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Abstract. We study the discrete nonlinear Schrödinger equation with competing powers
(p, q) satisfying 2 ≤ p < q. The physically relevant cases are given by (p, q) = (2, 3),
(p, q) = (3, 4), and (p, q) = (3, 5). In the anticontinuum limit, all intrinsic localized modes
are compact and can be classified by their codes, which record one of two nonzero (smaller
and larger) states and their sign alternations. By using the spectral stability analysis,
we prove that the codes for larger states of the same sign are spectrally and nonlinearly
(orbitally) stable, whereas the codes for smaller states of the alternating signs are spectrally
stable but have eigenvalues of negative Krein signature. We also identify numerically the
spectrally stable codes which consist of stacked combinations of the sign-definite larger states
and the sign-alternating smaller states.

1. Introduction

The Discrete Nonlinear Schrödinger (DNLS) equation,

i
dΨn

dt
+ C∆2Ψn + |Ψn|2 Ψn = 0,. (1)

where Ψn(t) ∈ C, t ∈ R, n ∈ Z, C > 0, and ∆2Ψn ≡ Ψn+1 − 2Ψn + Ψn−1, is a fundamental
lattice model that has emerged in various physical contexts (see, e.g., the surveys [1, 2] and
the book [3]). In nonlinear optics, this equation describes arrays of parallel Kerr waveguides
fabricated on a common substrate [4, 5]. In Bose-Einstein condensate (BEC) theory, it is
used to describe the dynamics of the condensate cloud in a sigar-shape optical trap [6, 7, 8].
In this context, the lattice equation (1) has been derived from the Gross-Pitaevskii equation
with periodic potential by using the basis of Wannier functions [9], see also the book [10].

A particular attention is given to specific solutions of the DNLS equation which are
spatially localized and periodic in time. These solutions are called intrinsic localized modes
(ILMs) or, alternatively, discrete solitons. The simplest class of ILMs is represented by the
stationary oscillations of the frequency ω written in the form

Ψn(t) = Φne
iωt, lim

n→±∞
Φn = 0. (2)

The existence and stability of ILMs have been extensively studied in the DNLS equation
in the anticontinuum limit (ACL) (see, e.g., [11, 12, 13]). The ACL was introduced in the
context of breathers of the discrete Klein–Gordon equations in [14, 15] but it was found
particularly powerful in the context of the DNLS equation.
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Many other physically relevant lattice models differ from the cubic DNLS equation (1)
by their type of nonlinearity. Dynamics of electromagnetic field in array of waveguides in
photorefractive crystals is described by the DNLS equation with a saturable nonlinearity
[16]. Approximation of the saturable nonlinearity by two power terms yields the cubic–
quintic DNLS equation:

i
dΨn

dt
+ C∆2Ψn + κ |Ψn|2 Ψn − Γ |Ψn|4 Ψn = 0. (3)

If κ and Γ are positive constants, Eq. (3) includes two competing powers of opposite signs
(referred to as DNLS with competing nonlinearity). It is known for C > 0 that the “plus”
term ∼ |Ψn|2 Ψn is a focusing nonlinearity and the “minus” term ∼ |Ψn|4 Ψn is a defocusing
nonlinearity. The interplay of these two factors results in new features of the model with
either saturable or cubic–quintic nonnlinearity, e.g. multistability of steady-states [17, 18, 19]
and mobility of localized excitations [20, 21, 22, 23, 24, 25, 26].

Recently, two more versions of DNLS with competing nonlinearity have received wide
discussion in the physical literature. Both of them have been used to describe a mixture
of two BECs in the presence of quantum fluctuations (QFs). It was shown in [27] that
the correction to the mean-field energy due to QFs can stabilize the BEC mixture. The
correction depends on the dimensionality of the system [28]. Theoretical predictions were
confirmed by experiments, in 2D [29] and 3D [30] cases.

(i) In the case of 1D systems (i.e. assuming that the trap is very narrow in the transverse
direction), the correction due to QFs gives an additional attractive nonlinear term ∼ |Ψ|Ψ
to the cubic repulsive term [31, 32]. Expanding the wavefunction with respect to the basis
of Wannier functions [9], one arrives at the lattice equation [33, 34, 35]

i
dΨn

dt
+ C∆2Ψn + κ |Ψn|Ψn − Γ |Ψn|2 Ψn = 0, (4)

where C, κ and Γ are positive.

(ii) If the BEC is loaded in the 3D cigar-type (elongated) trap, then the correction due
to QFs gives an additional repulsive nonlinear term ∼ |Ψ|3Ψ to the cubic attractive term
[36, 37, 38, 39, 40]. Averaging the 3D wavefunction over the transverse dimensions and
applying the Wannier functions expansion (see [37] for detail) leads to the lattice equation

i
dΨn

dt
+ C∆2Ψn + κ |Ψn|2 Ψn − Γ |Ψn|3 Ψn = 0, (5)

where C, κ and Γ are positive.

The DNLS equations (3), (4), and (5) are the particular cases of a more general model:

i
dΨn

dt
+ C∆2Ψn + κ |Ψn|p−1 Ψn − Γ |Ψn|q−1 Ψn = 0, (6)

where C, κ, and Γ are positive constants, whereas p, q ∈ N satisfy 2 ≤ p < q. Since the wave
function must remain spatially localized, ILMs are natural objects of the study. Assuming
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the solution of the form (2) with the t-dependent amplitudes {Φn(t)}n∈Z, it follows from (6)
that

i
dΦn

dt
+ C∆2Φn − ωΦn + κ |Φn|p−1 Φn − Γ |Φn|q−1 Φn = 0. (7)

If ω > 0, we apply the time rescaling t→ ωt in Eq. (7), followed by the transformation

ε =
C

ω
, γ =

Γ

ω

(ω
κ

) q−1
p−1

, Φn =
(ω
κ

) 1
p−1

un,

to obtain the normalized DNLS equation:

i
dun
dt

+ ε∆2un − un + |un|p−1 un − γ |un|q−1 un = 0. (8)

Steady states for the time-dependent DNLS equation (8) satisfy the difference equation

ε (un+1 − 2un + un−1)− un + |un|p−1 un − γ |un|q−1 un = 0. (9)

We represent the sequence {un}n∈Z for solutions to Eq. (9) as a bi-infinite vector u =
(. . . u−1, u0, u1, . . .). It follows from (9) that

J = unun+1 − unun+1

does not depend on n, where the bar means the complex conjugation. If lim
n→±∞

un = 0, then

J = 0 so that either un = 0 or

un+1

un
=
un+1

un
,

and the arguments of un+1 and un are equal modulo π. Therefore, without loss of generality
we can assume that un ∈ R for any n ∈ Z so that u ∈ RZ.

In this study, we address the problem of stability of ILMs in the normalized DNLS
equation with the competing nonlinearity (8). The stability property of the ILMs is very
important for physical applications, since only stable objects can be observed in experiments.
In a general formulation, this problem can hardly be solved analytically. For the DNLS
equation (1), the stability of solutions under arbitrary value of the coupling parameter C
can only be established numerically [3]. However, the stability problem can be analyzed in
the ACL for small values of the coupling parameter [12]. The method of [12] was extended
in [41] to wider class of DNLS-type equations including the saturable nonlinearity. It is the
purpose of this work to analyze the stability problem for the competing nonlinearity. The
particular cases of the model (7), namely the cases (p, q) = (2, 3) in (4) and (p, q) = (3, 4)
in (5), were recently studied in [40], where bifurcations of ILMs were classified numerically,
and in [35], where stability of dark solitons was considered in the ACL analytically and
numerically.
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Stability of ILMs is related to the question of minimization of the energy H(u) with or
without a constraint of fixed mass Q(u), where

H(u) =
∑
n∈Z

ε|un+1 − un|2 −
2

p+ 1
|un|p+1 +

2γ

q + 1
|un|q+1, (10)

Q(u) =
∑
n∈Z

|un|2. (11)

Both the energy and mass are conserved quantities of the DNLS equation (8). The difference
equation (9) is the Euler–Lagrange equation for the critical points of the augmented energy

Λ(u) = H(u) +Q(u). (12)

We distinguish between the spectral stability of ILMs, for which the spectrum of a linearized
operator is a subset of iR, and the nonlinear (orbital) stability of ILMs, for which perturba-
tions to the orbit {eiαu}α∈R do not grow in time. See the book [42] for the introduction to
the stability analysis of ILMs.

The main analytical result of this study is the following theorem.

Theorem 1. Let p, q ∈ N be fixed such that 2 ≤ p < q. For every γ ∈ (0, γp,q), where

γp,q ≡
(
p− 1

q − 1

)
·
(
q − p
q − 1

) q−p
p−1

; (13)

there exists ε0 > 0 and C0 > 0 such that for every ε ∈ (0, ε0), there exists a solution u ∈ `2(Z)
of the difference equation (9) such that

‖u− u(0)‖`2(Z) ≤ C0ε, (14)

where u(0) = (. . . , 0, 0, ũ, 0, 0, . . .) with ũ ∈ RN of any length N ≥ 1 defined by nonzero roots
±a and ±A with 0 < a < A of the function

R 3 u→ f(u) = u(1− |u|p−1 + γ|u|q−1) ∈ R. (15)

Moreover, we have for every ε ∈ (0, ε0),

(A) The solution u with either ũ = (+A,+A, . . . ,+A) or ũ = (−A,−A, . . . ,−A) is a
minimizer of augmented energy Λ, hence it is spectrally and orbitally stable.

(B) The solution u with either ũ = (+a,−a, . . . ,±a) or ũ = (−a,+a, . . . ,∓a) is spec-
trally stable but it is a constrained minimizer of energy H for fixed mass Q (which is
orbitally stable) if and only if N = 1.

(C) If
a2

f ′(a)
+

(N − 1)A2

f ′(A)
< 0, (16)

then the solution u with ũ consisting of either (N − 1) elements (+A,+A, . . . ,+A)
and one element +a or (N − 1) elements (−A,−A, . . . ,−A) and one element −a
(in any order) is a constrained minimizer of energy H for fixed mass Q, hence it is
spectrally and orbitally stable.
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(D) If
(N − 1)a2

f ′(a)
+

A2

f ′(A)
> 0, (17)

then the solution u with ũ consisting of either (N − 1) elements (+a,−a, . . . ,±a)
and one element ±A or (N − 1) elements (−a,+a, . . . ,∓a) and one element ∓A
(in any order but preserving the sign alternation) is spectrally stable but it is not a
constrained minimizer of energy H for fixed mass Q for N ≥ 2.

Remark 1. The existence part of Theorem 1 is proven as Proposition 1. The stability part
of Theorem 1 with items (A), (B), (C), and (D) is proven as Propositions 2, 3, 4, and 5.
Each proposition also implies that all other ILMs of the same class as in (A), (B), (C), (D)
are spectrally unstable, e.g. (A) the solution u with ũ = (±A,±A, . . . ,±A) are spectrally
unstable if there exists at least one sign alternation, etc.

To simplify the formalism, we will use the code A = (A+a−A−a+) with a± = ±a and
A± = ±A instead of the vector ũ = (+A,−a,−A,+a). In this way, we can label the whole
branch of ILMs for ε ∈ (0, ε0) by A, whereas the vector ũ is only relevant for the limiting
vector u(0) as ε→ 0, see (14).

Items (A) and (B) of Theorem 1 suggest the universal stability of the following codes of
any length N ≥ 1:

AA = (A+A+ . . . A+), Aa = (a+a− . . . a±). (18)

Items (C) and (D) include the first members of the sequence of stacked modes:

A+
n,m = (A+A+ . . . A+︸ ︷︷ ︸

n

a+a− . . . a±︸ ︷︷ ︸
m

), A−n,m = (A+A+ . . . A+︸ ︷︷ ︸
n

a−a+ . . . a±︸ ︷︷ ︸
m

). (19)

We have performed the full numerical study of spectrally stable codes, focusing on the
physically relevant cases (p, q) = (2, 3), (p, q) = (3, 4), and (p, q) = (3, 5). Our numerical
finding is that for values of γ close to γp,q, there exist universally stable codes A−k+1,k for odd
N = 2k+1 in addition to universally stable codes AA and Aa in (18). Furthermore, for even
N = 2k and for values of γ close to γp,q the ILM with codes A+

k,k are stable for large values
of q as follows: for q > 7 in the case p = 2, for q > 5 in the case p = 3, and for any q > p in
the case of p ≥ 4.

In addition, we discovered many stable configurations for small values of γ. Eigenvalues
of the spectral stability problem for small γ > 0 are very different in magnitude since a→ 1
and A→∞ as γ → 0, which explains stability of many codes in addition to AA, Aa in (18),
and their stable stacked versions described above. We defer for further study the asymptotic
analysis of the spectral stability of ILMs in the limits γ → γp,q and γ → 0.

The rest of this paper is organized as follows. Existence of ILMs in the ACL is studied
in Section 2, where the first part of Theorem 1 is proven. We divide all codes into groups of
equivalent and irreducible codes and give the count of all irreducible codes for N ≥ 1.

Stability of ILMs in the anticontinuum limit is studied in Section 3, where the second
part of Theorem 1 is proven by using analysis of the truncated spectral stability problem
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and persistence of eigenvalues in the full spectral stability problem. Moreover, we combine
the classification of the spectrally stable codes with the count of negative eigenvalues in the
second variation of the augmented energy Λ and in the second variation of the constrained
energy H for fixed mass Q, which are included to get conclusions on the nonlinear (orbital)
stability of ILMs.

Numerical results visualizing simplest ILMs and their bifurcations are shown in Section
4. Numerical results about spectral stability of ILMs are summarized in Section 5. We give
the complete count of spectrally stable ILMs in tables and show bifurcations of stable and
unstable eigenvalues for some ILMs in figures. We focus on the physically relevant cases
(p, q) = (2, 3), (p, q) = (3, 4), and (p, q) = (3, 5), but also give results for (p, q) = (3, 6)
for completeness of presentation. Section 6 concludes the paper with summary and open
problems for future study.

2. Existence of ILMs in the anticontinuum limit

We explore the anticontinuum limit (ACL) in the difference equation (9), which corre-
sponds to the limit of uncoupled lattice sites as ε→ 0. If ε = 0, then un for each n ∈ Z is a
real root of f(u) : R→ R given by (15). We have

(a) three real roots {0,+1,−1} of f if γ = 0;
(b) five real roots {0,+a,−a,+A,−A} of f with 0 < a < A if γ ∈ (0, γp,q), where γp,q is

given by (13);
(c) three real roots {0,+up,q,−up,q} of f if γ = γp,q, where

up,q ≡
(
q − 1

q − p

)1/(p−1)

.

(d) one real root {0} of f if γ > γp,q.

In case (d), no spatially decaying solutions of the difference equation (9) exist for any
ε > 0. Indeed, if we multiply (9) by ūn and sum over n ∈ Z, we obtain

−ε
∑
n∈Z

|un+1 − un|2 −
∑
n∈Z

|un|2(1− |un|p−1 + γ|un|q−1) = 0,

where the left-hand side is strictly negative for nonzero solutions if γ > γp,q and ε > 0.

Cases (a) and (c) represent boundaries of the interval (0, γp,q) which are sensitive to
perturbations. Therefore, in this study, we focus on case (b) and assume γ ∈ (0, γp,q). We
obtain the following elementary result.

Lemma 1. For any p, q with q > p, and 0 < γ < γp,q, we have f ′(a) < 0 and f ′(A) > 0.

Proof. If 0 < γ < γp,q, then there are two positive roots of f at a and A. It is obvious that
f(u) > 0 for u ∈ (0, a) ∪ (A,+∞) and f(u) < 0 for u ∈ (a,A). This implies that

f ′(a) = 1− pap−1 + γqaq−1 ≤ 0,

f ′(A) = 1− pAp−1 + γqAq−1 ≥ 0.
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To show that f ′(a) 6= 0, we check that the system of equations

f(a) = 0, f ′(a) = 0

has a solution on (0,∞) if and only if γ = γp,q (in which case a = A). The same argument
applies to show that f ′(A) 6= 0. Hence, we have f ′(a) < 0 and f ′(A) > 0. �

Let u(0) ∈ RZ be a bi-infinite solution of the difference equation (9) when ε = 0. For γ ∈
(0, γp,q), each element of u(0) may take any of the values {0,+a,−a,+A,−A} independently
of others. Since we consider ILMs, we assume that u(0) contains a finite number of nonzero
components ±a and ±A. Moreover, we assume that the ILM at the ACL contains only
N nonzero components in the N consequent elements of u(0). Without loss of generality,
we allocate the nonzero components between n = 1 and n = N and introduce the vector

ũ = (u
(0)
1 , u

(0)
2 , . . . , u

(0)
N ) ∈ RN such that u(0) = (. . . , 0, 0, ũ, 0, 0, . . .). For the vector ũ, we

also introduce the code A with symbols a± = ±a and A± = ±A.

Remark 2. If u is a solution of (9) for any ε ∈ R, then Ru, −u, and −Ru are also solutions
of (9) for any ε ∈ R, where R is the reversibility operator given by (Ru)n = u−n. This is due
to reversibility of ∆2 about any node n ∈ Z and the sign symmetry of the nonlinear terms.
Existence and stability of each of the four equivalent ILMs are identical to each other. We
only pick one of the four equivalent ILMs and call it the irreducible ILM.

To count the total number of irreducible ILMs of the same length N , we have the following
elementary result.

Lemma 2. For each odd N = 2k + 1 with k ∈ N, there exist

16k + 4k

irreducible codes of length N . For each even N = 2k with k ∈ N, there exist

1

4
(16k + 2 · 4k)

irreducible codes of length N .

Proof. Given that the zero symbol is not used in the codes, each symbol must be one of four
types: A+, A−, a+, or a−, and there exists no vector ũ satisfying ũ = −ũ. We say that the
vector ũ is R-symmetric if Rũ = ũ. Also we say that ũ is −R-symmetric if −Rũ = ũ. No
vectors can be both R-symmetric and −R-symmetric.

Let N = 2k + 1, k ∈ N. Consider the set G+ that consists of 2 · 42k codes with positive
center symbol, (i.e. A+ or a+). Note, that G+ does not contain any −R-symmetric element.
For any triple (ũ,−ũ,−Rũ) exactly one element belongs to G+. However, the set G+ contains
2 · 4k R-symmetric elements. Nonsymmetric 2 · 42k − 2 · 4k elements of G+ can be split into
pairs (ũ,Rũ). Taking only one representative from each pair (ũ,Rũ) and returning 2 · 4k
R-symmetric codes one concludes that the number of irreducible codes is

1

2

(
2 · 42k − 2 · 4k

)
+ 2 · 4k = 16k + 4k.
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Let N = 2k, k ∈ N. Consider the set F+ that consists of codes with positive first symbol.
Evidently, F+ consists of 2 · 42k−1 elements and for any pair (ũ,−ũ) exactly one element
belongs to F+. The set F+ includes 2 · 4k−1 R-symmetric codes and 2 · 4k−1 −R-symmetric
codes. Each vector ũ ∈ F+ that is neither R-symmetric nor −R-symmetric has exactly
one counterpart in F+ that is either R-symmetric or −R-symmetric. This means that the
number of irreducible codes is

1

2
(2 · 42k−1 − 2 · 4k−1 − 2 · 4k−1) + 2 · 4k−1 + 2 · 4k−1 =

1

4
(16k + 2 · 4k).

This completes the proof. �

Example 1. For N = 1, the 2 irreducible codes are given by

(a+) and (A+).

For N = 2, the 6 irreducible codes are given by

(a+, a+), (a+, a−), (a+, A+), (a+, A−), (A+, A+), and (A+, A−).

The numbers of irreducible codes for N = 1 and N = 2 agree with Lemma 2.

Example 2. If (a+, a−, A+) is the code for N = 3, then

(A+, a−, a+), (a−, a+, A−), and (A−, a+, a−)

are equivalent codes. The code (a+, a−, A+) is one of the 18 irreducible codes for N = 3.

The existence result for the ILMs in the ACL is obtained by the implicit function theorem
in the space of real-valued bi-infinite solutions u ∈ RZ of the difference equation (9) [14, 15].
Moreover, it follows that the vector u is close to the limiting vector u(0) for small ε > 0
and that the sign alternation of the vector ũ ∈ RN gives the sign alternation of the vector
u ∈ RZ for small ε > 0 [11, 12]. The existence result is given by the following proposition,
which also yields the first assertion of Theorem 1.

Proposition 1. Let p, q ∈ N be fixed such that 2 ≤ p < q. For every γ ∈ (0, γp,q), there
exists ε0 > 0 and C0 > 0 such that for every ε ∈ (0, ε0), there exists a solution u ∈ `2(Z) of
the difference equation (9) such that

‖u− u(0)‖`2(Z) ≤ C0ε, (20)

where u(0) = (. . . , 0, 0, ũ, 0, 0, . . .) with ũ ∈ RN of any length N ≥ 1. Moreover, the number
of sign alternations in u is equal to the number of sign alternations in ũ.

Proof. By writing u = u(0)+v with real-valued v ∈ `2(Z), we rewrite the difference equation
(9) in the equivalent form:

− ε (vn+1 − 2vn + vn−1) + f ′(u(0)n )vn = ε
(
u
(0)
n+1 − 2u(0)n + u

(0)
n−1

)
− g(u(0)n , vn), (21)

where f(u) = u− |u|p−1u+ γ|u|q−1u and g(u, v) = f(u+ v)− f(u)− f ′(u)v. Since p, q ∈ N
and 2 ≤ p < q, the mapping v → g(u, v) is C1 for a given u ∈ C and there is C > 0 such
that

|g(u(0)n , vn)| ≤ C|vn|2, ∀n ∈ Z,
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as long as ‖v‖`2 ≤ 1. We can rewrite (21) in the abstract form:

Lv = H(v), (22)

with

Lvn = f ′(u(0)n )vn − ε∆2vn,

Hn(v) = ε∆2u
(0)
n − g(u(0)n , vn).

The mapping `2(Z) 3 v→ H(v) ∈ `2(Z) is C1 since `2(Z) is a Banach algebra with respect
to multiplication and

‖∆2u
(0)‖`2 ≤ 4‖u(0)‖`2 .

On the other hand, we have f ′(0) = 1, f ′(±a) < 0, f ′(±A) > 0 by Lemma 1. Hence, L is
an invertible operator in `2(Z) for sufficiently small ε > 0 with a bounded inverse. By the
implicit function theorem in `2(Z), there exist ε0 > 0 and C0 > 0 such that there exists a
unique solution to (22) satisfying ‖v‖`2 ≤ C0ε for every ε ∈ (0, ε0). This yields the first
assertion and results in the bound (20).

It remains to prove preservation of the sign alternation in u from u(0). To do so, we
introduce ∆−2 on `2(Z−) with Z− = {. . . ,−2,−1, 0} subject to the Dirichlet condition for
n = 1. The difference equations (9) for n ∈ Z− can be rewritten in the form

(1− h(un)− ε∆−2 )un = εu1δn,0, n ∈ Z−, (23)

where δn,0 = 1 for n = 0 and δn,0 = 0 for n ≤ −1, whereas h(u) = |u|p−1 − γ|u|q−1. Since
p, q ∈ N and 2 ≤ p < q, there is C > 0 such that

|h(un)| ≤ C|un|, ∀n ∈ Z−,

as long as ‖u‖`2(Z−) ≤ 1. Since ‖u‖`2(Z−) = O(ε) and u1 = O(1) as ε→ 0 by the bound (20),
it follows from (23) that

un = ε|n|+1u
(0)
1 [1 +O(ε)] , n ∈ Z−,

so that the sign of un for every n ∈ Z− is the same as the sign of u
(0)
1 since ε > 0. Similarly,

we get

un = εn−Nu
(0)
N [1 +O(ε)] , n ∈ Z+ = {N + 1, N + 2, . . . }.

Hence, the sign of un for every n ∈ Z+ is the same as the sign of u
(0)
N since ε > 0. This yields

the equality between the number of sign alternations in u and that in ũ. �

3. Stability of ILMs in the anticontinuum limit

Let u ∈ `2(Z) be the spatial profile of the ILM given by Proposition 1. Assuming that
u is real-valued, we substitute u → u = v(t) + iw(t) with real-valued v(t),w(t) ∈ `2(Z) to
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the solution of the time-dependent DNLS equation (8). Linearizing at the linear powers of
v, w, we obtain the linearized DNLS equation in the form

dvn
dt

+ ε∆2wn − wn + |un|p−1wn − γ|un|q−1wn = 0, (24)

−dwn
dt

+ ε∆2vn − vn + p|un|p−1vn − γq|un|q−1vn = 0. (25)

Separating the variables as v(t) = veiωt and w(t) = iweiωt in (24)–(25), we obtain the
eigenvalue problem for the time-independent eigenvector (v,w) ∈ `2(Z)×`2(Z) in the matrix
form:

ω

(
v
w

)
=

(
0 L−ε
L+
ε 0

)(
v
w

)
. (26)

where the matrix operators L−ε and L+
ε are given by

L−ε =



. . .
...

...
...

...

· · · D−n−1 −ε 0 · · ·
· · · −ε D−n −ε . . .

· · · 0 −ε D−n+1 . . .

· · · ...
...

...
. . .


, L+

ε =



. . .
...

...
...

...

· · · D+
n−1 −ε 0 · · ·

· · · −ε D+
n −ε . . .

· · · 0 −ε D+
n+1 . . .

· · · ...
...

...
. . .


.

with

D−n = 2ε+ 1− |un|p−1 + γ|un|q−1, D+
n = 2ε+ 1− p|un|p−1 + γq|un|q−1.

The ILM with the spatial profile u is called spectrally stable if Im ω = 0 for all eigenvalues
ω. The eigenvalue problem (26) can be rewritten in the equivalent scalar forms

L−ε L
+
ε v = λv, L+

ε L
−
ε w = λw, (27)

where λ ≡ ω2. If the linear operator L+
ε : `2(Z)→ `2(Z) is invertible, e.g. for small ε > 0 as

in the proof of Proposition 1, then the second eigenvalue problem in (27) can be rewritten
as the generalized eigenvalue problem for the eigenvector w ∈ `2(Z):

L−ε w = λ(L+
ε )−1w. (28)

Since λ = ω2, the neutrally stable eigenvalues ω ∈ R correspond to positive eigenvalues
λ > 0 of the generalized eigenvalue problem (28), whereas the unstable eigenvalues ω /∈ R
correspond to either negative eigenvalues λ < 0 or complex eigenvalues λ /∈ R.

Remark 3. The eigenvalue problem (26) contains the same spectrum if u is replaced Ru,
−u, and −Ru, where R is the reversibility operator given by (Ru)n = u−n. This further
suggests that the spectral stability of the four equivalent ILMs is identical, so that we can
consider only one of the four equivalent ILMs.
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3.1. Truncated eigenvalue problem. By Proposition 1, the spatial profile u ∈ `2(Z) is
close to the limiting profile u(0) = (. . . , 0, 0, ũ, 0, 0, . . .) with ũ ∈ RN of any length N ≥ 1.
As is explained in Section 2, we only consider the nonzero elements in ũ located between
n = 1 and n = N .

If ε = 0, then L−0 and L+
0 are diagonal matrix operators such as L−0 has a block of N zero

diagonal elements with all other diagonal elements at 1 and L+
0 has a block of N diagonal

elements (D̃+
1 , D̃

+
2 , . . . , D̃

+
N), with all other diagonal elements at 1, where

D̃+
n =

[
f ′(a), if ũn = ±a,
f ′(A), if ũn = ±A,

(29)

with f ′(u) ≡ 1− pup−1 + γquq−1 for u ∈ (0,∞).

To get a nontrivial truncated eigenvalue problem as ε → 0, we note that ũn 6= 0 for
n = 1, . . . , N . By using Eq. (9), we can write

D−n = 2ε+ 1− |un|p−1 + γ|un|q−1 = ε
un−1 + un+1

un
, n = 1, . . . , N.

Truncating at the leading order with u
(0)
n = ũn for n = 1, . . . , N , we introduce

D̃−n =
ũn−1 + ũn+1

ũn
, n = 1, . . . N, (30)

subject to the boundary conditions ũ0 = ũN+1 = 0. Truncation of the generalized eigenvalue
problem (28) at n = 1, . . . , N yields the following problem at the leading order:

L̃−w̃ = λ̃(L̃+)−1w̃. (31)

where N ×N matrices L̃− and L̃+ are given by

L̃− =



D̃−1 −1 0 · · · 0

−1 D̃−2 −1 0
...

0 −1
. . . −1 0

... 0 −1
. . . −1

0 · · · 0 −1 D̃−N


, L̃+ =



D̃+
1 0 0 · · · 0

0 D̃+
2 0 0

...

0 0
. . . 0 0

... 0 0
. . . 0

0 · · · 0 0 D̃+
N


,

with D̃+
n and D̃−n given by (29) and (30), respectively. The following lemma gives the relation

between eigenvalues of (28) and (31).

Lemma 3. Let {λ̃1, . . . , λ̃N} be eigenvalues of the truncated eigenvalue problem (31). If λ̃k
for some k ∈ {1, 2, . . . , N} is simple, then the generalized eigenvalue problem (28) admits a
simple eigenvalue λk given by

λk = ελ̃k +O(ε2). (32)

Moreover, if λ̃k ∈ R, then λk ∈ R.
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Proof. We have

ΠN×NL
−
ε = εL̃− +O(ε2), ΠN×NL

+
ε = L̃+ +O(ε),

where ΠN×N is the truncation of the matrix operator defined in `2(Z) to the matrix in MN×N

by using the rows and columns between n = 1 and n = N . In the limit ε→ 0, we obtain by
Proposition 1 that

L−ε=0 = diag(I≤0,0N×N , I≥N+1), L+
ε=0 = diag(I≤0, L̃

+, I≥N+1),

where I≤0 and I≥N+1 are identity operators for n ∈ Z− and n ∈ Z+ defined in the proof
of Proposition 1, whereas 0N×N is the zero matrix for 1 ≤ n ≤ N . It is clear that the
spectrum of the generalized eigenvalue problem (28) consists of only two eigenvalues: λ = 0
of multiplicity N in the subspace UN = span(e1, e2, . . . , eN) ⊂ `2(Z) and λ = 1 of infinite
multiplicity in the subspaces `2(Z−) and `2(Z+). Since

`2(Z) = `2(Z−)⊕ UN ⊕ `2(Z+),

we can proceed with the perturbation theory for the zero eigenvalue and use the decompo-
sition

w = c1e1 + c2e2 + . . . cNeN + w− + w+,

where w− ∈ `2(Z−) and w+ ∈ `(Z+). By the implicit function theorem (similar to the one
used in the proof of Proposition 1), there exist ε0 > 0, C0 > 0, and λ0 > 0 such that for
every ε ∈ (0, ε0) and |λ| < λ0, there exists a unique mapping CN 3 c = (c1, c2, . . . , cN) →
(w−,w+) ∈ `(Z−)⊕ `(Z+) satisfying

‖w−‖`2(Z−) + ‖w+‖`2(Z+) ≤ C0ε‖c‖CN .

Rescaling the eigenvalues as λ = ελ̃(ε) and using the unique mapping above, we get the
matrix eigenvalue problem in the form[

L̃− +O(ε)
]
c = λ̃(ε)

[
L̃+ +O(ε)

]−1
c. (33)

The truncated version of the matrix eigenvalue problem (33) coincides with (31) and admits

eigenvalues {λ̃1, . . . , λ̃N}. Simple roots of the characteristic polynomial for the matrix eigen-
value problem (33) persist with respect to O(ε) perturbation terms and yield the expansion
(32). This is again proven with the implicit function theorem for roots of the characteristic
polynomial. Furthermore, since complex eigenvalues are symmetric about real axis, that is,
both λ and λ̄ are eigenvalues, then if λ̃k is simple and real, then λk is simple and real for
small ε > 0, as λk cannot split into a pair of two complex eigenvalues due to preservation of
multiplicity in the roots of the characteristic polynomial with respect to O(ε) perturbation
terms. �

Remark 4. If λ̃k is a multiple eigenvalue, then λk is still located near λ̃k due to Puiseux
expansions. However, if the algebraic multiplicity exceeds the geometric multiplicity of λ̃k,
the correction terms may not be real-valued even if λ̃k ∈ R.
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3.2. Stability results based on the truncated eigenvalue problem. Eigenvalues of the
truncated eigenvalue problem (31) are real if either L̃− or L̃+ is positive definite. Therefore,
we first study the number of negative and positive eigenvalues in these matrices, denoted as
n(L̃±) and p(L̃±) respectively.

For L̃+, let K be the number of elements ±a in the code ũ. By Lemma 1, we have

n(L̃+) = K, p(L̃+) = N −K. (34)

For L̃−, let N0(z) be the number of flips (changes of sign between nearest components) of z

for either z ∈ RN or z ∈ `2(Z). The following lemma characterizes n(L̃−) and p(L̃−).

Lemma 4. L̃− admits a simple zero eigenvalue, whereas

n(L̃−) = N0(ũ), p(L̃−) = N −N0(ũ)− 1. (35)

Similarly, the spectrum of operator L−ε : `2(Z) → `2(Z) includes a simple zero eigenvalue,
N0(ũ) negative eigenvalues, and the rest of its spectrum is strictly positive and bounded away
from zero for ε > 0 by C0ε with C0 > 0.

Proof. The spectral problems for both L̃− and L−ε belong to the class of discrete Schrödinger
equations:

−∆2vn + (D̃−n − 2)vn = λvn, n = 1, . . . , N, v0 = vN+1 = 0

and
−ε∆2vn + vn − |un|p−1vn + γ|un|q−1vn = λvn, n ∈ Z,

where λ is the spectral parameter. It follows from (30) that L̃−ũ = 0. Furthermore, it follows
from (9) that L−ε u = 0. By Proposition 1, we have N0(u) = N0(ũ). Sturm’s comparison
theorem for the discrete Schrödinger equations [43] states that the number of negative eigen-

values of either L̃− or L−ε is equal to the number of sign alternation in the eigenvector for
the zero eigenvalue, either ũ or u. This yields the result for n(L̃−) = n(L−ε ) for small ε > 0.

Since L̃− is the N×N matrix with a simple zero eigenvalue, we have p(L̃−) = N−1−n(L̃−).
Since L−ε is a linear operator in `2(Z) satisfying L−ε=0 = diag(I≤0,0N×N , I≥N+1), its spectrum
consists of n(L−ε ) negative eigenvalues, a simple zero eigenvalue, and N − 1−n(L−ε ) positive
eigenvalues of the O(ε) order, as well as the rest of the spectrum which is located near 1 for
small ε > 0. Hence, the strictly positive spectrum is bounded away from zero for ε > 0 by
C0ε with C0 > 0. �

The following four propositions present definite results on the count of real eigenvalues in
the truncated eigenvalue problem (31) in the cases when either L̃− or L̃+ is positive definite.
If there exist negative eigenvalues λ, then the result of Lemma 3 implies that the ILM is
spectrally unstable in the ACL. If no negative eigenvalues exist, we are able to conclude on
the spectral stability of the corresponding ILMs in the ACL. This yields assertions (A), (B),
(C), and (D) in Theorem 1.

Proposition 2. If the code A includes only symbols A+ and A−, then the truncated eigen-
value problem (31) admits N0(ũ) negative eigenvalues, a simple zero eigenvalue, and N −
N0(ũ)− 1 positive eigenvalues.
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Proof. It follows from (34) with K = 0 that the matrix L̃+ is positive-definite. In this case,
the generalized eigenvalue problem (31) only admits real eigenvalues and Sylvester’s inertial

theorem counts the number of negative, zero, and positive eigenvalues λ̃ from those of L̃−

[44]. This yields the result by the count (35) in Lemma 4. �

Remark 5. The spectrally stable codes correspond to N0(ũ) = 0, which is realized at the
nonalternating symbols, e.g. (A+), (A−), (A+A+), (A−A−), (A+A+A+), (A−A−A−) etc.

Since the quadratic forms L̃−w̃ · w̃ and (L̃+)−1w̃ · w̃ are strictly positive for a positive

eigenvalue λ̃ with the eigenvector w̃ 6= 0, then the positive eigenvalues of (31) are semi-
simple. Hence, they persist as real positive eigenvalues of (28) according to Lemma 3. This
yields the spectral stability of the corresponding ILMs. All other codes which include only
symbols A+ and A− are spectrally unstable.

Proposition 3. If the code A includes only symbols a+ and a−, then the truncated eigenvalue
problem (31) admits N−N0(ũ)−1 negative eigenvalues, a simple zero eigenvalue, and N0(ũ)
positive eigenvalues.

Proof. It follows from (34) with K = N that the matrix L̃+ is negative-definite. In this case,
the generalized eigenvalue problem (31) only admits real eigenvalues and Sylvester’s inertial

theorem counts the number of negative, zero, and positive eigenvalues λ̃ from those for −L̃−
[44]. This yields the result by the count (35) in Lemma 4. �

Remark 6. The spectrally stable codes correspond to N = N0(ũ) + 1, which is realized
at the alternating combination of symbols a+ and a−, e.g. (a+), (a−), (a+a−), (a+a−a+),

(a−a+a−), etc. Since the quadratic forms L̃−w̃ · w̃ and (L̃+)−1w̃ · w̃ are strictly negative for

a positive eigenvalue λ̃ with the eigenvector w̃ 6= 0, then the positive eigenvalues of (31) are
semi-simple. Hence, they persist as real positive eigenvalues of (28) according to Lemma 3.
This yields the spectral stability of the corresponding ILMs. All other codes which include
only symbols a+ and a− are spectrally unstable.

Proposition 4. Assume that (L̃+)−1ũ · ũ 6= 0 and define

σ0 =

{
1, if (L̃+)−1ũ · ũ < 0,

0, if (L̃+)−1ũ · ũ > 0.

If the code A includes only symbols a+ and A+, then the truncated eigenvalue problem (31)
admits K−σ0 negative eigenvalues, a simple zero eigenvalue, and N −K− (1−σ0) positive
eigenvalues.

Proof. By Lemma 4, the matrix L̃− has a simple zero eigenvalue with the eigenvector ũ and
(N − 1) positive eigenvalues since N0(ũ) = 0. By Fredholm’s theorem, the zero eigenvalue
in the generalized eigenvalue problem (31) is simple if

(L̃+)−1ũ · ũ 6= 0

Consider the orthogonal complement of ũ in RN with the orthogonal projection operator
Π0 : RN → RN |ũ⊥ . The generalized eigenvalue problem (31) can be reduced on RN |ũ⊥ by
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using

Π0L̃
−Π0w̃ = λ̃Π0(L̃

+)−1Π0w̃. (36)

Since Π0L̃
−Π0 is strictly positive, Sylvester’s inertial theorem counts the number of remaining

(N − 1) negative and positive eigenvalues λ̃ in (36) from those for Π0(L̃
+)−1Π0. It follows

from (34) that (L̃+)−1 has K negative and N −K positive eigenvalues. If (L̃+)−1ũ · ũ < 0,

then Π0(L̃
+)−1Π0 has K−1 negative and N−K positive eigenvalues. If (L̃+)−1ũ·ũ > 0, then

Π0(L̃
+)−1Π0 has K negative and N −K − 1 positive eigenvalues. This yields the result. �

Remark 7. The spectrally stable codes correspond to K = σ0, which can be realized in two
different ways. Either no symbols a+ are present if σ0 = 0, in which case the assertion follows
by Proposition 2, or only one symbol a+ is present if σ0 = 1. In either case, the quadratic
forms L̃−w̃ · w̃ and (L̃+)−1w̃ · w̃ are strictly positive for a positive eigenvalue λ̃ with the
eigenvector w̃ 6= 0. Hence, the positive eigenvalues of (36) are semi-simple and persist as
real positive eigenvalues of (28). This yields the spectral stability of the corresponding ILMs.
All other codes which include only sumbols a+ and A+ are spectrally unstable. In particular,
any code of this type that includes more than one symbol a+ is spectrally unstable.

Proposition 5. Assume that (L̃+)−1ũ · ũ 6= 0 and define σ0 as in Proposition 4. If the
code A includes only sign-alternating symbols a± and A±, e.g. (A+a−a+A−), then the trun-
cated eigenvalue problem (31) admits N −K − (1− σ0) negative eigenvalues, a simple zero
eigenvalue, and K − σ0 positive eigenvalues.

Proof. By Lemma 4, the matrix L̃− has a simple zero eigenvalue with the eigenvector ũ
and (N − 1) negative eigenvalues since N0(ũ) = N − 1. By Fredholm’s theorem, the zero
eigenvalue in the generalized eigenvalue problem (31) is simple if

(L̃+)−1ũ · ũ 6= 0

By using the same reduction to (36), we obtain a strictly negative Π0L̃
−Π0 so that Sylvester’s

inertial theorem counts the number of remaining (N − 1) negative and positive eigenvalues

λ̃ in (36) from those of −Π0(L̃
+)−1Π0. By using the same argument as in the proof of

Proposition 4, this yields the result. �

Remark 8. The spectrally stable codes correspond to N = K + 1− σ0, which can be realized
in two different ways. Either no symbols A± are present if σ0 = 1, in which case the assertion
follows by Proposition 3, or only one symbol A± is present if σ0 = 0. In either case, the
quadratic forms L̃−w̃·w̃ and (L̃+)−1w̃·w̃ are strictly negative for a positive eigenvalue λ̃ with
the eigenvector w̃ 6= 0. Hence, the positive eigenvalues of (36) are semi-simple and persist
as real positive eigenvalues of (28). This yields the spectral stability of the corresponding
ILMs. All other codes which include only sign-alternating symbols a± and A± are spectrally
unstable.

3.3. Stability results based on the negative index theory. To give a general count
of unstable eigenvalues in the generalized eigenvalue problem (28) for small ε > 0, let us
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first clarify the quantity (L̃+)−1ũ · ũ which appears in Propositions 4 and 5. By using the
definition D̃+

n in (29), we derive

(L̃+)−1ũ · ũ =
Ka2

f ′(a)
+

(N −K)A2

f ′(A)
, (37)

where f ′(a) = 1 − pap−1 + γqaq−1 < 0 and f ′(A) = 1 − pAp−1 + γqAq−1 > 0 by Lemma 1.
By the continuity of u with respect to ε > 0 in Proposition 1, we also get

lim
ε→0
〈(L+

ε )−1u,u〉 = (L̃+)−1ũ · ũ, (38)

where 〈·, ·〉 denotes the standard inner product in `2(Z).

We recall that the ILM with the spatial profile u is a critical point of the augmented
energy functional Λ(u) = H(u) + Q(u) in (12), where the energy H(u) and the mass Q(u)
are given by (10) and (11). It is straightforward to verify that the critical points u ∈ `2(Z) of
the augmented energy Λ satisfy the difference equation (9). If u is real-valued, the quadratic
form of Λ at u with the perturbation v + iw for real-valued v,w ∈ `2(Z) is given by the
sum of two quadratic forms

Λ(u + v + iw)− Λ(u) = 〈L+
ε v,v〉+ 〈L−ε w,w〉+O(‖v + iw‖3`2),

where L±ε are the same operators as in the spectral stability problem (26). By using the
stability theory in Hamiltonian systems (see Theorems 1.8 and 3.2 in [42]), we give a general
count of unstable eigenvalues in the generalized eigenvalue problem (28).

Proposition 6. Assume that Ker(L+
ε ) = {0}, Ker(L−ε ) = span{u}, 〈(L+

ε )−1u,u〉 6= 0, and
define

σ =

{
1, if 〈(L+

ε )−1u,u〉 < 0,
0, if 〈(L+

ε )−1u,u〉 > 0.

Referring to the generalized eigenvalue problem (28), define the number Nc of complex eigen-
values λ with Im(λ) > 0, the number N+

r (N−r ) of real negative eigenvalues λ < 0 with eigen-
vectors w ∈ `2(Z) having positive (negative) values of 〈(L+

ε )−1w,w〉, and the number N+
i

(N−i ) of real positive eigenvalues λ > 0 with eigenvectors w ∈ `2(Z) having positive (nega-
tive) values of 〈(L+

ε )−1w,w〉. The numbers of eigenvalues satisfy the following completeness
relations:

Nc +N−r +N−i = n(L+
ε )− σ, (39)

Nc +N+
r +N−i = n(L−ε ), (40)

where n(L±ε ) denotes the number of negative eigenvalues of L±ε in `2(Z).

The following remarks clarify the statement of Proposition 6.

Remark 9. The assumptions of Proposition 6 are satisfied for small ε > 0 due to invertibility
of L̃+, a simple zero eigenvalue of L̃−, and the continuity result (38) if 〈(L̃+)−1ũ, ũ〉 6= 0.
Hence, σ = σ0, where σ0 appears in Propositions 4 and 5.
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Remark 10. If n(L+
ε ) = n(L−ε ) = 0, then necessarily σ0 = 0 and the ILM is a local

minimizer of the augmented energy Λ which is degenerate only due to the rotational symmetry
represented by Ker(L−ε ) = span{u}. Since Nc = N±r = N−i = 0 follow from (39)–(40), the
local minimizer is spectrally stable. It is also nonlinearly (orbitally) stable (see Theorem 2.3
in [42]).

Remark 11. If n(L+
ε ) = 1, n(L−ε ) = 0, then the ILM is a saddle point of the augmented

energy Λ. If σ = 1, it is a local minimizer of energy H for fixed mass Q, which is degenerate
only due to the rotational symmetry represented by Ker(L−ε ) = span{u}. In this context, the
quantity 〈(L+

ε )−1u,u〉 is related to the Vakhitov–Kolokolov slope condition

〈(L+
ε )−1u,u〉 = −1

2

d

dω
‖u(ω)‖2`2|ω=1,

where u(ω) ∈ `2(Z) is a solution of the difference equation augmented with the parameter
ω ∈ R:

ε∆2un(ω)− ωun(ω) + |un(ω)|p−1un(ω)− γ|un(ω)|q−1un(ω) = 0. (41)

By taking derivative of (41) with respect to ω and evaluating it at ω = 1, we obtain

L+
ε u
′(ω)|ω=1 = −u, ⇒ u′(ω)|ω=1 = −(L+

ε )−1u,

since L+
ε is invertible. If

d

dω
‖u(ω)‖2`2|ω=1 > 0,

then u is local constrained minimizer of energy, and since Nc = N±r = N−i = 0 follow
from (39)–(40), the local constrained minimizer is spectrally stable. It is also nonlinearly
(orbitally) stable (see Theorems 2.8 and 3.3 in [42]).

Remark 12. Under the assumptions of Proposition 6, the zero eigevalue of the generalized
eigenvalue problem (28) is simple. The eigenvalues in Nc, N

±
r , N±i could be multiple, in which

case the positive (negative) values of 〈(L+
ε )−1w,w〉 are defined on the invariant subspaces of

`2(Z) related to multiple eigenvalues. The case with 〈(L+
ε )−1u,u〉 = 0 is degenerate with the

zero eigenvalue of (28) being at least double.

As an application of Proposition 6, we consider spectral stability of the simplest ILMs
with the shortest codes.

Example 3. If N = 1, there are two such ILMs, (A+) and (a+), up to the sign reflection.

• For the code (A+), we have K = 0 and by (37), σ0 = 0. Since n(L+
ε ) = n(L−ε ) = 0,

then Nc = N±r = N−i = 0 follow from (39)–(40). Therefore (A+) is spectrally stable
(a local minimizer of Λ).
• For the code (a+), we have K = 1 and by (37), σ0 = 1. Also n(L+

ε ) = 1, n(L−ε ) = 0,
then Nc = N±r = N−i = 0 follow from (39)–(40). This implies that (a+) is spectrally
stable (a local constrained minimizer of H for fixed Q).

Remark 13. The stability of the two ILMs with codes (A+) and (a+) takes place for any
p, q ∈ N and 2 ≤ p < q and any γ ∈ (0, γp,q). See the blue color branches for codes (A) and
(a) for small ε > 0 in Figure 2 below.
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Example 4. If N = 2, there are six irreducible ILMs (see Example 1). We have definite
results for only four ILMs.

• For the code (A+A+), we have K = 0 and by (37), σ0 = 0. Then, n(L+
ε ) = n(L−ε ) = 0

implies Nc = N±r = N−i = 0 by (39)–(40). Hence, (A+A+) is spectrally stable (a
local minimizer of Λ).
• For the code (A+A−), we have K = 0 and by (37), σ0 = 0. Then, n(L+

ε ) = 0 implies
Nc = N−r = N−i = 0 from (39) and n(L−ε ) = 1 implies N+

r = 1 from (40). Hence,
(A+A−) is spectrally unstable.
• For the code (a+a+), we have K = 2 and by (37), σ0 = 1. Then, n(L+

ε ) − σ0 = 1
implies N−r = 1 from (39) and n(L−ε ) = 0 implies Nc = N+

r = N−i = 0 from (40).
Hence, (a+a+) is spectrally unstable.
• For the code (a+a−), we have K = 2 and by (37), σ0 = 1. Then, n(L+

ε ) − σ0 =
n(L−ε ) = 1 imply N−i = 1 and Nc = N±r = 0 from (39)–(40). The other possible
cases Nc = 1, N±r = N−0 = 0 or N+

r = N−r = 1, Nc = N−0 = 0 in (39)–(40)
are excluded since they require two nonzero eigenvalues in the truncated generalized
eigenvalue problem (31), whereas we only have one nonzero and one zero eigenvalue
for N = 2. Hence, (a+a−) is spectrally stable (but it is not a constrained minimizer
of H for fixed Q).

Remark 14. Stability or instability of the ILMs listed above takes place for any p, q ∈ N
and 2 ≤ p < q and any γ ∈ (0, γp,q). See the blue color branch for code (AA) and the red
color branch for code (aa) for small ε > 0 in Figure 2 below.

For the two remaining ILMs with N = 2 with codes (a+A+) and (a+A−), we have K = 1
and, hence, we need to compute the quantity in (37), that is,

(L̃+)−1ũ · ũ =
a2

f ′(a)
+

A2

f ′(A)
.

The following lemma shows that the quantity is exactly zero for (p, q) = (3, 5), as a part of
a more general statement.

Lemma 5. If N = 2K and (p, q) = (3, 5), then (L̃+)−1ũ · ũ = 0 for any γ ∈ (0, γ3,5).

Proof. We use (37) and write it explicitly as

(L̃+)−1ũ · ũ =
Ka2

f ′(a)
+
KA2

f ′(A)
=

Ka2

−2a2 + 4γa4
+

KA2

−2A2 + 4γA4

= − K(1− γ(a2 + A2))

(1− 2γa2)(1− 2γA2)
.

Since a2 − γa4 = 1, A2 − γA4 = 1, we have (a2 − A2)(1− γ(a2 + A4)) = 0 and since a 6= A,

we must have 1 = γ(a2 + A2) which implies (L̃+)−1ũ · ũ = 0 in this case. �

Consistently with Lemma 5, we checked numerically (L̃+)−1ũ·ũ > 0 for (p, q) = (2, 3) and

(p, q) = (3, 4) and (L̃+)−1ũ · ũ < 0 for (p, q) = (3, 6). The result holds for any γ ∈ (0, γp,q).
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Given this crucial information, we complete the study of stability of the two remaining ILMs
for these cases.

Example 5. For (p, q) = (2, 3) and (p, q) = (3, 4), we have (L̃+)−1ũ · ũ > 0 which implies
σ0 = 0.

• For the code (a+A+), we have n(L−ε ) = 0 and n(L+
ε ) = 1 so that the counts (39)–(40)

with σ0 = 0 imply Nc = N+
r = N−i = 0 and N−r = 1. Hence, (a+A+) is spectrally

unstable. See the red color branch for code (aA) in Figure 2 below.
• For the code (a+A−), we have n(L−ε ) = 1 and n(L+

ε ) = 1 so that the counts (39)–
(40) with σ0 = 0 imply Nc = N−r = N+

r = 0 and N−i = 1 by the same reasoning as
in the code (a+, a−). Hence, (a+A−) is spectrally stable (but it is not a constrained
minimizer of H for fixed Q).

For (p, q) = (3, 6), we have (L̃+)−1ũ · ũ < 0 which implies σ0 = 1.

• For the code (a+A+), we have n(L−ε ) = 0 and n(L+
ε ) = 1 so that the counts (39)–(40)

with σ0 = 1 imply Nc = N+
r = N−r = N−i = 0. Hence, (a+A+) is spectrally stable (a

local constrained minimizer of H for fixed Q).
• For the code (a+A−), we have n(L−ε ) = 1 and n(L+

ε ) = 1 so that the counts (39)–(40)
with σ0 = 1 imply Nc = N−r = N−i = 0 and N+

r = 1. Hence, (a+A−) is spectrally
unstable.

Remark 15. Since (L̃+)−1ũ · ũ = 0 for (p, q) = (3, 5) by Lemma 5, the zero eigenvalue
in the truncated generalized eigenvalue problem (31) is at least double and no conclusive
information is available for the full problem (28) for small ε > 0 without computing higher
orders of the perturbation theory.

4. Numerical results on continuation of ILMs for ε > 0

The ε-depended branches of ILMs are characterized by their codes A as ε → 0, see
Proposition 1. When ε grows, these branches may undergo bifurcations. Two types of
bifurcations are common in the parameter continuations of ILMs and these bifurcations
have been studied in [40]:

• the fold bifurcation (merging of two branches not related to each other with symme-
tries) and
• the pitchfork bifurcation (two branches related to each other with either R or −R

symmetry are connected to a branch of solutions that are invariant with respect to
the same symmetry).

It was found in [40] that the global picture of bifurcations is qualitatively the same for
the cases (p, q) = (2, 3), (p, q) = (3, 4) and (p, q) = (3, 5), at least for ILMs with codes of
length N ≤ 3. For different values of γ, the same branch may undergo different bifurcations.
Figure 1 illustrates this fact by the case of ILMs with code (A+a−) for (p, q) = (3, 4). If
γ = 0.12 the branch with this code merges at ε ≈ 0.105 with the branch with code (a+A+a−)
(the fold bifurcation). However, if γ = 0.22, the pair of ILMs with codes (A+a−) and (a+A−)
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that are related to each other by −R-symmetry is connected at ε ≈ 0.099 to the branches
of −R-symmetric ILMs with codes (A+A−) and (a+a−) (the pitchfork bifurcation).

Figure 1. Bifurcations of the branch of ILM with code (A+a−), (p, q) =
(3, 4). Left panel: γ = 0.12. At ε ≈ 0, 105 this branch merges with the branch
with code (a+A+a−), the fold bifurcation. Right panel: γ = 0.22. At ε ≈ 0.099
the pair of ILMs with codes (A+a−) and (a+A−) is connected to the branches
of −R-symmetric ILMs with codes (A+A−) and (a+a−), the pitchfork bifur-
cation.

Figure 2 shows the bifurcation diagram of ILMs with short codes for the case (p, q) =
(3, 4). Since onle positive solutions are considered, the subscript “+” is omitted in the codes.
One can see that the bifurcating counterparts depend on γ. For instance, when γ = 0.30
the branch of ILM with code (A+) undergoes the fold bifurcation with the branch with
code (a+A+a+) (see panel A), whereas when γ = 0.32 and γ = 0.33 it undergoes the fold
bifurcation with the branch with code (a+) (see panels B and C). If γ = 0.30 the pair of
branches of ILMs, (a+A+) and (A+a+), related to each other by R-symmetry, undergoes
the pitchfork bifurcation with the branch with code (a+A+a+) (see panel A). However, for
γ = 0.32 and γ = 0.33 the same pair of branches undergoes the pitchfork bifurcation with
the branch with code (a+a+) (see panels B and C).

For all the cases represented in Figure 2, exactly two branches exist, that extend to large
values of ε (called ∞-branches in [40]) . All other branches undergo bifurcations at finite
values of ε. If γ is far from the critical value γp,q these two branches are the analogs of
the Sievers-Takeno and the Page modes of the cubic DNLS equation (1), (a+) and (a+a+),
respectively. However, when γ grows a cascade of switchings between the branches occurs
that results in birth of new∞-branches and death of old ones. As a result, the length of the
code of ∞-branches grows. They are (a+) and (a+a+) at panel A, (a+a+) and (a+A+a+) at
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Figure 2. Bifurcations of branches of ILMs for the case (p, q) = (3, 4): Panel
A: γ ≈ 0.30; panel B: γ ≈ 0.32; panel C: γ ≈ 0.33. Values of ε are shown versus
Q(u) =

∑
n∈Z u

2
n. Parts of the branches that correspond to stable (unstable)

solutions are shown in blue (red).

panel B, and (a+A+a+) and (a+A+A+a+) at panel C. We also show in panels (A) and (B)
branches of asymmetric ILMs (denoted NS1 and NS2 respectively), that disappear before
the ACL. These branches of ILMs are typical for “snaking” phenomenon that was described
for various cases of (p, q), [18, 19, 34].
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Figure 2 also provides insight into the stability or instability of the solution branches.
One can see that the overall picture is rather complex, since even on the same branch the
intervals of stability (blue) alternate with intervals of instability (red). By this reason, we
have restricted our study of stability of ILMs to the ACL.

5. Numerical results on stable ILMs for small ε > 0

We employed numerical computations in order to identify all spectrally stable ILMs in the
ACL. We computed eigenvalues of the truncated spectral problem (31) with 0 < γ < γp,q.
For better presentation, we denote γ = δγp,q and consider 0 < δ < 1. Only irreducible
codes of length 1 ≤ N ≤ 10 have been studied. We consider the physically relevant cases
(p, q) = (2, 3), (p, q) = (3, 4) and (p, q) = (3, 5) but we also add data for (p, q) = (3, 6).
Tables 1, 2, 3, and 4 contain codes of spectrally stable ILMs for these four choices of (p, q).

If N = 1, the only two stable ILMs are given by the codes (A+) and (a+) as in Example
3, where the code (A+) corresponds to the energy minimizer and the code (a+) corresponds
to the constrained energy minimizer, both are spectrally and orbitally stable for every (p, q)
with 2 ≤ p < q. The codes (A−) and (a−) related to (A+) and (a+) by the sign-reversing
symmetry are also stable.

If N = 2, the ILMs with codes (A+A+) and (a+a−) are stable for any (p, q) with 2 ≤
p < q as in Example 4. In addition, it follows from Example 5 that (a+A−) is stable for
(p, q) = (2, 3) and (p, q) = (3, 4), whereas (a+A+) is stable for (p, q) = (3, 6). Stability of
both codes is inconclusive for (p, q) = (3, 5) due to a multiple (double) zero eigenvalue in the
truncated spectral problem (31). All other codes of length N = 2 are unstable.

For larger values, for N ≥ 3, we summarize the following observations.

• For (p, q) = (2, 3) and (p, q) = (3, 4) the number of spectrally stable codes quickly
grows when γ → 0 (see Tables 1 and 2). In comparison, there are very few spectrally
stable codes for values of γ near γp,q.
• If p = 3 and q grows, q = 4, 5, 6, (see Tables 2, 3, and 4), the number of stable codes

decreases. For any value q = 4, 5, 6 and for any γ ∈ (0; γp,q) the codes AA and Aa
remain stable. For (p, q) = (3, 5) and (p, q) = (3, 6) and N = 9, 10 the codes AA and
Aa are the only stable ILMs for all γ ∈ (0; γp,q), except a small vicinity of γp,q.
• If N = 2k + 1 the codes A−k+1,k are stable in small vicinity of γp,q.

• If N = 2k the codesA+
k,k are stable in small vicinity of γp,q if q exceeds some threshold:

q > 6 for p = 2, q > 5 for p = 3, and any q > p for p ≥ 4. This fact is illustrated
by Figure 3, where eigenvalues of the truncated spectral problem (31) are plotted
versus γ in (0, γp,q) for A+

5,5 in three cases: below the threshold (p, q) = (3, 4), on
the threshold (p, q) = (3, 5), and above the threshold (p, q) = (3, 6). The negative
(unstable) eigenvalue exist for every γ ∈ (0, γ3,4) for (p, q) = (3, 4) but does not exist
near γ3,6 for (p, q) = (3, 6).
• If (p, q) = (3, 5) codes with equal numbers of symbols A and a (any combinations and

any signs are admissible) have a multiple zero eigenvalue by Lemma 5. The stability
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δ, γ = δγ2,3

N 0.2 0.4 0.6 0.96 0.996

2
AA, Aa,
A−1,1

AA, Aa,
A−1,1

AA, Aa,
A−1,1

AA, Aa,
A−1,1

AA, Aa,
A−1,1

3
AA, Aa,
A−2,1 A−1,2
(a+A−a+)

AA, Aa,
A−2,1 A−1,2
(a+A−a+)

AA, Aa,
A−2,1 A−1,2
(a+A−a+)

AA, Aa,
A−2,1, A

+
1,2

AA, Aa,
A−2,1, A

+
1,2

4

AA, Aa,
A−1,3, A

−
2,2,

(A+a−a−A+)

(a+a−A+a−)

(a+A−A−a+)

AA, Aa,
A−1,3, A

−
2,2,

(A+a−a−A+)

(a+a−A+a−)

(a+A−A−a+)

AA, Aa,
A−1,3, A

−
2,2,

(a+a−A+a−)

AA, Aa AA, Aa,

5

AA, Aa,
A−2,3, A

−
1,4, A

−
4,1

(a+a−A+A+a−),
(A+A+a−a−A+)

(A+a−a−A+a−)

(a+a−A+a−a+)

(a+a−a+A−a+)

AA, Aa,
A−2,3, A

−
1,4,

(a+a−A+A+a−),
(A+A+a−a−A+)

(A+a−a−A+a−)

(a+a−A+a−a+)

(a+a−a+A−a+)

AA, Aa

A−2,3, A
−
1,4

(a+a−A+a−a+),
(a+a−a+A−a+),

AA, Aa,
A−3,2, A

−
2,3,

A+
2,3

(A+a+a−a+A−),
(A+a−A+a+a−),
(a+a−A−A−a+),

AA, Aa,
A−3,2

6

AA, Aa,
A−5,1, A

−
4,2

A−2,4, A
−
1,5

+ 10 more

AA, Aa,
A−5,1, A

−
4,2

A−2,4, A
−
1,5

+ 8 more

AA, Aa

A−5,1, A
−
4,2,

A−2,4
+ 1 more

AA, Aa, AA, Aa,

7

AA, Aa,
A−5,2, A

−
4,3,

A−2,5, A
−
1,6

+15 more

AA, Aa,
A−4,3, A

−
2,5, A

−
1,6

+9 more

AA, Aa

A−2,5
AA, Aa

A−4,3
AA, Aa,
A−4,3

8

AA, Aa,
A−4,4, A

−
2,6, A

−
1,7

A−7,1, A
−
5,3

+23 more

AA, Aa,
A−4,4, A

−
2,6, A

−
1,7

+15 more

AA, Aa,
A−5,3

+ 1 more

AA, Aa AA, Aa,

9

AA, Aa ,
A−2,7, A

−
1,8,

A−4,5, A
−
5,4,

A−7,2 A−8,1
+29 more

AA, Aa ,
A−2,7, A

−
4,5,

A−7,2 A−8,1
+15 more

AA, Aa

A−2,7, A
−
4,5,

A−8,1
AA, Aa

AA, Aa,
A−5,4

10

AA, Aa,
A−1,9, A

−
5,5, A

−
8,2

A−7,3, A
−
4,6, A

−
2,8

+42 more

AA, Aa,
A−7,3, A

−
4,6, A

−
2,8

+19 more

AA, Aa

A−7,3, A
−
2,8

AA, Aa AA, Aa,

Table 1. Codes of the spectrally stable ILMs for different values of parameter
γ in the quadratic-cubic case (p, q) = (2, 3).

analysis is inconclusive, since the multiple zero eigenvalue can split for any ε > 0.
These codes are highlighted in red in Table 3.

Figure 4 shows eigenvalues of the truncated spectral problem (31) versus γ in (0, γ3,4) for
(p, q) = (3, 4). The three panels correspond to the codes A−5,4, A+

5,4, and A−5,5.
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δ, γ = δγ3,4

N 0.2 0.4 0.6 0.96 0.996

2
AA, Aa,
A−1,1

AA, Aa,
A−1,1

AA, Aa,
A−1,1

AA, Aa,
A−1,1

AA, Aa,
A−1,1

3
AA, Aa,
A−2,1

(A+a−a−)

AA, Aa,
A−2,1

AA, Aa,
A−2,1

AA, Aa,
A−2,1

AA, Aa,
A−2,1

4
AA, Aa,

A−3,1, A
−
2,2,

(a+A−A−a+)

AA, Aa,
A−3,1, A

−
2,2,

(a+A−A−a+)

AA, Aa,
A−3,1, A

−
2,2,

(a+A−A−a+)

AA, Aa AA, Aa,

5

AA, Aa,
A−3,2, A

−
2,3, A

−
4,1

(a+a−A+A+a−),
(a+A−A−A−a+)

AA, Aa,
A−3,2, A

−
2,3,

(a+a−A+A+a−),
(a+A−A−A−a+)

AA, Aa
AA, Aa,
A−3,2

AA, Aa,
A−3,2

6

AA, Aa,
A−5,1, A

−
3,3,A

−
4,2

(a+a−A+A+A+a−)

(A+A+a−a−A+A+)

(a+a−a−A+A+a−)

(a+A−A−A−A−a+)

AA, Aa,
A−3,3,

(a+a−A+A+A+a−)

AA, Aa AA, Aa, AA, Aa,

7

AA, Aa,
A−5,2,A

−
4,3,A

−
3,4,

(a+a−A+A+A+a−a+),
(a+a−a+A−A−A−a+)

(a+a−A+A+A+A+a−)

(A+A+A+a−a−A+A+)

AA, Aa,
A−3,4,

(a+a−A+A+A+a−a+),
(a+a−a+A−A−A−a+)

AA, Aa AA, Aa
AA, Aa,
A−4,3

8
AA, Aa,

A−5,3,A
−
4,4,A

−
3,5

+ 8 more

AA, Aa,
AA, Aa,
A−6,2

AA, Aa AA, Aa,

9
AA, Aa ,

A−5,4,A
−
4,5,A

−
3,5

+ 8 more

AA, Aa ,
+ 1 more

AA, Aa AA, Aa
AA, Aa,
A−5,4

10
AA, Aa,
A−5,5,A

−
4,6

+ 12 more

AA, Aa,
A−8,2

AA, Aa AA, Aa AA, Aa,

Table 2. Codes of the spectrally stable ILMs for different values of parameter
γ in the cubic-quartic case (p, q) = (3, 4).

• The code A−5,4 is stable for γ near γ3,4 but becomes unstable for intermediate values of
γ due to coalescence of real eigenvalues forming complex pairs. As γ becomes small,
all splitting have been resolved and the code becomes stable again.
• The code A+

5,4 is unstable for any γ ∈ (0, γ3,4) due to the negative eigenvalue. Nev-
ertheless, there exist additional complex eigenvalues for the intermediate values of γ
including the values near γ3,4.
• The code A−5,5 is unstable near γ3,4 due to complex eigenvalues, which persist towards

smaller values of γ but reappear back as positive eigenvalues for γ near 0.
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Figure 3. Eigenvalues of the truncated spectral problem (31) versus γ in
(0, γp,q) for the code A+

5,5 with (p, q) = (3, 4) (panel A), (p, q) = (3, 5) (panel
B), and (p, q) = (3, 6) (panel C). The real parts of the eigenvalues are shown:
orange for real negative eigenvalues, blue for real positive eigenvalues, and red
(bold) for complex eigenvalues.
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Figure 4. Eigenvalues of the truncated spectral problem (31) versus γ in
(0, γ3,4) with (p, q) = (3, 4) for the codes A−5,4 (upper panel), A+

5,4 (middle

panel), and A−5,5 (lower panel). The color scheme is the same as in Fig. 3.
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δ, γ = δγ3,5

N 0.2 0.4 0.6 0.96 0.996

2
AA, Aa,
A−1,1, A

+
1,1

AA, Aa,
A−1,1, A

+
1,1

AA, Aa,
A−1,1, A

+
1,1

AA, Aa,
A−1,1, A

+
1,1

AA, Aa,
A−1,1, A

+
1,1

3
AA, Aa,
A−2,1

AA, Aa,
A−2,1

AA, Aa,
A−2,1

AA, Aa,
A−2,1

AA, Aa,
A−2,1

4

AA, Aa,
A−3,1, A

−
2,2,A

+
2,2

(a+A−A−a+)

(A+A+a−a−)

(A+a+a−A+)

(a+A+A+a−)

AA, Aa,
A−3,1, A

−
2,2, A

+
2,2,

(a+A−A−a+)

(A+a+a−A+)

(a+A+A+a−)

AA, Aa,
A+

2,2, A
−
2,2,

(a+A−A−a+)

(A+a+a−A+)

(a+A+A+a−)

AA, Aa

A+
2,2

(A+a+a−A+)

(a+A+A+a−)

AA, Aa,
A+

2,2

(A+a+a−A+)

(a+A+A+a−)

5
AA, Aa,

A−4,1, A
−
3,2,

(a+A−A−A−a+)

AA, Aa, AA, Aa
AA, Aa,
A−3,2

AA, Aa,
A−3,2

6

AA, Aa,
A−3,3,

(A+A+A+a−a−a+)

(a+a−A+A+A+a−)

AA, Aa,
A−3,3,

(a+a−A−A−A−a+)

AA, Aa

A+
3,3,

(a+a−A−A−A−a+)

AA, Aa,
A+

3,3,
AA, Aa,
A+

3,3,

7 AA, Aa, AA, Aa,
AA, Aa

A−5,2
AA, Aa

A−4,3
AA, Aa,
A−4,3

8
AA, Aa,
A−4,4

AA, Aa,
A−6,2

AA, Aa, AA, Aa
AA, Aa,
A+

4,4

9 AA, Aa AA, Aa , AA, Aa AA, Aa
AA, Aa,
A−5,4

10 AA, Aa, AA, Aa, AA, Aa AA, Aa
AA, Aa,
A+

5,5

Table 3. Codes of the spectrally stable ILMs for different values of parameter
γ in the cubic-quintic case (p, q) = (3, 5).

6. Conclusion

We have analyzed spectral stability of intrinsic localized modes (ILMs) in the DNLS
equation with competing power nonlinearities. The analysis holds in the anticontinuum limit
(ACL) and relies on the count of eigenvalues of the truncated generalized eigenvalue problem
and their persistence as eigenvalues of the spectral stability problem. In addition, we also
analyzed eigenvalues of the Hessian operators associated with the variational characterization
of ILMs and computed minimizers and constrained minimizers of energy in the ACL.

The outcome of this work shows a complicated pattern of stability of ILMs depending
on the strength parameter γ of the competing nonlinearities with powers (p, q), which is
defined in (0, γp,q). We identified the universally stable codes AA and Aa in (18), where AA
corresponds to the local energy minimizers for any length N and Aa corresponds to a local
constrained energy minimizer for N = 1. In addition, we studied stability of the codes for
stacked modes A+

n,m and A−n,m in (19) and found universal stability of A−k+1,k for N = 2k+ 1

for the values of γ near γp,q. Additionally, the codes A+
k,k for N = 2k are also stable for

the values of γ near γp,q but this stability holds for q > 7 if p = 2, for q > 5 if p = 3, and
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δ, γ = δγ3,6

N 0.2 0.4 0.6 0.96 0.996

2
AA, Aa,
A+

1,1

AA, Aa,
A+

1,1

AA, Aa,
A+

1,1

AA, Aa,
A+

1,1

AA, Aa,
A+

1,1

3
AA, Aa,
A−2,1

AA, Aa,
A−2,1

AA, Aa,
A−2,1

AA, Aa,
A−2,1

AA, Aa,
A−2,1

4
AA, Aa,
A−3,1

AA, Aa,
A−3,1

AA, Aa,
A+

2,2

AA, Aa

A+
2,2

AA, Aa,
A+

2,2

5
AA, Aa,
A−3,2,

AA, Aa, AA, Aa
AA, Aa,
A−3,2

AA, Aa,
A−3,2

6 AA, Aa, AA, Aa, AA, Aa
AA, Aa,
A+

3,3,
AA, Aa,
A+

3,3,

7 AA, Aa, AA, Aa, AA, Aa
AA, Aa

A−4,3
AA, Aa,
A−4,3

8 AA, Aa, AA, Aa, AA, Aa,
AA, Aa

A+
4,4

AA, Aa,
A+

4,4

9 AA, Aa AA, Aa , AA, Aa AA, Aa
AA, Aa,
A−5,4

10 AA, Aa, AA, Aa, AA, Aa AA, Aa
AA, Aa,
A+

5,5

Table 4. Codes of the spectrally stable ILMs for different values of parameter
γ in the cubic-sextic case (p, q) = (3, 6).

for q > p if p ≥ 4. The asymptotic analysis of the spectral stability problem in the limit
γ → γp,q is an open question for further studies.

We also observed that eigenvalues of the spectral stability problem are very different in
magnitude in the limit γ → 0 and this explains the appearance of many stable codes for
small values of γ especially for physically relevant cases (p, q) = (2, 3) and (p, q) = (3, 4).
The asymptotic analysis in the limit γ → 0 is another open question for further studies.

Finally, variational characterization of global minimizers of energy and constrained mini-
mizers of energy is also an interesting mathematical problem for further studies, both in the
ACL and for other values of ε > 0.
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