second term in (2.4) and then take 
the limit z → 0 to obtain the following contribution for bk − 1 = k + p ∈ N:

D(mk) := lim
z→0

lim
m→mk

Γ(b − 1)Γ(2 − b)
Γ(a)

z1−b M(z; 1 + a − b, 2 − b)
Γ(2 − b)

=

(
−1 − k
k + p

)
lim
z→0

lim
m→mk

Γ(1 − a) sinπ(1 − a)
sinπ(b − 1)

M(z; a, b),
 

(4.19)

where the continuation formula (4.11) has been used. Since M(0; ak, bk) = 1, further compu-
tations yield

D(mk) = (−1)k+p (2k + p)!
k!(k + p)!

lim
m→mk

Γ
(

m−3(1−n)
2(1−n)

)
sin

(
π
(

m−3(1−n)
2(1−n)

))

sin
(
π
(

m+3n+1
2(1−n)

))

= (−1)k+1 (2k + p)!
(k + p)!

.

 

(4.20)

Combining both contributions (4.16) and (4.20) for p ∈ Z together into E(mk) = C(mk) + D(mk), 
we obtain the same expression (4.14) as in the case p /∈ Z. Thus, the limit z → 0 for U(z; ak, bk) 
given by (4.14) has been justified for every p.

In section 5, the asymptotic formulas (4.13) and (4.14) are incorporated into the construc-
tion of the bifurcating solutions to the ODE (1.5) near the bifurcation point m  =  mk, k ∈ N 
given by (4.5).

5. Two-scale asymptotic method for bifurcating solutions

Here we consider the differential equation (1.5) with n  =  0, this simplification is made purely 
to reduce what would otherwise be cumbersomely large equations. However, we do note that 
the cases n �= 0 with −1 � n < 1 can be treated using identical considerations to those out-
lined below. After the subscript is dropped, the second-order ODE (1.5) with n  =  0 is written 
in the form:

d
dξ

(
Hm dH

dξ

)
− m + 1

2
ξ

dH
dξ

= 1 − H. (5.1)

We are looking for the monotonically increasing solution on [ξ̂,∞) with H(ξ̂) = 0 and

−m + 1
2

ξ̂ = lim
ξ↘ξ̂



−Hm−1 dH

dξ if ξ̂ > 0,(
dH
dξ

)−1
if ξ̂ < 0

 (5.2)

and

H(ξ) ∼
(
ξ

A

) 2
m+1

as ξ → +∞, (5.3)
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for some A  >  0, see (1.8) and (1.9).
As is explained in section 1, there exists an exact solution of equation (5.1)

HQ(ξ) =

(
ξ

AQ

) 2
m+1

, AQ =

√
2√

m + 1
, (5.4)

which corresponds to the case ξ̂ = 0 in (5.2) and to the case A  =  AQ in (5.3).
Solutions to (5.1) local to the bifurcation values m  =  mk  =  2k  −  1, k ∈ N have ξ̂ �= 0 but 

|ξ̂| � 1 in the behaviour (5.2). We therefore seek solutions to (5.1), for ξ � ξ̂, in the asymp-
totic limit ξ̂ → 0. As we will show, taking this limit corresponds to also considering values 
of A close to AQ in the behaviour (5.3). In this limit solutions are described by two different 
asymptotic regions, namely: (i) an inner region local to the interface, and (ii) an outer region 
away from it. See figure 4 for graphical illustration of the two asymptotic regions.

In section 5.1 we detail the structure of solutions close to the interface (the inner region). 
Then, in section 5.2, we expand solutions of equation (5.1) near the exact solution (5.4) in the 
bulk (the outer region). The value of A in the behaviour (5.3) for the asymptotic expansion 
is defined near AQ of the exact solution (5.4). Matching conditions between the two formal 
asymptotic expansions are considered in section 5.3, where small ξ̂ and A  −  AQ are uniquely 
defined in terms of m  −  mk. The asymptotic expansions are computed explicitly for mk with 
k = 1, 2, 3, 4.

5.1. Inner scale

In order to study the behaviour of solutions both in the near field (near the interface at ξ = ξ̂), 
and in the asymptotic limit ξ̂ → 0 (that is, close to the bifurcation value m  =  mk), we use the 
scaling transformation

ξ = ξ̂ + |ξ̂|
m+1
m−1 η, H(ξ) = |ξ̂|

2
m−1 H(η), (5.5)

where H satisfies the second-order ODE for η > 0:

d
dη

(
Hm dH

dη

)
= 1 +

m + 1
2

σ
dH
dη

+ |ξ̂|
2

m−1

(
m + 1

2
η

dH
dη

−H
)

, (5.6)

where σ = sign(ξ̂). The boundary condition at zero are obtained from (5.2) with H(0) = 0 
and

−m + 1
2

σ = lim
η↘0



−Hm−1 dH

dη if σ = +1,(
dH
dη

)−1
if σ = −1.

 (5.7)

We will study the leading-order term H0(η) = limξ̂→0 H(η) of the boundary–value problem 
(5.6)–(5.7). We prove that there exists a unique solution for H0 that satisfies

σ = +1 : H0(η) ∼
(

m(m + 1)
2

η

) 1
m

as η ↘ 0 (5.8)

and

σ = −1 : H0(η) ∼
2

m + 1
η as η ↘ 0. (5.9)

These two asymptotic behaviours coincide with (1.15) and (1.17) respectively for n  =  0, after 
the change of variables (5.5). We also prove that the unique solution for H0 satisfies
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H0(η) ∼
(

m + 1
2

η2
) 1

m+1

as η → +∞, (5.10)

which coincides with the asymptotic behaviour (5.3) for A  =  AQ in (5.4), after the change of 
variables (5.5).

In the limit ξ̂ → 0, the second-order ODE (5.6) is truncated to an autonomous equation for 
H0(η) = limξ̂→0 H(η), which can be integrated once to give

Hm
0

dH0

dη
= η +

m + 1
2

σH0. (5.11)

The first-order non-autonomous equation (5.11) is equivalent to the following planar dynami-
cal system

{
η̇ = Hm

0 ,
Ḣ0 = η + m+1

2 σH0, (5.12)

where the dot denotes a derivative with respect to the artificial time variable τ. The point 
(η,H0) = (0, 0) is the only equilibrium point of the planar system (5.12). If m  >  1 (since 
m  +  n  >  1 and n  =  0), the equilibrium point (0, 0) is located at the intersection of a center 
curve tangential to the straight line

Ec(0, 0) =
{
η = −m + 1

2
σH0, H0 ∈ R

}
 (5.13)

and an unstable (stable) curve for σ = +1 (σ = −1), which is tangential to the H0-axis.
We are only interested in constructing a trajectory of the dynamical system (5.12) in the  

first quadrant where H0 > 0 and η > 0. If σ = +1, the tangent line Ec(0,0) in (5.13) to  
the center curve is not located in the first quadrant. Therefore, there is a unique trajectory of 
the dynamical system (5.12) that departs from (0, 0) in the first quadrant along the unstable 
curve and satisfies the exponential growth

H0(τ) ∼ h0 exp

(
m + 1

2
τ

)
, η(τ) ∼ 2hm

0

m(m + 1)
exp

(
m(m + 1)

2
τ

)
as τ → −∞,

where h0  >  0 is an arbitrary constant. Eliminating τ yields the asymptotic expression (5.8).
If σ = −1, the tangent line Ec(0,0) in (5.13) to the center curve is now located in the first 

quadrant. Since the other invariant curve is stable, there is a unique trajectory of the dynamical 
system (5.12) that departs from (0, 0) in the first quadrant along the center curve. The trajec-
tory tangential to Ec(0,0) satisfies the asymptotic expression (5.9).

If σ = +1, it follows from the first-order equation (5.11) that if a solution originates from 
the point (η,H0) = (0, 0) in the first quadrant, then H0 is an monotonically increasing func-
tion of η with no stopping points. If σ = −1, the same can be concluded by a contradiction. 
Suppose there is a finite ‘time’ τ0 and a finite H0(τ0) > 0 such that Ḣ0(τ0) = 0. Then, it fol-
lows from the system (5.12) that Ḧ0(τ0) = η̇(τ0) = Hm

0 (τ0) > 0, so that τ0 is a minimum of 
H0 as a function of τ0. However, this contradicts the fact that H0 was an increasing function 
of τ for τ < τ0.

Thus, for both σ = +1 and σ = −1, the unique solution of the first-order equation (5.11) 
reaches infinity and since the right-hand side of the second equation in system (5.12) is linear 
in H0, the solution cannot reach infinity in a finite η. Therefore, the unique solution satisfies 
H0 → ∞ as η → ∞. In order to derive the asymptotic behavior (5.10), we rewrite (5.11) after 
another integration with respect to η:
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1
m + 1

Hm+1
0 =

1
2
η2 +

m + 1
2

σ

∫ η

0
H0(η

′)dη′. (5.14)

It is now easy to justify the asymptotic behaviour (5.10) by iterations.
Summarizing, we have proved the existence of a unique solution to the truncated first-order 

equation (5.11) which satisfies the leading-order asymptotic expansions (5.8) or (5.9) at zero 
and the leading-order asymptotic expansion (5.10) at infinity. The behaviour at infinity for the 
full solution H(η) is subject to the remainder terms proportional to |ξ̂|2/(m−1) in the second-
order equation (5.6).

We note that the expansion near infinity with the leading-order term in (5.10) is only under-
stood in the asymptotic sense. It was proven in [8] that the trajectory of the differential equa-
tion (5.1) that originates at H(ξ̂) = 0 and extends to H(ξ) > 0 for ξ > ξ̂ does not generally 
reach infinity but turns back towards smaller values of H. It is only for special values of ξ̂, 
that this trajectory reaches infinity to give curves on the solution diagram of figure 2. In order 
to find these special values of ξ̂, in the limit of small ξ̂, i.e. near the bifurcations, we need to 
construct the outer expansion and to deduce the asymptotic matching conditions on the two-
scale expansions.

5.2. Outer scale

Let us consider solutions of the original second-order equation  (5.1) in the neighborhood 
of the exact solution (5.4), which is defined for every ξ > 0. To do so, we use the following 
regular asymptotic expansion:

H(ξ) = HQ(r) + αH1(r) + α2H2(r) +O(α3), r :=
ξ

AQ
, (5.15)

where α ∈ R is the small parameter in the formal expansion and the correction terms 
{H1, H2, · · · } are to be defined recursively subject to appropriate boundary conditions. We 
prove that the first-order correction H1 satisfies

m �= mk : H1(r) ∼ B(m)2
m+1

2 (m + 1)−
m+1

2 r−
2m

m+1 as r ↘ 0, (5.16)

and

m = mk : H1(r) ∼ E(mk)r
1−m
1+m as r ↘ 0 (5.17)

where B(m) and E(mk) are given by (4.12) and (4.14) with n  =  0. We also prove that the 
second-order correction H2 satisfies

m = mk : H2(r) ∼ F(mk)r−
2m

m+1 as r → 0, (5.18)

where F(mk) is computed from a linear algebraic system. See section 5.3 for details on solu-
tions of this linear system in the cases k = 1, 2, 3, 4. Note that the dominant term (5.18) in 
the second-order correction H2 is comparable with the dominant term (5.16) in the first-order 
correction H1 for m �= mk.

In order to justify (5.16)–(5.18), we insert the expansion (5.15) into (5.1) and balance terms 
at O(α) and O(α2). At O(α), we obtain the homogeneous linear equation

m + 1
2

d2

dr2

(
r

2m
m+1 H1

)
− m + 1

2
r

dH1

dr
+ H1 = 0. (5.19)
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We have proved in section 3 that there is only one solution of the homogeneous equation (5.19) 
up to a multiplicative factor given by α, which satisfies the slowest growing behaviour H(I) 
in (3.4) as r → +∞. This solution is given by Tricomi’s function U(z; a, b) in (2.4). After 
employing the transformations (3.5), (3.10), (4.1) and (4.3) with n  =  0, we can define H1 in 
terms of r as

H1(r) = r
1−m
1+m U

(
m + 1

2
r

2
m+1 ;−m + 1

2
,

m + 3
2

)
. (5.20)

Proceeding to balance terms at O(α2), we obtain the linear inhomogeneous equation

LH2 = R(H1), (5.21)

where

LH2 :=
m + 1

2
d2

dr2

(
r

2m
m+1 H2

)
− m + 1

2
r

dH2

dr
+ H2 (5.22)

and

R(H1) := −m(m + 1)
4

d2

dr2

[
r

2(m−1)
m+1 H2

1

]
. (5.23)

Owing to the asymptotic behaviour of H(I) in (3.4) for H1(r) as r → +∞, R(H1) is bounded 
in the limit r → +∞ and converges to a constant. Since

Lr
2

m+1 = (m + 1),

there exists a solution H2 of the inhomogeneous equation (5.21) satisfying the same asymp-
totic behaviour of H(I) in (3.4) as r → +∞. This solution is defined up to the choice of the 
homogeneous solution proportional to H1 given by (5.20). Altering this choice of the homo-
geneous solution simply corresponds to redefining the small parameter α in the expansion 
(5.15). Therefore, without loss of generality, the homogeneous solution can be removed from 
the definition of H2, which then becomes uniquely defined.

Now, let us consider the behavior of solutions of the inhomogeneous equation (5.21) near 
r  =  0. From (4.10) with n  =  0, we know that

U(z; a, b) ∼ B(m)z−
m+1

2 as z ↘ 0,

which justifies the asymptotic behaviour (5.16) thanks to the expression (5.20). If B(m) �= 0, 
then R(H1)(r) ∼ r−4 as r ↘ 0, so that the linear inhomogeneous equation (5.21) produces the 
solution (up to a multiplicative factor)

H2(r) ∼ B(m)r−
4m+2
m+1 , as r ↘ 0. (5.24)

If B(m) �= 0, the outer expansion (5.15) becomes singular with the fastest growth as r → 0, 
which cannot be matched with the inner expansion obtained from (5.5) and (5.10). Therefore, 
we take m  =  mk for some k ∈ N, for which B(mk)  =  0 and rewrite the solution H1 in the equiv-
alent form:

m = mk : H1(r) = E(mk)r
1−m
1+m M

(
m + 1

2
r

2
m+1 ;−k, k + 1

)
, (5.25)

where E(mk) is defined by (4.14). This justifies the asymptotic behaviour (5.17). The inhomo-
geneous term of the linear equation (5.21) is rewritten for m  =  mk in the form:

J M Foster et alNonlinearity 31 (2018) 4621



4640

R(H1)(r) = −m(m + 1)
4

E(mk)
2 d2

dr2

[
M2

(
m + 1

2
r

2
m+1 ;−k, k + 1

)]
. (5.26)

Since M(z;−k, k + 1) is a polynomial of degree k in z given by (2.2), the source term contains 
powers of r2(−m+�)/(m+1) for the integer � counted from 0 to m  =  mk  =  2k  −  1 with the miss-
ing factor at �k = (m − 1)/2 = k − 1. The dominant term r−2m/(m+1) in R(H1)(r) generates the 
same term in the solution H2(r) since

Lr−
2m

m+1 = (m + 1)r−
2m

m+1 .

Therefore, in the case B(mk)  =  0, the linear system of algebraic equations  at powers of 
r(1−2k+�)/k for � ∈ {0, 1, . . . , k − 2, k, . . . , 2k − 1} is closed. This justifies the asymptotic 
behaviour (5.18) with some F(mk) computed from the linear system.

5.3. Matching conditions

Here we match the two (inner and outer) asymptotic regions together. Using the scaling trans-
formation (5.5) and the leading-order behaviour (5.10), we obtain the dominant term of the 
inner expansion as follows

H(ξ) ∼

(
ξ − ξ̂

AQ

) 2
m+1

as
ξ − ξ̂

|ξ̂|
m+1
m−1

→ ∞ and ξ̂ → 0. (5.27)

Expanding as ξ̂ → 0 and using r = ξ/AQ, we obtain

H(ξ) ∼ r
2

m+1 − 2ξ̂
(m + 1)AQ

r
1−m
1+m +

(1 − m)ξ̂2

2(m + 1)
r−

2m
m+1 . (5.28)

We can see that the first two correction terms in (5.28) occur also in the first two perturba-
tion terms of the outer expansion (5.15) seen in (5.16)–(5.18). This suggests that two con-
straints should arise from the matching process. The first constraint on the slowest growing 
term defines the parameter α in terms of ξ̂:

− 2ξ̂
(m + 1)AQ

= αE(mk) +O(α(m − mk),α2). (5.29)

The second constraint on the fastest growing term defines m  −  mk in terms of either α or ξ̂:

(1 − m)ξ̂2

2(m + 1)
= αB′(mk)(m − mk)2

m+1
2 (m + 1)−

m+1
2 + α2F(mk)

+O(α(m − mk)
2,α2(m − mk),α3).

 
(5.30)

After α is eliminated from the system (5.29) and (5.30), we obtain an asymptotic approx-
imation of the solution curve in the (ξ̂, m)-plane.

On the other hand, in the limit r → ∞, we compare the outer asymptotic expansion (5.15) 
with the asymptotic behaviour (5.3) at infinity, where A is a parameter. From (2.5) and (5.20), 
we obtain a constraint that defines the parameter α in terms of A  −  AQ:

(
AQ

A

) 2
m+1

= 1 + α(m + 1)
m+1

2 2−
m+1

2 +O(α2). (5.31)
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Equation (5.31) yields the asymptotic approximation of the solution curve in the (A, ξ̂)-plane 
in view of equation (5.29) or in the (A, m)-plane in view of the dependence of ξ̂ versus m.

The sign-alternation of E(mk) over k ∈ N given by (4.14) gives rise to (5.29), (5.31) and 
hence the sign alternation of the dependence (A  −  AQ) versus ξ̂ near the bifurcation point 
where A  =  AQ and ξ̂ = 0. This fact explains why the location of the red and blue curves bifur-
cating above and below the black curve on figures 2 and 3 alternates between the two adjacent 
bifurcation points.

In order to compare our analytical and numerical approaches, let us now compute the 
asymptotic dependencies near the first four bifurcation points explicitly.

5.3.1. Behaviour local to m  =  1. At m  =  1, there exists a one-parameter family of exact solu-
tions to the differential equation (5.1) given by

H(ξ) = a(ξ − ξ̂), ξ̂ =
a2 − 1

a
, a ∈ R. (5.32)

We show that the matching conditions (5.29)–(5.31) recover the exact solution (5.32). This 
implies that no new solution branches bifurcate near m  =  1.

On setting k  =  1 and n  =  0 in (4.13) and (4.14), we obtain B′(1) = 1/2 and E(1) = −2. 
Since AQ  =  1, the matching conditions (5.29) and (5.31) tell us that

ξ̂ = 2α+O(α2),
1
A

= 1 + α+O(α2). (5.33)

From (4.6) with n  =  0, (5.25) and (5.26), we obtain u1(r)  =  r  −  2 and R2(r)  =  −1. From 
(5.22) with m  =  1, we obtain Lr0  =  1. Therefore, there is a unique (up to an addition of the 
homogeneous solution H1) solution u2(r)  =  −1 to the linear equation (5.21), from which we 
obtain F(1) = 0 in (5.18). The matching condition (5.30) yields

m − 1 = O(α2). (5.34)

Although the approximation (5.34) may imply that m �= 1 for α �= 0 (or ξ̂ �= 0), let us 
rewrite the asymptotic solution (5.15) with ξ = r  in the explicit form:

H(ξ) = ξ + α(ξ − 2)− α2 +O(α3). (5.35)

Comparing (5.35) with the exact solution (5.32) with a = 1 + α shows that the O(α3) remain-
der term is identically zero. From (5.3), (5.32) and (5.35), we obtain

ξ̂ = α
2 + α

1 + α
, A =

1
1 + α

,

which shows that the remainder terms in the second formula (5.33) and in (5.34) are identi-
cally zero.

5.3.2. Behaviour local to m  =  3. On setting k  =  2 and n  =  0 in (4.13) and (4.14), we obtain 
B′(3) = −1 and E(3) = 12. Since AQ = 1/

√
2 , we obtain from (5.29) and (5.31):

ξ̂ = −12
√

2α+O(α2),
AQ

A
= 1 + 8α+O(α2),

that is,

ξ̂ = 3(A − AQ) +O((A − AQ)
2). (5.36)
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In order to use (5.30), we need to compute the coefficient F(3) in (5.18) from a linear alge-
braic system. From (4.7) with n  =  0, (5.25) and (5.26), we obtain

H1(r) = 12
[

r−
1
2 − 4

3
+

1
3

r
1
2

]

and

R(H1)(r) = 122
[
−2r−

3
2 + 2r−

1
2 − 2

3

]
.

From (5.22) with m  =  3 we obtain:

Lr0 = 1 +
3
2

r−
1
2 ,

Lr−
1
2 = 2r−

1
2 ,

Lr−
3
2 = 4r−

3
2 .

Therefore, there is a unique (up to an addition of the homogeneous solution H1) solution to the 
linear equation (5.21) in the form

H2(r) = 122
[
−1

2
r−

3
2 +

3
2

r−
1
2 − 2

3

]
,

from which F(3) = −72. The matching condition (5.30) yields

−1
4
ξ̂2 =

1
4
α(3 − m)− 72α2 +O(α(3 − m)2,α2(3 − m),α3).

Substituting ξ̂ = −12
√

2α+O(α2), we obtain

3 − m = O(ξ̂2). (5.37)

Although the approximation (5.37) is not definite due to the cancellation of the linear term 
in ξ̂, we will show numerically in section 6 that the dependence of 3  −  m is indeed quadratic 
with respect to ξ̂, see figure 5(a). The precise constant of this quadratic dependence can only 
be computed if the outer expansion (5.15) is expanded to next order O(α3), which is not 
computed here. We also see on figure 5(b) that the approximation (5.36) agrees well with the 
numerical results.

5.3.3. Behaviour local to m  =  5. On setting k  =  3 and n  =  0 in (4.13) and (4.14), we obtain 
B′(5) = 6 and E(5) = −120. Since AQ = 1/

√
3 , we obtain from (5.29) and (5.31):

ξ̂ = 120
√

3α+O(α2),
AQ

A
= 1 + 81α+O(α2),

that is,

ξ̂ = −40
9
(A − AQ) +O((A − AQ)

2). (5.38)

The coefficient F(5) in (5.18) is computed from a linear algebraic system. From (4.8) with 
n  =  0, (5.25) and (5.26), we obtain

H1(r) = −120
[

r−
2
3 − 9

4
r−

1
3 +

27
20

− 9
40

r
1
3

]
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and

R(H1)(r) = 1202
[
−15

2
r−

5
3 +

207
16

r−
4
3 − 189

20
r−

2
3 +

81
16

r−
1
3 − 243

320

]
.

From (5.22) with m  =  5 we obtain:

Lr0 = 1 +
10
3

r−
1
3 ,

Lr−
1
3 = 2r−

1
3 +

4
3

r−
2
3 ,

Lr−
2
3 = 3r−

2
3 ,

Lr−
4
3 = 5r−

4
3 − 2

3
r−

5
3 ,

Lr−
5
3 = 6r−

5
3 .

Therefore, there is a unique (up to an addition of the homogeneous solution H1) solution to the 
linear equation (5.21) in the form

H2(r) = 1202
[
−77

80
r−

5
3 +

207
80

r−
4
3 − 387

80
r−

2
3 +

243
64

r−
1
3 − 243

320

]
,

from which F(5) = −13 860. The matching condition (5.30) yields

−1
3
ξ̂2 =

2
9
α(m − 5)− 13 860α2 +O(α(m − 5)2,α2(m − 5),α3),

from which we obtain

5 − m =
27
√

3
4

ξ̂ +O(ξ̂2). (5.39)

The asymptotic dependencies (5.38) and (5.39) will be compared with the numerical data in 
section 6, where we will see the excellent agreement between them, see figures 6(a) and (b).

Figure 5. Panel (a): the variation of ξ̂ versus 3  −  m as predicted by shooting. The 
observed quadratic dependence of 3  −  m on ξ̂ is in agreement with (5.37). Panel (b): 
the variation of A  −  AQ versus ξ̂ local to m  =  3 as predicted by both shooting (black 
dots) and (5.36) (red line).
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5.3.4. Behaviour local to m  =  7. On setting k  =  4 and n  =  0 in (4.13) and (4.14), we obtain 
B′(7) = −72 and E(7) = 1680. Since AQ  =  1/2, we obtain from (5.29) and (5.31):

ξ̂ = −3360α+O(α2),
AQ

A
= 1 + 1024α+O(α2),

that is,

ξ̂ =
105
16

(A − AQ) +O((A − AQ)
2). (5.40)

The coefficient F(7) in (5.18) is computed from a linear algebraic system. From (4.9) with 
n  =  0, (5.25) and (5.26), we obtain

H1(r) = 1680
[

r−
3
4 − 16

5
r−

2
4 +

16
5

r−
1
4 − 128

105
+

16
105

r
1
4

]

and

R(H1)(r) = 16802
[
−84

5
r−

7
4 +

1456
25

r−
6
4 − 1504

25
r−

5
4 +

192
5

r−
3
4 − 13 568

525
r−

2
4 +

512
75

r−
1
4 − 1024

1575

]
.

From (5.22) with m  =  7 we obtain:

Lr0 = 1 +
21
4

r−
1
4 ,

Lr−
1
4 = 2r−

1
4 + 3r−

2
4 ,

Lr−
2
4 = 3r−

2
4 +

5
4

r−
3
4 ,

Lr−
3
4 = 4r−

3
4 ,

Lr−
5
4 = 6r−

5
4 − r−

6
4 ,

Lr−
6
4 = 7r−

6
4 − 3

4
r−

7
4 ,

Lr−
7
4 = 8r−

7
4 .

Therefore, there is a unique (up to an addition of the homogeneous solution H1) solution to the 
linear equation (5.21) in the form

H2(r) = 16802
[
−509

350
r−

7
4 +

3616
525

r−
6
4 − 752

75
r−

5
4 +

4376
315

r−
3
4 − 2898

211
r−

2
4 +

128
25

r−
1
4 − 1024

1575

]
,

from which F(7) = −4104 576. The matching condition (5.30) yields

−3
8
ξ̂2 =

9
32

α(7 − m)− 4104 576α2 +O(α(7 − m)2,α2(7 − m),α3),

from which we obtain

7 − m =
2048

15
ξ̂ +O(ξ̂2). (5.41)

The asymptotic dependencies (5.40) and (5.41) will be compared with the numerical data in 
section 6, where we will see the excellent agreement between them, see figures 7(a) and (b).
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6. Numerical results

Here we employ numerical methods to verify the analytical results obtained in section 5.3. A 
fit scheme must be capable of furnishing numerical solutions to the ODE (1.5) which connect 
the far-field and near-field behaviours given by (1.9) and either (1.15) for ξ̂− > 0 or (1.17) for 
ξ̂− < 0. Such a numerical method has already been presented in [8] and so in the interests of 
brevity we will give a short summary—interested readers are referred to [8] for full details.

Finding numerical approximations of solutions for H− is a problem that can be tackled 
using a shooting technique. An appropriate shooting parameter is the value of A in the far-
field behaviour (1.9). On selecting a value for A the behaviour (1.9) can be used to define 
approximate initial data for H−(ξ) at some very large, yet finite, value of ξ to begin numerical 
integration of the ODE (1.5) in the direction of decreasing ξ. The integration can be continued 
until either the value of H−(ξ) or Hm

−(ξ)H
′
−(ξ) vanishes at some ξ = ξ̂; it was proven in [8] 

that at least one of these two conditions will be reached for the unique solution satisfying 
(1.9). The solution to (1.5) we are looking for satisfy both of the aforementioned conditions. 
It is by iterating on the value of A that proper solution(s) for H− can be found that satisfy both 
H−(ξ̂−) = 0 and Hm

−(ξ̂−)H
′
−(ξ̂−) = 0, for some ξ̂−. We denote the special value(s) of A that 

give rise to solutions satisfy these conditions by A*.
Values of A* as a function of m are shown in figure 2 when the exponent n of the absorp-

tion term in the slow diffusion equation  (1.1) is set equal to 1/2, 0,−1/2,−1. From these 
figures we observe that at each value of m  =  mk  =  (2k  −  1)(1  −  n) with k = 2, 3, 4, . . . two 
branches of solutions (one with ξ̂− > 0 (red) and the other with ξ̂− < 0 (blue)) bifurcate from 
the main black branch corresponding to the exact solution (1.11) with ξ̂− = 0. The bifurca-
tion points were identified in section 4, see (4.5). Moreover, the alternation of the red and 
blue curves above the black curve between adjacent bifurcations observed on figure 2 can be 
explained by the sign alternation of E(mk) in (4.14) and (5.29) between two values of k.

The matched asymptotics analysis in section 5 yields prediction of the local dependen-
cies of both ξ̂− and A∗ − AQ on mk  −  m local to each bifurcation point m  =  mk for n  =  0. In 
figures 5–7 we show a comparison between these predictions and the results of the numer-
ical shooting scheme outlined above. We observe excellent agreement in all cases, thereby 

Figure 6. Panel (a) shows the variation of ξ̂ versus 5  −  m and panel (b) shows the 
variation of A  −  AQ versus ξ̂ local to m  =  5. Black dots indicate numerical results 
whereas the red lines in panels (a) and (b) are the behaviours predicted by (5.38) and 
(5.39) respectively.
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supporting both the analysis presented here and the accuracy of the numerical scheme pro-
posed in [8].

7. Conclusion

The work presented here is a contribution towards deepening the understanding of the differ-
ent types of allowable interface motion in the slow diffusion equation with strong absorption. 
We have focussed on how an initially advancing interface can give way to a receding one, or 
vice versa. This work also elucidates the structure of solutions in scenarios where an advanc-
ing interface instantaneously pauses and then proceeds to continue its motion in the forward 
direction, and similarly for a receding interface that pauses and then continues its propagation. 
Such solutions were identified previously in [7, 8], but the rather complicated structure of the 
bifurcations of the reversing, anti-reversing and pausing solutions from the stationary branch, 
see figure 2, were not previously understood. The present paper clarifies the bifurcation struc-
ture and demonstrates excellent agreement between the analytical bifurcation results and the 
numerical approximations of the self-similar solutions.

We conclude by placing the self-similar solutions into the original physical context, i.e. 
in terms of the PDE (1.1). On transforming to travelling wave-type coordinate system that 
moves with the position of the left-hand interface (with position x = s(t)), using the change 
of variables η = x − s(t), and seeking asymptotic solutions to the PDE (1.1) for small values 
of the moving coordinate, η, we find solutions with local behavior in (1.21) for s′(t) < 0 and 
in (1.22) for s′(t) > 0. The local behaviour in (1.21) is termed an advancing interface, since its 
motion acts to enlarge the domain of compact support, whereas the local behaviour in (1.22) 
is termed a receding solution. Examining (1.21) we see that the advancing wave is largely 
controlled by the exponent m of the diffusive-type term in (1.1). Physically this corresponds to 
the forward motion of an interface being driven by fluid pressure (m  =  3), a biological popu-
lation pressure (m  =  2) or nonlinear heat conduction (m  =  4). Contrastingly, the alternative 
behaviour, (1.22), is controlled by the exponent n of the absorption term in (1.1). This term 
corresponds to the physical mechanisms of fluid evaporation or absorption into a substrate or 
the constant death rate of a biological population (n  =  0).

Figure 7. Panel (a) shows the variation of ξ̂ versus 7  −  m and panel (b) shows the 
variation of A  −  AQ versus ξ̂ local to m  =  7. Black dots are numerical results whereas 
the red lines in panels (a) and (b) are the behaviours predicted by (5.40) and (5.41) 
respectively.
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A interesting open question concerns the stability of the self-similar reversing, anti-revers-
ing and instantaneously pausing solutions in the time-dependent setting. Although this has 
been partially addressed in [8] stability for the anti-reversing and pausing solutions remains 
unknown. Moreover, for pairs of values of m and n for which there are more than one solution 
of a given type, is would be interesting to understand the mechanism that selects the self-
similar solution that is observed.
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