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Algebraic solitons in the massive Thirring model
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We present exact solutions describing dynamics of two algebraic solitons in the massive Thirring model. Each
algebraic soliton corresponds to a simple embedded eigenvalue in the Kaup-Newell spectral problem and attains
the maximal mass among the family of solitary waves traveling with the same speed. By coalescence of speeds of
the two algebraic solitons, we find a new solution for an algebraic double-soliton which corresponds to a double
embedded eigenvalue. We show that the double-soliton attains the double mass of a single soliton and describes
a slow interaction of two identical algebraic solitons.
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I. INTRODUCTION

Algebraic solitons are traveling solitary waves with the
power rather than exponential decay rate at infinity. Such
solutions are common for integrable nonlinear equations with
nonlocal terms such as the Benjamin-Ono and Kadomtsev-
Petviashvili equations, where they are associated with isolated
eigenvalues of the linear Lax equations [1]. However, al-
gebraic solitons are special for local integrable nonlinear
equations since they arise as the limiting points in the family
of exponential solitons and they are associated with embed-
ded eigenvalues in the continuous spectrum of the linear Lax
equations [2,3]. Physically relevant examples of the algebraic
solitons as special limits of exponential solitons appear in
the modified Korteweg-de Vries equation [4,5], the derivative
nonlinear Schrödinger equation [6–8], and the nonlinear Dirac
equation [9].

This work is devoted to the algebraic solitons in the mas-
sive Thirring model (MTM) written in laboratory coordinates
as

i(ut + ux ) + v = |v|2u i(vt − vx ) + u = |u|2v, (1)

where (u, v) ∈ C2 and subscripts denote partial derivatives
in (x, t ) ∈ R2. The MTM system (1) is a prototypical Dirac
equation which belongs to the class of integrable equa-
tions associated with the Kaup-Newell (KN) spectral problem
[10,11].

Stability of algebraic solitons is a notoriously difficult
mathematical problem, where every method of nonlinear
analysis known in the theory of integrable systems fails.
Coercivity of the energy function required for the proof of
Lyapunov stability holds for exponential solitons [12] but
fails for algebraic solitons because the spectral gap between
the zero eigenvalue and the continuous spectrum in the
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linearized MTM system closes up in the limit to the algebraic
soliton. Stability of exponential solitons in the MTM system
can be proven with the Darboux transformation [13] which
allows us to construct exponential solitons from an isolated
eigenvalue of the KN spectral problem. However, the Dar-
boux transformation does not allow us to obtain algebraic
solitons because the embedded eigenvalue has to be defined
inside the continuous spectrum of the KN spectral problem,
where both eigenfunctions are bounded. Finally, the inverse
scattering transform (IST) method requires fast spatial decay
of solutions of the MTM system at infinity in order to ensure
smoothness properties of the scattering data and solvability of
the associated Riemann-Hilbert problems [14,15]. Algebraic
solitons decay too slowly and violate the requirements of the
fast spatial decay.

Due to these limitations, the main purpose of this paper
is to explore direct methods of solutions of the MTM system
(1) and to study interaction of two algebraic solitons. Hirota’s
bilinear formulation of the MTM system (1) was recently de-
veloped in [16] to obtain exponential multisolitons. By using
the analytical expressions for two exponential solitons, we
obtain the exact solutions for two algebraic solitons which
scatter fast from each other with two different wave speeds.
In the limit when the wave speeds coincide, we obtain the
double-soliton solution which describes a slow interaction of
two identical algebraic solitons.

There has been a recent spike in the study of rational
solutions of the integrable systems in the context of rogue
wave dynamics [17–19]. Similar rational solutions of the
MTM system for rogue waves were studied in [20–22], where
they appear on the constant, modulationally unstable back-
ground. Compared to these solutions, our rational solution
for the algebraic double soliton is not a rogue wave since it
describes two algebraic solitons at the trivial, modulationally
stable background. Its existence suggests that a hierarchy
of higher-order rational solutions exists in the MTM system
(1) which has not been explored yet. Similar solutions for
the algebraic double solitons in the derivative NLS equa-
tion were constructed in [6] by using generalized Darboux
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transformation and in [8] by taking the limit of the exponen-
tial double-solitons obtained from the double-fold Darboux
transformation.

Double solitons traveling with nearly the same speed corre-
spond to double eigenvalues of the KN spectral problem. The
IST method was recently employed to construct exponential
double-solitons of the derivative NLS equation and related
equations [23–26]. Such solutions are related to double iso-
lated eigenvalues or, equivalently, to double poles in solutions
of the Riemann-Hilbert problems. The method does not work
for the double embedded eigenvalues. In a follow-up work,
we will obtain the exponential double-solitons of the MTM
system (1) by using the IST method and show that these
solutions degenerate into the algebraic double solitons in the
limit when the double isolated eigenvalue becomes embedded
in the continuous spectrum of the KN spectral problem. This
provides a nontrivial example of embedded eigenvalues of
higher algebraic multiplicity for the KN spectral problem, the
possibility of which was first predicted 20 years ago in [2].

Our results suggest stability of the traveling algebraic soli-
tons in the time evolution of the MTM system (1). This
conclusion agrees with the perturbation theory for embedded
eigenvalues of the KN spectral problem developed in ([2],
Secs. 6 and 7), which suggests that the simple embedded
eigenvalues for algebraic solitons are generally ejected from
the continuous spectrum to become simple isolated eigenval-
ues for the exponential solitons with nearly selected speed and
frequency. A rigorous proof of orbital stability of the travel-
ing algebraic soliton is still an open problem for the MTM
system (1).

The rest of this paper is organized as follows. The main
results are presented in Sec. II. The computational proofs are
elaborated in Sec. III where we obtain a new parametrization
of the exponential two-soliton solutions of the MTM system
(1) and then take the limits to the algebraic two-soliton solu-
tions with different speeds and to the algebraic double soliton
of the same speed. Section IV emphasizes further directions
which may be undertaken from the outcomes of our work.

II. MAIN RESULTS

To simplify presentation of soliton solutions of the MTM
system (1), we shall use the basic symmetries of this Hamil-
tonian system. These include the translational and rotational
symmetries

[
u(x, t )
v(x, t )

]
�→

[
u(x + x0, t + t0)eiθ0

v(x + x0, t + t0)eiθ0

]
, x0, t0, θ0 ∈ R, (2)

as well as the Lorentz symmetry

[
u(x, t )
v(x, t )

]
�→

⎡
⎣(

1−c
1+c

)1/4
u
(

x+ct√
1−c2 ,

t+cx√
1−c2

)
(

1+c
1−c

)1/4
v
(

x+ct√
1−c2 ,

t+cx√
1−c2

)
⎤
⎦, c ∈ (−1, 1).

(3)
Without loss of generality, each solution of the MTM system
(1) can be extended with three translational parameters in (2)
and the speed parameter c ∈ (−1, 1) in (3).

A normalized family of exponential solitons of the MTM
system (1) is given by the standing wave solutions of the form[

usol(x, t )
vsol(x, t )

]

= sin γ

[
sech

(
x sin γ + iγ

2

)
sech

(
x sin γ − iγ

2

)
]

eit cos γ , γ ∈ (0, π ). (4)

A general family with two translational parameters and the
speed parameter c ∈ (−1, 1) is obtained from the translational
and Lorentz symmetry given by (2) and (3).

The only parameter γ ∈ (0, π ) in (4) defines the frequency
parameter ω := cos(γ ) of the exponential solitons. The fre-
quency ω is chosen in the gap (−1, 1) of the frequency
spectrum of the linear Dirac operator

D :=
[

i∂x 1
1 −i∂x

]
,

which determines the time evolution of the MTM system (1).
This is one of the reasons why Dirac solitons are sometimes
called the gap solitons [27].

The limits ω → ±1 are referred to as the nonrelativistic
limits of the MTM system (1). It is well known (see, e.g.,
[28–30]) that the nonlinear Dirac equations such as the MTM
system (1) can be reduced to the focusing NLS equation as
ω → 1 and to the defocusing NLS equation as ω → −1. The
normalized form for the two NLS equations is given by

iψt + ψxx + σ |ψ |2ψ = 0, σ = sgn(ω) = ±1. (5)

The family (4) reduces to the small-amplitude, long-scale,
sech-shaped soliton of the focusing NLS equation (5) with
σ = +1 as ω → 1 (γ → 0) and to the finite-amplitude, finite-
scale, algebraic soliton

γ = π :

[
ualg(x, t )
valg(x, t )

]
=

[
2

1+2ix
2

1−2ix

]
e−it (6)

as ω → −1 (γ → π ). Note that the NLS equations (5) hold
in the limit of small amplitudes and hence the algebraic soli-
ton (6) does not satisfy the reduction to the defocusing NLS
equation (5) with σ = −1 as ω → −1.

The algebraic soliton (6) has the largest mass among the
exponential solitons in the family (4), where the mass for the
MTM system (1) is defined by

Q(u, v) :=
∫
R

(|u|2 + |v|2)dx. (7)

It follows from (4) that

|u(x, t )|2 + |v(x, t )|2 = 4 sin2 γ

cos γ + cosh(2x sin γ )
,

which implies that Q(usol, vsol ) = 4γ with the largest mass at
Q(ualg, valg) = 4π .

Let us now present the main results of this paper. First, we
have obtained the exact formula for the algebraic two-soliton
solution of the MTM system (1). The exact formula can be
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FIG. 1. The solution surface for |u|2 + |v|2 versus (x, t ) for the family (8) and (9) with x1 = x2 = t1 = t2 = 0 and δ1 = 1 + ε, δ2 = 1 − ε

with ε = 0.75 (top left), ε = 0.5 (top right), ε = 0.25 (bottom left), and ε = 0.01 (bottom right).

written in the form

u(x, t ) = −2iδ−1/2
1 e−iT1

[
2X2 + i − 4iδ1

δ1−δ2

] + 2iδ−1/2
2 e−iT2

[
2X1 + i + 4iδ2

δ1−δ2

]
(2X1 − i)(2X2 − i) + 4

√
δ1δ2

(δ1−δ2 )2

[√
δ1e

i
2 (T1−T2 ) − √

δ2e− i
2 (T1−T2 )

]2 (8)

and

v(x, t ) = 2iδ1/2
1 e−iT1

[
2X2 − i − 4iδ2

δ1−δ2

] + 2iδ1/2
2 e−iT2

[
2X1 − i + 4iδ1

δ1−δ2

]
(2X1 + i)(2X2 + i) + 4

√
δ1δ2

(δ1−δ2 )2

[√
δ1e− i

2 (T1−T2 ) − √
δ2e

i
2 (T1−T2 )

]2 , (9)

where

Xj = x + c jt√
1 − c2

j

+ x j, Tj = t + c jx√
1 − c2

j

+ t j, c j = δ2
j − 1

δ2
j + 1

with the parameters δ1,2 > 0 such that δ1 �= δ2 and translational parameters x1,2 ∈ R and t1,2 ∈ R.
Figure 1 shows the solution surfaces which suggest that the algebraic two-soliton solution given by (8) and (9) describes

scattering of two algebraic solitons. When the wave speeds c1 and c2 are very different from each other (top panels), the scattering
is fast and the trajectories of the two solitons are almost straight lines. When the wave speeds approach each other (bottom
panels), the scattering becomes slow and the trajectories of the two solitons are curved near the soliton overlapping regions.

In the limit δ1, δ2 → 1 of the algebraic two-soliton solution given by (8) and (9), we derived the following new rational
solution to the MTM system (1):

[
udouble(x, t )
vdouble(x, t )

]
=

⎡
⎢⎢⎣

4(−3 + 6ix − 12x2 − 8ix3 − 12t (2x − i) − iβ )

3 + 24ix − 24x2 + 32ix3 − 16x4 + 48t2 + 2β(2x − i)
4(−3 − 6ix − 12x2 + 8ix3 + 12t (2x + i) + iβ )

3 − 24ix − 24x2 − 32ix3 − 16x4 + 48t2 + 2β(2x + i)

⎤
⎥⎥⎦e−it , (10)

where β ∈ R is a free parameter of the family. A general family with three translational parameters and the speed parameter
c ∈ (−1, 1) is obtained from the translational and Lorentz symmetry given by (2) and (3). Since we prove that, for every β ∈ R,
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FIG. 2. The solution surface for |u|2 + |v|2 versus (x, t ) for the family (10) with β = 0 (top left), β = 1 (top right), β = 10 (bottom left),
and β = 100 (bottom right).

the denominators in (10) have no zeros on the real line in x for every t ∈ R, the new rational solution is smooth and bounded for
every (x, t ) ∈ R × R.

The algebraic double soliton given by (10) describes a slow scattering of two identical algebraic solitons. The parameter
β describes the distance between the two solitons. Figure 2 illustrates the solution surface for |u|2 + |v|2 versus (x, t ) for the
family of solutions (10) with β = 0, 1, 10, 100. The solution with β = 0 is symmetric with the global maximum at (0,0). Since
|u(0, 0)|2 + |v(0, 0)|2 = 32 for (10) and |u(0, 0)|2 + |v(0, 0)|2 = 8 for (6), the double soliton has the quadruple magnification
factor for the squared amplitudes compared to the single algebraic soliton.

As β increases, the symmetry is broken and the magnification factor becomes smaller. For sufficiently large β, the two solitons
do not overlap but slowly scatter at a distance from each other. As β → ∞, one soliton goes to infinity and the other soliton is
located near the origin. Indeed, the family of solutions (10) converges as β → ∞ to a single algebraic soliton (6). We will prove
that

Q(udouble, vdouble ) = 8π = 2Q(ualg, valg), (11)

which implies that the double-soliton (10) has a double mass compared to the single algebraic soliton (6).
For the fast scattering of two algebraic solitons given by (8) and (9), the algebraic solitons move along straight lines before and

after interaction in the overlapping region. No phase shift arises as a result of the soliton interaction, which is a standard feature
of algebraic multisoliton solutions, see [31,32]. This is illustrated on the contour plot of Fig. 3 (left panel), where we showed
the solution from Fig. 1 with ε = 0.5 together with the straight lines x + c1t = 0 and x + c2t = 0. On the other hand, the slow
scattering of two identical solitons given by (10) results in the solitons propagating along a curve on the (x, t ) plane. Figure 3
(right panel) shows the solution from Fig. 2 with β = 0 together with the parabolas x2 = ±3t . The free algebraic solitons would
be standing waves with c = 0 but their slow interaction results in the dynamics along the trajectories at x ≈ ±√

3t as t → ∞
with nonzero but asymptotically vanishing velocities ±

√
3

2
√

t
→ 0 as t → +∞.

The next section contains derivation of (8)–(10) as well as the proof of (11).
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FIG. 3. The contour plots for the solution surfaces from Fig. 1 with ε = 0.5 (left) and from Fig. 2 with β = 0 (right). The red lines show
the straight lines x + c1t = 0 and x + c2t = 0 (left) and the parabolas x2 = ±3t (right).

III. PROOF OF THE MAIN RESULTS

As a starting point, the MTM system (1) is transformed to a system of bilinear equations by the following transformation
[16]:

u = g

f̄
, v = h

f
, (12)

where f̄ is a complex conjugate of f . Substituting (12) into (1) yields the following system of bilinear equations for f , h, and g:

i f (gt + gx ) − ig( ft + fx ) + h f̄ = 0,

i f̄ (ht − hx ) − ih( f̄t − f̄x ) + gf = 0,

i f̄ ( fx + ft ) − i f ( f̄t + f̄x ) − |h|2 = 0,

i f ( f̄t − f̄x ) − i f̄ ( ft − fx ) − |g|2 = 0. (13)

It was proven in [16] that the system (13) is satisfied by the following two-soliton solutions in the general form

f = 1 + c11eζ1+ζ̄1 + c12eζ1+ζ̄2 + c21eζ̄1+ζ2 + c22eζ2+ζ̄2 + c1212eζ1+ζ̄1+ζ2+ζ̄2 ,

h = ᾱ1eζ1 + ᾱ2eζ2 + c121eζ1+ζ2+ζ̄1 + c122eζ1+ζ2+ζ̄2 ,

g = iᾱ1

p1
eζ1 + iᾱ2

p2
eζ2 − i p̄1

p1 p2
c121eζ1+ζ2+ζ̄1 − i p̄2

p1 p2
c122eζ1+ζ2+ζ̄2 , (14)

where

ζ j = 1

2

(
p j + 1

p j

)
x + 1

2

(
p j − 1

p j

)
t

and

ci j = − ipiᾱiα j

(pi + p̄ j )2
, c12 j = (p1 − p2) p̄ j

[
ᾱ2c1 j

p1(p2 + p̄ j )
− ᾱ1c2 j

p2(p1 + p̄ j )

]
,

c1212 = |p1 − p2|2
[

c11c22

(p1 + p̄2)(p2 + p̄1)
− c12c21

(p1 + p̄1)(p2 + p̄2)

]
,

whereas parameters p1, p2, α1, α2 ∈ C are arbitrary.
We are going to obtain new solutions of the MTM system (1) in the form (8)–(10) by using a new parametrization of the

exponential two-soliton solutions (14) and by taking the limits to the algebraic two-soliton solutions.

A. New parametrization of the exponential two-soliton solutions

In order to represent the two-soliton solutions (14) in the meaningful way where each soliton resembles the exponential
soliton given by (4), we will use the following parametrization:

p j = iδ je
−iγ j , α j = 2

√
δ j sin γ je

iγ j
2 +sin γ j x j−i cos γ j t j , j = 1, 2, (15)

with arbitrary parameters γ j ∈ (0, π ), δ j > 0, and (x j, t j ) ∈ R2. By using the parametrization (15) for p j , we obtain

ζ j = sin γ j
[

1
2

(
δ j + δ−1

j

)
x + 1

2

(
δ j − δ−1

j

)
t
] + i cos γ j

[
1
2

(
δ j − δ−1

j

)
x + 1

2

(
δ j + δ−1

j

)
t
]
.
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This representation resembles the Lorentz transformation (3) with

1

2

(
δ j + δ−1

j

) = 1√
1 − c2

j

,
1

2

(
δ j − δ−1

j

) = c j√
1 − c2

j

,

where we have introduced the wave speeds

c j := δ2
j − 1

δ2
j + 1

∈ (−1, 1), j = 1, 2. (16)

Due to parametrization (15), we obtain

c j j = e−iγ j+2 sin γ j x j , j = 1, 2,

and, more generally,

ci j = − 4
√

δiδ j sin γi sin γ jδi(
δie− i

2 (γi+γ j ) − δ je
i
2 (γi+γ j )

)2 e− i
2 (γi+γ j )+sin γixi+sin γ j x j+i cos γiti−i cos γ j t j ,

so that we can introduce the following two real-valued coordinates

ξ j := sin γ j

⎛
⎜⎝ x + c jt√

1 − c2
j

+ x j

⎞
⎟⎠, η j := cos γ j

⎛
⎜⎝ t + c jx√

1 − c2
j

+ t j

⎞
⎟⎠, (17)

where (x j, t j ) ∈ R2 play the role of translational parameters in (2).
To derive the explicit expressions for c12 j and c1212, we use (15) and obtain

c121 = (p1 − p2) p̄1

[
ᾱ2c11

p1(p2 + p̄1)
− ᾱ1c21

p2(p1 + p̄1)

]
= i p̄1|α1|2ᾱ2(p1 − p2)2

(p1 + p̄1)2( p̄1 + p2)2

that

c121 = (p1 − p2)2

( p̄1 + p2)2
ᾱ2eiγ1+2 sin γ1x1 , c122 = (p1 − p2)2

(p1 + p̄2)2
ᾱ1eiγ2+2 sin γ2x2 .

Similarly, we obtain

c1212 = e−iγ1−iγ2+2 sin γ1x1+2 sin γ2x2 A12,

where

A12 = |p1 − p2|2
(p1 + p̄2)(p2 + p̄1)

[
1 − 16δ2

1δ
2
2 sin2 γ1 sin2 γ2

(p1 + p̄1)(p2 + p̄2)(p1 + p̄2)( p̄1 + p2)

]

= − |p1 − p2|2
(p1 + p̄2)2(p2 + p̄1)2

[
(δ1e−iγ1 − δ2eiγ2 )(δ2e−iγ2 − δ1eiγ1 ) + 4δ1δ2 sin γ1 sin γ2

]

=
(

δ2
1 + δ2

2 − 2δ1δ2 cos(γ1 − γ2)

δ2
1 + δ2

2 − 2δ1δ2 cos(γ1 + γ2)

)2

.

This representation allows us to rewrite the component f of the two-soliton solution (14) in the explicit form

f = 1 + e2ξ1−iγ1 + e2ξ2−iγ2 + A12e2ξ1+2ξ2−iγ1−iγ2 − 4
√

δ1δ2 sin γ1 sin γ2eξ1+ξ2− i
2 γ1− i

2 γ2

×
[

δ1ei(η1−η2 )(
δ1e− i

2 (γ1+γ2 ) − δ2e
i
2 (γ1+γ2 )

)2 + δ2e−i(η1−η2 )(
δ1e

i
2 (γ1+γ2 ) − δ2e− i

2 (γ1+γ2 )
)2

]
, (18)

where ξ j and η j are given by (17). The components h and g are written in the hybrid form for now:

h = ᾱ1eζ1

[
1 +

(
p1 − p2

p1 + p̄2

)2

e2ξ2+iγ2

]
+ ᾱ2eζ2

[
1 +

(
p1 − p2

p̄1 + p2

)2

e2ξ1+iγ1

]
(19)

and

g = iᾱ1

p1
eζ1

[
1 +

(
p1 − p2

p1 + p̄2

)2

e2ξ2+3iγ2

]
+ iᾱ2

p2
eζ2

[
1 +

(
p1 − p2

p̄1 + p2

)2

e2ξ1+3iγ1

]
. (20)
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The two-soliton solution corresponds to two exponential solitons propagating according to their wave speeds c1,2 obtained from
δ1,2 by (16) and having frequencies ω1,2 = cos(γ1,2) obtained from γ1,2. The one-soliton solution appears from this formula by
taking ξ2 → −∞:

u = lim
ξ2→−∞

g

f̄
= iᾱ1eζ1

p1(1 + e2ξ1+iγ1 )
= sin γ1δ

−1/2
1 sech

(
ξ1 + i

2
γ1

)
eiη1

and similarly,

v = lim
ξ2→−∞

h

f
= ᾱ1eζ1

1 + e2ξ1−iγ1
= sin γ1δ

1/2
1 sech

(
ξ1 − i

2
γ1

)
eiη1 ,

from which we recognize the exact solution (4) extended by the symmetry transformations (2) and (3).

B. Limit to the algebraic two-soliton solutions

Each soliton in the two-soliton solution expressed in the Hirota form (12) with (18)–(20) has four arbitrary parameters δ j > 0,
γ j ∈ (0, π ), and (x j, t j ) ∈ R2 for j = 1, 2. In order to get the algebraic two-soliton solutions, we need to take the limit γ j → π

for each j = 1, 2. Hence, we set

γ j = π − ε j, j = 1, 2

and expand to the leading order

sin γ j = ε j + O
(
ε3

j

)
, cos γ j = 1 + O

(
ε2

j

)
.

We can then define

Xj := x + c jt√
1 − c2

j

+ x j, Tj := t + c jx√
1 − c2

j

+ t j

and expand (
p1 − p2

p1 + p̄2

)2

=
(

δ1eiε1 − δ2eiε2

δ1eiε1 − δ2e−iε2

)2

= 1 − 4iε2δ2

δ1 − δ2
+ O

(
ε2

1 , ε
2
2

)
and

A12 =
(

δ2
1 + δ2

2 − 2δ1δ2 cos(ε1 − ε2)

δ2
1 + δ2

2 − 2δ1δ2 cos(ε1 + ε2)

)2

= 1 − 8δ1δ2ε1ε2

(δ1 − δ2)2
+ O

(
ε2

1ε
2
2

)
.

This yields the expansions

f = 1 − eε1(2X1+i)+O(ε3
1 ) − eε2(2X2+i)+O(ε3

2 ) + A12eε1(2X1+i)+O(ε3
1 )+ε2(2X2+i)+O(ε3

2 )

+ 4
√

δ1δ2ε1ε2
δ1e−i(T1−T2 ) + δ2ei(T1−T2 )

(δ1 − δ2)2
+ O

(
ε2

1ε2, ε1ε
2
2

)
,

h = −2iδ1/2
1 ε1e−iT1

[
1 −

(
p1 − p2

p1 + p̄2

)2

eε2(2X2−i)+O(ε3
2 )

][
1 + O

(
ε2

1

)]

− 2iδ1/2
2 ε2e−iT2

[
1 +

(
p1 − p2

p̄1 + p2

)2

eε1(2X1−i)+O(ε3
1 )

][
1 + O

(
ε2

2

)]
,

g = 2iδ−1/2
1 ε1e−iT1

[
1 −

(
p1 − p2

p1 + p̄2

)2

eε2(2X2−3i)+O(ε3
2 )

][
1 + O

(
ε2

1

)]

+ 2iδ−1/2
2 ε2e−iT2

[
1 −

(
p1 − p2

p̄1 + p2

)2

eε1(2X1−3i)+O(ε3
1 )

][
1 + O

(
ε2

2

)]
.

Hence, we get the power expansions

f = ε1ε2F + O
(
ε2

1ε2, ε1ε
2
2

)
, h = ε1ε2H + O

(
ε2

1ε2, ε1ε
2
2

)
, g = ε1ε2G + O

(
ε2

1ε2, ε1ε
2
2

)
with

F = (2X1 + i)(2X2 + i) + 4
√

δ1δ2

(δ1 − δ2)2

[√
δ1e− i

2 (T1−T2 ) −
√

δ2e
i
2 (T1−T2 )

]2
, (21)

H = 2iδ1/2
1 e−iT1

[
2X2 − i − 4iδ2

δ1 − δ2

]
+ 2iδ1/2

2 e−iT2

[
2X1 − i + 4iδ1

δ1 − δ2

]
, (22)
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and

G = −2iδ−1/2
1 e−iT1

[
2X2 + i − 4iδ1

δ1 − δ2

]
− 2iδ−1/2

2 e−iT2

[
2X1 + i + 4iδ2

δ1 − δ2

]
. (23)

The algebraic two-soliton solution of the MTM system (1) appears in the Hirota form as

u = G

F̄
, v = H

F
(24)

and yields the exact solution (8) and (9). It describes two algebraic solitons traveling with the speeds c1,2 obtained from δ1,2 by
(16). A single algebraic solution appears by taking X2 → ∞:

u = lim
X2→∞

G

F̄
= 2δ

−1/2
1

1 + 2iX1
e−iT1

and similarly,

v = lim
X2→∞

H

F
= 2δ

1/2
1

1 − 2iX1
e−iT1 ,

from which we recognize the exact solution (6) extended by the symmetry transformations (2) and (3).

C. Limit to the algebraic double soliton

Each algebraic soliton in the two-soliton solution expressed in the Hirota form (24) with (21)–(23) has three arbitrary
parameters δ j > 0 and (x j, t j ) ∈ R2 for j = 1, 2. We now take the limit δ1 → δ2. Due to the Lorentz transformation (3), it
is sufficient to set

δ1 = 1 + ε, δ2 = 1 − ε

and take the limit ε → 0. This choice gives the algebraic double soliton with zero wave speed as in (10). Expanding X1,2 and
T1,2 in the first powers of ε, we write

X1 = x + εt + 1
2ε2(x − t ) − 1

2ε3(x − t ) + x1 + O(ε4), X2 = x − εt + 1
2ε2(x − t ) + 1

2ε3(x − t ) + x2 + O(ε4),

T1 = t + εx − 1
2ε2(x − t ) + 1

2ε3(x − t ) + t1 + O(ε4), T2 = t − εx − 1
2ε2(x − t ) − 1

2ε3(x − t ) + t2 + O(ε4).

In view of the translational symmetry (2), it is also sufficient to set

x1 = εa1 + 1
2ε2a2 − 1

2ε3a3,+O(ε4), x2 = −εa1 + 1
2ε2a2 + 1

2ε3a3,+O(ε4),

t1 = εb1 − 1
2ε2b2 + 1

2ε3b3,+O(ε4), t2 = −εb1 − 1
2ε2b2 − 1

2ε3b3,+O(ε4),

with arbitrary parameters a1, a2, a3, b1, b2, and b3. This gives the algebraic double soliton with zero translational parameters for
(x, t ) as in (10).

For expansion of F , we use

(2X1 + i)(2X2 + i) = (2x + i)2 + ε2[2(2x + i)(x − t + a2) − 4(t + a1)2] + O(ε4)

and√
δ1e− i

2 (T1−T2 ) −
√

δ2e
i
2 (T1−T2 ) = −2i

(
1 − ε2

8

)
sin

(
ε(x + b1) + ε3

2
(x − t + b3)

)
+ 2

(
ε

2
+ ε3

16

)
cos (ε(x + b1)) + O(ε5)

= ε(1 − 2i(x + b1)) + ε3

[
i

3
(x + b1)3 − i(x − t + b3) + i

4
(x + b1) − 1

2
(x + b1)2 + 1

8

]

+ O(ε5).

Substituting expansions into (21) yields F = F0 + ε2F2 + O(ε4) with

F0 = −4b1(2x + i + b1),

F2 = 2(2x + i)(x − t + a2) − 4(t + a1)2 − 1

2
(1 − 2i(x + b1))2

+ 2(1 − 2i(x + b1))

[
i

3
(x + b1)3 − i(x − t + b3) + i

4
(x + b1) − 1

2
(x + b1)2 + 1

8

]
.
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If b1 �= 0, then the limit ε → 0 recovers a single algebraic soliton in the form (6). However, if b1 = 0, then we get

F2 = (1 − 2ix)

[
2i

3
x3 + 3ix − x2 − 1

4
+ 2i(a2 − b3)

]
− 4(t + a1)2

= − 1

12
[3 − 24ix − 24x2 − 32ix3 − 16x4 + 48(t + a1)2 + 24(b3 − a2)(2x + i)].

For expansion of H , we use

δ
1/2
1 e−iT1 (2X2 − i) + δ

1/2
2 e−iT2 (2X1 − i) = e−it+ i

2 ε2(x−t+b2 )

{
2(2x − i) + ε2[2(x − t + a2) + 2(t + a1)(2i(x + b1) − 1)]

− ε2(2x − i)

[
(x + b1)2 + i(x + b1) + 1

4

]}
+ O(ε4)

and

δ
1/2
2 e−iT1 − δ

1/2
1 e−iT2 = e−it+ i

2 ε2(x−t+b2 )

[
− 2i

(
1 − ε2

8

)
sin

(
ε(x + b1) + ε3

2
(x − t + b3)

)

− 2

(
ε

2
+ ε3

16

)
cos (ε(x + b1)) + O(ε5)

]

= e−it+ i
2 ε2(x−t+b2 )

{
− ε(1 + 2i(x + b1))

+ ε3

[
i

3
(x + b1)3 + i

4
(x + b1) − i(x − t + b3) + 1

2
(x + b1)2 − 1

8

]
+ O(ε5)

}
.

Substituting expansions into (22) yields H = e−it+ i
2 ε2(x−t+b2 )[H0 + ε2H2 + O(ε4)] with

H0 = −8ib1, H2 = 2i

[
2(x − t + a2) + 2(t + a1)(2i(x + b1) − 1) − (2x − i)

[
(x + b1)2 + i(x + b1) + 1

4

]]

+ 4

[
i

3
(x + b1)3 + i

4
(x + b1) − i(x − t + b3) + 1

2
(x + b1)2 − 1

8

]
+ 2[1 + 2i(x + b1)].

We confirm again that if b1 �= 0, then the limit ε → 0 recovers a single algebraic soliton in the form (6). However, if b1 = 0,
then we get

H2 = 2i

[
2(a2 − b3) + 2(t + a1)(2ix − 1) − 4

3
x3 − 2ix2 + x − i

2

]

= −1

3
[−3 − 6ix − 12x2 + 8ix3 + 12(t + a1)(2x + i) + 12i(b3 − a2)].

Similarly for G, we obtain in the case of b1 = 0 that G = ε2e−it G2 + O(ε4) with

G2 = − 1
3

[−3 + 6ix − 12x2 − 8ix3 − 12(t + a1)(2x − i) − 12i(b3 − a2)
]
.

The limit ε → 0 in (24) yields a new solution for the algebraic double soliton in the form

[
u(x, t )
v(x, t )

]
=

⎡
⎢⎢⎣

4(−3 + 6ix − 12x2 − 8ix3 − 12(t + α)(2x − i) − iβ )

3 + 24ix − 24x2 + 32ix3 − 16x4 + 48(t + α)2 + 2β(2x − i)
4(−3 − 6ix − 12x2 + 8ix3 + 12(t + α)(2x + i) + iβ )

3 − 24ix − 24x2 − 32ix3 − 16x4 + 48(t + α)2 + 2β(2x + i)

⎤
⎥⎥⎦e−it , (25)

where α := a1 and β := 12(b3 − a2) are two real-valued parameters. Due to the symmetry transformation (2), the parameter α

is trivial and can be set to zero as is done in (10).
Note that we have confirmed the validity of (25) by searching for polynomial solutions of the bilinear equations (13) with f

being polynomial in x of degree four and in t of degree two and with h and g being polynomials in x of degree three and in t of
degree one. The only parameters of the polynomial solutions were found to be α, β ∈ R as in (25).

D. Mass of the algebraic double-soliton

We shall prove (11) here. It follows from (12) and (13) that

|u|2 + |v|2 = |g|2 + |h|2
| f |2 = 2i

(
fx

f
− f̄x

f̄

)
,
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where

f = 16x4 + 32ix3 + 24x2 + 24ix − 3 − 48t2 − 2β(2x + i).

We claim that f has no zeros on R in x for every t ∈ R and β ∈ R. Indeed, if x, t, β ∈ R, zeros of f must satisfy

16x4 + 2x2 − 3 − 48t2 − 4βx = 0, 32x3 + 24x − 2β = 0.

Expressing β = 16x3 + 12x yields −48x4 − 24x2 − 3 − 48t2 = 0, which cannot be satisfied for x, t ∈ R. Hence, there exist no
roots of f on R in x for every t ∈ R and β ∈ R. This and the fast decay at infinity,

fx

f
− f̄x

f̄
= O

(
1

|x|2
)

as |x| → ∞,

justify the applications of Jordan’s lemma and the argument principle to compute the integral on R with techniques of complex
analysis: ∫

R
(|u|2 + |v|2)dx = lim

R→∞

∫
[−R,R]∪C+

R

(|u|2 + |v|2)dz = 2i lim
R→∞

∫
[−R,R]∪C+

R

(
fx

f
− f̄x

f̄

)
dz = 4π (Nf̄ − Nf ),

where C+
R is a semicircle of radius R in the upper half of the complex extension of x denoted by C+, Nf is the number of zeros

of f in C+, and Nf̄ is the number of zeros of f̄ in C+. Since f has no zeros on R, we have

Nf̄ = deg( f ) − Nf .

Since deg( f ) = 4, we only need to show that Nf = 1 to obtain (11). However, this is true for every β ∈ R as |t | → ∞ due to
the representation of f in the equivalent form

f = (2x + i)4 + 12(2x + i)2 − 4i(2x + i) − 2β(2x + i) + 4 − 48t2,

from which we have

(2x + i) = 4
√

12
√

|t |e iπn
2 + O

(
1√|t |

)
as |t | → ∞,

where n = 0, 1, 2, 3. There is only one root in C+ which corresponds to n = 1. Since the number Nf cannot change in the
continuation of f in t ∈ R for every β ∈ R, we have Nf = 1 for every t ∈ R and β ∈ R. Hence, Q(udouble, vdouble ) = 8π, and
(11) holds for every β ∈ R.

IV. CONCLUSION

We have constructed exact solutions of the MTM system
(1) for fast and slow scatterings of two algebraic solitons.
Each algebraic soliton is supported by the embedded eigen-
value in the KN spectral problem [2]. The fast scattering of
two algebraic solitons with different wave speeds c1 �= c2 is
described by the exact solution (8) and (9). The slow scatter-
ing of two identical solitons with zero speed is described by
the exact solution (10). The exact solutions suggest that the
algebraic solitons are stable coherent structures arising in a
more complicated evolution of the MTM system (1).

These discoveries lead to a number of open questions
which can be addressed in future research. First, the math-
ematical problem of proving orbital stability of algebraic
solitons is still open with only partial progress obtained within
the derivative NLS equation in [33] and recently in [34].
Second, the algebraic double-soliton solution (10) suggests

existence of a hierarchy of higher-order rational solutions of
the MTM system (1) which has not been obtained in the pre-
vious works [20–22]. Third, a similar algebraic double soliton
and a similar hierarchy of higher-order rational solutions must
exist in the other nonlinear equations associated with the KN
spectral problem, among which the most significant model is
the derivative NLS equation [6,8]. Finally, development of
the IST methods and the generalized Darboux transforma-
tion methods for the algebraic solitons associated with the
embedded eigenvalues of the KN spectral problem is still a
challenging problem for future research.
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